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Mathellaneous by Daniel Mathews

Games with Galois

1 Mathematics and Games

All the world’s a stage, they say, and all the people merely players. Well, we might also say,
all the world’s a game, and all the people merely play them.

Mathematics is clearly home to a great many games and amusements. But the fruits of
such excellent entertainment may extend to matters of even greater import than a closely-
fought victory. There is no greater example than John Conway’s celebrated On Numbers
and Games, in which a full, rigorous development of numbers is presented starting from the
concept of games. Conway produces the integers, rationals, infinitesimals, transfinite num-
bers and much more. So, occasionally games may be of use in other areas of mathematics,
which are traditionally treated with more gravity.

Évariste Galois was no game theorist, but his infa-
mous downfall arose from participation in an extraor-
dinarily risky game — a duel with pistols at 25 paces.
His tragic story is one of rejection, strife, passion
and, as E. T. Bell put it, “massed stupidity aligned
against him”. His short but eventful life, swept up
in the political currents of early nineteenth-century
France, met with continual disaster. He was demoted
at school; he was rejected from the esteemed Poly-
technique twice (once, so the legend goes, putting the
blackboard duster to better use as a missile against
an imbecile examiner); his papers submitted to the
Academy were lost, and on one occasion, the secre-
tary responsible for his paper died; he was expelled
from school for standing up for his democratic ideals;
he joined the artillery of the National Guard to fight
for the Republican cause; he was tried and acquitted

Évariste Galois

for threatening the king; and then jailed simply for being “dangerous”, later convicted on a
trumped-up charge. The precise circumstances of his duel are not known: ostensibly it was
over a woman, but it may also have involved his political rivals.

Today it is beyond doubt that Galois made epochal contributions to mathematics, despite
his work being dismissed, neglected, or described as “incomprehensible” during his lifetime.
By his death at the age of 20, young Évariste had established the branch of mathematics
that today bears his name.

Galois theory is often regarded as a difficult area of mathematics. It’s certainly not easy.
But in a certain sense, as we shall see, it’s all really just a game.
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2 Solving as a learning game

The most immediately important question addressed by Galois theory is the solubility of
polynomial equations. Our first player, valiantly attempting to solve polynomials, we will
name Sol — she’s very bright! The aim of any game, for her, is to solve polynomials.

Sol must convince me that a polynomial is soluble. While I understand algebra and
general mathematical argument (sometimes), I am not very knowledgeable, and I only know
the rational numbers. I want to be able to write down the solutions using the following
symbols only:

+,−,×,÷, n
√

.

That is, Sol has to show me how to find the roots and write them as a radical expression.
Game 1. x2 +1 = 0. The roots, you should know, are ±i. But I don’t know that. How can
Sol explain them to me? She could give me a lecture course about complex numbers, but
that’s asking a bit much. Rather, she could introduce a number α such that α2 = −1. Then
the other root would be −α. That is, she can introduce numbers purely in terms of their
algebraic properties. Provided I am happy that, manipulating the end result by the rules, it
satisfies the polynomial, that’s not a problem. I can write the roots as ±α or ±

√
−1.

Here’s an interesting question: is the number α supposed to be i or −i? Sol could again
take the “complex numbers lecture course” approach, or think of other methods. But, if
she sticks to purely algebraic properties of numbers, she must fail, because really i and −i
have identical algebraic properties: they both just sit there, until they’re squared, at which
point they become −1. Thus Sol’s aim is an impossible one, and the numbers i and −i are
too symmetric for me to tell them apart. We must settle with simply writing down ±α or
±
√
−1 without really knowing what the individual numbers are in “reality”. This may be

a little disconcerting, but since I’m only worried about being able to write down roots as
radical expressions, it’s perfectly adequate.

In fact, for the same reasons, I can’t ever distinguish between
√

5 and −
√

5, in fact any
set of numbers satisfying the same irreducible rational polynomial. Such numbers are called
Galois conjugate.

