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Abstract

We investigate contact elements in the sutured Floer homology of solid tori, as part of the
(1+1)-dimensional TQFT defined by Honda–Kazez–Matić in [30]. We find that these sutured
Floer homology vector spaces form a “categorification of Pascal’s triangle”, a triangle of vector
spaces, with contact elements corresponding to chord diagrams and forming distinguished subsets
of order given by the Narayana numbers. We find natural “creation and annihilation operators”
which allow us to define a QFT-type basis consisting of contact elements. We show that sutured
Floer homology in this case reduces to the combinatorics of chord diagrams. We prove that contact
elements are in bijective correspondence with comparable pairs of basis elements with respect to a
certain partial order, and in a natural and explicit way. We use this to extend Honda’s notion of
contact category to a 2-category. We also prove numerous results about the structure of contact
elements, investigate various algebraic structures arising, and give numerous contact-geometric
applications and interpretations.
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Part I

Introduction

1 Overview

1.1 Fun with chord diagrams

The main results of this paper can be described as elementary combinatorial results about chord
diagrams, which have applications to contact geometry and sutured Floer homology.

Definition 1.1 (Chord diagram) A chord diagram (D, Γ) is a set of disjoint properly embedded arcs
Γ in a disc D2, considered up to homotopy rel endpoints.

We consider chord diagrams with n chords, and hence 2n marked points on the boundary of the
disc connected in pairs by disjoint chords. We consider one of those marked points on the boundary
to be a base point, so that rotating a chord diagram will generally give a distinct chord diagram.

3



1 OVERVIEW
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Figure 1: Base point and sign of regions.

+ + = 0

Figure 2: The bypass relation.

A chord diagram divides the disc D into regions, which we alternately denote as positive or negative.
The labelling is induced from a labelling on the arcs of ∂D2 between marked points; we declare that
the arc immediately clockwise of the base point is positive, and the arc immediately anticlockwise is
negative. See figure 1.

Remark 1.2 (Denoting base point) The base point will always be denoted by a red dot in our
diagrams.

Definition 1.3 (Relative euler class of chord diagram) The relative euler class of a chord dia-
gram (D, Γ) is the sum of the signs of the regions of D − Γ.

That is, a + region counts as +1 and a − region counts as −1.
We consider a certain vector space generated by chord diagrams.

Definition 1.4 (Combinatorial SFH) The Z2-vector space generated by all chord diagrams of n
chords and euler class e, subject to the bypass relation in figure 2 is called SFHcomb(T, n, e). The
Z2-vector space generated by all chord diagrams of n chords, subject to the same relation, is called
SFHcomb(T, n).

We will show that these combinatorial objects are isomorphic to SFH(T, n, e) and SFH(T, n),
which are objects defined by counting certain holomorphic curves in certain manifolds, in due course.

The bypass relation means that if we have three chord diagrams Γ1, Γ2, Γ3 which are all identical,
except in a sub-disc D′ ⊂ D, on which Γ1, Γ2, Γ3 each contains three arcs in the arrangements shown
in figure 2, then we consider them to sum to zero.

The terminology “bypass” comes from contact geometry. We shall make the contact geometry clear
as we go on, but the idea of “bypasses” here can be considered purely as a type of surgery on a chord
diagram, which we call a “bypass move”.

Definition 1.5 (Arc of attachment) An arc of attachment in a chord diagram (D, Γ) is an em-
bedded arc which intersects the chords Γ at precisely three points, namely, its two endpoints, and one
interior point.

A bypass move is something done along an arc of attachment, and it may be done upwards or
downwards.
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1 OVERVIEW

c

Figure 3: Upwards bypass move.

c

Figure 4: Downwards bypass move.

Definition 1.6 (Bypass moves) Let c be an arc of attachment in a chord diagram (D, Γ).

(i) The upwards bypass move Up (c) along c on (D, Γ) consists of removing a small disc neighbour-
hood of c and replacing it with another disc with chords as shown in figure 3.

(ii) The downwards bypass move Down (c) along c on (D, Γ) consists also of removing a small
neighbourhood of c and replacing it as shown in figure 4.

We see that chord diagrams related by bypass moves naturally come in triples, and such triples are
defined to sum to 0 in SFH .

