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Geometric structures and holonomy

Recall a geometric (X, IsomX) structure on a
manifold M is a metric on M locally isometric
to X.

A geometric (X, IsomX) structure on a man-
ifold M gives a local isometry with X which
extends to a developing map D : M̃ −→ X.

For each α ∈ π1(M), the developing map gives
a path in X. The start and end points are
related by an isometry ρ(α).

The map ρ : π1(M) −→ IsomX so obtained is
a homomorphism and is called the holonomy.

A geometric cone manifold structure deter-
mines a holonomy map ρ : π1(M) −→ IsomX
if all interior cone angles are multiples of 2π.
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The problem

Given a homomorphism ρ : π1(M) −→ IsomX,

is ρ the holonomy of some structure on M?

• geometric structure on M?

• geometric cone-manifold structure with in-

terior cone angles multiples of 2π?

• if M has boundary, with totally geodesic

boundary? With corners? Allowing too

many corners trivialises the problem.
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Some known answers.

(i) Leleu 2000: 3-dimensional hyperbolic, Euclid-

ean, spherical manifolds with nonempty (non-

geodesic) boundary.

ρ : π1(M) −→ IsomX is the holonomy of a

geometric structure if and only if ρ lifts to

ρ̃ : π1(M) −→ ˜IsomX.

No control on boundary.

(ii) Gallo, Kapovich, Marden 2000: closed sur-

faces with complex projective structures.

Any nonelementary ρ : π1(S) −→ PSL2C
is the holonomy of a complex projective

cone manifold structure. No cone points

are required iff ρ lifts to SL2C. Otherwise

a single 4π cone point is required.
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2-dimensional hyperbolic geometry

Theorem 1 (Goldman 1988) For a closed sur-
face S, χ(S) < 0, the Euler class E(ρ) classifies
the topological components of the algebraic
variety of representations ρ : π1(S) −→ PSL2R.

The Euler class E(ρ) ∈ H2(S) and

χ(S) ≤ E(ρ)[S] ≤ −χ(S).

Theorem 2 (Goldman 1980) For a closed sur-
face S, χ(S) < 0, the representations with
E(ρ)[S] = ±χ(S) are precisely the holonomy
representations of (non-singular) hyperbolic struc-
tures on S.

I.e. the holonomy representations are those
“least liftable” to P̃SL2R.
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The Euler class of a representation

Most useful description in terms of

P̃SL2R ∼= ŨTH2 ∼= ˜H2 × S1 ∼= H2 × R.

Elements of P̃SL2R are homotopy classes of
paths in UTH2.

Any α ∈ PSL2R has infinitely many lifts to
P̃SL2R. These are paths in UTH2 with the
same start and end tangent vectors, but dif-
fer according to the number of times that the
tangent vectors “spin”.

The fibre over 1 ∈ PSL2R is an infinite cyclic
group {zn}.

The lifts of α ∈ PSL2R are precisely znα̃.
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Schematic diagram of P̃SL2R
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A hyperbolic/parabolic element α ∈ PSL2R has

a simplest lift to P̃SL2R (“drive straight along

the axis”). These form Hyp0/Par0. Their

twist is small.
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Commutators

Commutators are well-defined: if α, β ∈ PSL2R
then [α, β] ∈ P̃SL2R makes sense.

Commutators are “not too twisty”: lie in the

shaded region.

Take presentation for π1(S):

generators G1, H1, . . . , Gk, Hk, C1, . . . , Cn

relator [G1, H1] · · · [Gk, Hk]C1 · · ·Cn.

A representation into PSL2R is equivalent to

choice of gi, hi, ci ∈ PSL2R with

[g1, h1] · · · [gk, hk]c1 · · · cn = 1.

For closed surfaces, this relator is well-defined

in P̃SL2R. For surfaces with boundary, we may

take lifts c̃i with small twist.
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Representations of surface groups:
the Milnor-Wood inequality

We have
[
g̃1, h̃1

]
· · ·

[
g̃k, h̃k

]
c̃1 · · · c̃n = zm

for some m. Since “twist” is approximately
additive m is bounded:

χ(S) ≤ m ≤ −χ(S).

For a closed surface, m depends only on ρ and
gives the Euler class of ρ. E(ρ)[S] = m.

For a surface with boundary we may define
a relative Euler class if we require ρ to take
boundary curves to non-elliptics.

If ρ is the holonomy of a (non-singular) hyper-
bolic structure then E(ρ)[S] = ±χ(S).

For a closed surface, every step towards 0 re-
quires an extra 2π worth of cone angle.
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Punctured torus theorem:

Let S be a punctured torus. A representation ρ

is the holonomy of a hyperbolic cone-manifold

structure with at most one corner point and

no interior cone points if and only if ρ is not

virtually abelian.

