
Notes on Eliashberg’s 1989 paper, “Classification

of overtwisted contact structures on 3-manifolds”

Daniel Mathews

March 6, 2007

Contents

1 Introduction 1

2 Sketch of the proof 2

3 Step I: Construct near a 2-skeleton 3

4 Step II: A contactization with holes 5

5 Step III: Making one hole and filling it 6

6 Corollaries and related results 7

1 Introduction

Eliashberg in 1989 in [1] triumphed over overtwisted structures. They are now
completely classified.

Let M be an oriented connected 3-manifold. Take a basepoint p ∈ M and
an embedded disc ∆ ⊂ M centred at p. Let Distr(M) denote the space of
all tangent 2-plane distributions on M , with one extra condition: we fix the
distribution at the point p. We give Distr(M) the C∞ topology. We let:

• Cont(M) be the subspace of Distr(M) which consists of (positive) contact
structures;

• ContOT (M) be the subspace of Cont(M) consisting of all overtwisted
structures which have the disc ∆ ⊂ M as the standard overtwisted disc.

There are then obvious inclusions

i :Cont(M) −→ Distr(M)

j :ContOT (M) −→ Distr(M).
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Theorem 1.1 The inclusion j : Cont(M)OT −→ Distr(M) is a homotopy
equivalence.

For M an open manifold this follows from an old (1969) theorem of Gromov
in [2].

This theorem subsumed the theorem of Lutz [3] that i∗ : π0(Cont(M)) −→
π0(Distr(M)) is surjective. Very much subsumed it!

This basically means that the classification of overtwisted contact structures
is the same as the classification of 2-plane fields on M . If you take a homo-
topy class of 2-plane fields, then there’s an overtwisted contact structure among
them. And, if you have two contact structures in the same homotopy class of
2-plane fields, then they are homotopic through contact plane fields, i.e. they
are isotopic contact structures. It follows from Gray’s theorem that they’re
isomorphic.

2 Sketch of the proof

The proof has some nice ideas, but also some hard analysis. (Hard as in many
ε’s and many things to keep control of, but still elementary in nature.)

Theorem 1.1 is really about an extension problem. We need to find a homo-
topy inverse; from each 2-plane distribution we need to find a contact structure.
Their compositions must be homotopic to the identity. In one direction this will
be easy, because homotopies of contact structures are obviously homotopies of
2-plane distributions. But in the other direction we have something to prove:
given a homotopy of 2-plane distributions, we need to find a homotopy of con-
tact structures. This can be considered an extension problem: in fact Eliashberg
proves the following theorem, which “immediately” implies theorem 1.1.

Theorem 2.1 Let:

(i) M be a compact 3-manifold;

(ii) A ⊂ M be a closed subset such that M\A is connected (we are thinking of
A as a 1-skeleton of a simplicial decomposition of M);

(iii) K be a compact space (parameter space for the homotopy)

(iv) L ⊂ K a closed subspace (smaller parameter space; we want to extent from
L to K).

(v) ξt be a family of 2-plane distributions on M defined for all t ∈ K. For t
in the smaller parameter space L, ξt is contact on M . And for all t in the
total parameter space K, ξt is contact on the closed subset A.

(So we have a homotopy extension problem: the homotopy is defined on A, and
partially defined on M ; we need to extent it.) Suppose that there is an disc ∆
in M which is always a standard overtwisted disc, for all t ∈ K: rigorously,
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suppose there exists an embedded 2-disc ∆ ⊂ M\A such that for all t ∈ K, ξt

is contact near ∆ and (∆, ξt) is equivalent to the standard overtwisted disc.
Then the homotopy problem can be solved! That is, there exists a family ξ′t

of contact structures on M for all t ∈ K such that

(i) for all t in the total parameter space K, ξ′t coincides with ξt near A;

(ii) for all t in the smaller parameter space L, ξ′t coincides with ξt everywhere
on M .

(iii) the family ξ′t, over all t in the total parameter space K, can be connected
with ξt through a homotopy, which is fixed on A×K ∪M × L.

