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1 Introduction

This paper of Giroux is absolutely seminal in the study of contact geometry.
Convexity at first glance may not seem so crucial or natural, but it is! Giroux
showed why, and along the way proved a number of basic results that are stan-
dard today.

Much of Giroux’s paper deals with higher-dimensional contact manifolds. I
will stick only to 3-manifolds. Also, I am more interested in convex surfaces
than the other notions of convexity discussed by Giroux: namely, those relating
to convex contact structures.

Let (M, ξ) be a closed oriented contact 3-manifold throughout. Let α be a
contact form for ξ.

2 So what is a convex surface?

Definition 2.1 A convex surface S in (M, ξ) is an embedded surface (possibly
with boundary) for which there exists a transverse contact vector field X, i.e. a
vector field transverse to S for which the flow of X preserves ξ.

So, the crucial thing appears to be a contact vector field. Are there many
contact vector fields on ξ? It turns out there are very many — as many as there
are sections of the line bundle TM/ξ on M . Giroux refers to Arnold for this,
but it’s not too difficult to prove. So, it seems that it should be fairly generic
that this should be transverse to S, though maybe you might think there are
topological obstructions. It turns out that there are no obstructions, and a
generic surface is convex. This is special to 3 dimensions.

A generic surface is convex. This is one of Giroux’s greatest achievements.
Maybe it wasn’t that hard to prove once he set his mind to it, but discovering
this was a great breakthrough.

3 Why?

Indeed. Why convex surfaces.
By this one might mean: what is the motivation for this definition? Well,

it comes from pseudoconvex embeddings in complex geometry: these often give
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you contact structures. They are all about, relevant to our context, Morse
functions and gradient vector fields keeping things invariant. “Convex” in the
complex context says something about a Morse function “pointing out” of the
manifold, for instance as a gradient vector field for a Morse function points out
of a level set. So this is where the invariant vector field and the transversality
come from.

But by the question one might mean: Why do we bother with these things?
And the most basic layperson’s reason could be: “Because humans are so

bad at visualising 3 dimensions!”
It’s true. A field of planes moving about in 3-dimensional space is poten-

tially something you can visualise. It’s not an unacceptably high number of
dimensions. Planes are not that complicated. If we could see them better, we
could probably prove a lot more directly.

Why are they useful? We will soon see that the contact structure near a
surface is determined by its characteristic foliation; and a foliation on a surface
is much easier to keep track of than a whole contact structure. Some lines
on a surface are much easier to visualise than planes which rotate all over the
place! At the price of only seeing the contact structure in the neighbourhood of a
surface, we gain the pleasure of not having to tax our 3-dimensional visualisation
abilities. This was known before Giroux’s paper, it seems; but Giroux’s paper
is the earliest location I know of where there is a written proof of this result.

So: the contact structure near a surface is determined by its characteristic
foliation. But this has nothing to do with convexity, yet. However a generic
surface is convex. The crucial blow is struck by the following result: the char-
acteristic foliation on a convex surface is more or less determined by its dividing
set. We will define what a dividing set is in due course: it is a certain finite
set of curves on a surface. What the “more or less” means will become clear
shortly. But note the obvious point: as easy as a characteristic foliation is to
understand, a finite set of curves is much simpler again.

For anyone who has ever struggled to draw a picture even of the standard
contact structure and figure out which way all those planes were wiggling, convex
surfaces, then, offer a simplification of contact structures that is truly awesome.

4 What a convex surface looks like I

Before we go proving all these major results, we would like to get a nice picture
of a convex surface S in (M, ξ). Note that, having a transverse contact vector
field, S is automatically oriented.

4.1 First example: a contactization

An example: a contactization of a symplectic manifold. Yes, symplectic and
contact are that closely related — you can symplectize a contact manifold, and
contactize a symplectic manifold. In both cases, you “-ize” it by crossing it with
R, and defining an appropriate contact/symplectic form on the product.
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Actually, you can’t contactize any symplectic manifold. It has to be exact.
Well, how else were you going to get a contact 1-form canonically out of a
symplectic 2-form? So take an exact symplectic manifold (W,ω) where ω = dβ.
Let W have dimension 2n Then on W × R we want to write a contact 1-form.
What about β? The simplest possibility, perhaps, but that’s not going to work;
for β doesn’t change in the R direction. So, you might try the next simplest
possibility, say β + dt, where t is the coordinate in the R direction. Is that a
contact form? Yes:

(β + dt) ∧ (d(β + dt))n = β ∧ (dβ)n + dt ∧ (dβ)n = dt ∧ (dβ)n = dt ∧ ωn 6= 0.

Why does β ∧ (dβ)n = 0? Because it’s a (2n + 1)-form but is only nontrivial in
the W direction, which is 2n-dimensional. And why is dt ∧ ωn 6= 0? From the
definition of a symplectic form, ωn is a volume form on W ; and dt is a volume
form on R; so their product is a volume form on W × R.

Consider now M = W × R as a 3-manifold (so W is a 2-manifold); how-
ever the discussion all still works in higher dimensions, it we define everything
properly.

Our contact form is very simple: β + dt. In particular it is invariant under
translations in the R direction. That is, it is invariant under the flow of the
vector field X = ∂/∂t. So X = ∂/∂t is a contact vector field. Any horizontal
surface W ×{t} is therefore a convex surface. In fact, any slice of W ×R which
is “never vertical” is going to give us a convex surface. More precisely, take any
function f : W −→ R and consider its graph, which is a surface in W×R. Being
the graph of a function is what me mean by “never vertical”; this will also be a
convex surface.

4.2 Second (not just an) example: vertically invariant
contact structures

But in fact every convex structure looks a bit (not exactly!) like this, and this is
the key to understanding what’s going on. Any convex surface S certainly has a
neighbourhood diffeomorphic to S ×R; and we can choose the R coordinate so
that our transverse contact vector field is X = ∂/∂t; then in these coordinates,
the contact structure is invariant under the flow of X, i.e. invariant under
translations in the R direction. So if we can understand the situation of S × R
with X = ∂/∂t as a contact vector field, we will understand what any convex
surface looks like.

4.2.1 The form of the form

So, we have S ×R, and want to consider contact structures which are invariant
under translations in the R direction. What does the 1-form α look like? If we
write x, y for some local coordinates on S and t for the coordinate on R, we
have

α = αx dx + αy dy + αt dt
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where αx, αy, αt are functions S ×R −→ R. However if the contact structure is
to be invariant under translations in the t direction, we must have LXα being
a multiple of α; actually, by rescaling α, we can choose α to satisfy LXα = α.
That is, α is to be invariant under translations in the R direction. So αx, αy, αt

are all functions on S alone. From now on we write β for the local expression
αx dx + αy dy and have a 1-form on S; we write u for αt and u is a function on
S. So we have

α = β + u dt.

This is the general form of a vertically invariant 1-form on S × R.
But it’s not the general form of a vertically invariant contact 1-form on S×R.

For that we need to do a computation:

α ∧ dα = (β + u dt) ∧ (dβ + du ∧ dt)
= β ∧ dβ + β ∧ du ∧ dt + u dt ∧ dβ

= β ∧ du ∧ dt + u dt ∧ dβ

= (β ∧ du + u dβ) ∧ dt

Again β ∧ dβ = 0 since this is a 3-form on S. So the contact-ness of α depends
on the form

θ = β ∧ du + u dβ.