The main combinatorial result of this paper is to give a nice basis for the vector spaces SFH(T, n, e),
and show that when chord diagrams are decomposed into a sum of basis elements, this decomposition
has certain nice properties. There will be a partial order on this basis, and chord diagrams will
correspond bijectively with pairs of basis elements which are comparable with respect to this partial
order.

For instance, consider SFH(T, 4,−1). This is the vector space generated by the 6 chord diagrams
which have 4 chords and relative euler class −1: see figure 5.

We will show, and it was essentially known previously in [30], that SFH(T, 4,−1) = Z3
2. Our basis

will consist of the three chord diagrams in the top row of figure 5, labelled with the words, respectively:

−−+, −+−, +−−.

Note that they are labelled by words w on {−, +} containing 2 minus signs and 1 plus sign. The
number of such words is

(
3
1

)
; in general, the basis for SFH(T, n + 1, e) will be labelled by words on

{−, +} whose symbols sum to e, and the number of such words is
(
n
k

)
, where k = (n + e)/2.

On this set of words, there is a partial order defined by “all minus signs move right” (or stay where
they are). (In this simple case, it is actually a total order; but this will not be true for words of longer
length. For instance, in SFH(T, 5, 0), we consider the words − + +− and + − −+, which are not
comparable.) Thus,

−−+ � −+− � +− −.

In terms of our basis, the 6 chord diagrams (arranged as in figure 5) are

v−−+ v−+− v+−−

v−−+ + v−+− v−−+ + v+−− v−+− + v+−−.
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Figure 5: Chord diagrams with in SFH(T, 4,−1).

Moreover, there are six pairs of words w1, w2 which are comparable with respect to �, namely three
“doubles”

(−−+,−−+), (−+−,−+−), (+ −−, +−−)

and three less trivial pairs

(− −+,−+−), (−−+, +−−), (−+−, +−−).

And in fact, for each pair, there is precisely one chord diagram having that pair as its first and last
element.

That is, there is a bijection

{Chord diagrams} ↔ {Comparable pairs of words}

given by taking a chord diagram to the first and last basis elements in its basis decomposition.
This is a general fact, and our main theorem. Moreover, this bijection, and its inverse, can be

described explicitly. That is, given a chord diagram, we can algorithmically extract its first and last
basis elements, and they are comparable. Conversely, given two comparable words, we can algorithmi-
cally produce the chord diagram for which those words give its first and last basis elements. We will
also say more about the set of basis chord diagrams that occur in a given chord diagram; as well as
relationships between the various vector spaces SFH(T, n, e).

An information-theoretic note from this result is that a chord diagram of 4 chords can be encoded
in 6 bits, with the redundancy that the first 3 bits form a word lesser than the second 3 bits, with
respect to �. In general, a chord diagram of n + 1 chords can be encoded in 2n bits, with a similar
redundancy.

This particular example, with 4 chords and e = −1, is actually the essence of Honda’s octahedral
axiom [19].

While this result is largely combinatorics, the motivation, notation, methods, and applications
comes from the theory of sutured Floer homology, and contact geometry.

1.2 Sutured Floer homology and contact structures

Remark 1.7 (Notation: the letter Γ) This letter is often used to denote chord diagrams, and also
to denote sutures on sutured manifolds. This is not unusual, because in the present context, both
arise as dividing sets on convex surfaces in contact manifolds; and dividing sets are often denoted Γ.
However, to avoid confusion, for now we shall use the letter Γ to denote chord diagrams; to denote
sutures, we shall use the boldface Γ.
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1 OVERVIEW

We will review the theory of sutured Floer homology more fully in section 3. For the purposes of
introduction, it is sufficient to note four facts about sutured Floer homology.

First, sutured Floer homology theory associates to a sutured manifold (M,Γ) a Z2-vector space
SFH(M,Γ). For present introductory purposes, a sutured manifold can be thought of as a 3-manifold
M with boundary, with some disjoint simple closed curves Γ drawn on the boundary, dividing it into
alternating “positive” and “negative” regions. We will review the definition of SFH in section 3.

