Construction of geometric cone-manifold structures with prescribed holonomy

Daniel V. Mathews

19 January 2006

Geometric structures and holonomy

Recall a geometric (X, Isom X) structure on a manifold M is a metric on M locally isometric to X.

A geometric $(X, \operatorname{Isom} X)$ structure on a manifold M gives a local isometry with X which extends to a *developing map* $\mathcal{D} : \tilde{M} \longrightarrow X$.

For each $\alpha \in \pi_1(M)$, the developing map gives a path in X. The start and end points are related by an isometry $\rho(\alpha)$.

The map $\rho : \pi_1(M) \longrightarrow \text{Isom } X$ so obtained is a homomorphism and is called the *holonomy*.

A geometric cone manifold structure determines a holonomy map $\rho : \pi_1(M) \longrightarrow \text{Isom } X$ if all interior cone angles are multiples of 2π .

The problem

Given a homomorphism $\rho : \pi_1(M) \longrightarrow \text{Isom } X$, is ρ the holonomy of some structure on M?

- geometric structure on M?
- geometric cone-manifold structure with interior cone angles multiples of 2π ?
- if *M* has boundary, with totally geodesic boundary? With corners? Allowing too many corners trivialises the problem.

Some known answers.

 (i) Leleu 2000: 3-dimensional hyperbolic, Euclidean, spherical manifolds with nonempty (nongeodesic) boundary.

 $\rho: \pi_1(M) \longrightarrow \operatorname{Isom} X$ is the holonomy of a geometric structure if and only if ρ lifts to $\widetilde{\rho}: \pi_1(M) \longrightarrow \widetilde{\operatorname{Isom} X}.$

No control on boundary.

(ii) Gallo, Kapovich, Marden 2000: closed surfaces with complex projective structures.

Any nonelementary $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{C}$ is the holonomy of a complex projective cone manifold structure. No cone points are required iff ρ lifts to $SL_2\mathbb{C}$. Otherwise a single 4π cone point is required.

2-dimensional hyperbolic geometry

Theorem 1 (Goldman 1988) For a closed surface S, $\chi(S) < 0$, the Euler class $\mathcal{E}(\rho)$ classifies the topological components of the algebraic variety of representations $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$.

The Euler class $\mathcal{E}(\rho) \in H^2(S)$ and $\chi(S) \leq \mathcal{E}(\rho)[S] \leq -\chi(S).$

Theorem 2 (Goldman 1980) For a closed surface S, $\chi(S) < 0$, the representations with $\mathcal{E}(\rho)[S] = \pm \chi(S)$ are precisely the holonomy representations of (non-singular) hyperbolic structures on S.

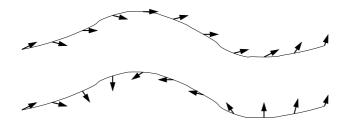
I.e. the holonomy representations are those "least liftable" to $PSL_2\mathbb{R}$.

The Euler class of a representation

Most useful description in terms of $\widetilde{PSL_2\mathbb{R}} \cong \widetilde{UT\mathbb{H}^2} \cong \mathbb{H}^2 \times S^1 \cong \mathbb{H}^2 \times \mathbb{R}.$

Elements of $\widetilde{PSL_2}\mathbb{R}$ are homotopy classes of paths in $UT\mathbb{H}^2$.

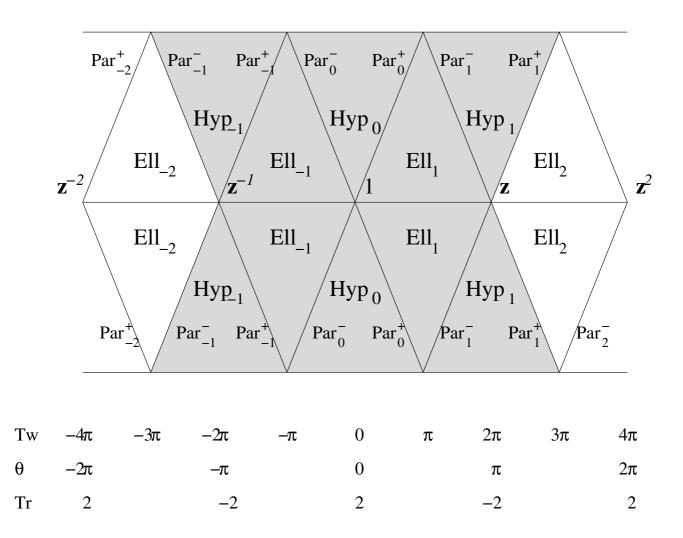
Any $\alpha \in PSL_2\mathbb{R}$ has infinitely many lifts to $PSL_2\mathbb{R}$. These are paths in $UT\mathbb{H}^2$ with the same start and end tangent vectors, but differ according to the number of times that the tangent vectors "spin".



The fibre over $1 \in PSL_2\mathbb{R}$ is an infinite cyclic group $\{\mathbf{z}^n\}$.

