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1 Introduction

These are the most relevant points (to me!) arising in this paper. I have written
them informally and without proper proof. It’s no substitute for reading the
real paper! I just like to convey some of the gist, without doing any real work.

2 Significance of the paper

It’s one of the seminal papers spurring the resurgence of contact geometry, along
with Eliashberg’s classification of overtwisted contact structures and Giroux’s
work on convex surfaces.

Until this paper, the definition of overtwisted was “contains a standard over-
twisted disk”: that is, a disk with characterstic foliation which has precisely one
elliptic point, in the interior, and precisely one limit cycle on the boundary. Af-
ter this paper, an equivalent definition was “contains a surface with a limit cycle
in its characteristic foliation”, or eqivalently, “contains a surface with a closed
loop without singular points in its singular foliation”. Eliashberg proved they
are equivalent, by manipulating characteristic foliations. One direction is easy;
the other direction is his theorem.

Theorem 2.1 Let (M, ξ) be a closed oriented contact 3-manifold. Suppose
there is an embedded disc D in M with a limit cycle in its characteristic fo-
liation. Then M contains a standard overtwisted disc.

Clearly, this is a result about simplifying the characteristic foliation: if we
have a limit cycle, then we have a simple-looking limit cycle. The next result
is also about simplifying the characteristic foliation: it turns out to amount to
removing elliptic points wherever possible. The result is (ostensibly!) about the
Euler class e(ξ) of the contact structure on a closed oriented surface S in M .

Theorem 2.2 Let (M, ξ) be a tight contact manifold. If S = S2 then e(ξ)[S] =
0. Otherwise

χ(S) ≤ e(ξ)[F ] ≤ −χ(S).

This is clearly a finiteness result about the possible homology classes of
contact structures. In fact we can say more (relying also on later results).

Theorem 2.3 Let M be a closed manifold. Only finitely many homotopy classes
of plane fields can contain tight contact structures.

This is in stark contrast to the result for overtwisted contact structures —
there is precisely one (up to isotopy) in each homotopy class of plane fields.

The other major theorem is the classification of tight contact structures
on S3. (Since the classification of overtwisted contact structures was already
known, and he just clarified the distinction between tight and overtwisted, this
is a complete classification of all contact structures on S3.)
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Theorem 2.4 A tight contact structure on S3 is isotopic to the standard con-
tact structure ξ0.

In fact we can prove a stronger result. (To see it’s stronger, consider S3 as a
union of two balls.)

Theorem 2.5 Two tight contact structures on B3 which coincide at the bound-
ary are isotopic relative to ∂B3.

The corollaries are many and varied. They are not all complete pushovers,
though.

Theorem 2.6 (Cerf’s theorem) Any diffeomorphism of S3 extends to B4.

Theorem 2.7 All tight contact structures on R3 are isomorphic.

3 Clearing up overtwisted disks

The first task is to clear up all these previous difficulties with overtwisted discs,
and prove theorem 2.1. The idea is to take a disc with a limit cycle; and
then manipulate the foliation, perturbing the disc, until it contains a standard
overtwisted disc.

Eliashberg in this paper gives new techniques for manipulating the foliation;
they are now all completely standard.

In general, if you have a surface in a contact manifold, you have a charac-
teristic foliation on it. If you move the surface around, you alter the foliation.
And if you want to alter the foliation in certain ways, you can sometimes move
the surface around to achieve it. The detail of how this works is crucial and is
in general not too difficult.

3.1 e±, h±, d±, χ, c

We begin by defining some variables. We have a contact 3-manifold (M, ξ) and
a surface in it S. The surface S may or may not have boundary. As usual χ(S)
denotes the Euler characteristic of the surface. We let:

(i) e± denote the number of positive/negative interior elliptic singular points
of Sξ;

(ii) h± denote the number of positive/negative interior hyperbolic singular
points of Sξ;

(iii) d± = e± − h±.

We also let c(S) denote the “Euler class of ξ on S”. This makes sense if S is a
closed surface, and denotes the obstruction to finding a vector field tangent to
S and ξ. If S has boundary, then we take a vector field tangent to S and ξ along
∂S, and consider the obstruction to extending this to a vector field tangent to
S and ξ all over S.
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From Poincare-Hopf, the Euler characteristic is given by the sums of indices
of singular points in a vector field on S, so

χ(S) = e+ + e− − h+ − h− = d+ + d−.