3 Symmetry strategy

Solving equations like the previous one really just amount to taking square roots. Things
get a bit more difficult when the polynomial is more complicated. Here we need to try
something more interesting. We need two key facts.
Fact 1. The coefficients of a polynomial have a nice relationship with the roots. (Let’s
assume our polynomial has a leading coefficient of 1, i.e. is monic.)

xn + an−1x
n−1 + · · ·+ a0 = (x− α1) · · · (x− αn)

= xn − (α1 + · · ·+ αn) xn−1 + (α1α2 + · · ·+ αn−1αn) xn−1

+ · · ·+ (−1)nα1 · · ·αn.

Therefore we have the so-called Vieta formulae

an−1 = − (α1 + · · ·+ αn)

an−k = (−1)k { sum of all products of roots taken k at a time }
a0 = (−1)n α1α2 · · ·αn.

These expressions for the coefficients are the symmetric polynomials of the roots.
Fact 2. (Gauss’ theorem on symmetric functions.) A polynomial in α1, . . . , αn which is
symmetric in all the variables can be expressed in terms of the symmetric polynomials above,
i.e. the coefficients of the polynomial.
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Game 2. x2 − 6x + 7 = 0. Let the roots be α, β. By the above formulae

α + β = 6, αβ = 7.

S: Consider the expression (α − β)2. This is symmetric in α and β: if we
swap them, we get (β − α)2 which is obviously the same.

D: Right! By Gauss’ theorem, then, we can express it in terms of the
coefficients.

S: Precisely. We get

(α− β)2 = (α + β)2 − 4αβ = 62 − 4× 7 = 8.

So I’m going to introduce to you this number
√

8, which has the property
that its square is 8. If you play around with the algebra you’ll see that
the square of

√
8/2 is 2. So you can write it as 2

√
2 if you like.

D: OK, I’m happy with that, I know algebra.
S: Now we’ve got α + β = 6 and α − β = 2

√
2. Solving the simultaneous

equations easily gives

α = 3 +
√

2, β = 3−
√

2.

Using this method we can solve quadratics in general.
Game 3. x3 − 2. (As you know, the roots are

3
√

2,
3
√

2

(
−1

2
+
√

3
2

i

)
,

3
√

2

(
−1

2
−
√

3
2

i

)
but I don’t know that.)

S: Well, there’s this number 3
√

2, it’s a number α described by the property
that α3 = 2. I won’t even bother to distinguish it from the other roots,
because they’re all Galois conjugates.

D: OK, great, α = 3
√

2 is a root. I now know the rational numbers and this
number α. But what are the other two?

At this point, Sol can try to describe to me the other two roots by using rational numbers
and α. But without introducing any new numbers, this is an impossible task. Using 3

√
2

and rational numbers, she can’t possibly describe complex numbers to me, only real ones.
She must introduce a new number.

S: Well, there’s this number 3
√

2
(
− 1

2 +
√

3
2

)
. It’s a number β so that β3−2 =

0.
D: Hmmm... sounds like α.
S: Well it’s one of the roots other than α.
D: Well that’s a bit silly, why don’t you factorise out (x− α) then?!

x3 − 2 =
(
x− 3
√

2
)(

x2 − 3
√

2x + 3
√

4
)

= (x− α)(x2 − αx + α2).

D: You should have said, “there’s this number β that satisfies β2−αβ+α2 =
0”. It would have been more efficient. That’s fine, I can solve the
quadratic and obtain the two roots as

α

(
1 +
√
−3

2

)
, α

(
1−
√
−3

2

)
.
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4 Multi-stage learning and partial symmetry

As we just saw, with cubics I don’t learn everything in one fell swoop. I need to learn in
several stages. With a more difficult cubic, the problems become much worse. As we’ll see,
we need to consider equations which are only partially symmetric as we go.
Game 4. x3 − 6x− 2 = 0. Let the roots be α, β, γ so that

α + β + γ = 0, αβ + βγ + γα = −6, αβγ = 2.

S: First, there’s this number ω, a cube root of unity. It satisfies ω2+ω+1 = 0
and we’ll write it as

ω =
−1 +

√
−3

2
.

D: Hmmm... yes, but I can’t really see the point of this.
S: Give me a minute. Introduce the two numbers y and z, which are defined

in terms of the roots of the cubic.

y = α + ωβ + ω2γ, z = α + ω2β + ωγ.

D: I see, you’re trying to find a symmetric function in α, β, γ, just like in the
quadratic case. But hang on a minute, these aren’t symmetric! If you
swap α and β around, for instance, both y and z expressions change!

