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Translator’s note

My French is not great, but with a dictionary hopefully most of this is accurate.
Any doubts are written in footnotes. All footnotes are mine. Figures and
references can be found in the original.

Introduction

The aim of this paper is to prove that

Theorem 0.1 Let M be a compact orientable 3-dimensional manifold. There
exists on M a contact form, that is a differential form ω such that ω ∧ dω 6= 0
at every point of M .

This theorem answers a question of S.S.Chern [1].
The problem of the existence of a contact form on an open odd-dimensional

manifold has recently (almost) been resolved by Gromov [8]; it is equivalent in
this case to the existence of an “almost-contact structure”, that is a pair (α, β)
of a differential 1-form α and a 2-form β such that α∧ βp 6= 0 at every point of
M (where βp denotes the p’th exterior power of β).

By contrast, almost nothing is known in the case of compact manifolds (see
however Gray [4], who gives the first obstructions to the existence of an almost
contact structure). The theorem announced here thus resolves the first problem
that arises in this direction.

Let us mention also a remarkable theorem of R. Lutz [5], indicating in partic-
ular that, on the sphere S3, there exists a contact form in every homotopy class
of forms without zeroes; the generalisation of this result to compact orientable
3-dimensional manifolds seems easy.

The proof of the main theorem is fundamentally based on the stability prop-
erty of contact structures; this property has been established by Gray [4], in
the framework of the theory of Kodaira–Spencer deformations; I will give an
elementary and geometric proof here, which lends itself particularly well to the
applications.

The two other keys to the proof are Lickorish’s theorem on the structure
of compact orientable 3-dimensional manifolds [6], and the existence of a large
number of contact forms on the solid torus S1 ×D2 (cf. section 4).
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1 Preliminaries

All objects considered are of class C∞.

1.1

Let M be a manifold of dimension n. We denote by T ∗M −→M the cotangent
bundle of M , and by P −→ M the projective bundle associated to T ∗M ; the
fibre Px of P at x ∈M is the projective space of lines of the fibre T ∗xM of T ∗M
at x.

Any section σ (C∞) of P will be called a Pfaffian equation on M ([2]); it is
therefore a sub-bundle of lines of T ∗M ; by passing to the orthogonal, σ defines
a sub-bundle σ̄ of codimension one of the tangent bundle TM .

Let us denote by T ∗0 the complement of the zero section in T ∗M , and by
π : T ∗0 −→ P the canonical projection.

Let σ be a Pfaffian equation on M , and U an open set of M ; a differential
1-form ω, defined and nonzero at each point of U , is called a lift of σ on U if
σ = π ◦ ω on U ; in other words, ω is a section of σ on U without zeroes; again,
the equation ω = 0 defines a bundle σ̄ on U . If ω and ω′ are two lifts of σ on
U , then ω′ = f ω where f is a nonzero function on U .

The existence of a global lift of a Pfaffian equation σ is equivalent to the
triviality of the line bundle σ, that is to the fact that the sub-bundle σ̄ of TM
is tranversally orientable.

1.2

Let V −→ P be the vector bundle of tangent vectors to P , vertical with respect
to the projection P −→M ; if p ∈ P , the fibre Vp of V is the tangent space at p
to the projective space of TxM , where x is the projection of p on M .

Let us denote by Σ the set of sections (C∞) of P .
For each σ ∈ Σ, we write σ∗V for the vector bundle on M which is the

pullback of V by σ : M −→ P ; a section of σ∗V attaches to each point x of M
a vector vertically tangent to P at σ(x): it is an “infinitesimal deformation” of
σ. The space of sections (C∞) of σ∗V will naturally be denoted TσΣ (tangent
space to Σ at σ).

Let ω ∈ T ∗0 , and p = π(ω) ∈ P ; let x be the basepoint of the tangent
covector ω in M . It is clear that the derivative of π at ω defines a surjective
linear function

Tωπ : T ∗xM −→ Vp.

The kernel of Tωπ is the line defined by the vector ω ∈ T ∗xM .
Now let ω be a section of T ∗0 , and σ = π ◦ ω the Pfaffian equation defined

by ω; we will further denote

Tωπ : T ∗M −→ σ∗V

the morphism defined at each point as above.
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1.3

The group Diff(M) of diffeomorphisms of M to itself acts in a natural way on
Σ. In effect, let φ be an automorphism of M , we have the diagram:

T ∗M
T∗φ←− T ∗M

↓ ↓ (↑ ω)

M
φ−→ M

where T ∗φ denotes the automorphism of T ∗M induced from φ by derivation;
T ∗φ leaves invariant the open set T ∗0 , and commutes with scalar multiplication
in T ∗M , therefore passes to a quotient by π, and defines an automorphism of
P , again denoted T ∗φ, such that the following diagram commutes:

P
T∗φ←− P

↓ ↓ (↑ σ)

M
φ−→ M.