On the other hand, the obstruction to extending a vector field along Sξ takes into
account the signs of singularities. A positive elliptic point is a +1 obstruction,
but a negative elliptic point is a −1 obstruction. (It’s easy to see they can cancel
each other out.) Similarly for hyperbolic singularities. We obtain

c(S) = e+ − e− − h+ + h− = d+ − d−.

Thus we find the following proposition, which Eliashberg in this 1992 paper
attributed to Harlamov–Eliashberg in 1982 or Eliashberg 1991.

Proposition 3.1

d± =
1
2

(χ(S)± c(S)) .

3.2 Manipulating Legendrian boundaries

This proposition is stated as “easy to see”: maybe for some!

Proposition 3.2 Let S be a surface bounded by a piecewise smooth legendrian
curve Γ. Then S can be deformed to an embedded surface S̃ bounded by ∂S̃ = Γ̃
that preserves the Thurston-Bennequin invariant, and such that the character-
istic foliations Sξ, S̃ξ are homeomorphic. Hyperbolic corners of Γ disappear,
elliptic corners become smooth elliptic points, and all interior singular points
remain the same.

Maybe it’s easier to see this after reading Giroux’s paper or something...
In any case, the Thurston–Bennequin invariant can be found simply by look-

ing at the characteristic foliation on the Legendrian boundary of a surface. If
the singular points are all the same sign, then the contact structure never gets
to turn around very far, so must turn zero in total.

Proposition 3.3 Let S be a surface in a contact manifold (M, ξ) bounded by
a Legendrian curve γ. If all singular points on γ are of the same sign then
tb(γ|S) = 0.

3.3 The elimination lemma

It turns out that it’s possible to kill some singular points in pairs. Namely, if
there exist an elliptic point and an hyperbolic point of the same sign, connected
by a trajectory Γ of the characteristic foliation, then we can cancel them both.
The change only occurs in a neighbourhood of the single trajectory. It’s achieved
by a C0 small perturbation of our surface S in M , but the perturbation is fixed
on the trajectory Γ itself. This works equally well, whether the points are in
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the interior or boundary of S. In fact, if the trajectory is along the boundary,
we can say a little more: the perturbation can be taken to fix the boundary
(not just the trajectory from one singular point to the other, but little chunks
on either side in the support of the perturbation, also).

Eliashberg attributes this proposition to Fuchs, improving a slightly weaker
result of Giroux.

Lemma 3.4 (Elimination Lemma) Let M, ξ, S be as above. Let Γ be a tra-
jectory of Sξ between an elliptic point p and a hyperbolic point q of the same
sign. Let U be a neighbourhood of Γ in M which contains no other singular
points of Sξ.

Then there exists an isotopy of S in M such that:

(i) it is C0 small;

(ii) it is supported in U ;

(iii) it is fixed at Γ;

(iv) the new surface S′ has no singular points in its characteristic foliation
inside U .

(v) If p, q are both on the (Legendrian) boundary of S then we can keep ∂S
fixed.

We can also reverse the process (a creation lemma!) and create elliptic
and hyperbolic singular points along a trajectory — having the same, but pre-
specified sign, determined by the relative orientation of ξ and S along a trajec-
tory.

Lemma 3.5 (Creation lemma!) Let M, ξ, S be as before. Near a nonsingu-
lar point of Sξ, one can create a pair of singular points, one elliptic and one
hyperbolic, having the same (pre-specified) sign.

Why are these true? Well at least the creation of singular points is believable,
simply by drawing a picture. We can take a standard neighbourhood of a
legendrian curve in the standard contact R3, say along the x-axis. Perturbing a
little horizontal strip by bending it a little can give us the singularities we want.
And by a Darboux-type argument, the elimination of such singularities doesn’t
sound too far fetched either.