S: Yes, you’re right. But if you cycle α, β, γ around in y, then y becomes
yω or yω2... I’ll show you.

αβγ → βγα,

y = α + ωβ + ω2γ → β + ωγ + ω2α

= ω3β + ω4γ + ω2α

= ω2
(
α + ωβ + ω2γ

)
= ω2y.

Similarly z becomes ωz or ω2z. So if we consider

y3 =
(
α + ωβ + ω2γ

)3
, z3 =

(
α + ω2β + ωγ

)3
then both y3 and z3 are invariant under cycles.

D: That’s tricky! But neither expression is symmetric!
S: Correct. But they are partially symmetric — if we content ourselves with

only cycling α, β, γ around. On the other hand, if you do a swap like
α↔ β then you change y3 into z3!

αβγ → αγβ

y3 =
(
α + ωβ + ω2γ

)3 → (
β + ωα + ω2γ

)3
=
(
ω3β + ωα + ω2γ

)3
= ω3

(
α + ω2β + ωγ

)3
= z3.

D: You’re quite the algebra whiz!
S: Therefore, if we add y3 and z3 together, then they’re invariant under any

permutation! The same applies if we multiply them to get y3z3!

y3 + z3 =
(
α + ωβ + ω2γ

)3
+
(
α + ω2β + ωγ

)3
,

y3z3 =
(
α + ωβ + ω2γ

)3 (
α + ω2β + ωγ

)3
.

D: That’s very cool.
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S: No, Galois is cool. Thus, y3 + z3 and y3z3 are totally symmetric. By
Gauss’ theorem on symmetric functions, they can be written in terms
of α + β + γ, αβ + βγ + γα and αβγ alone. In fact I did some algebra
earlier and figured out that

y3 + z3 = 2 (α + β + γ)3 − 9(α + β + γ)(αβ + βγ + γα) + 27αβγ,

y3z3 = (α + β + γ)6 − 9 (α + β + γ)2 (αβ + βγ + γα)2 − 27(αβ + βγ + γα)3.

For our polynomial, we know that α + β + γ = 0, αβ + βγ + γα = −6,
αβγ = 2. Therefore we have

y3 + z3 = 54, y3z3 = 183,

and y3 and z3 are the roots of the quadratic

t2 − 54t + 183 = 0.

D: We solved quadratics earlier. I’ll solve this one.

y3 = 27 + 27
√
−7, z3 = 27− 27

√
−7.

S: Now I’ll teach you the number y, which satisfies the equation that its
cube is y3.

D: Der...!
S: Yes, but I had to teach you, otherwise you wouldn’t know.
D: OK. I guess so.

y =
3
√

27 + 27
√
−7 = 3

3
√

1 +
√
−7, z =

3
√

27− 27
√
−7 = 3

3
√

1−
√
−7.

S: Now we’re nearly done! Remember we had y = α + ωβ + ω2γ and
z = α + ω2β + ωγ. Now we know that ω + ω2 = −1, so

y + z = 2α− β − γ

and hence
y + z + (α + β + γ) = 3α.

We know y and z, and we know α + β + γ = 0. Therefore

α =
y + z

3
=

3
√

1 +
√
−7 +

3
√

1−
√
−7.

The other roots can be found out similarly. I don’t have to teach you
any new numbers.

5 Galois theory

We’ll need to know something about permutations. Recall that a permutation of a set of
objects is just a rearrangement of them. Speaking formally, a permutation is a bijective
function from a set of objects to itself. Normally, if there are n objects, we just use the
numbers 1, 2, . . . , n. We may write permutations in different ways:

12345→ 23145(
1 2 3 4 5
2 3 1 4 5

)
1 7→ 2 7→ 3 7→ 1, 4 7→ 4, 5 7→ 5

(123)(4)(5).

The last type of notation is called cycle notation and we say, for instance, that (123) is a 3-
cycle. The way in which the cycles are grouped in a permutation is called its cycle structure.
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Thus (123)(45) and (124)(35) have the same cycle structure, but (123)(45) and (123) do
not. Permutations are multiplied by composing the functions involved. We multiply from
left to right. For instance

(123)(45) · (345) = (1243)(5) = (1243).