If ω (resp. σ) is a section of T ∗M (resp. P ), we set φ∗ω = T ∗φ ◦ω ◦φ (resp.
φ∗σ = T ∗φ ◦ σ ◦ φ); and, if ω is a lift of σ, we have:

φ∗σ = π ◦ φ∗ω. (1)

If nowX is a vector field onM and σ is a Pfaffian equation, the Lie derivative
θ(X)σ of σ with respect to X is a section of σ∗V defined in the following
manner: let φt be the (local) 1-parameter group obtained by integration of X;
in a neighbourhood of each point of M , we have a 1-parameter family σt = φ∗tσ
of Pfaffian equations; we then put

θ(X)σ =
∂σt

∂t
|t=0.

It is clear that if ω is a (local) lift of σ, and X is any vector field, we have,
by 1.2 and formula (1):

θ(X)σ = Tωπ ◦ θ(X)ω

at every point of the open set of definition of ω, where Tωπ is the morphism
defined in 1.2.

Lemma 1.1 Let σt (t ∈ [0, 1]) be a 1-parameter family of Pfaffian equations on
M . Let φt be a 1-parameter family of diffeomorphisms of M . We set σ̇t = ∂σt

∂t ,
and let Xt be the 1-parameter family of vector fields Xt = ∂σt

∂t ◦ φ−1
t . Then, the

following conditions are equivalent:

(a) φ∗tσ0 = σt for all t ∈ [0, 1]

(b) θ(Xt)σt = σ̇t for all t ∈ [0, 1].
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Proof Let us set µt =
(
φ−1

t

)∗
σt; a standard and easy calculation shows that:

∂µt

∂t
=

(
φ−1

t

)∗
[σ̇t − θ(Xt)σt]

where, this time,
(
φ−1

t

)∗
σt represents the action of φ−1

t on the bundle V . The
equivalence between (a) and (b) results immediately. ¥

1.4

Henceforth, the manifold M will always be supposed to be of odd dimension
2p+ 1.

A Pfaffian form ω defined on an open set U of M is called a contact form on
U if ω ∧ dωp 6= 0 at each point of U (where dωp denotes the p’th exterior power
of the exterior differential dω of ω).

A Pfaffian equation σ for M is called a contact structure on M if, for every
open set U of M and every lift ω of σ on U , ω is a contact form on U .

We remark that if ω is a differential form and f is a numerically-valued
function, we have:

ω′ ∧ dω′p = fp+1 ω ∧ dωp where ω′ = fω.

We infer that a Pfaffian equation σ is a contact structure if and only if there
exists a family (Ui, ωi)i∈I where the Ui constitute an open cover of M , and ωi

is a contact form lifting σ over Ui for each i.
A contact structure is therefore a Pfaffian equation of maximal class at each

point (cf. [3]), that is without singularities in the sense of [2].
Based on Darboux’s theorem (see for example [2] or [3]), the giving of a

contact structure on M is equivalent to the giving of an atlas of M such that
the transition functions belong to the pseudo-group of contact transformations
(cf. [4]).

More geometrically, if σ is a contact structure, the sub-bundle σ̄ of TM (see
1.1), considered as a field of contact elements of codimension 1, is as distant
as possible from complete integrability (which is equivalent to the Frobenius
condition ω ∧ dω = 0, where ω is any local lift of σ); this will be made precise
below (remark 2.1).

The condition, for a Pfaffian equation, to be a contact structure is, evidently,
an open condition on the 1-jet of σ at each point; and, if we consider the space
Σ in the C1-topology of Whitney ([2]), the set of contact structures is C1-open
in Σ.

We remark further that a contact structure σ is defined by a global contact
form ω if and only if σ̄ is transversally orientable in TM .

Recall finally that if the manifoldM is of dimension 2p+1, p odd, any contact
structure on M canonically defines an orientation on M (Gray [4], Prop. 2.2.1).

Thus, in dimension 3, the existence problem for a contact structure only
arises in the case of orientable manifolds.
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2 Stability of contact structures

2.1

Always let M be a manifold of odd dimension 2p + 1. Let σ be a Pfaffian
equation on M . We propose to study the equation:

θ(X)σ = τ

where τ is a given section of σ∗V , and where we solve for the vector field X.
We remark first that X 7→ θ(X)σ is a differential operator of order 1 from

the space of vector fields on M to the space TσΣ of sections of σ∗V .
We will consider the restriction of this operator to the subspace of vector

fields which are sections of the bundle σ̄ ⊂ TM .

