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1 Preface

The story of laminations is quite amazing. It throws around a whole lot of
interesting ideas from geometry, topology, and analysis.

I read Casson and Bleiler’s book “Automorphisms of Surfaces after Nielsen
and Thurston”. I liked it. All the story is there in their theorems. But stories
can also be told directly. That’s the idea here.

2 Prerequisites

I’m assuming you know about basic topology. I assume you know the classifica-
tion of surfaces. And I’m assuming you’re familiar with the basics of hyperbolic
geometry: for instance, the properties of the hyperbolic plane; the types of
hyperbolic isometries; and so on.

3 Introduction

We are dealing with laminations on surfaces. So what is a lamination? You
might have heard something like:

A laminate is a material constructed by uniting two or more
layers of material together. The process of creating a laminate is
lamination, which usually refers to sandwiching something between
layers of plastic and sealing them with heat and/or pressure.1

Well, forget everything you thought you knew about this kind of lamination!
This is completely different. Actually, if you have an interest in composite ma-
terials, you may want to remember this more well-known version of lamination,
but be aware that it’s entirely unrelated.

No, a lamination on a surface is something completely different.
1From the Wikipedia entry on “Laminate”, http://en.wikipedia.org/wiki/Laminate.
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3.1 So what is the definition, then?

Before we give the definition, however, let’s be clear what page we’re on. Our
surface is not just any surface. First, it’s a closed surface, that is, it’s compact
and has no boundary. No punctures, no cusps, not infinite genus, nothing like
that. Second, it’s an oriented surface. No mobius strips, no crosscaps, no klein
bottles or anything like that. And third, it’s a geometric surface, in fact we
require it to have a very particular geometry, hyperbolic geometry. This means
it has a Riemannian metric of constant curvature −1, and implies that the
surface has negative Euler characteristic, hence has genus at least 2.

Thus, the topology of the surface we’re talking about is completely specified
by the genus, which can be any positive integer 2 or greater. (On a particular
surface, however, there are many possible hyperbolic metrics — in fact, a (6g−
6)-dimensional space of them.)

Now, a lamination will just be a bunch of geodesics. First, these will be
complete, in that they don’t stop. They can be closed loops of finite length; or
if they don’t close up, they will be of infinite length. No endpoints! Second, no
intersections will be allowed. So the geodesics must be simple, that is, have no
self-intersections. And they must be disjoint : they can’t intersect each other.
The only other requirement — which really is the one that induces all the
structure — is that together this bunch of geodesics forms a closed set. Every
limit point of the set is in the set.

That’s the definition.

Definition 3.1 Let S be a closed oriented hyperbolic surface. A lamination on
S is a closed subset L of S which is a union of disjoint complete simple geodesics.

3.2 Some examples

There are some easy examples of laminations. For instance, there is the empty
lamination. A single simple closed geodesic forms a closed set, hence is a lami-
nation. A finite set of disjoint simple closed geodesics will be closed, and hence
taken together form a lamination. A bit more tricky is an example where we
take a non-closed simple geodesic which spirals towards a simple closed geodesic.
The spiralling geodesic does not form a lamination, because it’s not a closed set
— its limit set includes the simple closed geodesic it’s spiralling towards. But
if we take the spiralling geodesic, and the simple closed geodesic it’s spiralling
towards, together, then we have a lamination.

Can you think of any other examples?
Well, it turns out that the types of phenomena I just mentioned — simple

closed curves, and non-closed curves which spiral towards closed curves — are
actually quite unusual. Laminations may have properties such as: no closed
geodesics; every geodesic is dense; no isolated geodesics. This is something we
haven’t defined, but it probably has the definition you think it does.

These generic examples are difficult to draw a picture of, unfortunately. But
there’s another way to think about them, which can be quite useful. This way
relies on the fact that the set of all laminations on S is closed. What does
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“closed” mean here? What’s the topology on this space? Where does it nat-
urally lie? We will answer these questions shortly. But this fact means that
examples of laminations can be given as limits of laminations we can draw. For
instance, consider a sequence of laminations Ln, each consisting of a single sim-
ple closed geodesic, but where these geodesics get more and more complicated,
and as a closed set “approaches” some subset L∞ of S. Once we define what
all this means, our fact means that L∞ will be a lamination; and that may not
have been an obvious thing to see. And since it’s a limit of increasingly com-
plicated laminations, L∞ may have more exotic properties than its relatively
uncomplicated progenitors.

3.3 A quibble, and unique decomposition

But first: there’s a question with the definition. It might sound like a quibble,
but it’s important and exposes something interesting about hyperbolic geometry.

We’d like to say that a lamination L consists of geodesics γi, where i is in
some indexing set, possibly infinite, possibly uncountable. We’d like to say that
the geodesics γi are the leaves of L. Note the use of the definite article “the”.

But given the lamination L, there might be different ways to decompose this
closed set into geodesics. If that were the case, we would have to be careful
about the different decompositions of L.

If you think about Euclidean surfaces, you’ll see that this can actually hap-
pen. For instance, the whole of the Euclidean plane (i.e. L = S = R2) can be
decomposed as a disjoint union of vertical geodesics, or as a disjoint union of
horizontal geodesics, in fact lines with any single given slope. The same is true
on the standard Euclidean torus L = S = R2/Z2: it can be decomposed as a
disjoint union of geodesics of any given slope.

Thankfully, it turns out that we don’t have to worry.

Proposition 3.2 Let S be a closed oriented hyperbolic surface and let L be a
lamination on S. Then L can be decomposed as a union of disjoint complete
simple geodesics in one and only one way.

This proposition tells us something about the nature of hyperbolic geometry.
In some sense, you can’t have geodesics too close together. If you do, the
negative curvature doesn’t allow them to do so within a compact surface.

The same principle seems to be at work in the following simple picture. If
you take a small open ball in the hyperbolic plane, you can try to fill it up with
geodesics. It’s possible to do so, in fact in many different ways. Think of one
way. But now look at where those geodesics go after they leave the ball and
continue through the hyperbolic plane. They spread out like crazy through at
least some regions — they will fill up a region of infinite area. That’s going
to be a problem on a compact surface. Well, maybe you might think that it’s
okay, because you’re going to quotient the hyperbolic plane by some group of
isometries to get the surface, and maybe it will all work out. But it won’t, and
you might like to ponder why. We’ll get to the proof soon enough.

In any case, pending the proof of proposition 3.2, we will make a
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Definition 3.3 The geodesics γi in a lamination L are called the leaves of L.
At each point x ∈ L, we write γx for the leaf of L passing through x.

4 What do laminations look like?

Since it’s hard to draw pictures of laminations, we can calibrate our intuition
by deriving some properties about them. These properties have some pictorial
value, which we can bear in mind for later reference.

4.1 Laminations are not jerky...

Laminations don’t jump around too much. By which I mean, the geodesics
involved can’t change direction too sharply. That is, if you go from one point
x in L to another which is close by — call it y — then the directions of the
geodesics γx and γy don’t change too much. We can state this as a proposition,
and it’s so simple that we might even prove it. Actually, it’s so simple that you
can prove it for yourself!

Proposition 4.1 Let S be a closed oriented hyperbolic surface. Let L is a lam-
ination which is decomposed as a union of disjoint complete simple geodesics.
Let γx denote the geodesic passing through x. The direction of γx varies contin-
uously with x.

(Why did I not just say that γx is the leaf of L through x? Because I’m
proving something, and I haven’t proved anything about unique decomposition
into geodesics yet! Hence the slightly more complicated phrasing. This fact
about direction varying continuously is true for any decomposition of a given
lamination L.)

We can make this rigorously precise, if we like, though the intuitive picture
does not depend on it. At each point x ∈ S, the set of directions from S is a
real projective line RP 1, which is homeomorphic to a circle. If you put together
these projective lines at each point, we have the projectivized tangent bundle
of S, which we write PT (S). At each x ∈ S the fibre PT (S)x is a copy of RP 1.

This bundle clearly restricts to L ⊂ S, and we call the restricted bundle
PT (S)|L. (It’s different from PT (L)!) There is still an RP 1 fibre above each
point of L. Let π : PT (S)|L → L be the projection associated with the bundle.
The function assigning to each point x of L the direction of γx is a section of
this bundle, that is a map s : L −→ PT (S)|L which takes each x ∈ L to a point
above it, s(x) ∈ (PT (S)|L)x; equivalently π ◦ s = 1L.