3.4 Manipulating the characteristic foliation I: simplifying
inside a limit cycle

Now we can give the proof of theorem 2.1. Recall we have a limit cycle in a disc
D: we have to find a limit cycle in a disc with only one elliptic point inside.
The idea is to use the tricks we have just discussed to simplify the characteristic
foliation inside a limit cycle.
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WLOG we can assume the limit cycle is innermost on D, and we can as-
sume it is attractive. We also assume the characteristic foliation is generic: so
all singularities are standard and there are no connections between hyperbolic
points.

What are the possibilities for the singularities inside D? By Poincare–Hopf,
we know that e−h = χ(D) = 1. So if there is only 1 elliptic point, there are no
hyperbolic points, and we are done. If there are more elliptic points, then there
are more hyperbolics, also; in particular, there exists a hyperbolic point q. We
will proceed by removing hyperbolic points, so that the situation is eventually
reduced to the case of a single elliptic point, which is a standard overtwisted
disc.

Where can the separatrices of q go? The incoming ones can only come from
positive elliptic points. (Not other hyperbolic points, since Dξ is generic; and
not from the attracting limit cycle either!) So if q is positive, we can apply the
elimination lemma and cancel q, and simplify the situation; by induction then
we are done.

We may assume then that q is (indeed all hyperbolic points are) negative.
Now where do the outgoing separatrices form q go? They can go to negative
elliptic points or to the limit cycle. (Not to other hyperbolic points, by generic-
ity!) If anything goes to a negative elliptic point, we can apply the elimination
lemma and cancel q. So we may assume the outgoing separatrices go to the
limit cycle.

But in this case there is a sneaky trick: we use the creation lemma to create
a pair of singularities, so that the separatrices from q go to the hyperbolic
singularity. (This is possible, if you think about it.) We can even do it so that
the two separatrices now form a smooth closed loop γ. And if we take the created
singularities to be negative, then all singularities along γ are negative; so its
Thurston-Bennequin number is 0. Now we can use the Legendrian perturbation
lemma to smooth it into a limit cycle. This gives us a limit cycle with fewer
hyperbolic points inside, and we are done.

4 Manipulating the characteristic foliation II:
removing elliptic points

We will shortly see that, by use of the tricks previously discussed, we can almost
remove any elliptic singularity from a characteristic foliation. In particular we
can prove:

Proposition 4.1 Any elliptic point of S can be destroyed via a perturbation of
S, cancelling it with a hyperbolic point, unless S is a sphere and e+ = e− = 1,
h+ = h− = 0.

Theorem 2.2 follows immediately. For if S is a sphere then we can cancel
until we are left with e+ = e− = 1, h+ = h− = 0, so that d+ = d− = 1 and
c(S) = e(ξ)[S] = d+ − d− = 0. If S is not a sphere then we can cancel until
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e+ = e− = 0 so that d+, d− ≤ 0. Then c(S) = d+ − d− and we have bounds:

χ(S) = d+ + d− ≤ c(S) = d+ − d− ≤ −d+ − d− = −χ(S)

so we are done. Theorem 2.2 is really just about cancelling elliptic points.

4.1 Basins and Legendrian polygons

To remove elliptic points, we are going to look at their basins. Given a subset
V of a surface S in M , the basin B(V ) is the set of points of S which can be
reached from V along (oriented!) trajectories of Sξ.

What does the basin of a set look like? Well, if you start at a point and
follow the trajectory, you can end up at a negative fixed point, or a hyperbolic
fixed point, or a limit cycle. Put limit cycles to one side for a minute. Then the
basin looks like a “Legendrian polygon”, with boundary consisting of Legendrian
curves.

We can formalise the idea of “Legendrian polygons”.
Such a polygon will arise where you have a surface (not necessarily a polygon!

The “polygonal” part of the polygon is solely its boundary!) with a piecewise
smooth boundary; and you immerse it into a surface S in a contact manifold
(M, ξ) so that the boundary runs along the characteristic foliation, with vertices
mapping to singularities.

Note that this is a bit ambiguous: a smooth edge of S could run through a
singularity of Sξ. Do we still count it as a vertex? In a strange convention, we do
if the singularity is elliptic. We can have hyperbolic singularities along smooth
edges, and they may not count as vertices; if so, they are called pseudovertices.