Proposition 2.1 The operator X 7→ θ(X)σ, restricted to the space of sections
of σ̄, is of order 0, that is, it is defined by a morphism u : σ̄ −→ σ∗V . Further,
u is an isomorphism from σ̄ to σ∗V if and only if σ is a contact structure.

Proof The proposition is of a local nature. We can therefore use the local lift
ω of σ. We then have, by 1.3, for each vector field X:

θ(X)σ = Tωπ ◦ θ(X)ω
θ(X)ω = d(Xyω) +Xydω

where y represents the interior product.
But, if X is a section of σ̄, we have:

Xyω = 0

by definition of ω. Thus

θ(X)σ = Tωπ ◦ (Xydω)

and the first part of the proposition is shown, the morphism u being defined by:

u(ξ) = Tωπ(ξydω).

Now, we remark that the bundles σ̄ and σ∗V have the same dimension 2p.
On the other hand, the kernel of the morphism

Tωπ : T ∗M −→ σ∗V

is, at each point x ∈M , the line defined by ω(x) ∈ T ∗xM , by 1.2.
Finally, for each x ∈ M , the subsapce Sx = {ξydω : ξ ∈ σ̄(x)} lies in the

support of dω at x ([2], I.1.3).
Thus, if u is surjective, Sx is transverse to ω(x) for all x ∈ M . As a result,

dω is of rank 2p at each point, and its support is exactly Sx; therefore ([2], Prop.
I.4.1) dωp 6= 0 at every point, and the support of dωp at x is Sx; by ([2], Prop.
I.1.4.5), ω ∧ dωp 6= 0 at every point, and σ is a contact stucture.

The converse is immediate. ¥
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By the preceding proposition, if σ is a contact structure, and if τ is any
section of σ∗V , there exists a unique vector field X, a section of σ̄, such that
θ(X)σ = τ .

This explains the “infinitesimal stability” of σ. It is remarkable that this
can be established simply by the intermediary of a linear operator.

Remark. The preceding proposition also has the following interpretation,
which represents a characteristic geometric property of contact structures: let
σ be a contact structure and X a nowhere vanishing vector field on a neigh-
bourhood of a point of M , lying in the field of contact elements σ̄; then θ(X)σ
is nonzero. Let S be a hypersurface element transverse to X, and let π be
the projection on S whose fibres are the integral curves of X; for every x, the
projection of σ̄(x) under π is a hyperplane tangent to S at π(x); the fact that
θ(X)σ 6= 0 means that, when x moves along a trajectory of X, the hyperplane
projection of σ̄(x) “pivots” around π(x) (which is fixed).

2.2 Theorem

Theorem 2.2 ([4], Th.5.2.1) Let M be a compact manifold, and σt, t ∈ [0, 1],
be a 1-parameter family of contact structures on M . Then, there exists an
isotopy φt of M such that:

φ∗tσ0 = σt for every t ∈ [0, 1].

Proof We set
σ̇t =

∂σt

∂t

For each t, by proposition 2.1, there exists a unique vector field Xt, which is a
section of σ̄t, such that

θ(Xt)σt = σ̇t.

It is clear that Xt depends differentiably on t; integration of the differential
equation

dx

dt
= Xt(x)

gives the desired isotopy, by lemma 1.3. ¥

2.3 Corollary

Corollary 2.3 (Stability of contact structures). Let M be a compact manifold;
let σ ∈ Σ be a contact structure on M . Then there exists a neighbourhood U of σ
in Σ, in the C1-topology, such that, for all σ′ ∈ U , σ′ is a contact structure and
there exists a diffeomorphism φ of M such that φ∗σ = σ′ (i.e. σ′ is isomorphic
to σ).

In effect, by 1.4, the contact structures form a C1-open set of Σ; it then
suffices to choose a neighbourhood U of σ such that, for all σ′ ∈ U , there exists
a 1-parameter family σt of contact structures, with σ0 = σ and σ1 = σ′, and to
apply the preceding theorem.
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2.4 Remarks

(1) The proof of theorem 2.2, unlike that of Gray ([4]), does not suppose that
the contact structures are representable by global contact forms and, in
particular, does not suppose that the manifold M is orientable.

(2) If ωt denotes a 1-parameter family of contact forms, we obtain, applying
theorem 2.2 to the family σt defined by ωt, an isotopy of M such that

φ∗tω0 = ftωt

where ft denotes for every t a nonzero function on M . It is in general
impossible to find φt such that ft = 1, that is a contact form is not stable.