This is a 2-form on S: if it is nondegenerate everywhere, then wedging it with
dt will give us an everywhere nondegenerate 3-form on S×R; if it is degenerate
anywhere, then wedging it with dt will give us a degenerate 3-form on S × R.
So α is contact if and only if θ is nondegenerate, i.e. an area form on S.

Clearly for any such α, provided θ is nondegenerate, any surface S × {t} is
a convex surface in S × R with contact vector field X = ∂/∂t. In fact, again,
for any function S −→ R, the graph of the function inside S × R is a convex
surface in (S × R, α).

4.2.2 It’s mostly contactizations

Note that the expression for α, namely β + u dt, is actually quite close to the
contact form on a contactization, as given above. In fact, we usually do have
mostly a contactization! The u is the only difference. If we had u 6= 0, then we
could divide through by u and obtain a different form — of the contactization
type — giving the same contact structure. So: whenever u is nonzero, we really
have a contactization. The region of S where u = 0 is generically a set of curves
which we will call Γ; away from Γ, on (S\Γ)×R, we can take the contact form
as β/u + dt, so we have the contactization of the exact symplectic manifold
(S\Γ, d(β/u)).

A priori, of course, Γ could be a nasty set, but generically it will be a set of
curves. In fact more is true: if α is a contact form, so that θ is nondegenerate,
then Γ must be a set of curves. For whenever u = 0, to have θ 6= 0 means
β ∧ du + u dβ = β ∧ du 6= 0. Hence du 6= 0, and so the tangent space to Γ is
precisely the one-dimensional kernel of du; so Γ is a 1-manifold.
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Actually, note that we now have two area/symplectic forms on S. From
considering the contact-ness of β+u dt we have the form θ = β∧du+u dβ. And
from considering the exact symplectic manifold (S\Γ) 1-form we have d(β/u).
These are both area forms, so differ by a function which is nowhere zero. It turns
out that function is u2, which is certainly positive away from Γ. In particular,
θ = u2d(β/u):

d

(
β

u

)
=

dβ

u
+ d

(
1
u

)
∧ β =

1
u

dβ − 1
u2

du ∧ β =
1
u2

(u dβ + β ∧ du) =
1
u2

θ.

4.2.3 Where do the contact planes go?

Let’s consider the surface S×{0} (or S times any number) in more detail. What
does the contact structure look like here? The contact plane is the kernel of
α = β + u dt.

The plane is usually transverse to S×{0}; the contact plane is only tangent
at isolated points of S × {0}. At these points, α is of the form u dt; these are
the points where β = 0. (It’s possible to have β = 0 but still have θ 6= 0.)

The plane can sometimes be vertical. At such points, the contact plane
contains ∂/∂t, so u = 0, and α is simply of the form β; the points where ξ is
vertical are the points where u = 0. If you like, the value of u tells us how
non-vertical the plane is, well, not really, but it may be useful to think this way.

4.2.4 Where does the characteristic foliation go?

We will obtain a characteristic foliation on S × {0}. It is the intersection of
kerα with the horizontal surface; but since the u dt term has nothing to say
about horizontal vectors, the characteristic foliation is completely determined
by β. In fact, the characteristic foliation is simply given by kerβ.

We can even describe a vector Y directing the characteristic foliation on
S × {0}. Well, we could just take Y to be an arbitrary vector in kerβ, but
that’s not so canonical. Rather, we have a 1-form on S and an area/symplectic
2-form θ. Recall that in symplectic manifolds, 1-forms have dual vectors and
vice versa; and on a 2-dimensional surface, the dual vector to a 1-form lies in
its kernel. So, we can take Y to be the vector dual to the 1-form β with respect
to the area/symplectic form θ on S. That is: we define the vector field Y on S
by

β = i(Y ) θ.

Then Y directs the characteristic foliation on S × {0}.
Actually, there was another potential, highly canonical, choice for a vector

field directing the characteristic foliation; at least, away from Γ, that is, where
u = 0. Because recall that (S\Γ)×R is the contactization of the exact symplectic
surface (S\Γ, d(β/u)). And the characteristic foliation can be taken as given
not just by the kernel of β, but by the kernel of the highly canonical Liouville
1-form β/u. So by the same reasoning as the previous paragraph, we can define
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a vector field Z directing the characteristic foliation on S × {0} by being dual
to the Liouville form β/u with respect to d(β/u):

β

u
= i(Z) d

(
β

u

)
.

Are these closely related? One would hope so! Well, of course Y and Z both
direct the same characteristic foliation, so they must be scalar multiples of each
other. In fact, that multiple is just the function u: Z = uY . This follows from
a computation: plugging both Y and Z into the same area form d(β/u) we can
see what the factor is.

i(Z)d
(

β

u

)
=

β

u

i(Y )d
(

β

u

)
=

1
u2

i(Y )θ =
1
u2

β =
1
u
· β

u
.

So Y, Z point in the same direction along the characteristic foliation when u > 0;
and in the opposite direction when u < 0.

Now, since Y is defined on the whole surface and is a smooth vector field, Y
should proceed smoothly across the set Γ, where u = 0. From our proceeding
comment, as we cross Γ, u changes sign. Thus Z abruptly changes direction
every time you pass through Γ. Actually, not so abruptly, since Z = uY ; so Z
approaches 0 near Γ, and Z extends continuously to all of S, with singularities
along Γ.

So, which way do these vector fields point as we cross Γ? Well, Z isn’t
defined on Γ, but Y is. Recall that being on Γ means u = 0. And we want to
know the change in u in the direction of Y , that is, du(Y ) = i(Y ) du. Well,
from the equation (the only one we really have!)

β = i(Y ) θ = i(Y ) (β ∧ du + udβ) ,

noting that here u = 0 and i(Y )β = 0 (because Y directs the characteristic
foliation, which is the kernel of β), we have

β = −βi(Y ) du, hence i(Y ) du = −1.

We conclude that Y points from positive towards negative u. Since Z agrees
with Y when u > 0, Z points out of positive u pieces of S. And since Z disagrees
with Y when u < 0, Z points out of negative u pieces of S also. So Z points
out of each piece of S\Γ, towards Γ.

Actually, we could have seen this more quickly and more slickly. Think about
the effect of our two vector fields on their respective area forms. As you flow
along them, do they dilate or compress area? Well, flowing along Y produces a
messy result on θ. But because S\Γ is exact and has a Liouville form, the effect
of flowing Z on the area form d(β/u) is very simple:

LZ d

(
β

u

)
= di(Z)d

(
β

u

)
= d

(
β

u

)
.
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Here all we used was β/u = i(Z)d(β/u). So Z dilates the area form d(β/u). If
you expand an area form, you certainly can’t be coming inwards through the
entire boundary!

4.3 Characterising vertically invariant contact structures

Let’s summarise what we find on S × R with a vertically invariant contact
structure.

(i) The contact form has the expression β + u dt where β is a 1-form on S
and u is a function on S.

(ii) The 2-form θ = β ∧ du + u dβ must be an area/symplectic form on S.

(iii) The contact plane is vertical where u = 0, and horizontal where β = 0.