A Legendrian polygon is required to be “almost” injective: it can overlap
on its vertices or edges, but not in its interior. So, for instance, a Legendrian
polygon which is a disc with two vertices and two edges could fold up into a
ball. (The two edges glued together.)

Basins (still putting limit cycles to one side) have this structure as Leg-
endrian polygons; vertices can overlap; singularities can be approached from
different directions; trajectories may join up along a edge; but the basin cannot
overlap with itself in its interior.

It turns out, even if there are limit cycles present, then the polygon can still
be defined. Suppose there are trajectories from V approaching a limit cycle
C. Note that if we were happy to say “a limit cycle is a vertex”, we could
define an extended version of Legendrian polygon. But we won’t do that; we’ll
perturb to avoid the entire situation! Suppose two adjacent boundary edges
of our proposed polygon approach the limit cycle C. We perturb S near C
to create a hyperbolic and elliptic fixed point; so that the edges approach the
elliptic point. (The hyperbolic and elliptic point we create are negative.) In this
way, by a series of small perturbations of S, we can assume that B(V ) is in fact
a Legendrian polygon.
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4.2 Killing elliptic points

So, to the proof of theorem 2.2. Let E be an elliptic point on S; we want to
kill it without creating any more elliptic points. WLOG we can assume E is
positive. And WLOG we may also perturb S so that it is generic; in particular,
we can asssume there are no separatrix connections between hyperbolic points.

If B(E) is a sphere, then certainly S must be a sphere! The polygon must
fold up so that its boundary maps to one point; and there are precisely two
singularities. One is positive elliptic; the other is negative elliptic. So e+ =
e− = 1, h+ = h− = 0 as desired.

We now assume B(E) is not a sphere. Well then, what does its boundary
look like? It may involve sinks, hyperbolic points and limit cycles; it may be
complicated. But we can say immediately that if there is any positive hyperbolic
point involved, we can cancel it by the elimination lemma, and reduce the
number of elliptic points; by induction, we are done.

So we may assume that B(E) involves no positive hyperbolic points. But it
may contain limit cycles. So we perturb S near limit cycles, if necessary, so that
the basin B(E) is nice and its closure B(E) is a Legendrian polygon in S. As
discussed above, this involves creating negative elliptic and negative hyperbolic.
(No matter that we have created extra elliptic points, since we will now find a
contradiction!)

The boundary of B(E) then consists of piecewise Legendrian curves, with
singularities on them, negative elliptic (sinks!) and negative hyperbolic. By
genericity, there are no separatrices connecting hyperbolics. This only makes
sense if the elliptic and hyperbolic points alternate along the boundary. So the
picture is very standard. And by the elimination lemma, we can cancel all these
singular points in pairs! This then reduces B(E) to something bounded by a
limit cycle; and with only one singularity inside; so it’s a standard overtwisted
disc, contradicting tightness.

5 Extending a characteristic foliation over a 3-
ball

We now enter upon the proof of theorem 2.5, that a tight contact structure on
B3 is determined up to isotopy by its restriction to the boundary S: that is,
determined by the characteristic foliation Sξ.

5.1 Strategy of the proof.

Given a contact structure ξ on B, with characteristic foliation Sξ on the bound-
ary, we want to find a standard contact structure ζ, which only depends on the
foliation F = Sξ, such that ξ is isotopic to ζ.

How are we going to find ζ, starting only from a foliation F on S?
We’re going to use all manner of tricks about foliations and pseudoconvex

embeddings. As it turns out, given an embedding α : B −→ R3 with certain
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properties and a map γ : α(B) −→ R (also with certain properties!), we can
obtain a contact structure on B! How do we get this? We consider our R3 as
lying inside C2, where the coordinates on C2 are (z1 = x1 + iy1, z2 = x2 + iy2)
and the coordinates on R3 are (x1, y1, x2). Then from α (the embedding) and γ
(the function) we obtain the graph

Γγ = {y2 = γ(u) : u ∈ α(B)} ⊂ C2.

If α and γ satisfy certain requirements, it turns out that the complex tangencies
on Γγ , a 3-manifold in C2, give a contact structure on α(B), and hence on B.
For instance, one of these requirements is that γ = 0 on S and is positive on
the interior of B; so that in Γγ , S correpsonds to y2 = 0.

