
12

Mathellaneous by Daniel Mathews

A beautiful sequence

For one or another reason the following sequence stumbled upon me one day; well, I
wouldn’t do it the dishonour of saying I stumbled on it.

1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, . . . .

We’ll call the sequence {an}. It is an increasing sequence of positive integers, with
increment of 1 or 2 each step, arranged somewhat sporadically. If we look a little more
closely at these increments, we see that they are not random at all.

1 3 4 6 8 9 11 12 14 16
2 1 2 2 1 2 1 2 2

The 2’s occur in positions numbered 1, 3, 4, 6, 8, 9, . . .. So an+1 = an + 2 if and only
if n occurs in the sequence; otherwise an+1 = an + 1. This is sufficient to define our
sequence, starting from a1 = 1: a remarkable property of self-reference.

We can now take the complement of this sequence, i.e. the set of all positive integers
not in {an}, arrange them in increasing order, and write them out. Let this sequence
be {bn}.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
an 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24 25
bn 2 5 7 10 13 15 18 20 23 26 28 31 34 36 39 41

So we have the nice relationship an +n = bn. In fact this gives another way to define
the sequences, recursively: set a1 = 1, b1 = 2. Then let an be the least integer not used
so far, and let bn = an + n.

Now examination of the pairs (an, bn) shows some remarkable properties to those
familiar with the Fibonacci and related sequences. In fact, (1, 2), (3, 5), (8, 13), (21, 34),
. . . are pairs of consecutive Fibonacci numbers (recall f0 = 0, f1 = 1, fn = fn−1 +fn−2).
If we continue onward, we obtain all Fibonacci numbers in such pairs. Where do such
Fibonacci pairs occur? In positions 1, 2, 5, 13, . . . — which is every second Fibonacci
number (1, (1), 2, (3), 5, (8), 13, . . .).

Fibonacci-type properties do not end there. Start from another pair, say (4, 7). If we
apply the Fibonacci recurrence to 4 and 7 as starting values, we obtain 4, 7, 11, 18, 29, 47,
. . . — all occurring as pairs (an, bn). Indeed, for any pair (ak, bk), the Fibonacci-type
sequence starting with ak, bk occurs completely in pairs (an, bn). And the positions
where these pairs occur are again the numbers which are every second term of the
Fibonacci-type sequence.

Thus our sequences (an, bn) actually partition the positive integers into a set of
disjoint Fibonacci-type sequences.
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1, 2, 3, 5, 8, 13, 21, 34, . . .
4, 7, 11, 18, 29, 47, 76, 123, . . .
6, 10, 16, 26, 42, 68, 110, 178, . . .
9, 15, 24, 39, 63, 102, 165, 267, . . .
12, 20, 32, 52, . . .
. . .

It’s not obvious that such a partition exists, at first thought, nor is it easy to construct
these sequences from scratch. (Observe that a greedy algorithm, taking least unused
numbers at each stage, doesn’t work.) Is this the only such partition?

Consider, now, where these Fibonacci-type sequences start. We have (a1, b1) = (1, 2)
starts the first sequence, (a3, b3) = (4, 7) starts the second, (a4, b4) starts the third, then
(a6, b6), then (a8, b8). In general, (an, bn) starts one of these Fibonacci-type sequences if
and only if n occurs in our sequence {an}, in another startling display of self-reference.

This gives us another construction for an, bn. Start with (a1, b1) = (1, 2). We extend
this to a full Fibonacci sequence and place it at terms numbered by every second
Fibonacci number, so (a2, b2) = (3, 5), (a5, b5) = (8, 13), . . .. Having done this, we find
the least unnumbered spot and set a3 = 4, the least positive integer unused so far.
Then we set b3 = a3 + 3 = 7, and proceed to fill in all the terms of this Fibonacci-type
sequence by a similar rule. Continue inductively to define an, bn.

The considerations above give the equation an + bn = abn . In fact there are more
relationships of this form ([3], [10], [13], [17]):

aan = bn − 1, abn = an + bn, ban = an + bn − 1, bbn = an + 2bn.

Our sequence arises not only from idle numerology, but in various concrete situa-
tions. Consider the lattice points in the positive quadrant of the plane, (m,n) ∈ Z2,
m,n ≥ 0. I have mathematical lighthouses which shine trifurcated light — upwards,
rightwards and diagonally right-up. (i.e. along vectors (1, 0), (0, 1), (1, 1) ). I want to
light up the entire quarter-infinite lattice. (A lighthouse lights its own point, and the
light shines through other lighthouses.) Call a point “dark” or “lit” accordingly.