(iv) Away from Γ = {u = 0}, the manifold is actually a contactization. Pre-
cisely: ((S\Γ)× R, β/u + dt) is the contactization of (S\Γ, d(β/u)).

The characteristic foliation on S × {0} is given by any of:

(i) The kernel of β. (Or, away from Γ, it’s the kernel of β/u.)

(ii) It’s directed by Y , which is dual to β with respect to the area/symplectic
form θ. Across Γ, Y points in the direction of decreasing u, i.e. from
positive to negative u regions.

(iii) Away from Γ, it’s directed by Z, which is dual to the Liouville form β/u
with respect to the exact symplectic form d(β/u). The flow of Z expands
the area form d(β/u); consequently, Z always points outwards across Γ,
and changes direction as you cross Γ along a leaf. However since Z −→ 0
as we approach Γ, Z extends continuously to a singular vector field on all
of S.

This is more than enough to characterise what’s going on here. The question
is: if you’re given a (singular) foliation F on S, is it the characteristic foliation
on S × {0} for some vertically invariant contact structure on S ×R? Turns out
that the set Γ, the dilating an area form property, and the change of direction
along Γ, is enough. We can make this precise: this is a 3-dimensional version
of Giroux’s theorem I.3.2; Giroux’s version is stronger and works in higher
dimensions.

Proposition 4.1 Let S be a closed surface and let F be a dimension-1 singular
foliation on S. The following are equivalent:

(i) There exists on S×R a vertically invariant contact structure which induces
F as the characteristic foliation on S × {0}.

(ii) There exists on S a 1-manifold Γ (i.e. a finite set of disjoint closed curves)
transverse to F (in particular, avoiding the singularities of F such that
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(a) the complement S′ of an open tubular neighbourhood of Γ, with the
fibres in F , is an exact symplectic manifold for which a Liouville
vector field directs F and exits transversely through the boundary;
and

(b) the involution of the double cover ∂S′ −→ Γ obtained by following
leaves of F reverses the orientation on the leaves. (That is, the Li-
ouville vector field changes direction on leaves passing through Γ.)

Proof That (i) implies (ii) we have already seen: the 1-manifold Γ where u = 0
divides S into pieces where we have Liouville vector fields; and the Liouville
vector fields change direction on leaves passing through Γ.

In the other direction, a contactization S×R of an exact symplectic manifold
(S, dβ) has a vertically invariant contact structure with contact form β+dt with
the Liouville vector field Z (defined via β = i(Z)dβ) directing the characteristic
foliation, which is the kernel of β. So we have a vertically invariant contact
structure β + dt on S′ × R. All we need to do is glue the pieces together,
knowing that the Liouville vector field changes direction as we pass through the
boundary Γ.

This is a silly little fiddle, but the idea is clear: you can glue it all together.
You have to fiddle because the vector field goes to zero on Γ; you need to rescale
somehow to get it to work.

So, we consider a tubular neighbourhood of Γ fibred by leaves of F . Consider
it as Γ× (−1− ε, 1 + ε), where at the ±1 points it joins with S′. We know that
Z points outwards near ∂S′, so we can choose a coordinate s on S′∩ (Γ× (−1−
ε, 1 + ε)) = Γ× (−1− ε,−1] ∪ Γ× [1, 1 + ε) such that there Z = −s(∂/∂s). We
need to extend our contact form β + dt over Γ× (−1− ε, 1 + ε)×R, remaining
vertically invariant.

What does β look like on Γ× [1, 1+ ε)? We should be able to work this out,
since we have chosen coordinates in the region. We defined Z by β = i(Z)dβ.
And i(Z)β = 0, either from the previous equation or since Z directs F , which
is the kernel of β. So LZβ = di(Z)β + i(Z)dβ = d0 + β = β, and flowing along
Z = −s(∂/∂s) dilates β. This gives us a differential equation for what happens
to β as you increase s. Note that flowing along Z, in our coordinates β always
has ∂/∂s in its kernel, so β(s) = f(s)β(1). Now LZβ = β becomes

−s
df

ds
= f which implies f(s) =

f(1)
s

.

So β(s) = β(1)/s. Write γ for β(1), and we can consider γ as a 1-form on all
of Γ× (−1− ε, 1 + ε). For s ∈ (−1− ε,−1]∪ [1, 1 + ε) we have β = γ/s and our
original contact form was β + dt = γ/s + dt. But this gives the same contact
structure as γ+s dt, and γ+s dt gives us a vertically invariant contact structure
on all of Γ× (−1− ε, 1 + ε). We just need to check it’s contact for s ∈ (−1, 1),
which follows upon inspecting the expression (γ + s dt)∧ d(γ + s dt) and noting
it’s contact for s = ±1.

A silly little fiddle indeed. ¥
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5 The power of characteristic foliations

We now know that if we have a convex surface, we can choose coordinates so
a neighbourhood looks like S × R, with the contact vector field X = ∂/∂t, so
that the contact form is β + u dt, with β a 1-form and u a function on S, and
with the characteristic foliation F directed by a Liouville vector field away from
Γ = {u = 0}, which changes direction over Γ.

On the other hand, suppose you have all this data on the surface S: a Γ, an
F , an X, Liouville forms, Liouville vector fields and all the rest of it. Does it
follow that the surface is convex?

We don’t know yet: to conclude that the surface is convex, we need to
know that the contact structure near S looks like our standard picture. We
could conclude that, if we knew that the characteristic foliation determines the
contact structure nearby.

In other words, to go any further we need to harness the power of the char-
acteristic foliation. We need the following proposition (Giroux’s proposition
II.1.2(b)).

Proposition 5.1 Let F be a singular foliation on a closed surface S. Fix an
orientation on ∧2TS, and we are interested only in positive contact structures
(i.e. with α ∧ dα > 0). Two germs of contact structures which induce the
same characteristic foliation F on S are conjugate by a germ of a diffeomor-
phism which is isotopic to the identity through diffeomorphisms preserving F .
(Consequently, the two germs of contact structures are isomorphic!)

So, we commence a thorough study of what characteristic foliations look
like, from the ground up.

5.1 What singularities can occur in characteristic folia-
tions?

A first question is: characteristic foliations can be singular. How bad can those
singularities be? We have to worry about the types of singularities in the folia-
tion F .

Nobody else in the history of contact geometry (at least, the recent history)
seems to have worried about this issue. Everyone else just says you can assume,
generically, that there are only nice singularities. Not Giroux. Well, he is
proving the result that everyone will use, so we all owe him a debt of gratitude.

To be sure, we are assuming something, namely that our foliation is a singular
foliation. We are assuming that F is only degenerate at singularities which are
isolated points. You can easily find characteristic surfaces where the singularities
are worse (e.g. take a surface tangent to the contact structure along a whole
curve). Beyond this, we are making no assumptions on the types of singularities.

A good way to study a singularity is by looking at the linearisation there.
We have a singular foliation F on S and a vector field Y directing it. At a
singularity x of F we have Y = 0. Now we have a family of diffeomorphisms
ϕt, the flow of Y . Clearly ϕt(x) = x; x isn’t going anywhere! However around
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x, we can take note of what happens. For a tangent vector in TxS, we can
exponentiate it, see what happens to it under ϕt, and (for small enough t)
return to the tangent space. As t → 0 we obtain the linearisation of ϕt, which
is a linear map TxS −→ TxS. The trace of this linear transformation tells us
what ϕt is doing to areas as t → 0; this trace is the divergence of Y at x.