In the present paper, we consider our sutured manifold to be a solid torus, with 2n parallel longi-
tudinal sutures. Its sutured Floer homology is known [30] to be Z2n−1

2 .
Second, sutured Floer homology associates to a contact structure ξ on (M,Γ) an element c(ξ) ∈

SFH(−M,−Γ). Here −M and −Γ refer to reversed orientation. A contact structure on a 3-manifold
is a totally non-integrable 2-plane field. When we refer to a contact structure on a sutured 3-manifold
(M,Γ), we require it to be compatible with the sutures Γ, in the sense that the boundary ∂M is convex
with dividing set Γ. Moreover, c(ξ) = 0 if ξ is overtwisted; c(ξ) can only be nonzero if ξ is tight. We
will review the notions of tight and overtwisted, and other relevant contact geometry, more fully in
section 2.

In our case of a solid torus with longitudinal sutures, a tight contact structure can be described by
examining the dividing set on a convex meridional disc of the solid torus, which is a chord diagram
of n chords. By [23] (see also [20], [21] but note [22]), the tight contact structures on (T, n), up to
isotopy rel boundary, are in bijective correspondence with chord diagrams of n chords. That is, there
is exactly one tight contact structure, up to isotopy rel boundary, for each such chord diagram. And,
in a notationally-executed blatant cover-up of the unpleasant reversals of orientation and extra minus
signs, we will write (T, n) to denote the solid torus with 2n longitudinal sutures, after the reversals of

orientation mentioned in the previous paragraph. We still have SFH(T, n) = Z2n−1

2 .
In any case, the upshot is that

we may identify contact elements of SFH(T, n) with chord diagrams of n chords.

Third, sutured Floer homology SFH(M, Γ) splits as a direct sum. This direct sum is over spin-c
structures on (M, Γ).

In our simple case of (T, n), for which SFH(T, n + 1) = Z2n

2 , this sum over spin-c structures
corresponds to a row of Pascal’s triangle.

Theorem 1.8 (Honda–Kazez–Matić [30], Juhász [33]) SFH(T, n + 1) = Z2n

2 and splits as a
sum over spin-c structures

SFH(T, n + 1) = Z
(n
0)

2 ⊕ · · · ⊕ Z
(n

n)
2 .

If ξ is a contact structure on the sutured manifold (T, n+1) with relative euler class e, then its contact

element c(ξ) lies in the summand Z
(n

k)
2 , where k = (e + n)/2.

The relative euler class of a contact structure (evaluated in a meridional disc, which generates
H2(T, ∂T )) is precisely the relative euler class of the corresponding chord diagram. This is an integer
e of the same parity as n, and −n ≤ e ≤ n. The n + 1 possible values of e correspond precisely to the
n + 1 direct summands above. If ξ has relative euler class e, then the corresponding contact element

lies in the summand Z
(n

k)
2 , where k = (e + n)/2, which we denote SFH(T, n + 1, e).

Fourth, an inclusion of sutured manifolds induces a map on SFH [30]. If the inclusion is (M ′,Γ′) →֒
(M,Γ), and a contact structure ξ′′ is specified on (M ′ −M,Γ ∪ Γ′), then this map takes a contact
structure ξ′ on (M ′,Γ′) to the contact structure ξ′∪ ξ′′ on (M,Γ). This is a TQFT-type property, and
we can call it TQFT-inclusion. We will use this principle to describe our basis for SFH , and many
other things besides.

This indicates (but does not explain) the origin of the vector space defined combinatorially in
section 1.1. That the original (holomorphically-defined) vector space SFH , and the combinatorially-
defined vector space SFHcomb, are isomorphic, is not immediately clear. These facts will be explained
later in section 4.

Our main goal, and motivation, in this paper is to answer the question:
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1 OVERVIEW

How do contact elements lie in sutured Floer homology?

We now give some first propositions in this direction. The first, and in our case, in some sense
the “only” relation between contact elements is the bypass relation. This was probably known to the
authors of [30], although the whole of this result was not made explicit. The set of contact elements
in SFH(T, n, e) is not a subgroup under addition, but the extent to which it is closed under addition
describes contact structures which are related by bypass moves, in the following sense.

Proposition 1.9 (Addition of contact elements means bypasses) Suppose a, b ∈ SFH(T, n, e)
are contact elements. Then a + b is a contact element if and only if a, b are related by a bypass move.
If so, then a + b is the third element of their bypass triple.

Recalling the bijection between chord diagrams and tight contact structures on (T, n), we will find
that all chord diagrams / contact elements are distinct in SFH(T, n, e).

Proposition 1.10 (Contact elements are distinct) Two distinct contact structures, or equiva-
lently two distinct chord diagrams, give distinct contact elements of SFH(T, n, e).