The do-nothing, or identity permutation is denoted (1). Permutations form a group: when
you multiply two permutations, you get another permutation; each permutation has an
inverse permutation which undoes it; and the multiplication is associative. Subsets of the
set of permutations which have these properties are called subgroups.

Now it’s worth summarising how we solved the cubic:
(1) y3+z3 and y3z3 are rational. The expressions for them were totally symmetric. That

is, they were invariant under any permutation of α, β, γ — the entire permutation
group S3.

αβγ αγβ βαγ βγα γαβ γβα
(1) (23) (12) (123) (132) (13) .

(2) Then we learnt y3 and z3 — an intermediate level of understanding — as the roots
of a quadratic. y3 and z3 were not totally symmetric, but they were invariant under
cycles of α, β, γ. The expressions for them were partially symmetric — symmetric
under cycling but not swaps. These cycles form a subgroup of S3 called A3.

αβγ βγα γαβ
(1) (123) (132) .

(3) Then we learnt y and z, by taking cube roots. They are the roots of a (really easy)
cubic. The expressions for them are not symmetric at all! They were only invariant
under the trivial permutation.

(4) Understanding y and z is really the same level of understanding as α, β, γ, since we
can then describe the roots in terms of y and z.

Galois’ amazing idea is that stages of learning, and types of symmetry, are the same
thing.

Theorem 1 (Fundamental theorem of Galois theory) There is a one-to-one correspondence
between levels of understanding in solving a general n-degree polynomial, and subgroups of
the group of permutations of the n roots.

This statement is necessarily imprecise, since we have not bothered to define anything
properly. The correspondence is order-reversing.

Knowledge Q ⊂ Q, y3, z3 ⊂ Q, y, z ⇒ α, β, γ
Subgroup S3 ⊃ A3 ⊃ (1)

Thus, the appropriate thing to do in solving polynomial equations is not to perform
algebraic torture, but to find the appropriate middle levels of symmetry, and find expressions
with that symmetry. With higher degree polynomials we need more levels of symmetry,
because the middle levels of symmetry must be fairly “close together”. If I am to be able
to write down the answer as a radical expression, the only way to jump to a new level of
understanding is when the “loss of symmetry” corresponds to “taking an n’th root”.

The technical condition is that we must have a nested sequence of subgroups which have
abelian quotients, down to the trivial group. A group which has such a sequence of subgroups
is called soluble. The cubic polynomial is soluble precisely because the group S3 is soluble. It
turns out that solubility is equivalent to the derived series of the group eventually becoming
trivial. I won’t define these concepts here. Suffice it to note that the real game is about
permutations; specifically, about whether or not sufficient “middle levels” of symmetry —
that is, intermediate subgroups of permutations — exist.
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6 The Game of Galois

Here is a game about permutations then. Since the actual game involved in determining
whether a group is soluble is quite complicated, we’ll start with a simpler version. Sol has a
friend named Insol, who as the name suggests, insolently maintains that many polynomials
are insoluble.

Definition 1 (n-Galois-lite) Sol chooses a starting permutation x0 of {1, 2, . . . , n}, which
cannot be the identity, and then takes no further part in the game. Insol chooses a permu-
tation y0, which must have the same cycle structure as x0. We then form x0y0 = x1. Insol
chooses another permutation y1 with the same cycle structure as x1, and forms x1y1 = x2.
Play continues in this fashion. If Insol can keep away from the identity permutation for
arbitrarily long, she wins. If she hits the identity, Sol wins.

This sounds like a peculiar game. But the idea, in a more refined version of the game, is
as follows: in a soluble group of permutations, Insol is forced to move down to lower levels
of symmetry, eventually to the identity.
Game 5. n =∞. We have∞ objects, say the natural numbers 1, 2, . . ., but the players are
only permitted to permute finitely many at a time.

Insol has a winning strategy in this game. Because there is an infinite set of objects, Insol
can always pick a permutation which affects only objects which have been hitherto unused.
When these permutations are multiplied, we just write the cycles next to each other! E.g.

(12)(34) · (56)(78) = (12)(34)(56)(78).