Definition 5.2 A singularity x of a vector field Y is isochore if the divergence
of Y at x is zero.

Perhaps there’s an English translation for “isochore”, I don’t know. I’m just
copying the word from the French.

Note this includes hyperbolic fixed points where the attracting and repelling
eigenvalues are equally strong — so there is no effect on area. Note also that a
degenerate singularity can be okay, and not isochore — a degenerate singularity
has non-invertible linearisation, but the trace may still be nonzero.

It turns out that isochore singularities can’t occur in characteristic foliations;
but this is all. Happily, a singular foliation without isochore singularities can be
realised as a characteristic foliation. Thank goodness! This may seem somewhat
strange, since it implies that some fairly degenerate singularities can occur in
characeristic foliations; but that’s not a problem, as we’ll see, we can construct
the contact structure explicitly nearby anyway.

This is Giroux’s proposition II.1.2(a)

Proposition 5.3 Let F be a singular foliation on a surface S. We fix an
orientation on the manifold ∧2TS and we are interested only in germs of contact
structures along S which give this orientation.

F is the characteristic foliation induced on S by a germ of contact structures
if and only if F is without isochore singularities.

So this theorem answers two questions. It answers our original question:
what singularities can occur in characteristic foliations? But it also answers a
more general question: which singular foliations are characteristic foliations?
This is a very important answer to know.

To prove this, we’ll need to understand how contact structures work in neigh-
bourhood S × R — but, more generally than before, we no longer require the
structure to be vertically invariant.

5.2 Contact structures on S × R and germs

Let us consider what a general contact 1-form α on S×R looks like. No matter
what the t coordinate, at any point in S × {t}, α can be written in the form
βt + ut dt where βt is a 1-form and ut a function on S × {t}. When is this a
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contact form? We do the usual computation:

(βt + ut dt) ∧ d (βt + ut dt) = (βt + ut dt) ∧
(

dβt +
∂βt

∂t
∧ dt + dut ∧ dt

)

= βt ∧ ∂βt

∂t
∧ dt + βt ∧ dut ∧ dt + ut dt ∧ dβt

= dt ∧
(

ut dβt + βt ∧
(

dut − ∂βt

∂t

))

Note that when we write dβt we mean taking the differential, of a form on S;
so the differential as a form on S × R is dβt + (∂βt/∂t)dt. So βt ∧ dβt = 0 as
a 3-form on S. The 2-form in brackets is a 2-form on S; so we have a contact
form if and only if this is nowhere degenerate. The condition is:

ut dβt + βt ∧
(

dut − ∂βt

∂t

)
6= 0

In our situation, we are given the foliation on S × {0}, so we are given β0.
To define the contact structure nearby we need nearby βt and ut and ∂βt/∂t.
However, to define the germ of a contact structure near S × {0} we need less:
we only need, in addition to our β0, the function u0 and the partial derivative
(∂βt/∂t)|t=0. These need to satisfy

u0 dβ0 + β0 ∧
(

du0 − ∂βt

∂t
|t=0

)
6= 0

on S × {0}. A pair (u0, (∂βt/∂t)|t=0) satisfying this condition is all we need.
One important observation is that he set of all pairs (u0, (∂βt/∂t)|t=0) sat-

isfying our condition is basically convex : no, not a convex surface in a contact
manifold, it’s a convex set in a vector space, in the old-fashioned sense. If we re-
quire our pair (u0, (∂βt/∂t)|t=0) to satisfy the condition above, with a particular
sign (so say > 0 rather than 6= 0), the space of all such pairs is convex.

For if we have two such pairs (u0, (∂βt/∂t)|t=0) and (u′0, (∂βt/∂t)|′t=0), with

u0 dβ0 + β0 ∧
(

du0 − ∂βt

∂t
|t=0

)
> 0

u′0 dβ0 + β0 ∧
(

du′0 −
∂βt

∂t
|′t=0

)
> 0

then

[(1− s)u0 + su′0] dβ0+βt∧
(

d [(1− s)u0 + su′0]−
[
(1− s)

∂βt

∂t
|t=0 + s

∂βt

∂t
|′t=0

])
> 0

also.
End disgusting computation. A disgusting computation indeed, but this is

the essential reason why a characteristic foliation determine the germ of contact
structure. It means that the “germ data” (u0, (∂βt/∂t)|t=0) forms a contractible
space; and with a bit of Mosering, it means that all the relevant germs are
isomorphic.
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5.3 A characterisation of isochore singularities

So far we’ve defined an isochore singularity as one satisfying a condition about
linearisations and divergences. There’s a slightly more approachable way of
describing them.

As usual, let our foliation F be defined by a 1-form β. But now we will take
a dual. So let ω be an area/symplectic form on S and take the vector field X
dual to β with respect to ω. So β = i(X)ω and X directs F . The isochore
condition can be written using the divergence with respect to the area form ω,
i.e. LXω. To be isochore is to have LXω = 0 at a singularity. We can expand
this and obtain

0 = LXω = i(X)dω + di(X)ω = 0 + dβ.

So at a singularity, i.e. when β = X = 0, we have dβ = 0. The above
computation shows that the converse is true also.

Lemma 5.4 A singularity x of a foliation F on a surface S defined by a 1-form
β (so that β = 0 at x) is isochore if and only if dβ = 0 there.

5.4 Which foliations are characteristic foliations?

We can now answer the question: precisely those without isochore singularities.
And we can prove it. We can prove proposition 5.3.

To see why, suppose we have a characteristic foliation F on S; we will show
there are no isochore singularities. Let α be the contact form, and β the induced
form on S. At a singularity x of F , α is tangent to S, so for any vector V tangent
to S, α(V ) = 0. Since α ∧ dα = 0, dα is nondegenerate on TxS; hence so is its
restriction dβ. So dβ 6= 0, and by the above characterisation, x is not isochore.

In the other direction, given a singular foliation F without isochore singular-
ities, we want to construct a germ of a contact structure on S×R. As discussed
in the previous section, giving the foliation is equivalent to giving a 1-form β0

on S × {0}, defined up to multiplication by nonzero function. To define the
germ of the contact structure near S × {0} we need to add the information of
u0 and (∂βt/∂t)|t=0, satisfying

u0 dβ0 + β0 ∧
(

du0 − ∂βt

∂t
|t=0

)
6= 0.

So, we just need to find such u0 and (∂βt/∂t)|t=0. The isochore condition, we
have discovered, means that when β0 = 0, then dβ0 6= 0.

The condition we must satisfy basically says that a certain 2-form on S must
be an area form. So let’s take an area form ω and compare everything to it;
any 2-form will be some function times ω. So, in particular, dβ0 = fω for some
function f . Then the first term is u0dβ0 = u0fω. We want to choose u0 to
get things positive, say; so one sneaky thing to do would be to take u0 = f .
Then u0dβ0 = u2

0ω ≥ 0. This is never negative; and in fact, from the isochore
condition we know that u0 6= 0 at singularities, so u2

0 > 0 there.
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What about the other term? Well, note that whenever β0 is nonzero, there
is always something you can wedge it with to get ω. Let’s call this 1-form γ,
so β ∧ γ = ω. This can’t work at singularities; but there does exist γ such that
β ∧ γ = gω where g ≥ 0. It would be very good to have the term in brackets
being γ, namely du0 − (∂βt/∂t)|t=0 = γ. We can certainly do this: we have
already chosen u0, and we can define (∂βt/∂t)|t=0 by this equation. Then we
have

u0 dβ0 + β0 ∧
(

du0 − ∂βt

∂t
|t=0

)
= u2

0ω + β ∧ γ = (u2
0 + g)ω.