(3) The argument employed in theorem 2.2 furnishes a particularly simple and
natural proof of Darboux’s theorem:

If ω is a germ of a contact form at the origin of R2p+1, there exist local
coordinates z, x1, . . . , xp, y1, . . . , yp such that:

ω = f

[
dz +

p∑

i=1

xi dyi

]
, f 6= 0.

In effect, we write the Taylor series of order 1 at the origin:

ω = ω0 + ω1 + ω′

where ω0 is a linear form on R2p+1, ω1 a differential form with linear
coefficients, and ω′ a form with coefficients of order greater than or equal
to 2.

We set ω0+ω1 = ω0; ω0 is a form with affine coefficients, which is identified
with 1-jets of ω at the origin; ω0 is evidently contact and, by ([2], Prop.
I.4.3.2), there exist local coordinates for which

ω0 = dz +
p∑

i=1

xi dyi.

We then set
ωt = ω0 + tω′, t ∈ [0, 1].

Applying the argument of 2.2 and the remark 2 above, we obtain a 1-
parameter family φt of germs of difeomorphisms preserving the origin,
such that

φ∗tω0 = ftωt.

Therefore
φ∗1ω0 = f1ω and f1 6= 0.

And, via φ1, ω is written in the required form.
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3 A model for the contact structures transverse
to a closed curve

3.1

We consider the manifold S1 × R2p; we set Γ = S1 × {0}; let the differential
form

ω0 = dθ +
p∑

i=1

(xi dyi − yi dxi)

where dθ represents the fundamental form on S1, and (x1, . . . , xp, y1, . . . , yp)
the natural coordinates on R2p.

We have:

ω0 ∧ dωp
0 = p! 2p dθ ∧ dx1 ∧ dy1 ∧ · · · ∧ dxp ∧ dyp;

thus ω0 is a contact form.
We denote by σ0 the contact structure defined by ω0. The expression for ω0

at any point m ∈ Γ (xi = 0, yi = 0) is ω0(m) = dθ; at this point, the hyperplane
σ̄0(m), defined by the equation dθ = 0, is therefore transverse to Γ.

In general, we will say that a Pfaffian equation σ, defined on a neighbourhood
of Γ in S1 × R2p, is transverse to Γ if σ̄(m) is transverse to Γ at every point
m ∈ Γ.

3.2 Proposition

Proposition 3.1 Let σ be a contact structure defined on a neighbourhood of Γ
in S1 ×R2p, and transverse to Γ. Then there exists a diffeomorphism φ from a
neighbourhood of Γ to a neighbourhood of Γ, leaving fixed each point of Γ, such
that

φ∗σ = σ0.

In other words, the Pfaffian equation

ω0 = dθ +
p∑

i=1

(xi dyi − yi dxi) = 0

represents a model for the germs of contact structures transverse to Γ.

Proof (1) We denote by X the unit vector field tangent to Γ. Then

Xyω0 = ω0(X) = 1 on Γ.

On the other hand, it is clear that: Xydω0 = 0 since

dω0 = 2
p∑

i=1

dxi ∧ dyi.

We will first show that the structure σ admits on a neighbourhood of Γ a
lift ω such that
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(a) Xyω = 1

(b) Xydω = 0.

As σ is transverse to Γ, σ̄ is transversely orientable on a neighbourhood
of Γ; σ thus admits lifts there; whatever lift ω′ is considered, we have
Xyω′ 6= 0 on Γ, by the hypothesis of transverality; we can thus suppose
that conditon (a) is realised for a fixed lift ω′.

We will next find a function f , defined on a neighbourhood of Γ, equal to
1 on Γ, such that conditon (b) is satisfied for ω = fω′. This is equivalent
to Xydω = Xy(fdω′ + df ∧ω′) = f Xydω′ + (Xydf) ω′−ω′(X) df = 0 at
every point of Γ.

But Xydf = 0 since f = 1 on Γ and ω′(X) = 1 by construction.

Thus we obtain
df = Xydω′ = α

at every point of Γ. As Xyα = 0, we trivially verify the existence of a
function f satisfying the above condition at every point of Γ.

(2) We now consider the bundle σ̄, restricted to Γ. As ω is a contact form,
the alternating bilinear form dω defines, for each m ∈ Γ, a symplectic
structure on the fibre σ̄(m).

Similarly, the bundle σ̄0 = S1 × R2p is furnished with a symplectic struc-
ture via dω0.

The bundles σ̄ and σ̄0 are trivial on Γ. On the other hand, we know that
the symplectic forms on R2p form an orbit of the canonical action of the
group GL(2p,R) on

∧2(R2p)∗ (cf. [2], Prop. I.4.2).