It will turn out that from a foliation F on S, we will find a function ϕ :
S −→ R which is said to tame F . There are many choices of such ϕ, but it
turns out they are homotopic. The pair (ϕ,F) form a function–foliation pair
and will lie in a space called FF . From (ϕ,F) we can obtain an embedding
α : B −→ R3 satisfying the required properties mentioned above, in fact so
that ϕ is the y1-coordinate of the restriction of α to S. The pair (α,F) is an
embedding–foliation pair and lies in a space called EF . The choice of α is unique
up to homotopy; it turns out EF −→ FF is a Serre fibration with contractible
fibre. From (α,F) we want to obtain a function γ : α(B) −→ R which has the
properties desired of γ above. The foliation of F determines the 1-jet of γ on the
boundary α(S), and so we have a pair (α, γ∂

1 ) where α is an embedding and γ∂
1

is a 1-jet of a function α(S) −→ R; such a pair lies in the space Conv ∂
1 , which is

homeomorphic to EF . From (α, γ∂
1 ) the 1-jet gives us a germ γ∂ of a function

α(S) −→ R; the pair (α, γ∂) lies in a space Conv ∂ . The choice of γ1 is unique
up to homotopy, and indeed the map Conv ∂ −→ Conv ∂

1 is a Serre fibration
with contractible fibre. Then from γ1 we obtain a full function γ : α(B) −→ R
of the desired type. The pair (α, γ) lies in a space Conv and the space of such
γ is unique up to homotopy; again we have a Serre fibration Conv −→ Conv ∂

which has contractible fibre. Our pair (α, γ) now determines a graph Γγ and a
contact structure ζ on B, which is unique up to homotopy; hence only depends
on the original foliation F .

That’s quite a lot of construction! We have a whole lot of maps, which are
all Serre fibrations with contractible fibres (or better).

Conv −→ Conv ∂ −→ Conv ∂
1 −→ EF −→ FF −→ Fol

(α, γ) (α, γ∂) (α, γ∂
1 ) (α,F) (ϕ,F) F

Having obtained our ζ, we then need to show it’s isotopic to the original
contact structure ξ. We do this by taking a family of spheres St, t ∈ [0, 1],
which fill B (okay, S0 is a point). We can apply the procedure above to obtain
a ζt for each t, and since ζt has the same characteristic foliation on St as ξ, we
can replace the foliation ξ with ζt on expanding balls. (Okay, we can’t do this
at t = 0, but by Darboux both ξ and ζ can be assumed standard there.) As
long as ζt varies smoothly, we will have our isotopy. The upshot is: provided
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we can do the whole intricate construction of the previous paragraph not only
once, but in families, we are done. It’s lucky that we mentioned everything is a
Serre fibration, because that means homotopies lift and this is all possible!

And that is the gist of the proof.
(I won’t go into further detail on all the Serre fibrations, since I’m not that

interested, I don’t know much of the background about pseudoconvex embed-
dings, and Eliashberg doesn’t go into that background.)

Where is the tightness used? It’s used in constructing the taming function.
We couldn’t just start with any foliation F : it had to be a characeristic foliation
of a tight contact structure. Thus the taming function is crucial. I will go into
this part! (Well, not homotopies of families of them, but why they exist.)

5.2 Taming functions

We start with a two-sphere S in M and a foliation F on S. Since F is eventually
going to lie in a family, it might not be quite so generic. We allow simple
singularities or birth–death singularities. Let X be a vector field generating F .
We will define a function ϕ : S −→ R to tame F if:

(i) X is gradient-like for ϕ (recall this means that there exists a Riemannian
metric so that it behaves like a gradient, well not quite, with an inequality,
more or less, critical points are the same);

(ii) the positive/negative elliptic points of F are the local minima/maxima of
ϕ (so that with the increasing flow of ϕ, positive elliptic points are indeed
sources and vice versa);

(iii) if we pass through a critical value with a negative/positive hyperbolic
singularity in the increasing direction of ϕ, the number of components of
the level set increases/decreases.