One way to proceed is as follows. Obviously, there must be a lighthouse at (0, 0).
This shines on every point (n, 0), (0, n) and (n, n). Then, the two dark points clos-
est to the origin are (1, 2) and (2, 1). Place lighthouses at these points, and con-
tinue in this fashion. The next points to receive lighthouses are then (3, 5), (5, 3), then
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(4, 7), (7, 4), (6, 10), (10, 6), . . .. A little reflection will show that the nth pair of points
(xn, yn), (yn, xn) satisfy yn = xn + n, and xn is the least x-coordinate thus far unused.
So the points with lighthouses are exactly the points (an, bn) and (bn, an).

The lighthouses appear to lie along two “lines” enclosing a “cone”. Points inside the
cone receive light travelling diagonally from a lighthouse; those outside receive light
from just one lighthouse, travelling horizontally or vertically. For this reason we will
call the cone a “light cone”, relativity theory notwithstanding. This is in a sense the
most “energy efficient” way to place our lighthouses: it is the only way to light up the
quarter-plane such that no two lighthouses lie on the same row, column or diagonal.

This situation is the set-up for a simple 2-player game, invented by Rufus P. Isaacs,
first described in [2] and named “Corner the Lady” by Martin Gardner [8]. It can be
played online at [23]. We have a quarter-infinite chessboard, on which is placed one
queen. Two players take it in turns to move the queen. However, unlike a normal
queen, this piece only moves towards the origin (i.e. down, left, or diagonally down-
left), any number of squares. Players cannot pass; the player who moves the queen to
the origin wins.

It’s not difficult to see that this chessboard game is closely related to a variant of
the game of Nim, known as Wythoff’s Nim [20] and played in China as tsianshidsi
(“choosing stones”). It can also be played online at [24]. We have two non-negative
integers, A and B. Two players take it in turns to decrease numbers. On their turn, a
player may decrease A by any amount provided it remains a non-negative integer. Or
they may decrease B in similar fashion. Or, they may decrease both A and B by the
same amount, again provided A,B remain non-negative integers.

Who has a winning strategy? The answer depends on the initial state, i.e. the initial
position of the queen or values of A and B. The game satisfies criteria known to game
theorists showing that the game is completely soluble. It’s quite clear, for a start, that
if you move the queen to the bottom row or leftmost column, you are going to lose
— your opponent will move the queen to the origin next turn. Similarly, if you move
onto the main diagonal y = x. In fact, you can see that the closest “safe” points to
the origin are (1, 2) and (2, 1). If you move the queen to one of these points, then your
opponent must move to (1, 1), (1, 0), (0, 1), (2, 0) or (0, 2). From any of these squares
you can move to (0, 0) and win the game.

Extrapolating and following similar reasoning, one can show that the only way to
avoid loss, against a sufficiently intelligent opponent, is to move to a square with a
lighthouse, i.e. a square of the form (an, bn) or (bn, an). From a safe point with a
lighthouse, you can only move to unsafe points. And from every unsafe point you can
reach the shelter of a lighthouse. So if the queen starts on a lighthouse, player 2 has a
winning strategy. Otherwise player 1 has a winning strategy.

In fact this diagram has great relevance to another game, this time more purely
number-theoretic. The Game of Euclid ([4], [7]) is a game for two players, and we
start with two positive integers. On their turn, a player may subtract any (positive)
multiple of the smaller number from the larger, provided that both numbers remain
non-negative. So, if the game starts with (12, 5), then the first player could move to
(7, 5) or (2, 5). The player who reduces one of the numbers to zero wins. The object
of the game, then, is to perform a complete Euclidean algorithm on the two initial
numbers (hence the name!).

We can analyse the game on our lighthouse chessboard again. Moving to (n, 1) or
(1, n) is a bad idea, as your opponent will win on the next move. The closest “safe”
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points to the origin are (2, 3) and (3, 2), from which your opponent must move to (2, 1)
or (1, 2), from which you have an assured victory.

Indeed, one can prove that the light cone, minus the main diagonal, is precisely the
“safe” region for this game: to win against a sufficiently intelligent opponent, you must
always move to this region. From outside the light cone at a point say (x, y) with
x < y, you can always move into the light cone minus diagonal (if x is not a factor of
y), or to (x, 0) (otherwise) and win. This follows from the fact that the height of the
light cone in column x is precisely x squares. (Count points with lighthouses as outside
the light cone.) And from the safe region, you can only move into unsafe lands. This
gives a geometric interpretation which seems more intuitive than the purely algebraic
approach of [4].

We now turn to consider the two “lines” of lighthouses bounding the light cone.
They do indeed lie on a “rounded-down” line.

Recall that the Fibonacci numbers satisfy

lim
n→∞

fn+1

fn
= φ =

1 +
√

5
2

≈ 1.618033988749894848204586834365 · · · ,

the golden ratio. In fact every Fibonacci-type sequence of positive integers has this
property: this follows from the fact that they obey the same recurrence, and that the
two roots of the characteristic equation are φ and 1− φ (which is negative). Therefore

lim
n→∞

bn

an
= φ,

and we expect the lighthouses to lie asymptotically on the lines y = φx, y = x/φ.
We can do even better than this. If bxc denotes the integer part function, it is

actually true that an = bnφc and bn = bnφ2c. So the lighthouses lie on the lines
y = φx, y = x/φ to the nearest integer.