We deduce V : the symplectic group being connected, that there exists an
isomorphism

h : σ̄0 −→ σ̄

which, at each point of Γ, exchanges the symplectic structures.

(3) We now furnish the manifold S1 × R2p with any Riemannian metric, and
let exp be the corresponding exponential function.

The restriction

φ0 : σ̄0 −→ S1 × R2p (resp. φ : σ̄ −→ S1 × R2p)

of exp to σ̄0 (resp. σ̄), where σ̄0 and σ̄ always denote bundles with base Γ,
is a diffeomorphism from a neighbourhood of the zero section of σ̄0 (resp.
σ̄) to a neighbourhood of Γ.

Then
ψ = φ ◦ h ◦ φ−1

0

defines a local diffeomorphism leaving fixed each point of Γ.
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Let m ∈ Γ; the tangent space Tm of S1 × R2p at m can be written as

Tm = Dm ⊕ σ̄0(m) on the one hand
Tm = Dm ⊕ σ̄(m) on the other hand

where Dm denotes the tangent at M to Γ.

We verify immediately that the derivative Tψ(m) of ψ at m has the ex-
pression

Tψ(m) = 1Dm
⊕ h.

We then consider the contact structure

σ1 = ψ∗σ.

It admits as a lift the form ω1 = ψ∗ω, and it results from the properties
of ω, dω, h and Tψ at points of Γ that:

ω1 = ω0

and dω1 = dω0

at every point of Γ.

(4) We finally conside the 1-parameter family

ωt = ω0 + t(ω1 − ω0) t ∈ [0, 1].

At each point m ∈ Γ, we have, by (3):

ωt(m) = ω0(m)
dωt(m) = dω0(m).

It follows that the family of Pfaffian equations σt defined by ωt = 0 is a
family of contact structures on a neighbourhood of Γ, and that moreover

σ̇ =
∂σt

∂t
= 0 on Γ, since

∂ωt

∂t
= 0 is zero there.

In applying Proposition 2.1, we thus obtain a 1-parameter family of vector
fields Xt defined on a neighbourohod of Γ in S1 × R2p such that:

Xt(m) = 0 for all m ∈ Γ and all t ∈ [0, 1]
θ(Xt)σt = σ̇t.

By integration of the differential equation dx
dt = Xt(x), we obtain a 1-

parameter family of germs of diffeomorphisms φt leaving fixed the points
of Γ, such that, by lemma 1.3:

φ∗tσ0 = σt.

Then, setting φ = ψ◦φ1 we have φ∗σ = σ0 and the proposition is proved.¥
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Remark. The classification of germs of contact structures transverse to Γ up
to positive isomorphism (i.e. via diffeomorphisms with positive Jacobian, that
is orientation-preserving) is the following:

(i) If p is even, all such germs are positively isomorphic to σ0.

(ii) If p is odd, we have two isomorphism classes, represented by the structures:

dθ ±
p∑

i=1

(xi dyi − yi dxi) = 0.

4 Remarkable contact forms on S1 ×D2

4.1

Let D2 be the unit disc in the plane R2. Let T = S1 ×D2 ⊂ S1 × R2, and let
∂T be the boundary of the solid torus T .

Let ω (resp. ω̃) be a differential form defined on a neighbourhood of ∂T
(resp. of T ); we say that ω̃ is an extension of ω if ω and ω̃ coincide on a
neighbourhood of ∂T .

We propose to establish a criterion for when a contact form ω on a neigh-
bourhood of ∂T is extendable to a contact form ω̃ on T .

Let X be the unit vector field on S1×R2, tangent at each point (a, b) to the
curve S1 × {b}.

Let ω be a differential 1-form on an open set in S1 ×R2; we say the form ω
is invariant if θ(X)ω = 0.

This means that ω is invariant under the group of rotations (θ, x, y) 7→
(θ + α, x, y) of S1 × R2; in other words, if dθ denotes the fundamental form on
S1, an invariant form can be expressed in the following manner:

ω = η + f dθ

where η is a differential form on an open set Ω of R2, and f is a numerically-
valued function on Ω.

In particular, if ω is an invariant form on a neighbourhood of ∂T , η (resp.
f) is a differential form (resp. a function) defined on a neighbourhood of the
circle C = ∂D2 in R2.

Proposition 4.1 Let ω be an invariant differential form on a neighbourhood of
∂T , such that f has no zeroes on C = ∂D2. Then, if ω is contact, it admits an
extension ω̃ over T which is invariant and contact.

4.2

To prove this proposition, (essentially due to R. Lutz) we will use the following
auxiliary result:
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Let ∆ ⊂ R2 be a compact, connected set, with boundary a disjoint union of
finitely many simple closed curves γi, i = 1, . . . , p, without double points.

