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1 Complex complexity

Physicists have an unpleasant (to mathematicians, but perhaps useful to them-
selves) of writing notation to mean whatever they want. For instance, a letter
might refer to a matrix, or an operator, or a physical quantity — or simultane-
ously all of them, so that an equation can have multiple meanings depending on
how you read it. The postmodernists, it seems, lagged far behind the scientists
in the realm of deliberate ambiguity!

So, let us take a real number, z.
For my first trick, I don my physicist (or postmodernist?) hat and hereby

declare that z is no longer real, but complex! So, let us write z = x + yi! So
now, z looks like a complex number, with x, y being respectively the real and
imaginary parts of z.

Being given z, then, is the same as being given the ordered pair z = (x, y).
We can express this by saying C ∼= R2: C and R2 are isomorphic — as real vector
spaces. Not as complex vector spaces, because it’s not clear how to multiply a
pair of real numbers by i!

But, if we give the isomorphism C ∼= R2, z = x + yi 7→ (x, y), then we can
multiply a pair of real numbers by i: we say that

i(x, y) = iz = i(x + yi) = −y + xi = (−y, x).
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In particular, multiplication by i is given by

(x, y) 7→ (−y, x) =
[
0 −1
1 0

] [
x
y

]
.

In a non-rigorous and physicist-sort of way, then,

i =
[
0 −1
1 0

]
.

To be rigorous, we will say that we have equipped R2 with a complex structure.
That is, we have defined an operator on R2 which is like multiplication by i.
We will call this operator J : R2 −→ R2, and J is given by the matrix above.
Note that

J2 =
[−1 0

0 −1

]
= −I

so that J applied twice multiplies everything by −1. This is just like multipli-
cation by i, as we should expect.

Thus, we can perhaps say (in our incorrigibly unrigorous way) that while
R2 ∼= C is true, it doesn’t capture all the structure of C, and in fact that
(R2, J) ∼= (C, i) is better, whatever it means. In fact, it doesn’t mean much. All
we really have is C, a (very trivial!) vector space over the complex numbers;
and R2, an (almost as trivial) vector space over the real numbers, with an extra
operator J to give it a complex structure. If we didn’t do this, R2 might be
feeling rather shallow without any complex structure!

This investigation into the difference between R2 and C, and how to put
a complex structure on R2, is all rather edifying but unfortunately not very
interesting. So let us move straight to —

For my second trick, I hereby declare that x, y are complex numbers! They
looked very real of course, but no longer.

This is a bit silly. If in my first trick I declared that that z = x + yi and
I now declare that x, y are actually complex, this seems to defeat the purpose
of introducing x, y in the first place — as real and imaginary parts of z. And,
sure enough, it doesn’t make much sense. Here z was already complex; no need
to further complexify it.

However! If we forget about our original z, and only think of our x, y as
real numbers, (x, y) ∈ R2, then there is no such absurdity in now calling (x, y)
complex. We had an ordered pair — now we still have an ordered pair. The
only difference is that previously the ordered pair was of real numbers; now it is
a pair of complex numbers. Really, we now have (x, y) ∈ C2; but our C2 ∼= R4,
again, as real vector spaces.

Well, now we certainly have something with a complex structure — if only
because we declared everything to be complex!

However, there is a slight hitch: there are two different ways we might define
the complex structure.

The first way, and perhaps the more obvious, would simply be to note that
x, y are now complex numbers, and so we can multiply them by i! That is, we
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can define
i(x, y) = (ix, iy).

But that’s not the only way!
The second way would be simply to continue where we left off. We had a

complex structure J on our real vector space R2, defined by J(x, y) = (−y, x).
We just declared that x, y are now complex, but that doesn’t make this definition
of J invalid; J still makes sense. Moreover, we still have J2 = −I. So this is
just as good a complex structure:

J(x, y) = (−y, x).

These are quite different! For instance, if we take the pair (1, 0), we have
i(1, 0) = (i, 0), but J(1, 0) = (0, 1). How do these two complex structures relate?