Now we know u2
0 + g > 0. At the singularities of β, thanks to the non-isochore

condition we know u0 > 0; and away from the singularities of β from our
definition of γ we have g > 0. So this is a positive form and we are done.

This proves the proposition. Well, you might want to worry a little about
orientations, but any problem with orientations are solvable by taking a double
(or quadruple!) cover.

5.5 The characteristic foliation determines the germ of the
contact structure... up to isotopy...

Now we have seen that, from the characteristic foliation, you can construct
the germ of a contact structure. A characteristic foliation, we know, has no
isochore singularities; and from a foliation without isochore singularities we can
determine the germ of a contact structure by choosing (u0, (dβt/dt)|t=0) as we
just did above.

What we want to know, is that the germ of the contact structure is uniquely
determined. This will prove proposition 5.1.

Well, as we mentioned previously, given the foliation F and hence β0, the
space of all germ data (u0, (dβt/dt)|t=0) for contact structures forms a con-
tractible space, in fact, convex (in the vector space sense!).

That is, given any two germs of contact structures ((u0
0, (dβt/dt)|0t=0), (u

1
0, dβt/dt)|1t=0)

with the same F , and hence the same β0, we can linearly homotope their germ
data one to the other:(

us
0,

∂βt

∂t
|st=0

)
=

(
(1− s)u0

0 + su1
0, (1− s)

∂βt

∂t
|0t=0 + s

∂βt

∂
|1t=0

)
.

These give a germ of a contact form for all s ∈ [0, 1].
So, to the proof! Take two contact structures ξ0, ξ1 with forms α0, α1,

inducing the same foliation F on S. We write α0 = β0
t +u0

t dt, α1 = β1
t +u1

t dt.
The fact that they both give the characteristic foliation means that we can take
β0

0 = β1
0 . The two pairs of germ data are above. We let αs = (1 − s)α0 + sα1.

Then the germ data is also linearly interpolated, and is exactly as given above,
and from the convexity argument the contact property is always satisfied; so αs

gives a (germ of a) contact structure near S.
This proves that any two contact structures inducing the characteristic folia-

tion F on S have germs which are isotopic (through germs of contact structures).
But we want more.
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5.6 ... and up to isomorphism

Given our ξ1, ξ2 as above, we not only want their germs to be isotopic. We want
them to be related by a “germ of a diffeomorphism which is isotopic to the iden-
tity through diffeomorphisms preserving F”. That is, we want a one-parameter
family of diffeomorphisms — or rather, germs of such diffeomorphisms near S —
starting at the identity, ending at a (germ of a) diffeomorphism which takes one
contact structure to the other, and which always preserves the surface S and the
foliation F . That is, this one-parameter family of (germs of) diffeomorphisms
must look like flows along leaves of F . And indeed this is precisely what we do:
we will flow along leaves of F , realising the family of (germs of) contact forms
αs.

We are already very close. We have shown that simply linearly interpolating
the (germs of) contact forms α0, α1 to obtain αs, we have a family of (germs)
of contact forms already. They just need to be realised. If we can find a 1-
parameter family of diffeomorphisms ϕs near S, which fix S and flow along
leaves of F , and have ϕ∗sα

s proportional to α0, we are done. (They don’t have
to be equal, just proportional, to define the contact structure.)

We will use Moser’s method. How does Moser’s method work? Instead of
looking at the diffeomorphisms, you look at the flow; you look at vectors; and
using the properties of the contact form and whatever else, you work out what
they must be. A good way of writing the condition we want is:

ϕ∗sα
s ∧ ∂

∂s
(ϕ∗sα

s) = 0.

This only refers to one particular point in time s, which is useful. If Xs is the
vector field with flow ϕs, this translates to

L(Xs)αs = −∂αs

∂s
.

Expanding this out gives

di(Xs)αs + i(Xs)dαs = −∂αs

∂s
.

Given the situation, it seems natural to require i(Xs)αs = 0. (In particular,
Xs ∈ ξs.) Then we must have i(Xs)dαs = −∂αs/∂s. But since Xs ∈ ξs, and
for any contact form dαs|ξs is nondegenerate, we can find such an Xs; and we
have our one-parameter family of (germs of) diffeomorphisms!

One more thing to check: we wanted Xs ∈ F , so that this was a flow along
leaves of F . Since all αs have the same part β0 which describes the foliation,
for any vector V pointing along a leaf, (∂αs/∂s)(V ) = 0. From the equation
i(Xs)dαs = −∂αs/∂s, we then have dαs(Xs, V ) = 0. But both Xs, V lie in ξs,
so dαs is nondegenerate on them; hence they are scalar multiples. So indeed ϕs

is a flow along leaves.
And that is the power of the characteristic foliation.
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6 Singularities and their orientations

Recall that the singularities which can occur in characteristic foliations are the
non-isochore singularities. We have avoided the issue of orientations up to now;
unfortunately now we have to deal with it.

Note that M is naturally oriented by the contact structure ξ (for any contact
form α we get an orientation from α ∧ dα). If the orientation on S is reversed,
this amounts to reversing the R coordinate on an S × R neighbourhood, so
α = β + u dt changes to β − u dt. In effect we replace u with −u while β is
unaffected. It’s then easy to see that we must replace θ = u dβ + β ∧ du with
−θ; recalling that θ is an area form on S, we see that the orientation is reversed
as it should be. Then β = i(X)θ implies that we must replace X with −X; so
the direction on the foliation is reversed. Basically, orienting the surface (and
hence foliation) amounts to choosing a sign for u.

According to the choice of orientation, an elliptic singularity becomes a
source or a sink. At a hyperbolic singularity x, we have two eigenvalues λ1, λ2

associated with the two separatrices, which are the eigenvalues of the lineari-
sation of the flow at x. Here λ > 0 means that the foliation points outward
and λ < 0 inward; for a hyperbolic singularity obviously there is one eigenvalue
of each sign. The non-isochore condition means that λ1 + λ2 6= 0. Reversing
the orientation of S and F will replace the eigenvalues λ1, λ2 with the “same
eigenvalues, but in the opposite direction” — namely, they become −λ1,−λ2.

Now, at a singularity x we have β = 0. Recall that at a singularity u 6= 0.
(If u = 0 and β = 0 at x then θ = 0 there too.) So x is not on Γ; and choosing
an orientation at x amounts to choosing the sign of u.

Supposing that u is given in advance, of course, we have an orientation; let
us call this the pre-orientation. But we can also choose a standard orientation
at the singularity x. Recall that away from Γ, F is dilating for some area form.
Well, with one direction F will be dilating, and with the opposite direction it
will be contracting. We can define the positive orientation of F at x to be the
one that makes it expanding.