For a sphere S embedded in a tight (M, ξ), it turns out there always exists a
function taming Sξ; and any two such taming functions are homotopic through
taming functions; and given a nicely-behaved family of contact structures (with
only simple singularities or birth-death singularities on the characteristic foli-
ation of S), we can obtain a smooth family of taming functions; and so any
two such smooth families of taming functions are homotopic through families of
taming functions.

Let’s see why.

5.3 Tricks with Legendrian boundaries

Let’s recall some tricks with Legendrian boundaries of surfaces in contact man-
ifolds.

First, suppose we have a surface S bounded by a piecewise smooth legendrian
curve Γ. If there are no singularities on Γ, we have a limit cycle. If not,
then there may be singularities of any type: elliptic or hyperbolic, positive
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or negative. Generically recall there are no connections between hyperbolic
singularities. We can often perturb S, sometimes even fixing Γ, to simplify the
situation.

(i) If the Thurston-Bennequin invariant is 0, then we can C0 perturb S near
Γ (but hold Γ fixed!) to remove the singularities. Thus we obtain a limit
cycle.

(ii) If all the singularities on Γ have the same sign, then the Thurston-Bennequin
invariant is 0, so by the same reasoning we can perturb S, fixing Γ, to ob-
tain a limit cycle.

(iii) Any hyperbolic singularities can be made to disappear by a perturbation
of S (moving Γ along with it). So if there are only hyperbolic singularities,
we can remove them all. But on the other hand, connections between hy-
perbolic singularities are extremely rare and non-generic, so this shouldn’t
happen in the first place.

5.4 Manipulating the characteristic foliation III: removing
hyperbolic points, Legendrian polygons

Recall, given a characteristic foliation F = Sξ on a sphere in a tight contact
manifold, we want to construct a taming function. How are we going to do it?
We are going to start from the bottom and work our way up! The minima will
be the sources in F , and we will then construct ϕ so that as C increases, the
subsets ϕ ≤ C engulf one other singularity at a time. How will we make sure we
can do this? We will look at the basins of whatever we have already engulfed!
These, as we know, are Legendrian polygons. So we will now perform some
more tricks in this regard.

Lemma 5.1 Let D be an embedded disc in a tight contact manifold (M, ξ),
such that ∂D is transverse to ξ and the characteristic foliation exits through
∂D. Then by a C0 small isotopy of D, fixed near ∂D, we can kill all positive
hyperbolic points of Dξ.

Just think of the incoming separatrices to a positive hyperbolic point: where
do they come from? Not a limit cycle, because it’s tight; not a hyperbolic point
if D is generic; hence from a positive elliptic point. Then we can cancel with
the elimination lemma.

Lemma 5.2 Suppose we have a Legendrian polygon Q in a surface S in a tight
(M, ξ), where Q is an immersed disc, possibly with vertices identified (but not
edges). Then ∂Q contains at least one positive and at least one negative singular
point.

Suppose otherwise. If there are no singularities on the boundary we have a
limit cycle and are done. If there are singularities, we can perturb S to make
the boundary smooth; and if all the singularities have the same sign, we can
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perform the legendrian boundary trick described above and perturb Q, fixed on
the boundary, to obtain a limit cycle bounding a disc, a contradiction.

Lemma 5.3 Suppose we have a Legendrian polygon which is a (closure of a)
basin B(V ) in a sphere S in a tight (M, ξ), and which is injective except possibly
for identified vertices. Then the boundary Γ has at least one positive hyperbolic
point.

The polygon must be an immersed disc, and by the previous lemma it must
contain at least one positive singular point; it can’t be a positive elliptic (source!)
since it’s a basin, so must be positive hyperbolic.

Lemma 5.4 Suppose we have a Legendrian polygon which is a (closure of a)
basin B(V ) in a sphere in a tight (M, ξ), where d+(V ) = 1. Then any identified
pseudovertices (recall these must be hyperbolic) are negative.

The region V is an embedded disc as in the first lemma above; so we can
cancel positive hyperbolic points in V . Hence we may assume V has e+ = 1,
h+ = 0. So the basin B(V ) has a simple form. Any identified hyperbolic
pseudovertices will form a smooth loop when we join them to our positive hy-
perbolic point in V (after we perturb the Legendrian curve). This loop only
has positive singularities, so we can perturb to get a limit cycle, which bounds
a disc since we’re on a sphere.