We can easily write them as matrices. If we write x = a + bi, y = c + di,
then we can regard (x, y) = (a+bi, c+di) as (a, b, c, d). That is, C2 ∼= R4. Then
we have i(a + bi, c + di) = (−b + ai,−d + ci) and so

i =




−1
1

−1
1


 .

On the other hand, we have J(a + bi, c + di) = (−c− di, a + bi) and so

J =




−1
−1

1
1


 .

On R4, we have two complex structures. On C2, however, it is i that is more
natural, being, after all, an actual complex number. The operator J , considered
in this way, is a real linear operator on a real vector space that happens to
satisfy J2 = −1, so it is like complex multiplication by i; this is what a complex
structure is. It can also be considered as a complex linear operator on a complex
vector space — the operator being given by, of course,

[
0 −1
1 0

]

as it was before, but now acting on C2.
Poor old J must be feeling a bit inferior, compared to i! However, the

operator J gives rise to a lot of structure! We just need to look a little closer.
It turns out that J is sometimes like multiplication by i — how often? Does J
ever coincide with multiplication by i? It’s easy to see:

J(x, y) = i(x, y) ⇒ (−y, x) = (ix, iy) ⇒ x = iy.

3



So, whenever x = iy, J coincides with i. That is, J(iy, y) = (−y, iy) = i(iy, y).
Another way of saying this is that i is an eigenvalue for J with eigenvector
(i, 1). This make sense, since J is not only a real linear operator on R4, but also
a complex linear operator on C2 — and the eigenspace of i describes precisely
where J coincides with the more natural complex structure on C2. Nonetheless,
as it turns out, we can diagonalize J over the complex numbers. Since J2 = −1,
the only possible eigenvalues are ±i, and it is easy to find the (−i)-eigenspace:

J(x, y) = −i(x, y) ⇒ (−y, x) = (−ix,−iy) ⇒ y = ix.

Thus J(x, ix) = (−ix, x) = −i(x, ix) and the (−i)-eigenspace is spanned by
(1, i). Since (i, 1) and (1, i) span C2 (over C), J is indeed diagonalizable over
the complex numbers.

What does this mean? There is a 1-complex-dimensional subspace (2-real-
dimensional) of C2 on which J — the complex linear operator on a complex
vector space — is the same as the more natural multiplication by i, that is,
J(x, y) = i(x, y). Then there is another 1-complex-dimensional subspace on
which J is complex anti-linear with respect to the natural multiplication by i,
that is, J(x, y) = −i(x, y). And these two subspaces span C2.

So, given any pair of complex numbers (α, β), we can write it as a sum of
two pairs, on which J respectively acts as multiplication by i and −i. In fact,
explicitly:

(α, β) =
(

α + βi

2
,
β − αi

2

)
+

(
α− βi

2
,
β + αi

2

)
=

β − αi

2
(i, 1)+

α− βi

2
(1, i) .

Thus, J is much more interesting than i — it is sometimes i, and sometimes
−i, and usually a bit of both.

What does this mean? In one sense, all we have done is diagonalize the

matrix
[
0 −1
1 0

]
over C, and found it has eigenvalues ±i. But there is more to

it than that, because this matrix was originally a complex multiplication itself.
We started with R and turned it into C ∼= R2. Thus R2 was furnished with
a complex structure J . But then we turned R2 into C2 ∼= R4. This R4 still
inherits a complex structure J from R2 ∼= C; but now also obtains the obvious
complex structure i.

Of course, this trick of declaring real numbers suddenly to be complex really
corresponds to nothing other than tensoring a real vector space with C (over R).
Our magic is really tensor magic! First we found that R ⊗R C ∼= C ∼= (R2, J).
Then we found that C⊗RC ∼= C2 ∼= R4. Keeping track of the complex structures,
J extends (real-)linearly over the complex vector space and we find that

C⊗R C ∼= (R2, J)⊗R C = ((i, 1)C, i)⊕ ((1, i)C,−i) .