Proposition 4.1 says that the section s is continuous.
Did that general nonsense help? Probably not. The picture is simple to

draw in any case.
Locally our surface is isometric to the hyperbolic plane, so we can just draw

pictures there. If the direction of γx doesn’t vary continuously with x, then
you can find two points which are close but where their directions are not close.
Draw the geodesics in these directions. Then they meet, so the geodesics are
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not disjoint, neither in the hyperbolic plane or in the quotient surface S. If you
want to put in some epsilons and some hyperbolic trigonometry to completely
convince yourself, go right ahead.

4.2 ... but not very smooth, either.

On the other hand, laminations do jump around a lot. They have lots of holes
in them. As we argued rather unconvincingly earlier, a lamination can’t fill up
much of a surface. In fact it can’t even fill up an arbitrarily small ball in the
surface. Proving this fact, we will have shown that geodesics are “not too close
together”, in some sense. We will then be able to prove proposition 3.2, the
uniqueness of decomposition into geodesics.

But we will start with a simpler proposition and build up to a climax: L can’t
be the whole manifold. This is an extremely weak result, in the light of what
we’re about to prove, but still an interesting application of the Poincaré-Hopf
index theorem.

Proposition 4.2 Let S be a closed oriented hyperbolic surface and L a lami-
nation on S. Then L is a proper subset of S, i.e. L 6= S.

(Note that hyperbolic is essential here! We have already seen examples
of laminations of the Euclidean plane or Euclidean torus which fill the whole
manifold.)

Proof Take a decomposition of L into geodesics (we still don’t know anything
about uniqueness) and for x ∈ L let γx be the geodesic through x. If L = S
then we consider the direction of γx at x. From above, proposition 4.1, this
direction varies continuously. These directions thus give a line field on S. If
you like, you can obtain from this a nowhere vanishing vector field on S. But
in any case, this is prohibited by the Poincaré-Hopf index theorem on a surface
of negative Euler characteristic. The indices of singularities must sum to the
Euler characteristic, which is nonzero! ¥

And now for something stronger — a lot stronger — which piggy-backs on
top of this rather weak proposition.

Proposition 4.3 Let S be a closed oriented hyperbolic surface and L a lami-
nation on it. Then L is nowhere dense in S.

Proof Take a decomposition of L into geodesics. Suppose to the contrary that
there’s an open ball U in L. Take x0 ∈ U and take an arc α transverse to the
geodesic γx0 through x0. Since L contains the neighbourhood U of x0, if α is
sufficiently small then α ⊂ U . By proposition 4.1 the direction of the geodesics
γx varies continuously, by replacing α with a smaller arc if necessary we can
assume α is transverse to the lamination L at every point of α.

Now we have α ⊂ L which is transverse to L. This spells doom for L.
Identify the universal cover S̃ with H2, and take a lift α̃ ⊂ H2. Define a function
Φ : α × R −→ H2 which takes (y, t) to the point on γy, at (signed) distance t
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from α. Want to worry about the technicalities of defining this properly in the
universal cover? Then go right ahead; it works fine. We see that Φ(α× R) is a
huge region of S̃ ∼= H2 bounded by two geodesics — namely, the geodesics in L
through the endpoints of α. These must enclose a region of infinite area. This
massive region of S̃ projects to S and all lies in L. You can fit arbitrarily large
balls in this region, including ones larger than the diameter of S; such a large
ball will project onto the whole of S. So L = S; but this is a fatal blow because
it contradicts the previous proposition. ¥

This proves that geodesics really aren’t very close together.

4.3 And hence they have unique decomposition.

What really mattered in the previous proof was the arc α ⊂ L transverse to
the decomposition of L into geodesics. This allowed us to take the transverse
geodesics — and this smooth family of disjoint geodesics had to fill up way too
much of the hyperbolic plane, hence way too much (all) of S.

But unique decomposition follows is proved in exactly the same way.
For suppose we can decompose L into a union of disjoint complete simple

geodesics two different ways. Take a point x0 where the two decompositions
have different geodesics through x0. Call the first γx0 ; call the second α. By
shortening α sufficiently, we obtain an arc α ⊂ L which is transverse to the first
decomposition of L. This spells doom for L in the same way that it did four
paragraphs ago. The same proof applies, word for word.

Now we will use the phrase “the leaves of L” with a clear conscience. Being
careful with it was getting a little annoying!

5 Closed in the set of closed sets

We’ll now return to the rather exciting prospect mentioned earlier when dis-
cussing examples of laminations. That prospect is that we can define really
complicated laminations without being able to draw them: we define them as
the limit of simpler laminations. To do this properly, however, requires the set
of laminations to be closed.

We will now answer the questions raised in this previous discussion.
As always, S is a closed oriented hyperbolic surface. Let L be the set of all

laminations on S.

5.1 Where does L naturally lie?

Every lamination is a closed subset of S by definition. Hence L is a subset of
the set of all closed subsets of S, which we will denote P(S).

Turns out P(S) has a nice topology. In fact, if S has a metric, then so does
P(S). This metric is sometimes called Hausdorff distance. Given two closed
sets A,B ⊆ S, we define their Hausdorff distance d(A,B) by

d(A,B) ≤ ε if and only if A ⊆ Nε(B) and B ⊆ Nε(A),
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or equivalently, as

d(A,B) = inf {ε ≥ 0 : A ⊆ Nε(B) and B ⊆ Nε(A)} .

Here Nε(A) denotes an open ε-neighbourhood of A.
So the distance between closed sets A,B is essentially the least amount

required to expand them so that either one engulfs the other.
Clearly there’s nothing special about any hyperbolic or geometric properties

of S here. In fact we can define Hausdorff distance on P(X) for any metric
space X and get a metric. If X — like S — is compact, then any two metrics
on X are equivalent; hence the topology on P(X) doesn’t depend on the metric.
This is left as an exercise for the reader; it is standard fare in a course on metric
spaces.

So P(S) is a well-defined metric space, and while the metric depends on
the metric on S, the topology does not. The set P(S) has one more important
property: it is compact. (In fact, P(X) is compact for any compact topological
space X.) This is also a standard fact in metric spaces and left to the reader.
But it is important. If you take any sequence of closed subsets of S, they contain
a convergent subsequence, in the Hausdorff metric. And the intuitive picture
of Hausdorff convergence is one where the pictures of sets look more and more
similar.

5.2 L is closed, the world rejoices.

Every lamination is a closed subset of S, so L ⊂ P(S). (Clearly, a strict
subset, since every lamination is nowhere dense!) We endow it with the subspace
topology.

Now all our talk previously of limits of laminations requires that L be closed.
That is, we want L to be a closed subset of P(S). If so, then as a closed subset of
a compact space, it will be compact itself. Any Hausdorff-convergent sequence
of laminations will converge not just to any old closed set, but to a lamination.
And, any sequence of laminations at all will have a subsequence converging to
a lamination.

This satisfies our aesthetic senses, and also means that we can define exam-
ples in the way discussed earlier.

Proposition 5.1 Let S be a closed oriented hyperbolic surface and let L be the
set of all laminations on S. Then L with Hausdorff distance is closed in P(S);
so L is compact.

The idea of the proof is as follows. Take a sequence of laminations Ln and
suppose that Ln converges to a closed set L ∈ P(S). We must show L is actually
a lamination. Take x ∈ L, and xn ∈ Ln converging to x, with xn lying on the
leaf γn of Ln. Now we want to show that the geodesics γn converge (locally,
Hausdorff-wise) to a geodesic γ through x. This is not so easy to do directly.

What is easier to do, although more technical, is to take the projectivized
tangent bundle (alas!) PT (S), and for each lamination Ln take a lift L̃n in
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PT (S), which is the image of a section of PT (S)|Ln . We consider the L̃n as
closed subsets of PT (S), i.e. in P(PT (S)). Now P(PT (S)) is compact just like
P(S) is. To make this proof rigorous, you have to figure out how this works
and that, whether we consider laminations in P(S) or their lifts in P(PT (S)),
we get the same topology on L. With this fearsome technological structure in
place we return to the original argument.

