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Overview

This talk is about

Combinatorics involving various notions related to graph
theory...

Trinities: Triple structures closely related to bipartite planar
graphs.
Hypergraphs: Generalisations of graphs; also related to
bipartite graphs.
Hypertrees: A notion related to spanning trees in
hypergraphs.

... and some related discrete mathematics arising in
3-dimensional topology.

Formal knots: A notion developed by Kauffman in knot
theory.
Contact structures: A type of geometric structure on
3-dimensional spaces.
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Bipartite planar graphs

Let G be a bipartite planar graph.

Let vertices be coloured blue and green.
Colour edges red.
Embedded in R2 ⊂ S2.
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Trinities from bipartite graphs

From a bipartite planar graph G...

Add red vertices in complementary regions, and connect to blue
and green vertices around the boundary of the region.

This yields a 3-coloured graph called a trinity. Each edge
connects two vertices of distinct colours.

We can colour each edge by the unique colour distinct from
endpoints.
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Trinities from tilings of the sphere

Consider G,

a tiling of the plane/sphere by polygons, or

(equivalently) an embedded graph on S2.

Via barycentric subdivision, G naturally yields a trinity.

Let the vertices of G be blue.

Place a green vertex on each edge of G.

Place a red vertex in each complementary region of G and
connect it to adjacent vertices. This yields a trinity.
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Trinities from tilings of the sphere

Notice correspondence between dimension and colour:

Dim On G On G′

0 vertices V blue vertices
1 edges E green vertices
2 regions R red vertices

We retain the identifications (V ,E ,R)↔ (blue,green, red)

We refer to blue, green red as violet, emerald, red instead.
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Bipartite graphs and trinities

A trinity naturally contains three bipartite planar graphs: take all
edges of a single colour.
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Bipartite graphs and trinities

The violet graph GV , emerald graph GE , red graph GR are all
bipartite planar graphs which yield (and are subsets of) the
same trinity.

GV
GE GR
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Trinities and triangulations

A trinity naturally yields a triangulation of S2.

The construction of a trinity from bipartite planar G splits S2 into
triangles.

Each triangle contains a vertex (edge) of each colour.

In each triangle, the blue-green-red vertices (edges) are
anticlockwise — colour the triangle white — or
clockwise — colour the triangle black

Triangles sharing an edge must be opposite colours.

Triangles are 2-coloured. (Planar dual graph is bipartite.)
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Planar duals of trinities

Consider the planar dual G∗V of GV in a trinity.
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Planar duals of trinities

G∗V has vertices V and edges bijective with violet edges.
Each edge of G∗V crosses precisely two triangles of the
trinity and hence is naturally oriented, say black to white.
Around each vertex of G∗V , edges alternate in and out
G∗V is a balanced directed planar graph.
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Arborescences

Let D be a directed graph D. Choose a root vertex r .

Definition
A (spanning) arborescence of D is a spanning tree T of D all of
whose edges point away from r.

I.e. for each vertex v of D there is a unique directed path in
T from r to v .
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Tutte’s tree trinity theorem

Theorem (Tutte, 1948)
Let D is a balanced finite directed graph. Then the number of
spanning arborescences of D does not depend on the choice of
root point.

Hence we may define ρ(D), the arborescence number of D, to
be the number of spanning arborescences.

Theorem (Tutte’s tree trinity theorem, 1975)
Let G∗V ,G

∗
E ,G

∗
R be the planar duals of the coloured graphs of a

trinity. Then
ρ(G∗V ) = ρ(G∗E ) = ρ(G∗R).
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Hypergraphs

A graph has edges.
Each edge joins two vertices.

A hypergraph has hyperedges.
Each hyperedge joins many vertices.

Definition
A hypergraph is a pair H = (V ,E), where V is a set of vertices
and E is a (multi-)set of hyperedges. Each hyperedge is a
nonempty subset of V .

A hypergraph where each hyperedge contains 2 vertices is
a graph (with multiple edges allowed).
A hypergraph H = (V ,E) naturally determines a bipartite
graph BipH with vertex classes V ,E . An edge connects
v ∈ V to e ∈ E in BipH iff v ∈ e.
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Hypergraphs and trinities

A hypergraph H = (V ,E) naturally has an abstract dual
H = (E ,V ).
A trinity naturally gives rise to six hypergraphs

H = (V ,E), H∗ = (R,E), H∗ = (E ,R),

H∗∗ = H
∗

= (V ,R), H∗ = (R,V ), H = (E ,V ).