Because it’s a homotopy extension problem, it is sufficient to consider M a
compact subset of R3. M can be covered by such sets; and we just extend
repeatedly over them. Then for any two-plane field ξ, we have a Gauss map
M −→ S2 and we define the norm ||ξ|| of a 2-plane distribution to be the
maximum of the derivative of the Gauss map. The norm of the distribution is
the fastest speed at which the plane turns.

3 Step I: Construct near a 2-skeleton

The first step is to construct the contact structure (and homotopy!) near the
2-skeleton of a general simplicial complex for M . We can effectively take M,A
to be simplicial. We will take a very fine subdivision so that the diameter goes
to zero while all relevant angles are bounded below, and while the minimal
distance between disjoint simplices (relative to the diameter) is bounded below.
To be precise! P is a simplicial complex.

(i) α(P ) is the minimal angle between non-incident 1- or 2-simplices which
have a mutual vertex;

(ii) d(P ) is the maximal diameter of a simplex of P ;

(iii) δ(P ) is the minimal distance between two 0-, 1- or 2-simplices without
mutual vertices.

A lot of subdivision and a little perturbing and thought gives us

Lemma 3.1 There exists a sequence of general subdivisions Pi of P such that
d(Pi) −→ 0 while δ(Pi)/d(P0) and α(Pi) are bounded below.

In effect, we can make d(P ) arbitrarily small without worrying about the other
parameters.

Now, we will find a simplicial complex P such that we can do the extension
in a neighbourhood of its 2-skeleton. To be precise:

Lemma 3.2 Let M,A, K, L, ξt be as above. (Although now M is a compact
subset of R3.) Then there exists a general simplicial complex P containing M
and a family of distributions ξ′t (on M) defined for all t in the total parameter
space K, such that:
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(i) for all t in the parameter space K, ξ′t is C0-close to ξt;

(ii) ξ′t agrees with ξt on A×K ∪M × L;

(iii) ξ′t is contact on a neighbourhood on the 2-skeleton of P . In fact it is
contact in a “uniform” way: there exists an ε > 0 such that ξ′t is contact
in an ε · d(P )-neighbourhood of the 2-skeleton. Here ε depends only on α
and δ/d.

(iv) The norm ||ξ′t|| is bounded as ||ξ′t|| ≤ C||ξt|| + D, for some universal
constants C and D.

Note that ξ′t is actually defined on M , but we really only require something
of it on A (once this is done, all we require is to extend it to M while remaining
C0-close to ξt; this is easy).

We build up the extension from A to M , simplex by simplex. What makes
the extension difficult is if ξt(x) varies too much, over t, or over x. The variation
over t ∈ K can be dealt with directly: taking a subdivision of K now, we can
assume that for any t, t′ ∈ K the planes ξt and ξt′ are always close. (We will have
to make sure that we can keep extending over all parts of K!) And variation
over x ∈ M is dealt with by a division into cases. A 1-simplex σ is called special
if at some point x of σ and for some t ∈ K, ξt is too close to being perpendicular
to σ. A 2-simplex σ is called special if at some point x of σ and for some t ∈ K,
ξt is too close to being parallel to σ.

By the above lemma 3.1, we can make the diameter d arbitrarily close to
zero while keeping α bounded below, which makes special simplices isolated. (ξ
doesn’t change much in t since we subdivided K; ξ doesn’t change much on a
simplex x since d is small; other nearby simplices differ a definite angle since α
is bounded below; so a nearby simplex will not be special.)