The geodesics γn, or rather their lifts γ̃n ⊂ L̃n, converge to a geodesic γ̃ by
definition: the points xn on them converge to x, and the directions converge
because that’s what convergence in PT (S) means.

6 Isolated and boundary leaves

We now turn to two particular types of leaves in a lamination, which are useful
and important: isolated leaves, and boundary leaves.

6.1 Derivation: Destroying isolated leaves

Sounds like a rather ruthless strategy for victory in a battle with a tree. But it’s
a very useful thing to do with laminations and has some amazing properties.

As we have seen, laminations can’t have leaves which are so close together
that they fill up a ball in the surface. But they can have leaves which are
relatively close together, as in the spiralling-into-a-closed-geodesic example, for
instance. They can also have leaves which are far apart, for instance, if the
lamination is merely a finite collection of simple closed geodesics. The bits
that are relatively close together are the interesting part, because they can be
very very subtle and weird and Cantor-like. We therefore want an operation to
remove everything else. That’s what derivation is: it removes isolated leaves.

What’s an isolated leaf? Think about what it looks like, write the definition
you think it has and you’re probably correct. In any case I’ll write a definition
too.

Definition 6.1 Let S be a closed oriented hyperbolic surface and L be a lami-
nation on S. A leaf γ of S is isolated if every point x of γ has a neighbourhood
Ux in S such that L ∩ Ux only contains one arc, namely that of γ. Equiva-
lently, every x ∈ γ has a neighbourhood Ux such that the pair (U,U ∩ L) is
homeomorphic to (disk, diameter).

Note that in this definition, the neighbourhood Ux is allowed to have different
sizes for different points on γ. There is not a uniform bound so that you can
take a tubular neighbourhood of γ with that width. If the leaf γ is closed, there
will be such a tubular neighbourhood. But if γ is not closed, i.e. γ is infinitely
long, there need not be any such tubular neighbourhood.

So, in the example of a finite union of disjoint simple closed geodesics, all
the leaves are isolated. In the example of a closed leaf and a non-closed leaf
spiralling towards it, the closed leaf is not isolated. But the spiralling leaf is —
and the sizes of the neighbourhoods in the above definition approach zero as we
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approach the closed leaf. Maybe this isn’t quite a consequence we first had in
mind, but we will go with it.

A derived lamination is obtained, as the heading suggests, by destroying the
closed leaves.

Definition 6.2 Let S be a closed oriented hyperbolic surface and L a lamination
on S. The derived lamination L′ of L consists of the non-isolated leaves of L.

Is the derived lamination actually a lamination? Thankfully it is, else the
language would have been most unfortunate. We just need to see why it’s closed.
Points on non-isolated leaves can’t converge to isolated leaves. (Of course not,
because they’re isolated! This definition of “isolated” is good: it adds rhetorical
force to arguments that rely not on rigour but on persuasion...) So a sequence
in L′, if it converges, can only converge to a point in L′; hence L′ is closed.

To give you a taste of what this operation can do, here are some theorems
about derivation.

As always, let S be a closed oriented hyperbolic surface, and L a lamination
on S.

Theorem 6.3 L′′′ = L′′.

That is, derivation has a sort of stability property: once you do it enough
times, you get to a stable sort of lamination to which derivation does nothing.
A lamination of this type has a special name.

Definition 6.4 A lamination is said to be perfect if L′ = L.

So the theorem above says that L′′ is always perfect. In fact, laminations
can become perfect even earlier, if there are no closed leaves.

Theorem 6.5 If L has no closed leaves then L′′ = L′.

In this sense, and as we will see later, closed leaves are actually something
of an annoyance to a lamination. We originally may like closed leaves, because
they are the easiest ones to see! But in fact they just make life difficult. We
will come to prefer laminations with no closed leaves. When we come to discuss
the correspondence between laminations and the mapping class group, a closed
leaf will indicate that a surface automorphism is reducible, and reducible is no
fun for anybody. Pseudo-anosov is fun, and that means no closed leaves.

6.2 Boundary leaves and why they are everywhere

In addition to isolated leaves, there are boundary leaves. These are called bound-
ary for a reason!

Soon, we will be considering what happens when we cut up the surface along
the lamination. We will get a disconnected bunch of smaller surfaces. Leaves
that are “close” to others. Now what is the boundary of these smaller surfaces?
You might say, they are the leaves of the lamination! Well, each boundary
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component will indeed be a leaf of the lamination. But not every leaf will be a
boundary component. Can you see why?

If you can’t see why immediately, consider that any leaf which forms a bound-
ary component must have a certain property — it must be “isolated on one side”.
If we have a leaf γ which is not isolated on either side, then any chunk of surface
near it has other leaves closer to it than γ. So γ will not be a boundary compo-
nent. In fact you should be able to see that this is condition of being isolated on
one side is equivalent to being a boundary component of the dissected surface.
Just like the definition of “isolated”, you can probably write a definition of this
idea of “boundary” or “isolated on one side” for yourself. But I’ll do it as well,
again, for the sake of completeness.

Definition 6.6 Let S be a complete oriented hyperbolic surface and L a lami-
nation on S. A leaf γ of L is a boundary leaf if at each point of x of γ there
is a half-disk neighbourhood Vx of x, with diameter lying on γ, such that L∩Vx

contains only the diameter of Vx.
(Equivalently, for all x ∈ γ there exists a disk neighbourhood Ux such that

Ux ∩ L contains at least one component of Ux − σ, where σ is the arc of γ in
Ux containing x.)

Now, if you cut the surface S along the lamination L, you would think that
the regions you obtain should consist of most of the original surface! If the
leaves of the lamination were densely packed somewhere, so they covered an
entire ball in the surface, then that whole part of the surface would be missing
from the dissected surface. But we know that our lamination L is nowhere
dense; so that can’t happen. Hence we expect that the remaining leaves can’t
count for much. The boundary leaves account for most of what’s going on — we
lose non-boundary leaves after decomposing the surface, but they don’t count
for much, in some sense.

In fact what we are trying to get at here is that the boundary leaves are dense
in the lamination. Everything is close to a boundary leaf; boundary leaves are
everywhere!

Lemma 6.7 Let S be a compact oriented closed surface and L a lamination on
S. The union of the boundary leaves of L is dense in L.

Proof If you are a leaf of L, but not a boundary leaf, you can’t bound anything.
So there have to be other things close by on both side — you are not isolated
on either side. Hence there are leaves arbitrarily close on both sides. What
we want to show is that there are boundary leaves arbitrarily close; this is not
difficult.

So, take a point x ∈ L on a leaf γ; we must show there is a point of a
boundary leaf arbitrarily close to L. If γ is a boundary leaf we are done. If γ is
not a boundary leaf, then as we just mentioned, there are leaves arbitrarily close
to γ. (In fact on either side, but we don’t care.) Now take a point y ∈ S − L
close to x; this is possible since L is nowhere dense. Take an arc connecting y
to x; proceeding from y, this arc hits a first point of L, say z. Now z lies on a
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leaf which is not γ, which is a boundary leaf (bounding the region containing
y), and which is arbitrarily close to x. ¥

7 Principal regions and What They Look Like

“Principal region” is the name given to the components of the dissected sur-
face we have been discussion — the ones whose boundary components are the
boundary leaves of L.

Definition 7.1 Let S be a closed oriented hyperbolic surface and L a lamination
on S. A principal region for L is a component of S − L.

Now that we have them, we may ask what these principal regions look like!
Let U be a principal region for L. Clearly U is also an oriented hyperbolic
surface. But U may not be compact. Its boundary components are the bound-
ary leaves of L. A closed boundary leaf will correspond to a closed geodesic
boundary. A non-closed, hence infinite length, boundary leaf will correspond to
a non-compact boundary component; the ends of this leaf will be ends of the
principal region.

A hyperbolic surface also has a lift to S̃ ∼= H2. So a good way to understand
principal regions will be to consider them and how they sit in the hyperbolic
plane, relative to the rest of the surface. This is good, because if we try to draw
them in the surface itself they may look hideously complicated, with boundary
leaves that are a complete mess. In the hyperbolic plane, however, geodesics look
straight (or at least, circular in the unit disk model), and hence the principal
regions can’t look too bad.

To understand what principal regions look like, we will make great use of
their lifts to H2.