Thus, if we tensor a complex vector space with the complex numbers — and
extend the original complex structure J linearly over the new tensor product
— then the result does not coincide with multiplication by i on that tensor
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product. The tensor product decomposes into a complex linear and a complex
anti-linear part. A succinct way of saying this is

C⊗R C ∼= C⊕ C̄
where C̄ corresponds to C with its orientation reversed: multiplication by i
becomes multiplication by −i.

Using the same argument, one can prove that for any complex vector space
V ,

V ⊗R C ∼= V ⊕ V̄

where, again, V̄ means V with orientation reversed, or equivalently, conjugated.
Complex numbers are even more complex than we thought!

2 Dual duel!

Now, let us continue in a slightly different vein our considerations of complex
vector spaces. Let us consider the dual V ∗ of a complex vector space V .

Of course, V ∗ should also be a complex vector space. But there are two
competing ways we can define the dual V ∗, leading to a dual duel!

Firstly, a complex vector space V can be thought of as a real vector space
with a complex structure J : V −→ V on it, with J2 = −1. The dual is then
described as for real vector spaces:

V ∗ = HomR (V,R) ,

i.e. the real -linear maps from V to R. Note that, if we take a random (real) inner
product on V , then for given v ∈ V , the map x 7→ 〈v, x〉 is a real-linear map V
to R; it turns out that all linear maps can be written in this way. But let us
not take any old random inner prouct on V ; let us take one which is compatible
with J . We should intuitively think of J as “a rotation by 90 degrees”, and
hence we should think of our inner product as “a metric in which J actually is
a rotation by 90 degrees”. Formally, this means that 〈v, w〉 = 〈Jv, Jw〉.

In any case, with an inner product we have set up a 1-1 correspondence
between V and V ∗, given by:

V ∼= V ∗

v ∼ (x 7→ 〈v, x〉)
(Another way of writing x 7→ 〈v, x〉 is simply to write 〈v, ·〉: this is a function
waiting for an argument!) Now, this defines V ∗ as a real vector space, but not
a complex one. Our aim now is to give it a complex structure J∗.

Well, if there is a complex structure J on V , one way to put a complex
structure on V ∗ would be to do so through the isomorphism V ∼= V ∗! So,
if f ∈ V ∗ corresponds to v ∈ V (i.e. f = 〈v, ·〉) then we should have J∗f
corresponding to Jv. Namely,

J∗f = 〈Jv, ·〉, or J∗f(x) = 〈Jv, x〉.
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We can rewrite this, since our inner product is compatible with J :

J∗f(x) = 〈Jv, x〉 = 〈−v, Jx〉 = −〈v, Jx〉 = −f(Jx).

This equation J∗f(x) = −f(Jx) is excellent, because it does not depend on
the choice of inner product! It should be clear (or an easy exercise!) that
(J∗)2 = −1; it actually is a complex structure. So we have defined a canonical
complex structure on V ∗, making it into a complex vector space; we can write
this as (V ∗, J∗).

But, recall, there is a second method, duelling with the first method in the
dual duel!

In our second method, we regard V ∗ as a complex vector space from the
beginning. After all, V was! Then

V ∗ = HomC (V,C) ,

so it makes perfect sense to multiply elements of V ∗ by i. An element of V ∗

is a complex-linear map f : V −→ C, and hence the map if : V −→ C can be
defined by (if)(x) = if(x). Such a simple definition that it is almost written
into our notation! (The physicists would be proud!)

Note that now (if)(x) = if(x) = f(ix), since f ∈ V ∗ was defined to be
complex linear. Note that here we are writing i instead of J∗ because it is
so natural to do so; if we wrote J and J∗ instead, then the previous equation
becomes J∗f(x) = f(Jx).

We will write the complex structure on the dual defined by this second
method as V ∗

C (and we will write V as VC to emphasise this when necessary).
Note that both methods, duelling for the right to dual V , both give isomor-

phisms. For the first method we described how V ∗ ∼= V ; for the second method
it is true by a similar argument. But are these isomorphisms complex linear?