The combinatorial version of sutured Floer homology described in section 1.1 seems to have been
known in [30], although it was not made explicit; it also appears to be the origin of Honda’s “contact
category” [19]. In any case, the bypass relation alone does not show that SFH is the combinatorial
object described in section 1.1. But it is.

Proposition 1.11 (SFH is combinatorial) The Z2-vector space SFHcomb(T, n) is isomorphic to
SFH(T, n). The isomorphism SFHcomb −→ SFH takes a chord diagram to the contact element of
the tight contact structure on (T, n) with that chord diagram as its dividing set on a meridional disc.
The isomorphism restricts also to the summands SFHcomb(T, n, e) ∼= SFH(T, n, e).

1.3 Categorification of Pascal’s triangle

If we consider all the sutured Floer homology groups SFH(T, n + 1, e), over all possible n and e, we
can arrange these in a triangle.

SFH(T, 1, 0)
SFH(T, 2,−1) ⊕ SFH(T, 2, 1)

SFH(T, 3,−2) ⊕ SFH(T, 3, 0) ⊕ SFH(T, 3, 2)
· · ·

These Z2-vector spaces are isomorphic respectively to the following.

Z
(0
0)

2

Z
(1
0)

2 ⊕ Z
(1
1)

2

Z
(2
0)

2 ⊕ Z
(2
1)

2 ⊕ Z
(2
2)

2

Z
(3
0)

2 ⊕ Z
(3
1)

2 ⊕ Z
(3
2)

2 ⊕ Z
(3
3)

2

We can think of this as a “categorification of Pascal’s triangle”. Moreover, there are also maps between
these vector spaces with properties analogous to the recursion in Pascal’s triangle. These maps are
denoted

B−, B+ : SFH(T, n) −→ SFH(T, n + 1)
∼= ∼=

Z2n−1

2 −→ Z2n

2

which we may call creation maps, defined by the picture in figure 6 of “creating a chord and adding a
± outermost region near the base point”. They take chord diagrams to chord diagrams, i.e. contact
elements to contact elements.

8
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- +

B− B+

Figure 6: Creation maps B±.

A− A+

Figure 7: Annihilation maps A±.

In the combinatorial definition of SFH , it is clear that this is linear. The fact that it is linear in
bona fide sutured Floer homology comes from its TQFT-inclusion property.

The maps B−, B+ respectively subtract or add 1 to the relative euler class of the chord diagram /
contact structure; so that, restricting to particular summands, B−, B+ respectively define maps

SFH(T, n, e)
B−

−→ SFH(T, n + 1, e− 1), SFH(T, n, e)
B+
−→ SFH(T, n + 1, e + 1)

Z
(n−1

k )
2 −→ Z

(n
k)

2 , Z
(n−1

k )
2 −→ Z

( n
k+1)

2

where k = (n + e− 1)/2.
These two maps “categorify the Pascal recursion”.

Proposition 1.12 (Creation operators, categorification of Pascal) There are creation opera-
tors B± : SFH(T, n, e) −→ SFH(T, n + 1, e± 1) which correspond to “creating” a chord as in figure
6 above. These are injective linear maps and

SFH(T, n + 1, e) = B+ (SFH(T, n, e− 1))⊕B− (SFH(T, n, e + 1)) .

The correspondence to “creating a chord” described in the theorem refers to the TQFT-type inclusion
property of SFH [30]; we will define the operators more precisely in section 4.

Similarly, we can define two Z2-vector space maps

A−, A+ : SFH(T, n + 1) −→ SFH(T, n)
∼= ∼=

Z
2n

2 −→ Z
2n−1

2

which we may call annihilation maps, defined by the “closing off an outermost ± region near the base
point”. See figure 7.

Again, this is clearly linear in the combinatorial version of SFH ; it is also linear as an application
of the TQFT-property of SFH . The map B± corresponds to an inclusion of a solid torus with 2n
boundary sutures, into a solid torus with 2n + 2 boundary sutures, with a specific contact structure
in the thickened torus between them.

9
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The maps A−, A+ respectively subtract or add 1 to the relative euler class of the chord diagram /
contact structure; so that, restricting to these summands, again, we have respectively

SFH(T, n + 1, e)
A−

−→ SFH(T, n, e− 1), SFH(T, n + 1, e)
A+
−→ SFH(T, n, e + 1)

Z
(n

k)
2 −→ Z

(n−1
k−1)

2 , Z
(n

k)
2 −→ Z

(n

k)
2

where k = (n + e− 1)/2.
The creation and annihilation operators satisfy some relations.