7.1 They are very finite...

It might seem at first that our lamination could have extremely many extremely
complicated leaves, many of them boundary; and hence, there could be finitely
many principal regions. Thankfully, this is not the case. The reason: the
Gauss–Bonnet theorem, which has the oft-forgotten consequence that the area
of a hyperbolic surface (with geodesic boundary, even if it has punctures) is
tightly constrained — in fact, an integer multiple of π

Lemma 7.2 Let S be a closed oriented hyperbolic surface and L a lamination
on S. Then L has only finitely many principal regions, each with only finitely
many boundary leaves. (Hence only finitely many boundary leaves.)

The above observation shows that there are finitely many principal regions.
And if a principal region has infinitely many boundary leaves, its Euler charac-
teristic is infinite, implying infinite area by Gauss–Bonnet, a contradiction.
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7.2 ... can be lifted to the hyperbolic plane ...

Let’s now take a look at a lift of a principal region P of a lamination in H2.
It’s going to bound be a region of the hyperbolic plane bounded by geodesics
(possibly infinitely many, since its lift may consist of infintiely many copies).
The geodesics bounding the plane have to be disjoint, else they would project
to intersecting leaves of L in S. So topologically it’s a disk, and contractible; in
fact, hyperbolically convex.

Lemma 7.3 Let S be a closed oriented surface and L a lamination on S. Let
P be a principal region for L and P̃ a component of the preimage of P in H2.
Then P̃ is a contractible hyperbolic surface with geodesic boundary.

We can also see that a principal region can’t bound a disk: a geodesic in a
hyperbolic surface can’t bound a disk.

Lemma 7.4 If P is a principal region for L, then π1(P ) −→ π1(S) is injective.

7.3 ... look nice when there aren’t any closed leaves...

Now we come to the first really interesting result about the structure of principal
regions. It turns out that when there are no closed leaves, they look particularly
simple.

What will the regions look like? If there are no closed leaves, the princi-
pal regions will be surfaces having boundary components homeomorphic to R.
(Only boundary leaves which were closed leaves could give boundary compo-
nents homeomorphic to S1).

One possibility is that a principal region P is a polygon with vertices at
infinity. This possibility gives P no interesting topology. Now P can have
topology, however; but without any S1 boundary components, the geometry at
the boundary must be a little subtle. If you have some familiarity with the
geometry of hyperbolic surfaces, you will know that a non-compact hyperbolic
surface can have a compact core; that is, a connected compact subsurface (or,
in a degenerate case, a single geodesic) with boundary consisting of geodesics,
and which contains all the interesting topology of the surface; and such that
it separates the non-compact ends of the surface, which “flare” out to infinity.
In our case, the compact core will separate ends which have one S1 boundary
component and finitely many R components, and have zero genus. Thus each
end looks like a “crown”: namely, an annulus with finitely many punctures on
one of its boundary components; the geometry near each puncture goes out to
infinity.

It turns out these are the only possibilities. If you know enough about the
geometry of hyperbolic surfaces, this may be obvious, once you consider that
we start with a surface of finite area. In any case we will say something about
why it’s true.

Lemma 7.5 Let S be a closed oriented hyperbolic surface, and let L be a lam-
ination on S without closed leaves. Let U be a principal region for L. Then U
is either:
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(i) isometric to a finite sided polygon with vertices at infinity; or

(ii) there exists a unique compact subset of U0 (either a subsurface, or a geo-
desic) such that U − U0 is isometric to a finite disjoint union of crowns.

To see why it’s true, we consider Ũ ⊂ H2. The boundary of this region
consists of R components. Take a boundary leaf β0; since the region has finite
area, there are adjacent boundary leaves adjacent to each end of β0. So we
obtain a sequence βn. This sequence may cycle around, in which case Ũ is a
finite sided polygon with vertices at infinity — and hence, so is U (it is the
universal cover of something, something orientable, but that something can’t
have an infinite fundamental group). Or it may not, in which case the βn in the
disk model get smaller and smaller (in the Euclidean metric!) and converge to
two limit points β−∞ and β∞. (Note although U can only have finitely many
boundary leaves, its universal cover can have infinitely many; and will, if π1(U)
is infinite.) Joining these we obtain a convex region W̃ ⊂ Ũ ; it is the convex
hull of the βn.

Now W̃ covers W , which will be a crown. Well clearly none of the bound-
ary leaves βn project to circles, since we have no closed leaves. But the deck
transformation taking βn 7→ βn+1 will project the axis joining β−∞ to β∞ to a
circle. So this gives a crown. Cutting all these out gives the compact core.

7.4 ... without any annoying closed leaves, are finite at
infinity...

One more property. We now see that our principal regions will lift to regions
of H2, with compact cores and crown sets and polygons tessellating the plane.
These are all bounded in H2 by geodesics with endpoints at infinity. We know
that there are only finitely many principal regions, each with only finitely many
boundary leaves; but in H2, a compact core can have infinitely many boundary
components in its universal cover, and a crown has infinitely many boundary
components in its universal cover. So it looks like things are much more infinite
in H2, perhaps as expected.

But not so infinite. Turns out each vertex at infinity is very finite! Again,
provided there are no closed leaves.

Lemma 7.6 Let S be a closed oriented hyperbolic surface and let L be a lam-
ination on S without closed leaves. Any point on the circle at infinity is the
endpoint of only finitely many leaves of L̃.

Why is this? Suppose there were infinitely many leaves meeting at the same
point at infinity x. Since there are only finitely many boundary leaves, by the
pigeon hole principle there’s a deck translation g fixing x. Now translating
boundary leaves ending at x under g, they converge to the axis of g. As a lami-
nation is closed, the axis of g is a leaf of L. But since g is a deck transformation,
this projects to a closed leaf of L, contradiction.
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It’s precisely the absence of closed leaves that makes this impossible. If
closed leaves are allowed, all manner of infinities in the degrees of these vertices
can and will arise. In fact, if you think about taking the universal cover of
any surface with some closed leaves in a lamination, you’ll see that there will
generally be infinite degree vertices at infinity; these arise whenever there is
spiralling in towards a closed leaf.

So, we see that the absence of closed leaves really does simplify matters,
perhaps to a bizarre extent, when we consider the picture in H2.

7.5 ... and sometimes even when there are closed (iso-
lated) leaves...

We now have a nice picture of the lift of a lamination to H2. There are principal
regions, which look rather nice when there are no closed leaves. If there are no
closed leaves, we either have finite sided ideal polygons, or compact cores and
crowns, both of which are quite simple phenomenon. In fact, this picture can
be useful even when there are no closed leaves: given a lamination L, take out
the (necessarily finitely many) closed leaves, look at the principal regions, and
put the closed leaves back in again. However it’s not that simple: our closed
leaf may be isolated; or it may be isolated only on one side, i.e. a non-isolated
boundary leaf; or it may be isolated on neither side, i.e. a non-boundary leaf.
Only when the closed leaf is isolated is the picture easy to see.

What does this amount to? Let us consider the picture in H2. If our closed
leaf is isolated, then inserting it into the picture simply subdivides some existing
principal regions. So this amounts to inserting a geodesic into the interior of
finite sided ideal polygons and compact-cores-with-crowns. But the closed leaves
can’t cross the non-closed leaves — a lamination consists of disjoint geodesics!
So each closed leaf either lies inside a finite sided ideal polygon, or lies inside a
compact-core-with-crowns.

If an isolated closed leaf lies inside a finite sided ideal polygon, it’s easy to see
it must just be a diagonal. Actually, as it turns out this picture can’t happen.
The reason why is the argument of the previous lemma. The deck translation g
corresponding to our closed leaf γ must carry some sides of the polygon closer
to γ, contradicting the fact that we have a principal region. (And, for that
matter, showing that γ is not isolated. Because diagonals in ideal polygons are
isolated.)

If an isolated closed leaf lies in the interior of a compact-core-with-crowns,
it must lie inside the compact core. If an endpoint in H2 lifts to a crown, it
can’t possibly project to a closed leaf, since it has infinite distance going out to
a point of a crown. So its endpoints must lie in the compact core; and as the
core is convex, so must the entire leaf.