Definition 6.1 Let x be a non-isochore singularity of a singular foliation F .
The positive orientation of F (and hence S) at x is a direction of F near x by
a vector field for which the divergence with respect to some area form at x is
positive.

So, at an elliptic singularity, with the positive orientation it is a source; with
the negative orientation it is a sink. At a hyperbolic singularity, with eigenvalues
λ1 < 0 < λ2, we have λ1 + λ2 > 0, which means that the “out direction”, the
“unstable direction”, dominates, and |λ2| > |λ1|.

Since an orientation at a singularity x amounts to choosing a sign for u, we
can ask: if x is positively oriented, what is the sign of u? It seems like it should
be positive: and indeed it is. Let us see why.

Taking our area form θ on S and the vector field Y directing F given by
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β = i(Y )θ, the divergence is given by

Div θY =
LY θ

θ
=

i(Y ) dθ + d i(Y )θ
θ

=
dβ

θ
.

So to say that the singularity x is oriented positively amounts to u being chosen
so that dβ and θ have the same sign. At the singularity, we have β = 0 so
θ = u dβ + β ∧ du = u dβ. Thus, the positive orientation at x puts u > 0.

Using this, we can express the orientation condition in another way. We
give a more geometric interpretation to the area form θ = u dβ + β ∧ du. In
the first term, the dβ, as we have seen, is essentially the divergence of Y . In
the second term, since β is dual to Y , the wedge product is essentially du(Y ).
Indeed, expanding out i(Y )(θ ∧ du) = 0 (this is a 3-form on S) we obtain
i(Y )θ ∧ du = −(i(Y )du)θ so β ∧ du = −(i(Y )du)θ. This gives

θ = u dβ + β ∧ du = uθ Div θY − (i(Y )du) θ = (uDiv θY − i(Y )du) θ

That θ is nondegenerate amounts to uDiv θY −i(Y ) du 6= 0. The positive choice
of orientation (and hence choice of sign of u and θ) gives us, at the singularity
x, that u > 0, and since at x we have Y = 0, we obtain uDiv θY − i(Y )du > 0.
Since this expression is never allowed to equal 0, it must remain positive over
the whole of S.

We record all these conclusions.

Lemma 6.2 Let S be a convex surface in a contact 3-manifold M . Let F be the
characteristic foliation on S and x a singularity. Take a neighbourhood S × R
of S = S × {0} with contact form α = β + u dt, where β is a 1-form and u a
function on S, so that θ = u dβ + β ∧ du is an area form on S. The positive
orientation of F and S at x gives:

(i) dβ and θ differ by a positive factor at x;

(ii) u > 0 at x;

(iii) u Div θY − i(Y )du > 0 on all of S.

If we start with a pre-determined u, how do the pre-determined orienta-
tion and the positive orientation at a singularity differ? Clearly they agree
at singularities where u > 0, and they disagree at singularities where u <
0. So all sources have positive orientation; all sinks have negative orienta-
tion; “outward-dominated” hyperbolic singularities have positive orientation;
“inward-dominated” hyperbolic singularities have negative orientation. If we
cut S along the dividing set Γ = {u = 0}, into the pieces S+ = {u > 0} and
S− = {u < 0}, then the singularities with positive orientation lie in S+ and the
singularities with negative orientation lie in S−.

7 What a convex surface looks like II

Let us now return to a question we had before: we have a surface S in (M, ξ)
with a characteristic foliation F . Is S convex?
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7.1 It has expanding vector fields directing the character-
istic foliation, and dividing sets...

We know from previously that if S is convex, then we can choose coordinates so
that S is S × {0} in S × R, that α = β + u dt, and away from Γ = {u = 0} we
have Liouville vector fields and all the rest of it. But now we can go in the other
direction too. If we have a characteristic foliation F with this Γ and dilating
Liouville vector fields, then we have a nice contact structure. On the other hand
though, because of the nature of the nice foliation, by proposition 4.1 there is
a vertically invariant contact structure on S × R inducing the foliation F . By
the power of the characteristic foliation, namely proposition 5.1, these the two
germs of these contact structures are equivalent. So they are locally isomorphic;
and there is a contact vector field on S which is transverse, because there was
for the vertically invariant version. So S is convex. Thus we obtain Giroux’s
proposition II.2.1.

Proposition 7.1 Let (M, ξ) be a contact 3-manifold, S an embedded closed
orientable surface and F its characeristic foliation. The following are equivalent:

(i) S is convex.

(ii) There exists on S a curve Γ transverse to F , possibly disconnected, which
decomposes S into subsurfaces where F can be directed by a dilating vector
field for a certain area form, and exiting through the boundary.

7.2 ...if it’s closed, it can’t have a characteristic foliation
defined by a closed form...

Suppose we have, as usual, a convex surface S, with an S × R neighbourhood
and contact form β + u dt. Recall that the characteristic foliation is defined
on S by the 1-form β; and recall that the condition for β, u to define a contact
structure is that the 2-form θ = u dβ + β ∧ du on S × {0} is nondegenerate.

If β is closed, then θ = β ∧ du must be nondegenerate. But on a closed
surface, the function u must have critical points, where du = 0, and so this
requirement of nondegeneracy is impossible to satisfy.

This is something of a strange condition: if β is closed, then taking a nonzero
function f on S, fβ defines the same foliation as β but fβ may not be closed.
But the same argument should still work upon doing some Leibnitz rule and
rearranging the terms.

Lemma 7.2 Let S be a closed surface in a contact manifold M with charac-
teristic foliation F defined by a 1-form β on S. If β is closed (as a form on S)
then S is not convex.
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7.3 ...or a closed leaf with return map tangent to the iden-
tity...

Nor can there be a closed leaf F in the characteristic foliation F of a certain
type. Every closed leaf F defines a return map, by taking a transverse interval
which is sufficiently small; we then get a return map f : [−1, 1] −→ [−1, 1],
say, where the point 0 on the interval corresponds to the closed leaf. Then we
have f(0) = 0. It turns out that f ′(0) = 0 can’t happen; this contradicts the
convexity of the surface.

Why is this? Along the leaves of the foliation we have β = 0. The return
map is determined by dβ|F ; if we choose a product neighbourhood of F and a
good coordinate system, we can easily see that we can take β such that dβ|F = 0
identically. But then along F , θ = u dβ + β ∧ du = β ∧ du... and u must have
a maximum on the leaf F , at which β ∧ du = 0, contradicting the requirement
θ 6= 0.

Lemma 7.3 Let S be a surface in a contact manifold M with characteristic
foliation F . If F contains a closed leaf F with return map tangent to the identity
along F , then S is not convex.

7.4 ... the dividing set avoids certain separatrices...

If S is convex, we can also consider where the dividing set Γ is in relation to
our foliation F . Of course we know about expanding area forms and so on, but
we can pin down more: it turns out the dividing set can’t go in certain places.

The idea is the following: taking a product neighbourhood and nice coordi-
nate system S×R we may take α = β+u dt as we have previously. The dividing
set Γ is defined by u = 0. The characteristic foliation is defined by β, so the
singular points of the foliation are where β = 0. If we know something about
how u interacts with the characteristic foliation, we can say more. We will find
that on certain leaves of the foliation — namely, leaves connecting hyperbolic
singularities in a particular way — u cannot equal zero along them; and so Γ
cannot intersect them.