Proposition 1.13 (Annihilation operators) There are operators

A± : SFH(T, n + 1, e) −→ SFH(T, n, e± 1)

which correspond to “annihilating” a chord in a chord diagram as in figure 7 above. These are surjective
and satisfy

A+ ◦B− = A− ◦B+ = 1 and A+ ◦B+ = A− ◦B− = 0.

Thus, the A±, B± operators give a categorification of Pascal’s triangle, in the sense of the following
diagram:

Z
(0
0)

2
B−

ւ
A+

ր
A−

տ
B+

ց

Z
(1
0)

2 Z
(1
1)

2
B−

ւ
A+

ր
A−

տ
B+

ց
B−

ւ
A+

ր
A−

տ
B+

ց

Z
(2
0)

2 Z
(2
1)

2 Z
(2
2)

2
B−

ւ
A+

ր
A−

տ
B+

ց
B−

ւ
A+

ր
A−

տ
B+

ց
B−

ւ
A+

ր
A−

տ
B+

ց

Z
(3
0)

2 Z
(3
1)

2 Z
(3
2)

2 Z
(3
3)

2

· · · · · · · · · · · ·

1.4 Basis, words, orderings, and quantum field theory

Denote by v∅ the nonzero element of SFH(T, 1, 0) = SFH(T, 1) = Z2 (the “vacuum”), which corre-

sponds to the unique chord diagram with 1 chord. Then in SFH(T, n + 1, e) ∼= Z
(n

k)
2 there are

(
n
k

)

contact elements of the form
B± B± · · · B± v∅

where there are n+ of the B+’s, and n− of the B−’s, satisfying k = n+, n = n+ +n− and e = n+−n−.
Denote by W (n−, n+) the set of all words of plus and minus signs of length n = n+ + n−, with n−

minus signs and n+ plus signs; equivalently, which sum to e = n+−n−. For every word w ∈W (n−, n+)
there is a corresponding element vw = Bwv∅ ∈ SFH(T, n + 1, e). Here by Bw we denote the string of
B+’s and B−’s corresponding to w. Each vw ∈ SFH(T, n + 1, e) is a contact element, corresponding
to a chord diagram Γw of n + 1 chords and relative euler class e.

Remark 1.14 (Convention with n
−

, n+, n, e, k) Unless mentioned otherwise, we will assume the

relationships between variables n−, n+, n, e, k so that SFH(T, n + 1, e) = Z
(n

k)
2 with basis indexed by

W (n−, n+). That is, they are related by

k = (e + n)/2, e = 2k − n, n+ = k, n = n+ + n−, e = n+ − n−.

The set W (n−, n+) has some orderings:

10
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Definition 1.15 (Lexicographic ordering) There is a total order on W (n−, n+) obtained from re-
garding − as coming before + in the dictionary. This also induces a total order on the elements
vw ∈ SFH(T, n + 1, e) and the chord diagrams Γw.

We will usually read words from left to right, but we note that reading words from right to left also
gives a total lexicographic order.

Definition 1.16 (Partial ordering �) There is a partial order � on W (n−, n+) defined by: w1 �
w2 if and only if, for all i = 1, . . . , n−, the i’th − sign in w1 occurs to the left of (or in the same
position as) the i’th − sign in w2. This also induces a partial order, also denoted �, on the elements
vw ∈ SFH(T, n + 1, e) and the chord diagrams Γw.

Thus the partial order � essentially says “all minus signs move right”. This partial order is the
intersection of lexicographic orderings in both directions.

In any case, � gives a partial order on words w, and also on the corresponding contact elements
vw ∈ SFH(T, n + 1, e) and chord diagrams Γw. It is clear that this is a sub-order of the lexicographic
order, and a partial order.

Note that |W (n−, n+)| =
(

n
n+

)
=

(
n
k

)
, so that there are as many vw ∈ SFH(T, n + 1, e) as the

dimension of SFH(T, n + 1, e). It is in fact a basis.