This case includes our simplest example: when L is a finite collection of
simple closed geodesics. Then we remove the closed geodesics, obtaining the
empty lamination; we take a principal region, which is the entire surface, for
which there are no crowns and the entire surface is the compact core; and
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then we re-insert the closed leaves, which certainly lie within the compact core!
Maybe not such an interesting example.

Things are more complicated when we have a non-isolated closed curve. The
problem is, once it is removed, we no longer have a lamination; the set is no
longer closed. So all our previous arguments for laminations without closed
leaves no longer apply.

7.6 ... and take up all the space...

We have already said that geodesics can’t be too close; that a lamination is
nowhere dense in the surface (proposition 4.3); and that boundary leaves are
dense in the lamination (lemma 6.7). It would seem, then, that they should
be small. But we have not said anything about the area of the lamination. It
should be measure zero, surely! Thankfully it is.

Lemma 7.7 Let S be a closed orientable hyperbolic surface and L a lamination
on S. The area of L is zero; the area of S − L is the full area of S.

This is a vector-field and Gauss–Bonnet bash. Construct some vector fields
on the principal regions, with some singularities, in a canonical way, and use
that the Euler characterisic.

7.7 ... while the rest is rather weird.

Now for perhaps the most confusing part of the picture of all. We’ve got an
excellent picture of principal regions, at least when there are no closed leaves.
We have principal regions all over H2. You might have got the impression that
they in fact tessellate H2. Sadly, if you have this impression, it’s not quite
correct. It will be correct only if every leaf is isolated. We actually have the
plane split into principal regions, with strange “twilight zones” in between of
non-boundary leaves — except that there is no zone as such. This sounds weird.
What does this mean?

Well, certainly if we have a boundary leaf which is not isolated, beyond it will
be non-boundary leaves. But leaves are nowhere dense, and moreover, boundary
leaves are dense in the lamination. So there’s no region of non-boundary leaves
or anything; in fact, there must be a boundary leaf, and hence a principal region,
arbitrarily close to any non-boundary leaf. On the other hand, if we have a non-
boundary leaf, there are leaves which come arbitrarily close to it; and then it is
not difficult to show that there are leaves which come arbitrarily close to any
point of the leaf (to be close at a particular point, it suffices to be very very
very close at another point!).

Reconciling these apparently-contradictory-but-not statements gives a pic-
ture of the non-boundary leaves. Well, not so contradictory at all, come to
think of it. The non-boundary leaves can’t just disappear from the picture in
H2 — and they can’t bound any principal regions! It follows that they have to
be doing something like this.
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8 Derivations and their properties

8.1 Stability, Perfection and Their Consequences

We now look a bit more closely at derivations. Turns out a derived lamination L′

has interesting stability properties. As we will see, the minimal sublaminations
of L′ are precisely its components. Let’s see what this amounts to.

Well, it implies some pretty strong and amazing stuff. Because L′′ is a
sublamination of L′, hence a union of minimal sublaminations — so L′′ just
consists of a subset of the components of L′. Some of the components of L′,
upon being derived, cease to exist; others of them persist — and since they
are minimal, their derivation must be themselves. So the components of L′

either disappear under derivation, or are perfect; and L′′ consists precisely of
the perfect components. It follows that L′′ is perfect and L′′′ = L′′. So once we
prove the above statement, we have proved theorem 6.3.

It also implies theorem 6.5: if L has no closed leaves then L′′ = L′. For when
we consider the components of L′, the ones that disappear are sublaminations
whose derivation is empty — they are sublaminations consisting entirely of
isolated leaves. Any lamination consisting entirely of isolated leaves actually
consists entirely of closed leaves; an infinite leaf will spiral towards something.
But if we rule out closed leaves, then none of these occur, so L′ is perfect.

There is another corollary as well:

Theorem 8.1 The following are equivalent:

(i) every leaf of L is dense in L;

(ii) L is connected and L′ = L.

If every leaf is dense, then the lamination is certainly connected, and there
are no isolated leaves, so L′ = L. On the other hand, if L is connected and
L′ = L, then L′ = L is a union of perfect components. Since it is connected, it
is one perfect component. So the closure of any leaf is that component, hence
the whole lamination.

8.2 How the proof goes.

Now, let’s see why it might be true that the minimal sublaminations of L′ are
precisely its components. A good example to bear in mind is a lamination
consisting of 3 leaves: a closed leaf, and two non-closed leaves spiralling towards
it from either side.

A component of a lamination is always a sublamination; but not necessarily
a minimal one. There may be extra leaves in there. In our example there is
only one component, and the whole lamination is certainly a sublamination, but
it’s not minimal. For instance, just take the closed leaf. On the other hand, if
you take a minimal sublamination, it is the closure of any leaf in it; but this
minimal sublamination may not be a component. In our example, the closed
leaf is a minimal sublamination, but certainly not a component.
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In our example, however, deriving removes both the spiralling leaves, so
we are left only with one leaf, and clearly the minimal sublaminations are the
components now.

Note what this means: upon taking L′, everything near closed leaves gets
removed — leaving closed leaves isolated. This makes sense — closed leaves
will now become isolated components of L′, and will be among the components
of L′ that disappear under further derivation. And in L′′, there are no closed
leaves, and no leaves spiralling towards closed leaves — which is good, for such
things are not perfect.

In fact, in our example there is a general phenomenon occurring: any leaf
close to a closed leaf is isolated.

Lemma 8.2 Let S be a closed oriented hyperbolic surface and let L be a lami-
nation on S. Let C be a closed leaf of L. Then any other leaf sufficiently close
to C is isolated. That is, there exists a neighbourhood N of C such that any leaf
other than C intersecting N is isolated; equivalently, L′ ∩N ⊆ C.

To see why, again we look to H2. The closed leaf C lifts to a line C̃ with
a deck transformation g translating along it. Think about what a leaf close
to C looks like. We might expect it to share an endpoint at infinity with C̃.
This is right. If it shares no endpoint at infinity, and is sufficiently close, then
translating it by g will see it intersecting its translate. This is bad, because
there is no self-intersection in leaves. So it does share an endpoint at infinity
with C̃. But we know that there are only finitely many leaves of L̃ intersecting
at a point at infinity, so C is isolated.

Now for the main theorem.

Theorem 8.3 Let S be a closed oriented hyperbolic surface and L a lamination
on S. If L1 is a sublamination of L′ then L1 is a union of components of L′.
Equivalently, the minimal sublaminations of L′ are precisely its components.

Proof The idea is simply to analyse what’s in L1 ⊂ L′ and where they lie in
the picture in H2. In particular, L1, being a subset of L′, contains no isolated
leaves of L: it contains only non-isolated leaves of L. Amongst these there are

(i) closed leaves; and

(ii) non-closed leaves — these we call L2.

Now L1 will consist of closed leaves, as well as L2. We have showed that anything
near a closed leaf is isolated, so the leaves in category (i) will be isolated in L′,
hence components of L′. We only need to show that the leaves in category (ii),
namely L2, also form a union of connected components of L′.

Now L2 is a lamination, being a sublamination of L′ where closed leaves in
L′ are isolated. The point is to show that if we take any other leaf in L′, it lies
far away from L2; for then L2 is a union of connected components of L′. The
way we do this is to consider the principal regions of L2; anything in L′ but not
L2, namely anything in L′ − L2, we will show lies in the compact cores of the
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principal regions of L2. Thus they are far from L2, which are all near boundary
leaves and the boundaries of the principal regions.

We consider the possibilities for a principal region U of L2. If Ũ is a finite-
sided ideal polygon, and γ is a leaf of L′−L2, then γ̃ is a diagonal, so is isolated.
In fact, it is also in L of course (L′ ⊂ L!), and must have been isolated there, a
contradiction since then it wouldn’t be in L′!

If Ũ consists of a compact core and crown regions, then γ̃ either lies in a
compact core or has an end going to an end of a crown region. The first case
is what we want. In the second case, the leaf is isolated (and was in L), a
contradiction again to being in L′. ¥

In fact we can do something which is maybe slightly stronger and definitely
much more convoluted! (This is the statement Casson and Bleiler prove, which
is perhaps not the most friendly approach from the point of view of understand-
ing.) We have shown that any sublamination of L′ consists of components of
L′, but in fact, any sublamination of L, when intersected with L′, consists of
components of L′.