The trick is to consider a 2-dimensional foliation Fσ near each simplex σ
over which we wish to extend. Fσ is a foliation of a neighbourhood of σ (not
depending on any t, but of course varying with x by planes which are perpen-
dicular to for ξt(x), for one (random) value of t. If σ is a 1-simplex, we require
Fσ to be parallel to σ; if σ is a 2-simplex, we require Fσ to be perpendicular to
σ. (This is sufficient to define a plane at each point; and clearly it’s integrable.
There is ambiguity when σ parallel/perpendicular to ξt; but this only occurs at
special points in special simplices!) On each (2-dimensional) leaf of Fσ, for each
t ∈ K we may obtain a 1-dimensional foliation by intersecting with the 2-plane
field ξt. (By construction ξt is always transverse to Fσ.) We perturb ξt along
these 1-dimensional leaves. It turns out that this can be done provided that for
each 1-dimensional leaf l we have π1(l, A∩ l) = 0. Why is this? The idea is that
along a tangent curve l, a plane field has a standard form and if you can make
it “always twist in the same direction”, it’s contact. The π1 condition allows
you to put a twist in continuously. (We will not yet worry that ξ′t is C0-close!)
The π1 condition is satisfied for special simplices because special simplices are
isolated, and have at most one face belonging to A.

Next we turn to neighbourhoods of non-special 1- and 2-simplices. For suf-
ficiently small neighbourhoods, the π1 condition will be satisfied; there are less
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complications since the angle between ξt and σ is never too close (for any t or
x). Again we can perturb ξt to ξ′t using the foliation Fσ.

Provided we take d sufficiently small, we can get ξ′t sufficiently C0-close to ξt.
The norm ||ξ′t|| may increase, but only linearly. So we can continue extending
over all the simplices until we are done. And then we can continue over different
subdivisions of K. By the end our neighbourhood will be very small indeed;
but it is still a subdivision. However, if we keep track of the geometry, it only
depends on the geometry of the simplices, namely it is of the form required.

4 Step II: A contactization with holes

Now we’ve done our extension on a neighbourhood of a two-skeleton. This
really amounts to the whole manifold, minus a few holes. But we are worried
about extending over those holes, so we need to keep track of their geometry.
Our neighbourhood of the 2-skeleton may be small, but still we can take a ball
inside each 3-cell, containing the hole, and its curvatures (which may be very
flat along the faces) will be bounded below. This is a “simple assertion”:

Lemma 4.1 Let σ be a 3-simplex of diameter d. For any λ > 0, there exists and
embedded ball B ⊂ σ such that its boundary is contianed in a λ-neighbourhood
of δσ and the normal curvatures of ∂B are everywhere ≥ 8λ/(4λ2 + d2).

But because we have such a fine subdivision, ξt doesn’t change very much.
And since we can bound ||ξ′t|| in terms of ||ξt||, ξ′t doesn’t change very much
either. So the characteristic foliation on the boundary ∂B of our ball B will
turn out to be rather simple.

How simple? Well, let us digress for a minute and consider one-dimensional
foliations F on S2, in particular those with precisely two elliptic singular points,
at the poles. (Our situation will have tow such poles.) Such a foliation is simple
if all its limit cycles are isolated and placed on parallels between the foci. It
is almost horizontal if there is a transversal to F connecting the poles. (When
you draw a picture, an almost horizontal foliation “never turns around” between
limit cycles.) Almost horizontal is very nice, because an almost horizontal fo-
liation gives a holonomy map h(F) : I → I which is a diffeomorphism of the
interval. (Consider a transversal and a return map.) Almost horizontal is very
nice also, because the present situation is almost horizontal!

Why? Another “simple assertion”:

Lemma 4.2 Let S ⊂ R3 be an embedded 2-sphere with all normal curvatures
≥ K > 0. Let ξ be a contact structure near S with ||ξ|| < K. Then ξ is almost
horizontal near S.

With a sufficiently fine subdivision, we have normal curvatures everywhere arbi-
trarily high while keeping our neighbourhood sufficiently small for the previous
part of the proof to work(if you check the dependencies in the previous part of
the proof, the neighbourhood width λ was of the form εd, where ε depended
only on δ/d and α). So this lemma applies. As to why the lemma is true, well,
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being not almost horizontal (that is, having a “turn around” in the foliation)
implies the contact structure turning quite fast; faster than the curvature, it
seems.

It turns out that the topological type of the characteristic foliation on the
sphere is all that matters for our purposes.