Game 6. n = 1. This is a non-starter, literally. There’s only the identity permutation, so
Sol cannot begin.
Game 7. n = 2. Sol can only choose (12) to start, and Insol can only respond with (12).
Then (12)(12) = (1) and Sol wins.
Game 8. n = 3. Sol has two types of permutations to use, either the (123) type or the
(12) type. Hopefully you should be able to see that choosing different starting permutations
with the same cycle structure makes no difference to the overall strategy.

Suppose Sol starts with (123). Then Insol responds with (123) and we form (123)(123) =
(132). Then Insol chooses (132) and we form (132)(132) = (123). If Insol continues alter-
nately choosing (123) and (132), she can keep away from the identity indefinitely and win.
We’ll call this the copy tactic. Sol must try something else, and starts with (12). But, alas,
it is to no avail and Insol chooses (13), giving (12)(13) = (123) and from there can maintain
a 3-cycle with the copy tactic. Thus Insol has a winning strategy.
Game 9. n = 4. This is a little more complicated, but no matter how Sol starts, Insol can
get to a permutation of the form (123) or (12)(34) and maintain it. The following diagram
shows the possible moves Insol can make between the various cycle structures.

(1234) (12)
↓↓ ↘ 	 ↙ ↓↓
↓↓ (123) ↓↓
↓↓ ↓ ↓↓
↓↘ ↓	 ↙↓
↓ → (12)(34) ← ↓
↓ ↓ ↓

↘ (1) ↙

Figure 1.
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For instance, if Sol starts with (1234) then Insol chooses (1342) and obtains (1234)(1342) =
(243), and can stay there by the copy tactic. If Sol starts with (12)(34) then Insol can stick
there, choosing (13)(24) to get (12)(34)(13)(24) = (14)(23), maintaining a 2-2-cycle. So
Insol wins again.

In general, Insol has many strategies available. First, Insol can remove any cycle she
wants in a permutation, because each cycle has an inverse, which is obtained by writing it
backwards. For example (123)(321) = (1). The inverse has the same cycle structure, and
Insol can choose it as part of her permutation. Second, the copy tactic can be applied to any
odd-length cycle, so Insol can preserve an odd-length cycle. For instance, if (1234567) comes
up, then Insol copies with (1234567) which gives (1234567) · (1234567) = (1357246). Third,
a long even-length (2k ≥ 4) cycle can be reduced to a (2k − 1)-cycle, since, for instance,
(12345678) · (13456782) = (2468357). Finally, a pair can be turned into a 3-cycle, as we saw
previously. Combining all these tactics gives

Theorem 2 Insol has a winning strategy in n-Galois-lite for any n ≥ 3.

So much for the lite version of the game, which appears to be a bit easy for Insol! Let’s
toughen it up a bit.

Definition 2 (restricted n-Galois) Again we have n objects and Sol selects a non-identity
permutation x0 to start with. Again Insol selects a permutation y0 with the same cycle
structure as x0. Then we set x0y0x

−1
0 y−1

0 = x1. Insol chooses y1 with the same cycle
structure as x1, and we form x1y1x

−1
1 y−1

1 = x2. Play continues; if Insol can keep away from
(1) indefinitely, she wins; otherwise Sol wins.

Actually we can notice that axa−1 always has the same cycle structure as x, which is
in turn the same as x−1. The three permutations ynx−1

n y−1
n , x−1

n and xn have the same
cycle structure. In group theoretic language they are conjugates. If we allowed Insol to
choose any permutation for yn, the game would be identical to Galois-lite; hence the epithet
“restricted”.
Game 10. n = 2. Sol can only choose (12) to start and Insol can only choose (12) to obtain
(1). Sol wins.
Game 11. n = 3. Sol can start with, say, (123) or (12). Suppose she chooses (123). Then
Insol must choose (123) or (132), both of which yield (1), and Sol wins. On the other hand,
if Sol starts with (12), then y0x

−1
0 y−1

0 will be a 2-cycle; the product of two 2-cycles is always
of the form (abc) or (1). In any case, Sol wins.

(12) → (123)
↘ ↙

(1)

Game 12. n = 4. Sol has 4 choices, namely (1234), (123), (12)(34), and (12). We can
consider the following facts, gleaned from 4-Galois-lite.