Corollary 8.4 Let S be a closed oriented hyperbolic surface and L a lamination
on S. If L1 is a sublamination of L, then L1 ∩ L′ is a union of components of
L′.

For L1∩L′ is certainly a sublamination of L′: the leaves of L1 which intersect
L′ are certainly leaves of L′; and the intersection of two closed sets is closed.
The corollary now follows immediately.

9 Surface Automorphisms

The most amazing thing about surface automorphisms is their classification:
periodic, reducible, or pseudo-Anosov. In essence, reducible ones are annoying
because they really belong not on our surface, but on a decomposition of the
surface into smaller pieces. Periodic ones also just get in the way; it’s pretty
unusual to have a periodic automorphism. What’s amazing is that everything
else is pseudo-Anosov, which means having some very interesting dynamical
properties (defined in terms of measured foliations). It’s not clear at all why
“most” nontrivial automorphisms should have such an interesting dynamical
description.

These definitions are topological; they do not involve hyperbolic geometry,
or any other type of geometry for that matter. It is by introducing geometry
that we get so much interesting structure. The definitions are up to homotopy,
and we’ll be homotoping stuff around quite freely.

Definition 9.1 Let S be a closed orientable surface. Let h : S −→ S be an
automorphism of S. The automorphism h is called:

(i) periodic if there exists a positive integer n such that hn is homotopic to
the identity;
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(ii) reducible if h is homotopic to an automorphism which leaves invariant an
essential closed 1-submanifold of S, i.e. leaves invariant a finite collection
of essential closed curves.

(iii) pseudo-Anosov if there exist transverse singular foliations Fs,Fu (called
stable and unstable foliations) equipped with transverse measures µs, µu

such that for some λ > 1,

h(Fs, µs) = (Fs, λµs), h(Fu, µu) = (Fu, λ−1µu)

The definition of pseudo-Anosov means that the leaves of the stable foliation
attract, and the leaves of the unstable foliation repel.

The idea is that reducible automorphisms really belong on the surface ob-
tained by cutting along the invariant 1-submanifold. And periodic automor-
phisms cannot possibly have the pseudo-Anosov property.

The above-mentioned amazing fact is contained in the following theorem.

Theorem 9.2 Every non-periodic irreducible automorphism of a closed ori-
ented hyperbolic surface is isotopic to a pseudo-Anosov automorphism.

We’ll get to this eventually.

9.1 Telling them apart

We can tell something about reducibility or periodicity from looking at the
induced map of a surface automorphism on its homology. As always, let S be
a closed oriented surface — for now it’s just topological, not hyperbolic, not
geometric. Then the automorphism h : S −→ S induces h∗ : H1(S) −→ H1(S).
The first homology over Z is just a free abelian group (of rank 2g where g is
the genus of S). So h∗ can be written as a (2g × 2g) matrix A with integer
entries and which is invertible. We write χh(t) for the (degree 2g) characteristic
polynomial of this matrix.

Lemma 9.3 If h is periodic then all the zeroes of χh(t) are roots of unity.

This is clear; since hn
∗ = 1, we have An = 1; so the minimal polynomial of

A is a factor of tn − 1, hence has all zeroes being roots of unity; hence also the
characteristic polynomial.

Lemma 9.4 If h is reducible then either χh(t) has a root of unity as a zero, or
is reducible, or is a polynomial in tn for some positive integer n > 1.

This is just a little linear algebra, and requires different considerations de-
pending on how the invariant 1-submanifold separates the surface. If you can
get h∗(C) = C for some (homology class of a) closed curve C, you’ll get a root
of unity in the characteristic polynomial. But h∗ may permute the components
of the invariant 1-submanifold, and then we have to think about the matrix:
the characteristic polynomial then may be reducible; if it is not reducible, we
find it is of the form det(B − tnI) for some n > 1, and hence a polynomial in
tn.
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9.2 Surface automorphisms meet laminations: The invari-
ant lamination

So far we have only discussed surface automorphisms in the abstract. No men-
tion of what they have to do with laminations! The definition of pseudo-anosov
has to do with foliations, which may look a little like laminations, but not really;
they’re very different, in fact.

The connection is: an automorphism which is not periodic — (which we se-
cretly know will be reducible or pseudo-Anosov) — has an invariant lamination.

Theorem 9.5 Let S be a closed oriented hyperbolic surface and let h be a non-
periodic automorphism of S. Then there exists a lamination L on S such that
h(L) = L.

In saying that h(L) = L, we are employing the standard procedure of taking
geodesics to geodesics by a straightening process. (We are homotoping rather
blithely, then.) This is done by lifting h to the universal cover H2, where it acts
on H2 and extends continuously to the circle at infinity S1

∞. (I have not proved
this, but it’s a standard fact, and it’s proved in Casson and Bleiler.) Then
straightening out geodesics by noting where their endpoints map to at infinity.

The proof is a bit tricky. It uses a clever trick to obtain an infinite se-
quence of distinct geodesics; and then it uses the compactness of the space L of
laminations; and then some more!

Proof We first show that there exists a simple closed geodesic C such that for
all n ≥ 1, hn(C) 6= C. Suppose to the contrary that there is not; then for all
simple closed geodesics C, there is a sufficiently high power of h which fixes it.
Taking enough geodesics and taking a multiple of all the sufficiently high powers
— which is alright since h is not periodic — we fix so much of the surface that
h must in fact be periodic. This is a contradiction. So there is such a C.

Now we look at hn(C). This is a sequence of simple closed geodesics in S,
hence a sequence of laminations. But L, the space of laminations, is compact
— so this sequence has a convergent subsequence hni(C), which converges to a
lamination K.

Seems like we might be done. Well we would be, if h(K) = K. But sadly,
there is no reason why this should true. (We would have been fine, if our
sequence hn(C) were convergent — but we only have a subsequence.) We’re
going to try to get an invariant lamination out of this.

It is therefore natural to consider the laminations hn(K). If they were dis-
joint, we could just take their union, (and close it,) and then we would have an
invariant lamination. In fact, even if they were not disjoint, but contained some
overlaps of the same geodesics, this would be good enough: we still just take
union and closure. But they may not be disjoint! So we ask: how much might
they intersect? Now, transverse interections are what matter; degenerate in-
tersections of geodesics mean that both laminations contain the same geodesic,
which as we just noticed is no problem at all.

We therefore need to consider hr(K) ∩ hs(K). Well we can cancel some
h’s here so it is sufficient to consider K ∩ hr(K), and transverse intersections
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in it. This is a limit of hni(C) ∩ hni+r(C), which has the same number of
transverse intersections as C ∩ hr(C). When we take a limit, the number of
transverse intersections might change — but it can only decrease. For take a
small neighbourhood of each transverse intersection point in the limit; these also
contain transverse intersections of the converging laminations — and possibly
more of them.

Therefore, we let Nr be the number of transverse intersections of C ∩hr(C).
Then K∩hr(K) has ≤ Nr transverse intersections. In particular, this number is
finite, and consists of discrete points. So every leaf where a transverse isolation
occurs is isolated. It follows that K ′ and hr(K ′) have no transverse intersection
points; and hence, any hr(K ′) and hs(K ′) have no transverse intersections.

So we now carry out our strategy, take the union ∪∞hr(K ′) and its closure
∪∞(K ′). This is the lamination we want. ¥

9.3 What the invariant lamination means

We have looked at several features of laminations. Some of these correspond to
features of the automorphism.

As a first example, suppose that L has a closed leaf. Since h fixes L, it takes a
closed leaf to another closed leaf. There can be only finitely many closed leaves
(because they are disjoint simple closed geodesics), and hence after possibly
cycling around we have a finite collection of disjoint closed leaves invariant
under L; so L is reducible.

Lemma 9.6 Let S be a closed oriented hyperbolic surface and L a lamination
on S which is invariant under the automorphism h. If L has a closed leaf then
h is reducible. Equivalently, if h is irreducible then L has no closed leaves.

This is the real proof that closed leaves are annoying. Closed leaves are an-
noying because reducible automorphisms are annoying; and closed leaves imply
reducible automorphisms.

As another example, consider the principal regions. If there are no closed
leaves, then these come in two types: finite sided ideal polygons; and surfaces
with compact cores with crowns attached. If the lamination is fixed under an
automorphism h, however, then these regions must be carried to themselves. In
particular:

(i) boundary leaves map to boundary leaves

(ii) principal regions map to principal regions; and in particular

(iii) finite ideal polygon principal regions map to finite ideal polygon principal
regions, and

(iv) compact cores and crowns map to compact cores and crowns.