The sequences an, bn give an example of Beatty sequences, so-named after Beatty’s
beautiful theorem, first proposed as a problem in the American Mathematical Monthly
in 1926 [1]: if α, β are two positive irrational numbers satisfying 1

α + 1
β = 1, then the

two sequences

bαc, b2αc, b3αc, b4αc, . . . and bβc, b2βc, b3βc, b4βc, . . .

partition the integers. That is, they are disjoint but include every positive integer.
The proof of Beatty’s theorem is truly elegant, considering perhaps the unexpect-

edness of the result. This proof is originally due to Ostrowski and Hyslop and can be
found in [6], [12], [16]. There is also a more direct proof by contradiction, in [7].

Consider how many members there are of each sequence less than some positive
integer N . Clearly there are bN/αc in the first sequence, and bN/βc in the second. So
in total there are ⌊

N

α

⌋
+

⌊
N

β

⌋
(1)

numbers in the two sequences less than N . Now we know N
α + N

β = N , but rounding
down takes off more than 0 (since α, β are irrational) and less than 2 (since we round
down twice). Thus the sum (1) is N − 1, and there are N − 1 numbers in the two
sequences less than N .

Thus there is 1 number present less than 2; it must be 1. Then there are 2 numbers
present less than 3; so they must be 1 and 2. Proceeding in this fashion, it follows that
every positive integer occurs exactly once in our two sequences.
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Being so surprising and elementary, many mathematicians have attempted generali-
sations of Beatty’s theorem. Uspensky [19] proved that you cannot have three numbers
α, β, γ such that the sequences bnαc, bnβc, bnγc together contain each integer exactly
once, under any conditions. Nor can you have 4 or more such numbers. R.L. Graham
gives a simple proof in [9].

While on this theme, consider the sequences fn = an−n and gn = bn−n. (Actually
gn and an are the same.)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
fn = an − n 0 1 1 2 3 3 4 4 5 6 6 7 8 8 9 9
gn = bn − n 1 3 4 6 8 9 11 12 14 16 17 19 21 22 23 25

We see that fn is equal to the number of terms of the sequence {gk} such that gk < n.
And reciprocally, gn is equal to the number of terms of the sequence {fk} such that
fk < n.

In fact the same applies, starting not just with an, bn, but starting with any two
increasing sequences partitioning the positive integers. The reader is encouraged to
take any two such sequences {pn}, {qn}, form the sequences {pn−n}, {qn−n}, and see
what happens! This much, and more, is a remarkable theorem of Lambek and Moser
[15], treated also in [12].

Finally, consider the Fibonacci base number system, also known as Zeckendorf arith-
metic ([18], [22]). This is like other number bases, with digits 0 and 1, except that
the place values are 1, 2, 3, 5, 8, 13, . . . and we add the restriction that no two 1s may
be adjacent. We can denote the Fibonacci base by a subscript φ; indeed it functions
similarly to a “base-φ” system. The first few numbers written in Fibonacci base are

010 = 0φ

110 = 1φ

210 = 10φ

310 = 100φ

410 = 101φ

510 = 1000φ

610 = 1001φ

710 = 1010φ

810 = 10000φ

910 = 10001φ

1010 = 10010φ

The numbers ending in 0 in the Fibonacci base are 0, 2, 3, 5, 7, 8, 10, . . .. These num-
bers are precisely an − 1. It is an interesting exercise to devise a strategy for winning
Wythoff’s Nim purely in terms of these Fibonacci representations ([8], [17]). Investi-
gations of the Fibonacci base and this game have run quite deep (e.g. [3]).

We conclude our tour of some of the properties of this remarkable sequence at this
point. The diligent reader should be able to prove all the assertions made here. Surely
there is much more of interest to reward the keen investigator.

This sequence {an}, its complementary sequence {bn}, and associated mathematical
objects cannot help but remind us of James Jeans’ famous assertion that God is a
mathematician. The appearance of such elementary objects in so many different realms,
with such unexpected and elegant results, conjures up the sense of awe and curiosity
that is at the heart of mathematical inquiry.



Mathellaneous 17

I will leave the reader with a problem I met through mathematical olympiad encoun-
ters. It is from the Iranian olympiad training programme of 2000; thanks to Angelo Di
Pasquale for locating the source. The answer will come as no surprise.
Problem. Suppose f : N −→ N is a function such that f(1) = 1 and

f(n + 1) =
{

f(n) + 2 if n = f(f(n)− n + 1)
f(n) + 1 otherwise

Prove that f(f(n)− n + 1) ∈ {n, n + 1} and find the function f .
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