These are related by abstract and planar duality.
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Hypertrees in hypergraphs

We now consider spanning trees in (the bipartite graph of) a
hypergraph H = (V ,E).

Definition
A hypertree in a hypergraph H is a function f : E −→ N0 such
that there exists a spanning tree in BipH with degree f (e) + 1
at each e ∈ E.
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Hypertrees in hypergraphs

When H is a graph (i.e. |e| = 2 for all e ∈ E), a hypertree
reduces to a tree.

A tree is chosen by selecting edges with f (e) = 1.
Since a hypertree is a function f : E −→ N0 ⊂ Z, it can be
regarded as an element of the |E |-dimensional integer lattice
ZE .
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The hypertree polytope

Consider the set QH ⊂ ZE of hypertrees of a hypergraph
H = (V ,E).

Theorem (Postnikov 2009, Kálmán 2013)

QH is the set of lattice points of a convex polytope in RE .
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Hypertree polytopes of a trinity

Considered a planar bipartite G with vertex classes (V ,E).
Associated abstract dual hypergraphs, H = (V ,E),
H = (E ,V ).
BipH = BipH = G

Theorem (Kálmán 2013)

The number of hypertrees in H and H are equal, and also
equal to the arborescence number of G∗. I.e.

|QH| = |QH| = ρ(G∗).

Corollary
In a trinity,

ρ(G∗V ) = ρ(G∗E ) = ρ(G∗R)
= |Q(V ,E)| = |Q(E ,V )| = |Q(E ,R)| = |Q(R,E)| = |Q(R,V )| = |Q(V ,R)|.
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Duality of polytopes

Postnikov related dual polytopes Q(V ,E) ⊂ ZE , Q(E ,V ) ⊂ ZV .

Q(V ,E) =

(∑
v∈V

∆v

)
−∆E = Q+

(V ,E) −∆E ,

where ∆v = Conv{e : v ∈ e}, ∆E = Conv{e : e ∈ E}, and
subtraction is Minkowski difference.
The “untrimmed polytopes" Q+

(V ,E), Q+
(E ,V ) are related via a

higher-dimensional root polytope in RV ⊕ RE

Q = Conv {e + v : v ∈ e} ⊂ RV ⊕ RE .

Essentially they are projections of Q, e.g.: πV : RV ⊕RE → RV

Q+
(V ,E)

∼= |V |

(
Q ∩ π−1

V

(
1
|V |

∑
v∈V

v

))
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Plane bipartite graphs and links

Given a planar graph G, there is a natural way to construct a
knot or link LG: the median construction.

Take a regular
neighbourhood of G
in the plane (ribbon).
Insert a negative
half twist over each
edge of G to obtain
a surface FG. Then
LG = ∂FG.
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Trinities of links

Note:
The link LG is alternating (crossings are over, under, ...)
The surface FG is oriented iff G is bipartite.
When G is bipartite LG is naturally oriented.

A trinity yields 3 bipartite planar graphs and hence three
alternating links LGV ,LGE ,LGR with Seifert surfaces.
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Plane bipartite graphs and 3-manifolds

Given LG and FG, remove a neighbourhood N(FG) of FG to
obtain an interesting 3-manifold MG = S3\N(FG).
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Trinities of 3-manifolds

Topologically, N(FG) and MG are handlebodies (solid
pretzels).
The boundary ∂MG naturally has a copy of LG on it.
LG splits ∂MG into two surfaces, both equivalent to FG.
(MG,LG) has the structure of a sutured manifold.
From a trinity we obtain a triple of sutured manifolds

(MGV ,LGV ), (MGE ,LGE ), (MGR ,LGR ).
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Contact structures on 3-manifolds

A contact structure on a 3-manifold M is a 2-plane field which is
non-integrable.

A standard question in contact topology:

Given a sutured 3-manifold (M, Γ), how many (isotopy classes of
tight) contact structures are there on M?

With Kálmán, we investigated this question for the sutured manifolds
from bipartite planar graphs and trinities.
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Contact structures and trinities

For a bipartite planar graph G, let cs(G) denote this number of
contact structures on (MG,LG).

Theorem (Kálmán-M.)

Let (V ,E ,R) form a trinity. Then cs(GR) is equal to the number
of hypertrees in the hypergraph (E ,R).

This number is also the arborescence number, and hence

cs(GV ) = cs(GE ) = cs(GR)
= ρ(G∗V ) = ρ(G∗E ) = ρ(G∗R)

= |Q(V ,E)| = |Q(E ,V )| = |Q(E ,R)| = |Q(R,E)| = |Q(R,V )| = |Q(V ,R)|.