In particular, in our case of a sphere S in a tight (M, ξ): if we are looking
at basins B(V ) then what can happen?

(i) The boundary Γ of the basin could be null; then we have the whole of S2;
then extending ϕ is easy.

(ii) The polygon B(V ) could be injective except possibly for identified vertices.
Then from above we have at least one positive hyperbolic point on Γ. We’ll
engulf this for the next extension of Γ and add it to V . Note this joins
together two components of ϕ ≤ C, so if both these regions had d+ = 1,
the new combined region has d+ = 1 + 1− 1 = 1 also.

(iii) The polygon B(V ) could have identified pseudovertices. But we can as-
sume d+(V ) = 1, and so by the above lemma the identified pseudovertices
are negative hyperbolic. We engulf this to extend ϕ, and d+ = 1 still.

This is how we construct ϕ; and that is all I am going to say about the proof
of theorem 2.5 and its corollary theorem 2.4.

6 Finiteness result

So we have proved theorems 2.2 and 2.5. Now theorem 2.3 is not too difficult.
Given M , we want to show that there are only finitely many homotopy classes

of plane fields which can occur as tight contact structures. For any such plane
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field ξ and any 2-dimensional homology class S, we have e(ξ)[S] = 0 (if S is a
sphere) or e(ξ)[S] ≤ −χ(S) (otherwise). How many 2-dimensional cohomology
classes on M are there with satisfying these conditions? Only finitely many.

On the other hand, consider homotopy classes of 2-plane fields on M . Con-
sider in the method of obstruction theory, skeleton by skeleton. Since S2 is
connected and π1(S2) = 1, we can extend over 1-skeleta in only one way. To
extend over 2-skeleta is possible since π1(S2) = 1 but we have many choices
since π2(S2) ∼= Z. For the plane field to be extendable over M we require that
in each 3-cell the boundary obstructions sum (with signs) to 0; so the homotopy
classes of plane fields on the 2-skeleton of M which extend over M is in bijective
correspondence with H2(M). From theorem 2.2, there are only finitely many
such cohomology classes available for e(ξ).

Now suppose we are given ξ on the 2-skeleton. Can ξ be extended over
M as a tight contact structure? By theorem 2.5, and in at most one way, up
to isotopy, on each 3-cell. Hence, being given the homotopy class of ξ on the
2-skeleton determines the homotopy class of ξ as a 2-plane field. So there are
only finitely many possibilities.

7 Cerf

The idea of proving Cerf’s theorem is now easy. If we have an orientation
preserving diffeomorphism f : S3 −→ S3, we want to extend it to B4. The idea
is that f is isotopic to a contactomorphism — this is easy to show, since the
space of tight contact structures on S3 is connected.

Then one needs to show that any contactomorhism of S3 with the standard
tight contact structure extends to B4. This requires some holomorphic curve
methods which refer back to Gromov.

8 Tight contact structures on R3

We can prove theorem 2.7, that all tight contact structures on R3 are isomorphic.
The idea is to exhaust R3 by spheres.

Consider a sphere S in R3. For a tight contact structure ξ we know now
that e(ξ)[S] = 0, and clearly χ(S) = 2; so d+ = d− = 1. Using the elimination
lemma, then, we can perturb our sphere a little to have e+ = e− = 1, h+ = h− =
0. And then the characteristic foliation is standard, just like the unit sphere
in the standard R3! If we perturb a little more, the characteristic foliation is
diffeomorphic to the standard foliation.

So, we can exhaust R3 by a nested sequence of such spheres. Given a tight
contact structure ξ on R3, we will show it isomorphic to the standard ξ0. So take
nested spheres R3 = ∪∞Vk for ξ and R3 = ∪∞Bk for ξ0. For each k, (Bk, ξ0)
and (Vk, ξ) are contactomorphic to the standard unit ball, hence to each other,
by a map hk. Since the space of embeddings of the standard ball to itself is
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connected, we can take each hk to agree with hk−1 on Bk−1
∼= Vk−1. Then

taking their union gives us a contactomorphism of R3.
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