(v) In particular, boundaries of the compact cores map to boundaries of com-
pact cores.
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However, boundaries of compact cores are simple closed curves in our surface.
So they give us a 1-submanifold invariant under h.

Lemma 9.7 Let S be a closed oriented hyperbolic surface and L a lamination
on S. Suppose L is invariant under an automorphism h : S −→ S. If L has
no closed leaves, and there exists a principal region of L which has a compact
core, then h is reducible. Equivalently, (and better!), if h is irreducible then (as
we previously saw, there are no closed leaves and) each principal region of L is
a finite sided ideal polygon.

Now, this picture says even more. If we only have finite sided ideal polygons
for principal regions, then the lamination is connected. Just go from one prin-
cipal region to another along boundary leaves — which meet at infinity (and
hence are arbitrarily close, so in the same connected component). Boundary
leaves are dense in the lamination, as we know, so the lamination is connected.

Lemma 9.8 We still suppose L is invariant under h as above. If h is irre-
ducible, then L is connected.

We can still say more. Being connected as a lamination has even more rele-
vance if you are of the form L′, i.e. you are a derived lamination. If h(L) = L,
then certainly h(L′) = L′. If h is irreducible then L has no closed leaves, so
certainly not L′. So what does L′ look like? As we know, its components are
precisely its minimal sublaminations, and there are no closed leaves. If L′ is
connected then: it’s just one component, perfect, and has no proper sublamina-
tions. So L′′ = L′ and the closure of any leaf of L′ is all L′. Said another way,
every leaf of L′ is dense in L′.

Even more than this: take a leaf γ of L; as h is irreducible, γ is not closed.
Then its closure γ̄ is a sublamination of L, and by corollary 8.4, γ̄ ∩ L′ is a
union of components of L. (If you don’t like annoying corollary 8.4, you can
quite easily still use the more approachable theorem 8.3.) It’s nonempty, since
otherwise γ̄ would consist entirely of isolated leaves of L, impossible as γ is not
closed. Since L′ is connected, γ̄ ∩ L′ = L′, so γ is dense in L. So not only is
every leaf of L′ dense in L′; better, every leaf of L is dense in L′.

Lemma 9.9 We still let L be invariant under h. If h is irreducible, then L′ is
connected and perfect and every leaf of L is dense in L′.

We are not done yet. Let us consider L′ further; in particular, let us consider
its principal regions. We know that h(L′) = L′, so from the argument we applied
above to L we see that each principal region of L′ is a finite sided ideal polygon.
But now, how do these join up? Suppose one edge of such a polygon in H2

joins directly to an edge of another polygon; then the edge along which they
were joined is isolated (in L′). But L′ contains no isolated leaves; in fact, it is
connected and perfect. What must happen is that non-boundary leaves interfere
on the other side of the edge, which are nowhere dense but come arbitrarily close
to our edge; and then there is a whole mess of boundary leaves among them
(since boundary leaves are dense in the lamination). In any case it follows that
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the vertices at infinity of the polygon principal region have degree precisely
2. If they had larger degree, the other edges would interfere with nearby non-
boundary leaves.

Lemma 9.10 Still let L be invariant under h. If h is irreducible, then every
principal region of L′ is a finite sided ideal polygon for which every ideal vertex
is the endpoint of precisely two leaves of L′.

To summarise:

Proposition 9.11 Let S be an oriented closed hyperbolic surface. Let h be an
irreducible automorphism of S and let L be a lamination invariant under S.
Then:

(i) L has no closed leaves;

(ii) every principal region of L is a finite sided ideal polygon, and every prin-
cipal region of L′ is a finite sided ideal polygon for which every ideal vertex
is the endpoint of precisely two leaves of L′;

(iii) L is connected;

(iv) L′ is connected and perfect;

(v) every leaf of L is dense in L′.

That’s quite a lot to say about a lamination, from the simple fact of irre-
ducibility — and every automorphism is irreducible once you cut up the surface
enough.

9.4 Attraction and Repulsion

In nature, as in life, some things attract, and other things repel. Pseudo-anosov
automorphisms do both: the leaves of the stable foliation repel, while the leaves
of the unstable foliation attract. We want to see why an irreducible and non-
periodic automorphism has these attracting and repelling properties.

Let’s consider the stable foliation. What we hope to see is a singular foliation,
leaves of which attract. The leaves attract each other, but to conserve area (it’s
a finite area surface!), each individual leaf should be elongated, in some sense.

As it turns out, the stable and unstable foliation of a pseudo-anosov au-
tomorphism will arise from an invariant lamination. How do you go from a
lamination to a foliation? This will be demonstrated shortly, in a dazzling burst
of analysis that uses a Cantor function. (Yes, as in the Cantor set and the
devil’s staircase.)

So then, in a pseudo-anosov automorphism and an invariant lamination we
should perhaps expect to see some fixed leaves; and nearby ones are attracted
to them. (Such a fixed leaf will not be closed, since otherwise it would be a
reducible automorphism, by the previous section.) This doesn’t seem to make
much sense, since we have shown that leaves cannot be too close — for instance,
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they are nowhere dense; furthermore, boundary leaves are dense, and there are
only finitely many of them — and boundary leaves are all that show up in the
hyperbolic plane! What we will see in H2, however, is boundary leaves shifting
around to get “closer” to our fixed leaf, even though they are still actually quite
far away.

In the universal cover H2, such a leaf γ becomes to a geodesic γ̃; even if
it’s a “singular” leaf which ends at a singularity, its continuation is a geodesic.
On either side of γ, other leaves should be attracted. So upon iteration of our
iteration h, they should move closer and closer, and in fact converge to γ̃. Since
we know that each vertex at infinity has only finitely many geodesics ending
there, this means that the vertices at infinity converge to the endpoints of γ̃.

So, we require that under iteration of h, the circle at infinity moves in such
a way that every point converges to an endpoint of γ̃. Well, this is not quite
right. For one thing, it is impossible since h acts continuously on the circle at
infinity; there must be intervening repelling fixed points. For another, this only
applies if the geodesic γ̃ is “innermost” in some sense.

How could we define “innermost” here? Consider the interval on the circle
at infinity S1

∞ cut of by γ̃. What we can’t have is a situation, say, where this
interval is cut in half by two geodesics, lifts of leaves, which form an ideal
triangle with γ̃. If this happens, the automorphism (being an automorphism of
the interval, and leaving L̃ invariant) must fix those geodesics — so that γ̃ is
not “innermost”. When γ̃ is “innermost”, we call the interval it cuts off on S1

∞
stable.

Try to find a definition that makes all this rigorous. If you can, it’s probably
equivalent to the following definition.

Definition 9.12 Let S be a closed oriented hyperbolic surface and L a lami-
nation on S. Let L̃ be the lift of L to the universal cover S̃ ∼= H2. A stable
interval for L is a closed interval I ⊂ S1

∞ such that for any two points P, Q in
the interior of I, there is a leaf of L̃ which separates P and Q from I.

It follows that any stable interval for L is a (lift of a) leaf of L — just take
P and Q arbitrarily close to the endpoints of I. It also follows that there are
leaves of the lamination which have endpoints at infinity arbitrarily close to the
endpoints of I.

We should obtain in this situation a point of I which is a point at infinity
fixed under h, and which is the unique repelling fixed point of h in I. The
endpoints of I will be only attracting fixed points; the interior fixed point will
attract everything else.

To prove our amazing theorem 9.2, we will show: that this definition of
stable interval, in our situation, implies something nice about attracting and
repelling fixed points; that when h is irreducible and non-periodic, it has nicely
behaved fixed points at infinity, alternately repelling and attracting; it can be
taken to fix a lamination which involves stable intervals; and that this implies
the pseudo-anosov property.
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9.5 The Proof I: How good is our invariant lamination?

We now embark on the first part of the proof of our amazing theorem 9.2. We
will consider an irreducible and non-periodic h, and the invariant lamination L
we obtained earlier in theorem 9.5. Note this required h to be non-periodic.