The domain ∆ is oriented by the 2-form Ω = dx ∧ dy (x, y coordinates on
R2); ∂∆ =

∑p
i=1 γi will denote the oriented boundary of ∆.

Now let µ be a differential 1-form, defined on a neighbourhood of ∂∆ in R2,
such that, if dµ = h dx ∧ dy, we have h > 0 on ∂∆.

Lemma 4.2 The following conditions are equivalent:

(a)
∫

∂∆

µ > 0.

(b) There exists a form µ̃ defined on a neighbourhood of ∆, extending µ (i.e.
µ̃ = µ on a neighbourhood of ∂∆), such that, if dµ̃ = h̃ dx ∧ dy, we have
h̃ > 0 on ∆.

Proof b⇒ a. By Stokes’ theorem, we have
∫

∂∆

µ =
∫

∂∆

µ̃ =
∫

∆

dµ̃ > 0.

a⇒ b. We easily show the existence of a function h̄, C∞ and strictly positive
on ∆, such that:

(1) h̄ = h on a neighbourhood of ∂∆.

(2)
∫
∆
h̄ dx ∧ dy =

∫
∂∆

µ.

Then, the differential form β = h̄ dx∧dy is exact, since H2(∆,R) = 0. Thus
there exists, by De Rham’s theorem and the equality (2), a differential 1-form
α on ∆ such that:

(3) dα = β

(4)
∫

γi
α =

∫
γi
µ for all i = 1, . . . , p.

By (1) and (3), we have

d(µ− α) = dµ− β = 0 in a neighbourhood of ∂∆.

By (4), µ− α is exact on a neighbourhood of γi, for all i; we thus have

µ = α+ dfi

where fi is a function defined on a neighbourhood of γi.
There then exists a function f on ∆ such that f = fi in a neighbourhood of

each γi. It then suffices to set

µ̃ = α+ df

and the lemma is proved. ¥
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4.3 Proof of proposition 4.1

4.3.1

Consider first any invariant form

ω = η + f dθ.

Thus
dω = dη + df ∧ dθ

and
ω ∧ dω = (η ∧ df + f dη) ∧ dθ

since η ∧ dη = 0, η being a differential form in the plane.
The form ω is thus contact if and only if:

η ∧ df + f dη 6= 0 at every point. (1)

At a point where f = 0, (1) is equivalent to

η ∧ df 6= 0.

This implies df 6= 0, thus the set of zeroes of f is a curve; moreover, the
restriction of η to this curve has no zeroes; in particular, if f is zero along a
closed curve γ, we have

∫
γ
η 6= 0.

Note on the other hand that, if f 6= 0, we have the identity

η ∧ df + f dη = f2 d

(
η

f

)
. (2)

4.3.2

Let us now return to the given form ω on a neighbourhood of ∂T in S1 × R2,
invariant and contact.

We may assume f > 0 on C; it suffices to substitute ω for−ω. By hypothesis,
and considering (1) and (2), we have

η ∧ df + f dη = f2 d

(
η

f

)
6= 0 at every point of C.

Let (x, y) be coordinates on R2 such that

d

(
η

f

)
=

1
f2

(η ∧ df + f dη) = h dx ∧ dy with h > 0 on C.

The plane R2 is then oriented by the form dx ∧ dy.
There are two cases to consider:
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(a)
∫

C
η
f > 0 where C = ∂D2 is the oriented boundary of D2.

In this case, we extend f to a function f̃ strictly positive on D2. Then,
setting µ = η

f , we note that dµ is positive on a neighbourhood of C by
hypothesis, and that

∫
∂D2 µ > 0.

By lemma 4.2, there exists a form µ̃ on D2 extending µ, such that dµ̃ is
positive on D2. We set η̃ = f̃ µ̃; it is clear, considering (2), that the form

ω̃ = η̃ + f̃ dθ

answers the question.

(b)
∫

C
η
f ≤ 0.

We consider the form

ω1 = η1 + f1 dθ = −x dy + y dx+
(
r2 − 1

4

)
dθ where r2 = x2 + y2.

We have dω1 = −2 dx ∧ dy + 2r dr ∧ dθ; thus

ω1 ∧ dω1 =
(
−r2 +

1
2

)
dx ∧ dy ∧ dθ.

Let γε be the circle with centre 0, of radius 1
2 + ε (0 < ε < 1√

2
) in the

(x, y) plane. We immediately verify that
∫

γε

η1
f1
−→ −∞ when ε −→ 0.

We fix ε sufficiently small that
∫

C

η

f
−

∫

γε

η1
f1

> 0.

