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Numbers come in many forms, shapes and sizes. We all use whole numbers,
fractions, and real numbers every day, but many people never stop to ask why
these types of numbers are so special, or natural: why should these numbers be
as they are? Some mathematicians, on the other hand, do ask what the hell is
going on, and how did these numbers get here, and by the way where did I put
my coffee, and oh can you remind me what my name is again?

It turns out that these hare-brained mathematicians have a point. While
the “usual” numbers mentioned above do form part of the world of numbers,
this world of numbers and number systems is immeasurably broader, full of
amazing and strange lands. And one of the most exotic corners of this world
is the realm known as p-adic numbers — a realm rarely visited by the average
mathematician, much less the average person!

So, let us don our Thinking Caps and Number Theoretical Boots and head
off to this undiscovered country! We shall attempt to observe this exotic species
in its natural state. But beware, p-adic numbers are a highly twisted bunch!

Our journey starts at the familiar land of integers (whole numbers). We
should all know what a whole number is! But as the great mathematician
Dedekind once said, “God made the integers; all the rest is the work of man.”
We quickly move on to the nearby field of fractions, or rational numbers, which
hopefully we should all know as well.

We can be content with our knowledge of fractions from primary school, but
a pure mathematician might ask how we got there from the land of integers. The
answer is, of course, you get rational numbers by dividing one integer by another!
Starting from 3 and 5, you get 3

5 by dividing 3 by 5. A pure mathematician
might go further and actually define rational numbers in terms of integers —
in fact as an ordered pair or integers — but let’s not trouble ourselves with
details. We need to get to our destination, after all! But you might note that,
in order to gain a better understanding of a number system like the fractions,
you should try to relate it to a simpler number system like the integers.

So, after a brisk traversal of the field of rational numbers, we move on and
arrive at the kingdom of real numbers. Now we still might have a pretty good
idea of what a real number is, from our intuition. A real number is a point on
the real number line. Or, maybe slightly more accurately, a real number is one
that can be written as a decimal, for instance

−1.2, 0.66666 · · · , 1.414213562373 · · · , 26.
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Note that the decimal digits can terminate, or continue infinitely far, with or
without repetition.

However, our pure mathematician friend (if he hasn’t got lost yet and strayed
over into the sphere of complex numbers) might want a bit more detail here.
Yes, but how did we get the real numbers from the rational numbers? Well,
there are a few ways to answer this, but one way might be as follows (our friend
Dedekind had a different answer). We can think of real numbers as numbers
approximated by rational numbers. So for instance

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, . . .

is a sequence of rational numbers which approximates the real number 1.414213562 · · · =√
2, while the boring sequence

221, 221, 221, 221, . . .

is a sequence of rational numbers approximating, you guessed it, 221! In this
way we will be able to approximate all the rational numbers, but also we will add
in extra numbers to the rationals, to get the entire real number line. Techncially,
the “approximating” sequences we’re looking at are called Cauchy sequences,
but again let’s not bother ourselves with details too much. This process is
known as completing the rational numbers.

Having brought you this far on the journey, we must say turn back! We’ve
actually gone too far, and need to go back to the field of rational numbers.
So forget about the real numbers, go back to the fractions. And let’s take a
different route.

The clever mathematician (or maybe it’s just too much exposure to the
elements) might ask, “well, is there any other way to complete the rational
numbers?” Because, while the main track through the field of rational numbers
leads directly to the reals, there is another, less travelled road which, if you find
it, leads to the exotic and surreal land of p-adic numbers.

How might we set out to complete this task of completion? Remember that
the real numbers are made by approximating them with rational numbers. But
there is more than one way to approximate numbers! The sequences we saw
before approximate real numbers, in one sense. But here’s another.

On a whim let’s try to find numbers congruent to 221 modulo 7. So for
instance we have

221 ≡ 4 mod 7
for a start. Then, let’s try for a larger modulus. Let’s try modulo 72 = 49,
which (in a vague way) is a “refinement” of modulo 7.

221 ≡ 25 mod 72

And now let’s keep going...