Proposition 1.17 (QFT basis) There is a basis {vw} of SFH(T, n + 1, e), consisting of the
(
n
k

)

possible contact elements in SFH(T, n + 1, e) obtained by applying creation operators to the nonzero
element v∅ of SFH(T, 1, 0) = Z2. The basis is indexed by words w ∈ W (n−, n+).

The analogy, of course, is with operators for the creation and annihilation of particles in quantum
field theory. We can think of SFH(T, n + 1) as the space generated by “n-particle states”, and each
chord diagram with n + 1 chords and relative euler class e as a particular “n-particle state of charge
e”. The chord diagram with 1 chord, we think of as “the vacuum”. We think of B+ as “creating
a charge +1 particle” and B− as “creating a charge −1 particle”; and similarly, we think of A+ as
“annihilating a charge −1 particle” and A− “annihilating a charge +1 particle”. The bypass relation
can be thought of as “the superposition of two bypass-related states is the third state in their triple”.

The fact that the vw form a basis says that “the space of n-particle states has a basis obtained
by applying creation operators to the vacuum”. This is usual in quantum field theory. However, for
bosons, such creation operators commute; for fermions, they anti-commute; in our case, there is no
commutation relation whatsoever, and any applications of creation operators in different orderings are
independent. Perhaps our particles have “irrational spin”, then.

1.5 Catalan and Narayana numbers

Since our goal is to understand how contact elements / chord diagrams lie in SFH , a simple first
question is: How many contact elements are there in SFH(T, n)?

The number of distinct chord diagrams of n chords is given by the Catalan numbers

Cn =
1

n + 1

(
2n

n

)

of which the first few are:
1, 1, 2, 5, 14, 42, 132, . . .

The Catalan numbers are classical combinatorial objects and have been studied extensively for cen-
turies; they are prolific in combinatorics. For instance, the number of ways of arranging n “open
brackets” ( and n “close brackets” ) meaningfully is Cn; it is not difficult to see that these are in
bijective correspondence with the dividing sets we consider. They can also be defined recursively by
C0 = 1, C1 = 1 and then

Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−1C0.

11
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The number of distinct n-arc tight dividing sets is Cn; thus the contact elements form a distinguished
subset of size Cn, among the 22n−1

elements of SFH(T, n) ∼= Z2n−1

2 .
We can then refine our question, splitting according to relative euler class: How many contact

elements are there in SFH(T, n + 1, e)?
Let this number be Ce

n+1. So there are Ce
n+1 chord diagrams with n + 1 chords and relative euler

class e; and e is an integer of the same parity as n satisfying −n ≤ e ≤ n. It will also be useful to define
Cn+1,k = C2k−n

n+1 = Ce
n+1, following our convention in remark 1.14; so that k is an integer 0 ≤ k ≤ n.

From counting chord diagrams of various relative euler classes, we have

Cn+1 = Cn+1,0 + Cn+1,1 + · · ·+ Cn+1,n = C−n
n+1 + C−n+2

n+1 + · · ·+ Cn
n+1.

Our goal, in more refined form, is to find how these Ce
n+1 elements lie inside this Z2-vector space.

The numbers Cn,k form a triangle, then, which form the Catalan triangle or the Narayana numbers.

C0
1 1

C−1
2 C1

2 1 1
C−2

3 C0
3 C2

3 = 1 3 1
C−3

4 C−1
4 C1

4 C3
4 1 6 6 1

C−4
5 C−2

5 C0
5 C2

5 C4
5 1 10 20 10 1

The Narayana numbers are usually given as Nn,k = Cn,k−1; we have shifted them for our purposes,
since our k is a useful quantity. They have an explicit formula, although we shall not use it:

Nn,k =
1

n

(
n

k

)(
n

k − 1

)

or

Ce
n+1 = Cn+1,k = Nn+1,k+1 =

1

n + 1

(
n + 1

k + 1

)(
n + 1

k

)
.

There is a substantial literature on the Narayana numbers (e.g. [1, 2, 3, 5, 10, 18, 31, 36, 41, 42, 43]);
we will restate some of their basic properties.

Proposition 1.18 (Narayana numbers, Catalan triangle) There is a “Catalan” or “Narayana
triangle” consisting of Cn+1,k = Ce

n+1, satisfying the following relations:

(i) Cn+1 = Cn+1,0 + Cn+1,1 + · · ·+ Cn+1,n.