The product of two 4-cycles is either of the form (abc), (ab)(cd) or (1). This was illustrated
for 4-Galois-lite above; in restricted Galois even fewer moves are available. Similarly the
product of two 2-cycles is either of the form (abc), (ab)(cd) or (1). For similar reasons, once
arriving at a cycle of the type (123), (12)(34) or (1), Insol cannot get back to a (1234) or
(12).

Thus we only need consider permutations like (123), (12)(34) or (1). From (123), can
Insol maintain a 3-cycle? The only way to do this is if y0(321)y−1

0 = (123), where y0 is a
3-cycle. The 3-cycle cannot involve 4, and so must be (123) or (132). But the conjugate
of (321) by both possibilities is again (321). So Insol cannot maintain a 3-cycle, and must
go to a permutation of the form (12)(34) or (1). Similarly, Insol cannot maintain (12)(34):
from (12)(34) all roads lead to (1).
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Therefore, having considered all cases, we conclude that Insol fails, and Sol has a winning
strategy for n = 4. There is a diagram of possible moves, which is the same as Figure 1,
with the loops removed.

7 The big game.

We now come to the final duel between Sol and Insol: the case n = 5. As we will see, it is
on the outcome of this game that the fate of the solubility of the quintic polynomial turns.

Incidentally, the group S5 of permutations on 5
elements is isomorphic to the group of isometries
of a regular icosahedron. So this game can also
be interpreted in terms of moving around (pos-
sibly reflecting at times) an icosahedron. Taking
3 pairs of opposite edges of an icosahedron ap-
propriately, it is possible to form three mutually
perpendicular golden rectangles. This can be done
5 different ways. The objects being permuted as
the icosahedron is transformed are these 5 triads
of rectangles. The relationship between the icosa-
hedron and the quintic was explored by Felix Klein
in [5].

Icosahedron

Game 13. n = 5. Sol has a six-shooter, which can shoot (123)(45), or (12), or (1234), or
(12345), or (12)(34), or (123).

First shot: Sol fires (123)(45). But Insol chooses (124)(35) to obtain (134)
— a 3-cycle.

Second shot: Sol fires (12). But Insol deflects the shot with a (23), which
results in (123).

Third shot: Sol fires (1234). Insol retaliates with (1243) to obtain (143).
Fourth shot: Sol fires (12345). But a quick (12354) ends with (254) and

evades the blast.
Fifth shot: Sol fires (12)(34). Another conjugation from the hip, this time

choosing (12)(35), gives (354).
Final shot: We may assume now that Insol is faced with an incoming 3-cycle,

without loss of generality (123). But Insol now delivers the coup de gras,
and chooses (145) to obtain (153). Insol has stabilised at a 3-cycle and
is now invincible.

Theorem 3 Insol wins the duel. That is, Insol has a winning strategy for restricted 5-
Galois.

The actual game involved in determining whether or not a general quintic polynomial is
soluble is the following more complicated game. Play is identical to restricted n-Galois and
n-Galois-lite, but the choices for Insol at each stage lie somewhere between the many choices
of the lite version, and the fewer choices of the restricted version.

Definition 3 (n-Galois) Sol chooses x0 6= (1). Insol may select any permutation for y0, then
x1 = x0y0x

−1
0 y−1

0 . Call all the possible permutations for x1, in any possible game, level-1
permutations. For y1, Insol selects a level-1 permutation and we form x2 = x1y1x

−1
1 y−1

1 .
The set of all possibilities for x2 in any possible game are called level-2 permutations. Then
y2 must be a level-2 permutation, and so play continues. If Insol can avoid the identity, she
wins; otherwise Sol wins.
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Those who know some group theory will see that the level-1 positions form S′n, the level-2
positions are S′′n, and so on; so Insol has a winning strategy if and only if Sn is soluble.

However, because the n objects are indistinguishable, clearly all the permutations with
the same cycle structure will be in the same levels. Therefore Insol has more moves than in
restricted n-Galois, but less than in Galois-lite. So if Insol can win restricted n-Galois, she
can win n-Galois.

Corollary 1 Insol has a winning strategy for 5-Galois.

Corollary 2 The general quintic polynomial is insoluble by radicals.

And, at last, the score is settled. The forces of insolubility win the day, at least for n = 5.
I’ll leave the other cases for you.
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