221 ≡ 221 mod 73

221 ≡ 221 mod 74

221 ≡ 221 mod 75

. . .
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So, by refining our search by taking higher and higher modulos, we can obtain
a sequence of rational numbers which “approximate” 221, in some fashion! The
sequence is

4, 25, 221, 221, 221, 221, . . . .

Seems pretty ridiculous? Of course, but we’re about to see some even
stranger stuff. Let’s see if we can get a sequence of numbers, using the same
method, to approximate

√
2, which you might recall is not a rational number!

Well, finding
√

2 is the same thing as finding a solution x to the equation x2 = 2.
So, again we’ll investigate the problem modulo 7, 72, 73, and so on.

x2 ≡ 2 mod 7 ⇒ x ≡ 3, 4 mod 7
x2 ≡ 2 mod 72 ⇒ x ≡ 10, 39 mod 72

x2 ≡ 2 mod 73 ⇒ x ≡ 108, 235 mod 73

x2 ≡ 2 mod 74 ⇒ x ≡ 2166, 235 mod 74

Now, as a mathematician named Hensel found in the 19th century, it turns out
that you get exactly two solutions for every modulus 7n (can you prove it?), so
we get two sequences of rational numbers (in fact just integers)

3, 10, 108, 2166, . . . and 4, 39, 235, 235, . . .

which approximate the two numbers ±√2 somehow! In fact, we say that these
sequences converge 7-adically to ±√2. So

√
2 is a 7-adic number, and quite

close to 108, though even closer to 2166!
If you can escape from the previous discussion with your brain intact, then

you’re well on the way to p-adic land! Because the p-adic numbers are just what
you get, when you complete the rational numbers, adding in all the necessary
extra numbers, in this bizarre, insane, who-fried-my-brain kind of way. The
are numbers approximated by congruences modulo larger and larger powers of p.
Note that, as you might have guessed, the p here stands for a prime (we took
p = 7 above).

Let’s think a bit more about what we’re saying by “approximating” here,
because it has mind-bending implications. Normally, if we’re given two numbers
x, y and asked to see how “close” they are, we look at |x−y|. This is our standard
notion of distance. But this is no longer the case in the p-adic realm! Here we
don’t think of distance as |x− y|, but rather how many times x− y is divisible
by our prime p. The more times divisible, the closer the numbers are. This is
the p-adic notion of distance! So, 1 and 1001 are quite close 2-adically, since
1000 is divisible by 2, three times. The numbers 1 and 1000001 are even closer,
since 1000000 is divisible by 2, six times. But 1 and 0 are far apart 2-adically
(in fact, any-adically), since 1 is not divisible by 2 (or any other prime p). Truly
an exotic realm!

As one final glimpse into this surreal world before we must set sail, let’s look
at the series

1 + 2 + 4 + 8 + 16 + 32 + · · · .
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Let’s look at the partial sums 2-adically, and compare them to −1.

1 ≡ −1 mod 2
1 + 2 = 3 ≡ −1 mod 22

1 + 2 + 4 = 7 ≡ −1 mod 23

1 + 2 + 4 + 8 = 15 ≡ −1 mod 24

1 + 2 + 4 + 8 + 16 = 31 ≡ −1 mod 25

So we can see that these partial sums are getting closer and closer to -1. There-
fore, in the limit we have the following astounding sum, which incidentally agrees
with the formula you might have learnt for geometric series!

1 + 2 + 4 + 8 + 16 + 32 + · · · = −1

Or, you could write this equation in “2-adic binary notation”, in which case
the left-hand side has an infinite expansion, but before the decimal point, not
after !!!

· · · 1111111111111 = −1

What’s so special about p-adic numbers, you ask? Surely we could have
made up any dumb rules we wanted to complete the rational numbers and come
up with a silly number system! Well, it turns out (a result known as Ostrowski’s
theorem) that the only way you can properly complete the rational numbers is
to get either some p-adic numbers, or the reals! Since there are 2-adic, 3-adic, in
fact infinitely many families of p-adic numbers, in one sense most of the number
systems obtained from completing the rational numbers are p-adic! So they are
quite important... and number theorists use them a lot as well.

But, unfortunately for us, our voyage is over, and we must return to the
mundane land of integers... For some detail, see, for instance, p-adic numbers:
an introduction by Gouvea.
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