(ii)

Cn+1,k = Cn,k + Cn,k−1 +
∑

n1+n2=n

k1+k2=k−1

Cn1,k1 Cn2,k2 ,

or equivalently,

Ce
n+1 = Ce−1

n + Ce+1
n +

∑

n1+n2=n

e1+e2=e

Ce1
n1

Ce2
n2

.

One can think of this recursion as a slightly more complicated version of the recursion in Pascal’s
triangle, incorporating the Catalan recursion. In fact, we will also show that there is a “categorification”
of this recursion also, in a certain tenuous sense.

Proposition 1.19 (Categorification of Catalan recursion) There is a “merge operator”

M : SFH(T, n1, e1)⊗ SFH(T, n2, e2) −→ SFH(T, n1 + n2 + 1, e1 + e2)

which, applied to contact elements c(ξ1) ⊗ c(ξ2), gives a contact element obtained by “merging” the
corresponding dividing sets. The operator M reduces to a creation operators B± in the case n1 = 0 or

12
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n2 = 0. Evey contact element in SFH(T, n, e) can be written uniquely as M(c(ξ1), c(ξ2)), where the
c(ξi) are contact elements in SFH(T, ni, ei) for some ni, ei with n1 +n2 = n and e1 + e2 = e. That is,

{
Contact elements
in SFH(T, n, e)

}
= B+

({
Contact elements in
SFH(T, n− 1, e− 1)

})
⊔B−

({
Contact elements in
SFH(T, n− 1, e + 1)

})

⊔
⊔

n1+n2=n

e1+e2=e

M

({
Contact elements
in SFH(T, n1, e1)

}
,

{
Contact elements
in SFH(T, n2, e2)

})

In particular,

SFH(T, n, e) = B+(SFH(T, n− 1, e− 1)) + B−(SFH(T, n− 1, e + 1))

+
∑

n1+n2=n

e1+e2=e

M(SFH(T, n1, e1), SFH(T, n2, e2)).

Note this is by no means a direct sum; the equation simply says that M is surjective onto SFH(T, n, e).
We also have a crucial enumerative result for our main theorem: a bijection between comparable

pairs and chord diagrams.

Proposition 1.20 (Number of comparable pairs) Under the partial ordering � of W (n−, n+),
which indexes the basis elements of SFH(T, n + 1, e), there are precisely Ce

n+1 comparable pairs, i.e.
pairs (w0, w1) with w0 � w1.

1.6 Contact elements and comparable pairs

Our main theorems flesh out the previous enumerative bijection. They describe in some detail how
contact elements lie in SFH(T, n+1, e), giving an explicit bijection between contact elements and com-
parable pairs of words. More precisely, a general superposition of states is determined by decomposing
it in terms of basis vectors and looking at the first and last basis states.

Alternatively, we can think of every state as a morphism from a first state to a last state.

Theorem 1.21 (Minimum/maximum basis vectors of contact element) Writing a contact el-
ement in SFH(T, n + 1, e) as a sum of basis vectors vw, where w ∈W (n−, n+), there is a lexicograph-
ically first vw−

and last vw+ basis vector amongst them. Then for every basis vector vw occurring in
the sum, w− � w � w+. In particular, w− � w+.

Theorem 1.22 (Contact elements and comparable pairs) The map

Φ :

{
Chord

diagrams

}
∼=

{
Contact

structures

}
→

{
Comparable pairs of

words w1 � w2

}

given by taking a contact element v, and sending it to (w−, w+), where vw−
, vw+ are respectively the

first and last basis vectors in the basis decomposition of v, is a bijection.
That is, given any comparable pair w1 � w2, there is precisely one contact element which, when

written as a sum of basis elements, has vw1 as its first and vw2 as its last.

1.7 Moves on chord diagrams and words

The proofs of the main theorems are by an explicit construction. Given w− � w+, we show how to
construct a chord diagram whose decomposition has vw− as its first and vw+ as its last element. Then
by the enumerative bijection of proposition 1.20, this is shown to be a bijection.

We will build up a method for performing bypass moves on basis chord diagrams, in order to turn
any Γw1 into Γw2 , whenever w1 � w2, by upwards bypass moves. And conversely, we will show how to

13
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turn Γw2 into Γw1 by downwards bypass moves. This method will be explicitly analogous to certain
combinatorial moves on the corresponding words.