Although contact structures are very differential-geometric, the
proof boils down to a combinatorial game.
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Matchings on discs

It turns out that contact structures in MGR can be described by
certain curves in in the complementary regions of GR.

Let Dr , r ∈ R, be the disc complementary regions of GR.
The boundary ∂Dr consists of red edges.
Consider non-crossing matchings on Dr which join the
midpoints of the red edges around ∂Dr .
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Configurations

Definition
A configuration on GR consists of a non-crossing matching on
each Dr , such that when the matchings are joined across the
edges of GR, a single closed curve is obtained.
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State transitions

A bypass surgery is a local
operation on a set of curves
which takes 3 arcs and
“rotates" them as shown.

Definition
A state transition is a bypass
surgery in a disc Dr which turns
a configuration into another
configuration.

Definition
The configuration graph G is the graph with vertices given by
configurations, and edges given by state transitions.
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Contact structures via states and transitions

Theorem (Honda, Kálmán–M.)
(Isotopy classes of tight) contact structures on MG are in
bijective correspondence with connected components of G.

So finding cs(G) is reduced to a combinatorial problem:
how many connected components does G have?
I.e., which configurations can be reached from which
others via transitions.

Proof uses spanning trees in GV .
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Configurations from spanning trees

Idea: spanning trees in GV give configurations.

Such a configuration hugs the boundary of a neighbourhood of
a tree: tree-hugging configurations.
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From configurations to spanning trees

Proposition
Any configuration is connected via state transitions to a
tree-hugging configuration.

Thus it remains to find which tree-hugging configurations are
related...

Proposition
Two tree-hugging configurations are related iff they arise from
spanning trees with the same degree at each red vertex, that is,
if they arise from the same hypertree of (E ,R).

This gives a bijection cs(GR)↔ Q(E ,R).
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Knot theory and graphs

In knot theory one considers knots, which are knotted loops of string
in 3-dimensional space.
(Precisely, embeddings S1 ↪→ R3.)
One often considers a knot diagram, which is a projection of a knot to
a plane R2 ⊂ R3 with no triple crossings.

A knot diagram can be regarded as a graph which is
connected, planar
each vertex has degree 4, and
each vertex is decorated with crossing data (i.e.
over/under).
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Formal knot theory

Kauffman’s formal knot theory studies knots by forgetting crossing
data and considering the 4-valent graph only.

Definition

A formal knot is a connected planar graph, where each vertex
has degree 4.

A universe is a formal knot, where two adjacent complementary
regions are labelled with stars.

I.e. a formal knot is a knot diagram without crossing data.
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Markers of a universe

A marker at a vertex v of U is a choice of one of the four
adjacent corners of regions at v .

One can show (via Euler’s formula) that in any formal knot K ,

# {Vertices of K}+ 2 = # {Complementary regions of K} .
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As two regions in a universe U contain stars,

# {Vertices of U} = # {Unstarred regions of U} .

Definition
A state of a universe U is a choice of marker at each vertex of
U , so that each unstarred region contains a marker.

A state provides a bijection

{Vertices of U} → {Unstarred regions of U} .
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States of a universe

For example, consider the following universe and its states.
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Transpositions between states

A transposition swaps two state markers as shown.

A transposition is naturally clockwise or counterclockwise.
We can form a directed graph (the clock graph) with

Vertices given by states
Directed edges given by clockwise transpositions
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The clock lattice of a universe

A clock graph:
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Kauffman’s clock theorem

The clock graph has more structure than a mere directed graph.

Theorem (Kauffman’s clock theorem)
The clock graph is naturally a lattice.

Directed edges provide a partial order on states.
Any two states have a unique least upper bound and
greatest lower bound, with respect to this order.

In particular, there is a unique minimal clocked state and a
unique maximal counter-clocked state.
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Trinities and universes

A universe U with formal knot K naturally yields a trinity.

Let the vertices of K be the red vertices R.

Complementary regions can be 2-coloured (V ,E) by the
checkerboard colouring; place violet and emerald vertices.

Connect violet and emerald edges across edges of K by red
edges GR ; so G∗R = K .
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Trinities and universes

Observation: there is a bijection

{States of U} ↔ {Configurations of GR}

Theorem (Kálmán–M.)
The number of states of U is also equal to the magic number of
the trinity.
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Thanks for listening!
Happy π day!
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