Lemma 4.3 Let ξ be a simple contact structure near the boundary S = ∂B of
the 3-ball B. The extendability of ξ as a contact structure to B depends only on
the topological type of the foliation Sξ.

Why is this true? It’s (what later became) a standard perturbation argument.
Take two contact structures ξt, ξ′t near S. We take L ⊂ S to be a union of
transversals and limit cycles of both characteristic foliations. [Taking transver-
sals seems to imply we’re talking about almost horizontal, rather than simple,
contact structures near S. Hmm.] Let N be a tubular neighbourhood of L (in
R3). We can get a contactomorphism g on S\N −→ S\N , since these are just
disks with standard foliations. We extend this diffeomorphism to S, remain-
ing constant on L. Now g will not necessarily be a contactomorphism on all
of S; but the characteristic foliation will be C1-close to what is required. We
now perturb C0-perturb g, to embed S in B, and C1-adjust the characteristic
foliation.

So this now gives:

Lemma 4.4 Let M, A, K,L, ξt be as above. There exist disjoint 3-balls B1, . . . , BN

which avoid A∪∆ and distributions ξ′t on M , defined for all t in the parameter
space K, such that

(i) ξ′t and ξt agree on (A ∪∆)×K ∪M × L;

(ii) for all t ∈ K, ξ′t is contact everywhere except the interiors of the Bi;

(iii) for all t ∈ K, ξ′t is almost horizontal near every ∂Bi;

(iv) for all t ∈ K, ξ′t is C0-close to ξt;

Notice A sneakily became A∪∆ here, but that is no big deal. We just treat
the overtwisted disk ∆ as part of A.

5 Step III: Making one hole and filling it

We can connect sum simple foliations on spheres by cutting off neighbourhoods
of poles and gluing and smoothing the glued foliations. We order our balls
arbitrarily B1, . . . , BN and take for B0 a small ball containing the overtwisted
disk ∆. Now we connect the north pole of each Bi with the south pole of the
next, by disjoint embedded curves lit.

We need all of the lit to be transverse, else our connected balls will not have
standard characteristic foliations. So we need to be able to perturb curves to
be transverse; in fact, we need to be able to perturb families of curves to be
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families of transverse curves. It is not so difficult to do this for one curve: just
take enough wavefronts with the right gradients at the right points. It’s not so
difficult to do this in families.

Having done that, we have connected the balls, so we have a contact structure
with one hole. If we can extend the contact structure over the ball, and extend
homotopies of plane fields to homotopies of contact structures over the ball, we
are done. But this is not difficult. We know that the topological type of the
almost horizontal foliation is all that matters. In fact, given an almost horizontal
foliation, we can construct an explicit model of a solid of revolution in R3 which
gives that almost horizontal foliation. (There’s a picture in [1].) These can be
homotoped, no problem, and remaining constant on A.

6 Corollaries and related results

The classification of overtwisted contact structures has an interesting corollary
about extending contact embeddings of B3 −→ S3 to S3 −→ S3, Eliashberg’s
1.6.2 in [1].

Theorem 6.1 There exists an overtwisted structure ξ on S3, a ball B ⊂ S3

and a contact embedding ψ : (B, ξ) −→ (S3, ξ) such that ψ cannot be extended
to a contact diffeomorphism S3 −→ S3. Hence ψ cannot be connected with the
inclusion B −→ S3 by a contact isotopy. (If it could, the isotopy would easily
extend to an isotopy of diffeomorphisms of S3 and one end of this would be an
extension of ψ.)

A very sketchy idea of the proof is to do Lutz twisting twice to get a contact
structure that has been made overtwisted: but the Lutz twisting once (about
B, giving ζ) or twice (about B and B′, giving ζ ′) remains in the same homotopy
class, and hence ζ, ζ ′ are isotopic, so also contactomorphic via h : S3 −→ S3.
The two balls B, B′ containing the Lutz twistings are clearly contactomorphic.
Mapping one to the other, and then applying the contactomorphism h gives a
contact embedding ψ. But then outside B and its image, the contact structure
is tight on one side, and not on the other.
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