Where did L come from? Recall we took a curve C for which hn(C) 6= C —
we showed one exists, but any would do. Then we considered hn(C) and took
a convergent subsequence, converging to a lamination K — such a convergent
subsequence exists, but any would do. Then we considered hn(K), showed that
these all contain no transverse intersections, so that hn(K ′) were all disjoint;
and took their union for L.

It is worth thinking about how C, K and L interact. First let us consider
K and L. Can they intersect? They certainly can, in fact all of K ′ lies in
L = ∪∞hn(K ′). But what about transverse intersection? Well, any leaf of K
which has a transverse intersection with L has a transverse intersection with
some hn(K ′); and hence has infinitely many points of transverse intersection
with hn(K), a contradiction to what we found in our proof of theorem 9.5. So
K and L have no transverse intersection.

We know quite a lot about L′, from section 9.3. In particular, we know that
every principal region is a finite sided ideal polygon, and that arbitrarily close
to each side, there are leaves on the outside. We can ask where our special
curve C lies in this picture. Clearly C can’t intersect L′ tangentially; this would
mean it coincides with a leaf of L′, but L′ contains no closed leaves. Can it
avoid L′ altogether? If it doesn’t intersect L, then it lies in one principal region;
and hence it must be a diagonal in the ideal polygon. But since C is a closed
curve, this would mean that leaves get arbitrarily close to C; and then deck
transformatoins corresponding to C would contradict our picture of our finite
sided ideal polygon. So C intersects L′ transversely somewhere.

This is interesting: C intersects L′ transversely, but K, which is the limit
of hni(C) for some sequence ni, does not intersect L′ (in fact, not even L)
transversely. What has happened? In H2, C crosses leaves of L′; but upon
iterating with h this has straightened out into a leaf of L′. We will exploit this
interesting property in regard to stable intervals.

Now let’s suppose we have a stable interval I on S1
∞ cut off by a geodesic

γ̃. As we have seen, γ̃ ∈ L. It follows from the definition of stable interval that
there are other leaves arbitrarily close to γ̃ on one side, so γ is not isolated, and
γ is in L′.

We want to see what happens if h fixes γ, and hence fixes I.
Well, we consider C, which intersects L′. We lift to H2 and take a component

C̃ which intersects γ̃, with endpoints A,B. Without loss of generality, A lies
in the interior of I, and B lies outside I. Upon iterating h, we know that
hni(C) −→ K, so hni(C̃) converges to a geodesic C̃∞, with endpoints A∞, B∞.
Clearly C̃∞ is a lift of a leaf of K, which does not intersect L′ transversely.
There are not many ways this can happen. Since B lies outside I, so does B∞.
And since A is in the interior of I, A∞ ∈ I. The only way to avoid transverse
intersection with I is to have A∞ ∈ ∂I. So we have shown that hni(A) −→ ∂I.
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It follows that A∞ is an attracting fixed point of h|I .
Are there any other fixed points? Since h fixes L′, and since boundary leaves

are dense, we can see that the open subinterval U = (A,A∞) contains no fixed
points; A moves towards A∞, and so does everything else in between. What
about the other end of the interval? Since one end attracts, and by the stable-
interval property there are leaves arbitrarily close by, the other end attracts too.
What about in the interior? Well if we a leaf close to γ̃, and iterate under h−1,
it will converge either to a geodesic or a single point at infinity. If it converges
to a geodesic, however, then we have ourselves a nested stable interval, which
has attracting endpoints under h; but we just showed it attracts points under
h−1. This is a contradiction unless the geodesic is degenerate, consisting of a
single point Z and all in the interior of I attract to Z under h−1.

Our invariant lamination, then, is good. How good? Very good. Stable
intervals which are invariant under h actually are stable: their endpoints are
attracting fixed points, and there is a unique repelling fixed point in the interior.

Lemma 9.13 Let S be a closed oriented hyperbolic surface, and h an irreducible
non-periodic automorphism of S. Let L be the lamination invariant under h
constructed in theorem 9.5. If any stable interval I is fixed by h then the two
endpoints of I are attracting fixed points and the only other fixed point of I is a
repelling fixed point in the interior of I.

Why did we need non-periodic? We needed this for the proof of the invariant
lamination. Why did we need irreducible? To use nice properties of the principal
regions of L′.

9.6 The Proof II: Alternating attraction and repulsion

We have shown in our situation of a non-periodic irreducible h, stable intervals
actually have the simple dynamical property we hope they have. Now we will
show that such a property of alternate attraction and repulsion applies globally.

Lemma 9.14 Let S be a closed orientable surface and h an irreducible non-
periodic automorphism of S. Then h has finitely many fixed points on S1

∞,
alternately attracting and repelling.

Proof We use theorem 9.5 to get a lamination L such that h(L) = L. We
now know a lot about L and L′; and we know that stable intervals invariant
under h have endpoints which are attracting and unique repelling points in their
interior.

We consider three cases, which obviously exhaust all the possibilities.

(i) h fixes the endpoints at infinity of a boundary leaf of L′;

(ii) h fixed the endpoints at infinity of a non-boundary leaf of L′;

(iii) h does not fix the endpoints of any leaf of L′.
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In the first case, the boundary leaf γ in question is part of the boundary of
a the lift Ũ of a principal region U . Here Ũ is a finite sided ideal polygon; and
as discussed previously, each ideal vertex is the endpoint of precisely two leaves.
It follows that h fixes the entire polygon. On the outside of each edge, there
are arbitrarily close leaves, which come arbitrarily close to any point of U . It
follows that each edge of the polygon cuts off an interval on the circle at infinity
which is a stable interval. In this stable interval there is a unique repelling fixed
point. So we have alternate repelling and attracting fixed points.

In the second case, a similar argument applies, though the picture is a bit
more complicated to see. Nearby to our fixed non-boundary leaf there are again
arbitrarily close leaves, and hence that it cuts off a stable interval, on both sides.
So the endpoints are attracting fixed points; and there is a unique repelling fixed
point on either side.

In the final case, h may or may not fix any points at infinity. If it has no
fixed points at infinity, there is nothing to prove; so suppose h fixes a point x
on the circle at infinity. For any lift γ̃ of a leaf of L′, we can consider the open
interval U(γ̃) on the circle at infinity which has the same endpoints as γ̃ and
avoids x. All the sets U(γ̃) are either nested or disjoint. It follows that under
h, either x is an attracting fixed point and there is precisely one other repelling
fixed point, or vice versa. ¥

In fact, we can say more. Note that L′ is invariant under h; and is perfect;
and connected. If h has more than one attracting fixed point at infinity, then
the geodesics joining consecutive attracting fixed points are in L′. But this is
not just true for h; it is true for any positive power of h as well: if hm has an
attracting fixed point then it’s an attracting fixed point of h also. Conversely,
(well, almost conversely,) every boundary leaf of L′ connects two endpoints at
infinity fixed under some positive power of h: since there are only finitely many
boundary leaves, there is a power of h which fixes that leaf and its orientation.

And this property actually is sufficient to define L′: the boundary leaves are
precisely those which have endpoints which are fixed under some positive power
of h; and boundary leaves are dense. So L′ is in this sense unique.

Lemma 9.15 Make the same assumptions as above. Any lift of a strictly pos-
itive power of h has finitely many fixed points at infinity, alternately attracting
and repelling. There is a unique perfect lamination Ls which contains the geo-
desics joining consecutive attracting fixed points of any positive power of h.

9.7 The Proof III: The End

We are now almost done. Given a non-periodic irreducible automorphism h of
S, we can obtain a stable lamination Ls, and an unstable lamination Lu (stable
for h−1).

These two laminations intersect transversely: we can see this from the alter-
nating attracting and repelling fixed points of h. Their intersection points are
mapped to intersection points by h. So we get rectangles bounded by arcs of
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Ls and Lu, which are mapped to other rectangles under h. This allows us to
straighten out h.

We call points on S equivalent if they are in the same rectangle: that is,
they are either in the (closure of the) same component of Ls − Lu; or in the
(closure of the) same component of Lu − Ls; or in the (closure of the) same
component of S − Ls − Lu. The quotient by this equivalence relation is just
like the Cantor function, and gives us a homeomorphic surface on which the
lamination has become a foliation. Using this idea, we can finish the proof of
the amazing theorem 9.2.
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