The lifts of $\alpha \in PSL_2\mathbb{R}$ are precisely $\mathbf{z}^n \tilde{\alpha}$.

Schematic diagram of $\widetilde{PSL_2\mathbb{R}}$



A hyperbolic/parabolic element $\alpha \in PSL_2\mathbb{R}$ has a *simplest* lift to $\widetilde{PSL_2\mathbb{R}}$ ("drive straight along the axis"). These form Hyp_0/Par_0 . Their *twist* is small.

Commutators

Commutators are well-defined: if $\alpha, \beta \in PSL_2\mathbb{R}$ then $[\alpha, \beta] \in \widetilde{PSL_2\mathbb{R}}$ makes sense.

Commutators are "not too twisty": lie in the shaded region.

Take presentation for $\pi_1(S)$: generators $G_1, H_1, \ldots, G_k, H_k, C_1, \ldots, C_n$ relator $[G_1, H_1] \cdots [G_k, H_k] C_1 \cdots C_n$.

A representation into $PSL_2\mathbb{R}$ is equivalent to choice of $g_i, h_i, c_i \in PSL_2\mathbb{R}$ with

$$[g_1,h_1]\cdots[g_k,h_k]c_1\cdots c_n=1.$$

For closed surfaces, this relator is well-defined in $\widetilde{PSL_2\mathbb{R}}$. For surfaces with boundary, we may take lifts \tilde{c}_i with small twist.

Representations of surface groups: the Milnor-Wood inequality

We have

$$\left[\tilde{g}_1, \tilde{h}_1\right] \cdots \left[\tilde{g}_k, \tilde{h}_k\right] \tilde{c}_1 \cdots \tilde{c}_n = \mathbf{z}^m$$

for some m. Since "twist" is approximately additive m is bounded:

$$\chi(S) \le m \le -\chi(S).$$

For a closed surface, m depends only on ρ and gives the Euler class of ρ . $\mathcal{E}(\rho)[S] = m$.

For a surface with boundary we may define a *relative Euler class* if we require ρ to take boundary curves to non-elliptics.

If ρ is the holonomy of a (non-singular) hyperbolic structure then $\mathcal{E}(\rho)[S] = \pm \chi(S)$.

For a closed surface, every step towards 0 requires an extra 2π worth of cone angle.

Punctured torus theorem:

Let S be a punctured torus. A representation ρ is the holonomy of a hyperbolic cone-manifold structure with at most one corner point and no interior cone points if and only if ρ is not virtually abelian.

Genus 2 surface theorem:

Let S be a genus 2 closed surface. Let ρ be a representation with

- (i) $\mathcal{E}(\rho)[S] = \pm 1$ (i.e. one off extremal).
- (ii) for some separating curve C, $\rho(C)$ is not hyperbolic.

Then ρ is the holonomy of a hyperbolic conemanifold structure with one 4π -angle cone point.

"Almost every" theorem:

Let S be a closed orientable surface, $\chi(S) < 0$. Almost every representation $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$ such that

- (i) $\mathcal{E}(\rho)[S] = \pm(\chi(S) + 1)$ (i.e. "one off maximal"), and
- (ii) ρ sends some non-separating simple closed curve to an elliptic,

is the holonomy of a hyperbolic cone-manifold structure on S with a single cone point with cone angle 4π .

The relevant measure

Goldman (1984) constructed a measure on the character variety X(S) of representations ρ : $\pi_1(S) \longrightarrow PSL_2\mathbb{R}$. ("Representations up to conjugacy.")

The tangent space of X(S) at $[\rho_0]$ is

 $H^1(\pi_1(S); \mathfrak{sl}_2\mathbb{R}_{\mathrm{Ad}\rho_0})$

 $(\mathfrak{sl}_2\mathbb{R} \text{ as a } \pi_1(S)\text{-module via } \rho_0 \text{ and the adjoint representation}).$

The cup product and the Killing form allow us to define a pairing

 $\omega_{\rho_0}: H^1(\pi_1(S); \mathfrak{sl}_2\mathbb{R}) \times H^1(\pi_1(S); \mathfrak{sl}_2\mathbb{R}) \longrightarrow \mathbb{R}$

which gives a closed non-degenerate 2-form ω on X(S) (singular at abelian representations), i.e. a symplectic structure.

This defines a measure on X(S) by integration.

Questions:

The hypothesis of an elliptic s.c.c. is ungainly.

Question: For a general closed surface with $\chi(S) < 0$, is almost every representation with Euler class $\pm(\chi(S) + 1)$ a holonomy representation?

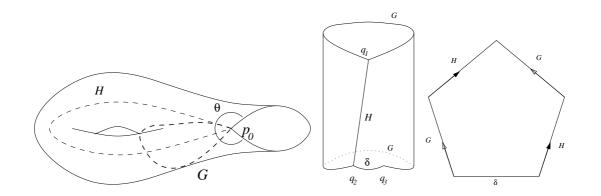
Can the "almost" be dropped?

Question: Is *every* representation of a general closed surface, $\chi(S) < 0$, with Euler class $\pm(\chi(S) + 1)$ a holonomy representation?