We then consider the annulus ∆ε situated between C and γε. As f (resp.
f1 is strictly positive on C (resp. on γε), there exists a strictly positive
function f̄ on ∆ε extending f and f1. We set

µ =
η

f̄
in a neighbourhood of C

=
η1
f̄

in a neighbourhood of γε.

We have by hypothesis dµ > 0 in a neighbourhood of ∂∆ε, and
∫

∂∆ε
µ >

0. By lemma 4.2, there exists a form µ̃, such that dµ̃ > 0 on ∆ε, and
extending µ. The differential form

ω̃ = f̄ µ̃+ f̄ dθ on S1 ×∆ε

= ω1 on S1 × (
D2 −∆ε

)

then answers the question, and proposition 4.1 is proved.

Remark. Proposition 4.1 represents a particular case of a theorem used by
Lutz to establish the results of [5].
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4.4

We consider the manifold with boundary

N = S1 × S1 × [1,∞) =
{(
eiθ, eiθ′ , r

)
: θ, θ′ ∈ R; 1 ≤ r <∞

}
.

We give N the contact structure defined by the equation

ω0 = dθ + r2 dθ′ = 0.

Note that this is an expression of the “canonical” form ω0 = dθ+x dy−y dx
introduced in 3.1, when using the polar coordinates defined by x+ iy = r eiθ′ .

Now let
φ̄A : S1 × S1 −→ S1 × S1

a unimodular automorphism of the torus in 2 dimensions, defined by

θ = aθ̄ + bθ̄′

θ′ = cθ̄ + dθ̄′

where the matrix A =
[
a b
c d

]
is a unimodular matrix, that is, a, b, c, d ∈ Z and

ad− bc = ±1.
We finally consider the manifold T ∪φ̄A

N obtained by gluing the solid torus
T = S1×D2 and the manifold N along their boundaries, via the diffeomorphism

φ̄A : ∂T = S1 × S1 −→ ∂N = S1 × S1.

Proposition 4.3 There exists on T ∪φ̄A
N a contact form ω̃0 equal to ω0 on

N .

Proof This is a corollary of proposition 4.1. It is effectively clear that the form
defined by

ωA = d
(
aθ̄ + bθ̄′

)
+ r2 d

(
cθ̄ + dθ̄′

)

and contact on

Ṫ = S1 × (
D2 − {0}) =

{(
eiθ̄, x̄+ iȳ = reiθ̄′

)
: θ̄, θ̄′ ∈ R, 0 < r < 1

}

extends the given form ω0 on N .
But ωA =

(
b+ dr2

)
dθ̄′+

(
a+ cr2

)
dθ̄ = η+f dθ̄ is invariant under rotations

in θ̄. More, the polynomial f = a + cr2 is not identically zero; therefore let r0
be such that 0 < r0 < 1 and a + cr20 6= 0; the result is established by applying
proposition 4.1 to ωA and ot the solid torus S1 ×D2

r0
, where D2

r0
denotes the

disc with centre 0 and radius r0. ¥

5 Theorem

Theorem 5.1 Let M be a compact, connected, orintable 3-dimensional mani-
fold. There exists on M a contact form.
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5.1

We first reformulate a result of Lickorish [6].
Always let T = S1×D2 the solid torus in 3 dimensions. A great circle γ ⊂ T

is, by defintion, the graph in T of a function from S1 to D̊2 = interior of D2;
and, any tubular neighbourhood of Γ is differphic to a solid torus.

Let Γ = (γi), i = 1, . . . , p, a finite family of disjoint great circles in T , and
let T = (Ti), i = 1, . . . , p, be a family of compact tubular neighbourhoods of
the γi, such that ti ∩ tj = ∅ if i 6= j. Then T −⋃p

i=1 T̊i (where T̊i = interior of
Ti) is a manifold with boundary, and

∂

(
T −

p⋃

i=1

T̊i

)
=

(
p⋃

i=1

∂Ti

)
∪ ∂T

is the disjoint union of p+ 1 two-dimensional tori.
Finally let T̃0, T̃1, . . . , T̃p be p+ 1 copies of T . Let

φ0 : ∂T̃0 −→ ∂T, φi : ∂T̃i −→ ∂Ti (i = 1, . . . , p)

be diffeomorphisms; we denote by Φ the family φ0, . . . , φp.
We set

MΓ,T ,Φ =

(
T −

p⋃

i=

T̊i

)
∪φ0 T̃0 ∪φ1 T̃1 ∪ · · · ∪φp

T̃p.

Then MΓ,T ,Φ is a compact, connected, orientable 3-dimensional manifold.