Genus 2 surface theorem:

Let S be a genus 2 closed surface. Let ρ be a

representation with

(i) E(ρ)[S] = ±1 (i.e. one off extremal).

(ii) for some separating curve C, ρ(C) is not

hyperbolic.

Then ρ is the holonomy of a hyperbolic cone-

manifold structure with one 4π-angle cone point.
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“Almost every” theorem:

Let S be a closed orientable surface, χ(S) <

0. Almost every representation ρ : π1(S) −→
PSL2R such that

(i) E(ρ)[S] = ±(χ(S) + 1) (i.e. “one off maxi-

mal”), and

(ii) ρ sends some non-separating simple closed

curve to an elliptic,

is the holonomy of a hyperbolic cone-manifold

structure on S with a single cone point with

cone angle 4π.
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The relevant measure

Goldman (1984) constructed a measure on the

character variety X(S) of representations ρ :

π1(S) −→ PSL2R. (“Representations up to

conjugacy.”)

The tangent space of X(S) at [ρ0] is

H1(π1(S); sl2RAdρ0
)

(sl2R as a π1(S)-module via ρ0 and the adjoint

representation).

The cup product and the Killing form allow us

to define a pairing

ωρ0 : H1(π1(S); sl2R)×H1(π1(S); sl2R) −→ R

which gives a closed non-degenerate 2-form ω

on X(S) (singular at abelian representations),

i.e. a symplectic structure.

This defines a measure on X(S) by integration.
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Questions:

The hypothesis of an elliptic s.c.c. is ungainly.

Question: For a general closed surface with

χ(S) < 0, is almost every representation with

Euler class ±(χ(S) + 1) a holonomy represen-

tation?

Can the “almost” be dropped?

Question: Is every representation of a gen-

eral closed surface, χ(S) < 0, with Euler class

±(χ(S) + 1) a holonomy representation?

For two-off-extremal Euler class representations,

we know not all are holonomy representations.

Question: For a given integer m 6= 0, |m| ≤
−χ(S)− 1, and representations with E(ρ)[S] =

m, are holonomy representations dense/conull?
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Ideas in proof of punctured torus theorem
Construct a pentagonal fundamental domain.
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For g, h ∈ PSL2R and p ∈ H2, we have a pen-
tagon generated by g, h at p, P(g, h, p).
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We have a holonomy representation iff we can
find a basis G, H and a point p ∈ H2 giving
a nice pentagon (non-degenerate bounding an
immersed disc).
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Algebra of punctured torus representations

Fricke, Klein 1897: For irreducible ρ, the
triple (Tr g,Tr h,Tr gh) determines ρ up to con-
jugacy.
Thus the character variety Ω ⊂ R3.

Nielsen 1918: An automorphism of 〈G, H〉
takes [G, H] to a conjugate of itself or its in-
verse.

If (Tr g,Tr h,Tr gh) = (x, y, z) then

Tr[g, h] = x2 + y2 + z2 − xyz − 2 = κ(x, y, z).

Consider action of Outπ1(S) ∼= GL2Z on Ω,
which preserves each κ−1(t).

Two characters are equivalent if they are re-
lated by the following moves:

(x, y, z) 7→




permutations of coords
(x, y, xy − z) (“Markoff”)
(−x,−y, z)
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Proof by picture.

Key lemma: for g, h ∈ PSL2R.

Tr[g, h] < 2 ⇔ {g, h hyperbolic and axes cross}

Take cases according to value of Tr[g, h].

Case (i) Case (ii)
Tr[g, h] < −2 Tr[g, h] = −2
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Case (iii) Case (iv)
Tr[g, h] ∈ (−2,2) Tr[g, h] = 2

(Perturb carefully) (Reducible reps)
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Case (v): algorithm to change basis until char-

acter (x, y, z) ∈ (2,∞)3. Deduce arrangements

of axes using results of Gilman–Maskit. Then

construct.

−1

[g   ,h    ]p

h    gh p

−1−1

gh p

r=h p

g

h

−1

p

h   gh

18



Ergodicity

Recall Autπ1(S) acts on Ω, describing how the

character changes when we change basis of

π1(S).

Goldman (1984) showed that there is a mea-

sure on Ω (in fact, a symplectic structure on

each level set κ−1(t)) which is invariant under

the action of π1(S). In certain regions of Ω

(occurring in the present case) the action is

ergodic.

Recall ergodic means that the only invariant

sets under the action are null or conull.

Now by the mixing properties of ergodicity, by

changing basis we can move from almost any

such ρ to arbitrarily close to a specific ρ∗, which

has the desired properties.
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