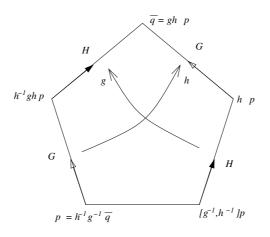
For two-off-extremal Euler class representations, we know not all are holonomy representations.

Question: For a given integer $m \neq 0$, $|m| \leq -\chi(S) - 1$, and representations with $\mathcal{E}(\rho)[S] = m$, are holonomy representations dense/conull?

Ideas in proof of punctured torus theorem Construct a pentagonal fundamental domain.



For $g, h \in PSL_2\mathbb{R}$ and $p \in \mathbb{H}^2$, we have a pentagon generated by g, h at $p, \mathcal{P}(g, h, p)$.



We have a holonomy representation iff we can find a basis G, H and a point $p \in \mathbb{H}^2$ giving a nice pentagon (non-degenerate bounding an immersed disc).



Algebra of punctured torus representations

Fricke, Klein 1897: For irreducible ρ , the triple (Tr g, Tr h, Tr gh) determines ρ up to conjugacy.

Thus the character variety $\Omega \subset \mathbb{R}^3$.

Nielsen 1918: An automorphism of $\langle G, H \rangle$ takes [G, H] to a conjugate of itself or its inverse.

If
$$(\text{Tr} g, \text{Tr} h, \text{Tr} gh) = (x, y, z)$$
 then
 $\text{Tr}[g, h] = x^2 + y^2 + z^2 - xyz - 2 = \kappa(x, y, z).$

Consider action of $\operatorname{Out} \pi_1(S) \cong GL_2\mathbb{Z}$ on Ω , which preserves each $\kappa^{-1}(t)$.

Two characters are equivalent if they are related by the following moves:

$$(x, y, z) \mapsto \begin{cases} \text{permutations of coords} \\ (x, y, xy - z) \text{ (``Markoff'')} \\ (-x, -y, z) \end{cases}$$

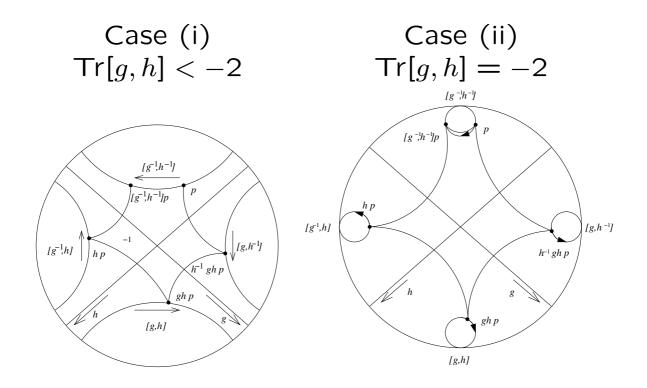
16

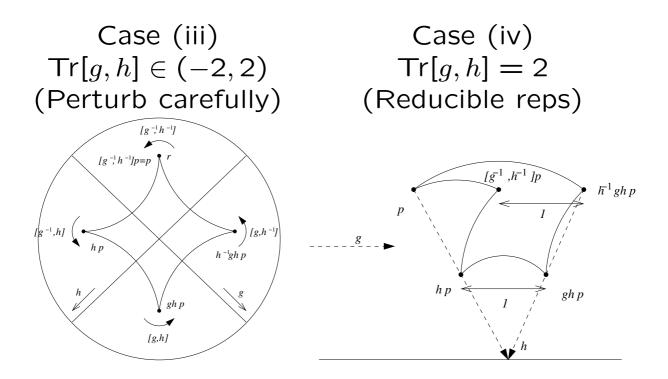
Proof by picture.

Key lemma: for $g, h \in PSL_2\mathbb{R}$.

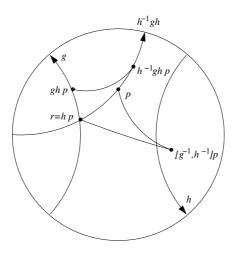
 $Tr[g,h] < 2 \Leftrightarrow \{g,h \text{ hyperbolic and axes cross}\}$

Take cases according to value of Tr[g,h].





Case (v): algorithm to change basis until character $(x, y, z) \in (2, \infty)^3$. Deduce arrangements of axes using results of Gilman–Maskit. Then construct.



18

Ergodicity

Recall Aut $\pi_1(S)$ acts on Ω , describing how the character changes when we change basis of $\pi_1(S)$.

Goldman (1984) showed that there is a measure on Ω (in fact, a symplectic structure on each level set $\kappa^{-1}(t)$) which is invariant under the action of $\pi_1(S)$. In certain regions of Ω (occurring in the present case) the action is ergodic.

Recall *ergodic* means that the only invariant sets under the action are null or conull.

Now by the mixing properties of ergodicity, by changing basis we can move from almost any such ρ to arbitrarily close to a specific ρ^* , which has the desired properties.