Theorem 5.2 (Lickorish [6]). For every compact, connected, orientable 3-
dimensional manifold M , there exists a triple Γ, T ,Φ such that M is diffeo-
morphic to MΓ,T ,Φ.

Remarks.

(1) The family Γ being fixed, we can choose the tubular neighbourhoods Ti

sufficiently small as we like, in the following sense: given any pair (T ,Φ)
associated to Γ, and neighbourhoods Ui of the circles γi, there exists a
pair (T ′,Φ′) with T ′i ⊂ Ui for each i, such that MΓ,T ′,Φ′ is diffeomorphic
to MΓT ,Φ.

(2) Let V be a C1-neighbourhood of the core S1 × {0} of the solid torus T ; I
mean by this a set of great circles which are graphs of functions from S1

to D2 belonging to a given C1-neighbourhood of the zero function. One
easily shows that the previous theorem still holds true if we require that
the families Γ
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5.2

Now suppose that the families Γ and T are fixed. Suppose further we have
diffeomorphisms

ψi : Ti −→ T for all i = 1, . . . , p.

For any family Φ, set

φ̄i = φi ◦ φi : ∂T̃i −→ ∂T i = 1, . . . , p
φ̄0 = φi : ∂T̃0 −→ ∂T.

The family Φ is determined by the family φ̄ = φ̄0, . . . , φ̄p, which is a family
of automorphisms of the 2-dimensional torus.

We know that, if Φ̄ and Φ̄′ are isotopic, that is, for all i = 0, 1, . . . , p, φ̄i

and φ̄′i are isotopic automorphisms of S1 × S1, then MΓ,T ,Φ and MΓ,T ,Φ′ are
diffeomorphic.

Recall finally that any automorphism φ̄ of S1 × S1 is isotopic to a unique
unimodular transformation (for the definition and notation, see 4.4); let A be
the matrix representing the automorphism

φ̄∗ : π1

(
S1 × S1

) −→ π1

(
S1 × S1

)

induced by φ̄ on the fundamental group of the torus; we have π1(S1×S1) = Z2,
and A is a unimodular matrix; then the automorphism φ̄−1

A ◦ φ is homotopic
to the identity, thus is an isotopy (we know that, if S is a compact orienable
surface, the connected component of the identity in Diff(S) consists of the dif-
feomorphisms homotopic to the identity: see for example [7]).

5.3 Proof of theorem 5

(1) Consider on the solid torus T = S1×D2 the “canonical” contact strucutre
σ0 (cf 3.1) defined by

ω0 = dθ + x dy − y dx = 0.

As σ0 is transverse to the core S1×{0} of T , there exists a C1-neighbourhood
V of S1 × {0} such that σ0 is transverse to every great circle of V .

(2) There then exist families Γ, T ,Φ and ψ such that

(a) M is diffeomorphic to MΓ,T ,Φ (by theorem 5.1)

(b) The γi are great circles of V (5.1 remark 2)

(c) ψi : Ti −→ T , i = 1, . . . , p, is a diffeomorphism such that ψ∗i σ0 = σ0,i,
where σ0,i denotes the restriction of σ0 to Ti. This is deduced from
remark 1 of 5.1 and from proposition 3.2, considering (b).

(d) The diffeomorphisms φ̄i, i = 0, . . . , p, are unimodular automorphisms
of the torus S1 × S1 (by 5.2).
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(3) Consider now

M 'MΓ,T ,Φ =
(
T −

⋃
T̊i

)
∪φ̄0

T̃0 ∪φ̄1
T̃1 · · · ∪φ̄p

T̃p.

By (c), (d) and proposition 4.4, the contact structure σ0 on T − ⋃
T̊i

extends to a contact structure on each solid torus Ti, and we have con-
structed a contact structure σ on M .

(4) We easily verify that the contact structure σ thus constructed is transver-
sally orientable; it remains therefore to define a global contact form ω on
M (see 1.4) and the theorem is proved.

5.4 Remarks

(1) We know, by a classical theorem of Haefliger, that in general there does
not exist a differential form which is completely integrable (i.e. ω∧dω = 0
at every point) and analytic on a compact real analytic 3-dimensional
manifold.

(2) By contrast, the existence of an analytic contact form is evident: we must
construct a contact form ω which is at least C∞; the analytic forms being
dense in the set of C∞ forms (furnished with the C1-topology), there exists
an analytic form sufficiently close to ω as also to be contact.

(3) If we effect the construction shown in 5.3 starting from the form

ω′0 = dθ − x dy + y dx

we obtain on M a contact form ω′ such that ω′ ∧ dω′ defines the opposite
orientation to ω ∧ dω (see 3.2 remark).
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