In the first case, complex linearity requires that if v ∈ V corresponds to
f ∈ V ∗, then Jv corresponds to J∗f . But this is exactly how we defined J∗! So
the first method, although perhaps more convoluted, gives us a (V ∗, J∗) which
is isomorphic to V via a complex-linear isomorphism.

In the second case, this is not so clear, not least because we waved our
hands about “a similar argument”! So let us see how this works. To define the
isomorphism, we again take an inner product on V — but this time, it must
be a complex inner product, with the properties 〈λv,w〉 = 〈v, λ̄w〉 = λ〈v, w〉
for λ ∈ C. (Note the shiftiness in the second coordinate; this is standard
and necessary for positive-definiteness, however.) Then we again note that, for
v ∈ V , the map V −→ C, x 7→ 〈x, v〉 is complex linear — this is true since x is
in the first coordinate of the inner product — and that any complex linear map
to C can be written in this way. So we have an isomorphism

V ∼= V ∗
C

v ∼ 〈·, v〉.
We can then see how the complex structure on V ∗

C works in relation to v: if
f ∈ V ∗

C corresponds to v ∈ V , then what does if correspond to? Well, then
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f(x) = 〈x, v〉, so (if)(x) = i〈x, v〉 = 〈x,−iv〉. (Note we have used the shiftiness
— more accurately, complex anti-linearity — of the second coordinate.) So if
corresponds to −iv.

That is, the second method, which seems more natural, leads to an iso-
morphism between V ∗

C and V which is not complex linear — in fact, complex
anti-linear.

That is, (V ∗, J∗) ∼= (V, J) but (V ∗
C , i) ∼= (V,−i) ∼= V̄ , where V̄ denotes V

with the orientation reversed, i becoming −i.
The result of the dual duel is therefore: the most natural way of defining

the dual of a complex vector space leads to the dual being isomorphic to the
conjugate of the original vector space! The dual is the conjugate. If we are
prepared to do something more convoluted, going back to a real vector space
with complex structure operator J , and transplant this to the dual over the
reals, then we can obtain a dual which is complex-isomorphic to the original
vector space.

3 1, 2, 4, dual!

Putting these two sets of considerations together, we note the conclusion of the
first section,

V ⊗R C ∼= V ⊕ V̄ ,

can now be extended! Upon tensoring a complex vector space by the complex
numbers over the reals, we obtain the direct sum of a copy of the vector space,
and its conjugate. But (provided we take the more natural version) this is just
the dual of V .

V ⊗R C ∼= V ⊕ V ∗

4 Why is this important?

These may seem like rather obscure, indeed, arcane musings. But this is not
the case at all. These considerations are at the heart of much algebra, geometry
and topology. For instance:

(i) Our considerations of duals and conjugates explains why complex dual
bundles correspond to conjugate bundles, in turn why they correspond to
negative characteristic classes.

(ii) The splitting of V ⊗ C ∼= V ⊕ V̄ is the starting point of Dolbeault co-
homology, which is central to complex geometry and topology. Just as
(real-valued) differential forms are central to (real!) differential geometry
and smooth topology, not least through de Rham cohomology — so too
complex-valued differential forms are central to complex geometry and
topology, not least through Dolbeault cohomology.
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(iii) The process of tensoring with C producing a complex vector space, and
its conjugate, is the key to the definition of the Pontryagin characteristic
classes. And the Pontryagin classes are very important objects in topology,
not least because of the Hirzebruch signature theorem.

5 Postscript

These are whimsical notes based on a discussion in a book on 4-Manifolds, [7],
pp. 134–137. The Hirzebruch signature theorem, Pontrjagin classes, and com-
plex geometry are of course all very important in dimension 4, as of course are
vector spaces of dimension 4! For the applications of this idea to characteristic
classes, see [2] or [3] or any other book on the topic. For the application to
complex geometry, see e.g. [4]. For the algebraic side of the picture with dual
bundles, see e.g. [5]. A more specialized but beautiful realm where all this
applies is complex line bundles on Riemann surfaces (i.e. complex curves), see
e.g. (???).
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