Take a hyperbolic singularity x. Considering u as given a priori, and defining
a pre-orientation, S has either a positive or negative orientation at x according
to the sign of u. Suppose S has a positive orientation at x. As discussed
previously, we may positively orient S and F at x. This means that u > 0 at
x; and it means that u Div θY − i(Y )du > 0 on all of S.

Now, there is one crucial point, which we discovered back in section 4.3.
(Recall that there we characterised vertically invariant contact structures: but
now we know that the germ of the contact structure on any convex surface
can be described in this way.) The crucial point is: across Γ, Y points in the
direction of decreasing u. So from a positively oriented hyperbolic singularity,
where u > 0, Γ cannot intersect the stable (inwards) separatrix: the stable
separatrix is oriented towards x, and u would have to decrease as we cross Γ,
where u = 0, towards x; but u > 0 at x; this is a contradiction. Similarly, from

19



a negatively oriented hyperbolic singularity x, Γ cannot intersect the unstable
(outwards) separatrix: for u < 0 at x, and at an intersection with Γ on the
unstable separatrix we would have u = 0 and increasing towards x, another
contradiction.

Now, if such the stable separatrix from a positively oriented hyperbolic fixed
point intersects the unstable separatrix from a negatively oriented hyperbolic
fixed point, then we are in trouble! For u is positive at one fixed point and
negative at the other, hence must be zero somewhere in between; but for the
above reasons, this is impossible. This means that there cannot be such a
leaf connecting the two hyperbolic fixed points; and it means that the two
separatrices cannot intersect at a separate singularity.

Let us record these conclusions.

Lemma 7.4 Let S be a convex surface in a contact 3-manifold M . Let the
contact form be β + u dt as before and let x be a hyperbolic singularity of the
characteristic foliation of S.

(i) If x is positively (resp. negatively) oriented then Γ does not intersect the
stable (resp. unstable) manifold/separatrix of x.

(ii) The stable separatrix of a positively oriented hyperbolic singularity and the
unstable separatrix of a negatively oriented hyperbolic singularity do not
meet.

7.5 ...it’s sufficient that the characteristic foliation is al-
most Morse-Smale...

Now we return to the situation where we have a surface S in a contact manifold,
and want to know whether it is convex, by looking at its characteristic foliation.
We already have a sufficient condition in terms of expanding area forms and
dividing sets, but we can do even better.

In the previous section we noted that in the characteristic foliation of a
convex surface, then certain separatrices do not meet. We can actually formulate
a chain of possible properties of our foliation, where each clearly implies the next.

(i) (Morse–Smale) For any two separatrices of hyperbolic fixed points (possi-
bly the same point) they do not intersect. (Except possibly in emanating
from the same singularity.)

(ii) (Almost-Morse–Smale) Positively orient all hyperbolic fixed points and
taking their stable separatrices. For any two such separatrices, they do
not meet. (Except possibly in emanating from the same singularity.)

(iii) With respect to a given pre-orientation, we consider each hyperbolic fixed
point to be positively or negatively oriented. For any given pair of hyper-
bolic fixed points, one positive and one negative, the stable separatrix of
the positively oriented hyperbolic singularity and the unstable separatrix
of the negatively oriented hyperbolic singularity do not meet.
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If the foliation is otherwise nice, then the first property is the Morse–Smale
property; the second property is called by Giroux the almost-Morse–Smale prop-
erty. And the third is not called anything in particular, being such a mess, but
is a property of characteristic foliations on convex surfaces, by the previous sec-
tion. They are all strict implications and not equivalences. (It’s easy to find an
almost Morse–Smale foliation which is not Morse–Smale. And to find a foliation
satisfying property (iii) but not (ii), take two positively oriented hyperbolic fixed
points whose stable separatrices both connect to an elliptic fixed point, i.e. a
source.) So convex implies property (iii). And we will shortly see that property
(ii) implies convex. So in fact (i) (Morse–Smale) implies (ii) (almost Morse–
Smale) implies convex implies (iii). In fact having (iii) but not (ii) implies we
have connected elliptic and hyperbolic fixed points of the same orientation and
can apply the elimination lemma, which we will come to shortly. But let us not
get ahead of ourselves!

To be more precise about these definitions:

Definition 7.5 A singular foliation F on a closed surface S is called Morse–
Smale if it satisfies the following conditions:

(i) the singularities and closed leaves of F are hyperbolic (in the dynamical
systems sense!);

(ii) the limit set of each half-leaf is a singularity or a closed leaf;

(iii) For any two separatrices of hyperbolic fixed points (possibly the same point)
they do not intersect. (Except possibly in emanating from the same singu-
larity.) As Giroux puts it, there are “no connections between saddles”.

Definition 7.6 A singular foliation F on a closed surface S is called almost-
Morse–Smale if it satisfies the first two conditions above, and instead of (iii),
satisfies the following: when we orient F positively near hyperbolic fixed points,
the associated stable manifolds do not meet each other.

Now let us see why almost Morse–Smale implies convex. Given a closed
surface S with characeristic foliation F , we explicitly find regions on which a
vector field directing F dilates (or contracts) an area form. Around each elliptic
point we take a small disc. Around each closed leaf we take a small annulus.
At each hyperbolic singularity, we orient it positively and consider the stable
separatrix; we take a small band around it. We take the union of these annuli,
discs and bands, which forms a (possibly disconnected) surface S0. Note that
from previous discussion that S0 will not intersect Γ. In fact the idea is that S0

is homeomorphic to S\Γ. Note that the orientations on components of S0 may
not agree with a pre-orientation on S; but on each individual component of S0,
the positive orientations on singularities agree. (This doesn’t (and can’t!) rely
on any convex-specific assumptions — it’s clear from the topology.)

By our construction, we can find an area form ω on S0 and a vector field Y
directing F such that Div ωY > 0. (We can do this because, positively orienting
everything, the foliation points out of the discs and bands; and we can easily
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do the same around closed leaves.) We are then basically done. For what does
the rest of the surface look like? It has a foliation without any singularities or
closed leaves, and it is part of the connected oriented closed surface S. Hence
it must be a union of annuli, and the foliation must be the standard product
foliation of intervals from one boundary component to the other. Each one of
these annuli will contain a curve of Γ in its core. Taking Γ as such, making some
components of S0 positive and others negative, and gluing together, we have all
the requirements of a characteristic foliation required to be convex. Now we
have Giroux’s proposition II.2.6.

Proposition 7.7 Let S be an orientable closed surface embedded in a contact
3-manifold. If the characteristic foliation of S is almost Morse–Smale, then S
is convex.

Giroux quotes a theorem of M. Peixoto that a vector field on a closed mani-
fold is C∞-generically Morse–Smale. Since a C∞ perturbation of a surface C∞-
perturbs the characteristic foliation, it follows that convex surfaces are generic.

Proposition 7.8 Let S be a closed orientable surface in a contact 3-manifold.
If ξ is transversely orientable, then the characteristic foliation of S is directed
by a vector field that we can make Morse–Smale by a C∞-small isotopy of S in
V ; and hence generically S is convex.

8 What Giroux says about eliminating singular-
ities

Giroux has what I believe is the first proof of “the elimination lemma”, allowing
you to remove elliptic and hyperbolic fixed points which are connected by a leaf
and which have the same sign. Giroux’s (1991) version is significantly weaker
than the version quoted by Eliashberg (1992) in “Contact 3-manifolds 20 years
since J. Martinet’s work”. Eliashberg there says the improvement is due to
Fuchs (but cites no paper of Fuchs), and refers to another (1991) Eliashberg
paper, “Legendrian and transversal knots in tight contact manifolds”, for a
proof.

We can compare the two versions of the statement.

Proposition 8.1 (Giroux) Let S be a closed orientable surface embedded in
a contact 3-manifold with a Mose–Smale characteristic foliation F . (Hence S
is convex; let Γ be the dividing set.) Let x0 be an elliptic and x1 a hyperbolic
fixed point such that when we positively orient the foliation near x1, one or both
of the stable separatrices comes from x0. Then:

(i) There exists in S an annulus A disjoint from Γ and satisfying the follow-
ing:

• the only singularities of F on A are x0 and x1;

• F|A has no closed leaf;
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• F is transverse to the boundary of A/

(ii) There exists an S × R neighbourhood of S = S × {0} and a function k :
A −→ (−∞, 0] with support in the interior of A such that the characteristic
foliation of the graph of k (which is an arbitrarily small perturbation of S)
has no singularities.

On the other hand, the stronger version, cited by Eliashberg, is as follows.

Proposition 8.2 (Giroux, Fuchs) Let S be a surface with (possibly empty)
Legendrian boundary and characteristic foliation F in a contact 3-manifold
(M, ξ). Let C be a trajectory of F whose closure contains an elliptic point
x0 and a hyperbolic point x1 with the same orientation. Let U be a neighbour-
hood of C in M which contains no other singular points of F . Then there exists
a C0-small isotopy of S in M which is supported in U , fixed at C and such that
the new surface S′ has no singular points of the characteristic foliation F inside
U . If x0 and x1 belong to the Legendrian boundary of S then one can kill them
leaving ∂S fixed.

I won’t detail Giroux’s proof, because it’s probably better to refer to the
later paper. Finding the annulus in part (i) is easy, one just has to fiddle a little
to deal with the various possibilities. Then finding the function k one finds
a function which depends purely on the “radial” coordinate of the annulus,
supported in its interior and which is sufficiently large that its “Hamiltonian”
vector field Yk — defined by i(Yk)ω = dk for some area form ω — is very large
away from the boundary of the annulus. Hence considering Y + Yk is nonzero,
and the dual form β + dk has no singularities nearby; and β + dk describes the
characteristic foliation on the perturbed surface which is the graph of k.

Giroux also shows how to simplify the characteristic foliation to reduce an
overtwisted disc to a standard form; ; and how to eliminate elliptic singularities
— much as Eliashberg does in his “20 years on” paper, in greater generality. So
I won’t detail it here.

9 The dividing set is all powerful

So far we have seen that a convex surface is closely related to the dividing set
Γ. A convex surface certainly has a dividing set. And a surface’s convexity
can be detected by finding a dividing set Γ, on the complement of which the
characteristic foliation is directed by a vector field which dilates an area form.
If S has an almost Morse–Smale foliation, then we showed that S is convex by
constructing regions on which S dilated area forms, and the remainder was just
a tubular neighbourhood of Γ; so Γ was quite canonical, topologically.

But the dividing set is even more powerful than this. Suppose you have
a closed orientable surface S in a contact 3-manifold M , which is convex. So
you have F and Γ. But suppose you only have the information of Γ; you don’t
know what the characteristic foliation is. Is F determined? Well obviously not:
there are potentially many foliations dilating area forms away from Γ; if you
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take one, you can perturb it. But, it turns out that all possible characteristic
foliations F compatible with Γ can be achieved by perturbing S a little. In
effect, Γ captures precisely the important information about F ; once you have
Γ, provided you don’t mind wiggling the surface around a tiny bit, you can have
whatever (compatible) F you like.

This is quite amazing. Humans have a hard time visualizing contact planes
fluttering around, even on a surface, let alone in space. But it turns out, as we
have seen, that the (germ of a) contact structure near a surface is determined
by its characteristic foliation. And now, the characteristic foliation, up to a bit
of surface-jiggling, is determined by the dividing set. So we need not visualize
fluttering planes; we need not even visualize foliations and trajectories; we only
need visualize a few curves on a surface.

Let us make this precise. When we say that F is “compatible” with Γ, we
mean something about area forms and stuff. What we actually mean is:

Definition 9.1 Let S be a closed orientable surface and Γ a 1-manifold in S.
Let SΓ denote the compact surface with boundary obtained by cutting S along Γ.
A singular foliation F on S is adapted to Γ on S if F is directed by a vector
field which dilates an area form on SΓ, and which exits transversely through the
boundary ∂SΓ.

Given Γ, we are going to wiggle the convex surface S. This is means an
isotopy δs : S −→ M for s ∈ [0, 1] where δ0 is the identity. Thinking of an S×R
neighbourhood where the transverse contact vector field is vertical, we see that
S will remain convex as long as it is the graph of a function; and the dividing
set will always be the intersection of Γ × R with the jiggled surface. We have
a characteristic foliation to begin with, F0 say, and a foliation we would like to
get as a characteristic foliation, F1; both are adapted to Γ.

So, taking an area form such as θ on S, we see that our contact form α can
be written β + u dt. Away from Γ, we can write our contact form as β + dt;
it’s a contactization. We can direct F0 by Y0, defined by i(Y0)θ = β. We can
direct F1 by Y1, where Y1 dilates a (possibly different) area form on SΓ. But
Div±egθY = e−gDiv θ(egY ), so by adjusting Y1 by a nonzero function, we can
arrange that Y1 dilates θ also. The idea is simply to set Ys = (1 − s)Y0 + sY1,
hence βs = i(Ys)θ, and once we obtain a us we will have a family of contact
forms αs and we can Moser away to get our isotopy. Note the vector fields
Ys can certainly involve new singularities; these are the singularities moving
around, being created and destroyed on the shifting foliations Fs

There are some things to think about, though. Near Γ we have to fiddle
a little. We take vector fields there to agree with ±Y0,±Y1 on the boundary
of a tubular neighbourhood, and glue together and linearly interpolate. So we
can extend Ys over all of S. We must also take a bunch of functions us (they
only matter near Γ, though, since elsewhere it’s a contactization) such that
the contact condition is satisfied: usDiv ω(Ys) − Ys · us > 0. This requires a
fiddle also. But then we have a family of contact structures ξs, and can Moser
to obtain an isotopy realising them. Since our S × R neighbourhood can be
arbitrarily small, we obtain the following result.
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Proposition 9.2 Let S be a convex closed orientable surface in a contact 3-
manifold M , with transverse contact vector field X and dividing set Γ. Let F be
a singular foliation on S adapted to Γ. Then there exists an isotopy δs : S −→ V
for s ∈ [0, 1] such that:

(i) δ0 is the identity;

(ii) each surface δsS is transverse to X, hence convex;

(iii) the dividing set of δsS (with respect to X) is δsΓ.

So indeed; by a small perturbation, we can get whatever characteristic foli-
ation we like. This is the power of convex surfaces. Note, in particular, that it
implies all the elimination lemmas and results about standard forms of charac-
teristic foliations, immediately. It subsumes them all.
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