Indeed, we will consider combinatorial moves on words w ∈ W (n−, n+), consisting of moving certain
blocks of − signs past certain blocks of + signs. We will show that single nontrivial upwards bypass
moves on basis chord diagrams correspond perfectly to certain “elementary moves” on words. And
then we will generalise to show that more complicated moves on words can be achieved by multiple
bypass moves. We will build up to enough machinery to construct bypass moves to take us from any
w1 to w2, for w1 � w2. This will be called the bypass system of the comparable pair w1 � w2. This
bypass system is given explicitly.

Then, we will show that performing all these bypass moves in the opposite direction, gives us a
chord diagram whose decomposition has w1, w2 as first and last elements. This arises from the bypass
relation.

Proposition 1.23 (Bypass system of a comparable pair) Suppose Γ1 � Γ2 are basis chord dia-
grams.

(i) On Γ1, there exists a bypass system FBS(Γ1, Γ2) such that performing upwards bypass moves
on it gives Γ2.

(ii) On Γ2, there exists a bypass system BBS(Γ1, Γ2) such that performing downwards bypass moves
on it gives Γ1.

Proposition 1.24 (Bypass system of a pair, other way) Performing downwards bypass moves
on FBS(Γ1, Γ2) or upwards bypass moves on BBS(Γ1, Γ2) gives the same chord diagram Γ. This Γ
has the property that in its basis decomposition, Γ1 and Γ2 appear, and for every basis element Γ′ in
this decomposition, Γ1 � Γ′ � Γ2. In particular, Γ1 is a total minimum and Γ2 a total maximum, with
respect to �, among all the basis elements occurring in the decomposition.

The proofs of these proposition are based on a correspondence between the following notions, which
we will define in due course.

{
elementary move

on a word

}
↔

{
bypass move

on an attaching arc

}

{
generalised elementary

move on a word

}
↔





bypass moves on the
bypass system of a

generalised attaching arc









nicely ordered sequence of
generalised elementary moves

on a word



 ↔





bypass moves on the
bypass system of a

nicely ordered sequence of
generalised attaching arcs





.

The final correspondence is strong enough to give the constructions in the above two propositions,
explicitly; which in turn give the main theorems.

1.8 Contact geometry, stacking, and bypass triples

Although none of the above mentions any contact geometry, the motivation is contact-geometric.
Chord diagrams represent convex discs; sutured manifolds correspond to boundary conditions for
contact structures; and a bypass move corresponds to attaching a bypass — which is a thickened
half-disc with a particular contact structure — to a convex surface. Our results have not only have
contact-geometric motivation, but contact-geometric application as well.

In particular, there is a construction we will call stacking. Given two chord diagrams Γ0, Γ1, we
form a solid cylinder M(Γ0, Γ1) with sutures on the bottom and top being Γ0 and Γ1. We can ask
whether these sutures correspond to a tight convex boundary of the cylinder: if so, we say Γ1 is
stackable on Γ0. There is a corresponding map on SFH .

14
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Lemma 1.25 (Stackability map) There is a linear map

m : SFH(T, n, e)⊗ SFH(T, n, e) −→ Z2

which takes pairs of contact elements, corresponding to pairs of chord diagrams (Γ0, Γ1), to 0 or 1
respectively as M(Γ0, Γ1) is overtwisted or tight.

The answer to whether M(Γ0, Γ1) is tight, or equivalently when m = 1, is intimately related to
the partial order �; in fact, on basis chord diagrams Γw for w ∈ W (n−, n+), it is a complete answer.
Then we can use this to obtain a result for general chord diagrams.

Proposition 1.26 (Contact interpretation of �) Let w0, w1 ∈ W (n−, n+). Then M(Γw0 , Γw1)
is tight if and only if w0 � w1.

Proposition 1.27 (General stackability) Let Γ0, Γ1 be chord diagrams with n chords and relative
euler class e. Then Γ1 is stackable on Γ0 (i.e. M(Γ0, Γ1) is tight) if and only if the cardinality of the
set {

(w0, w1) :
w0 � w1

Γwi
occurs in decomposition of Γi

}

is odd.

We will show various other properties of m andM:

(i) (Lemma 9.4) m(Γ, Γ) = 1, i.e. M(Γ, Γ) is tight.

(ii) (Lemma 9.5) If Γ0, Γ1 both have an outermost chord γ0, γ1 in the same position, then m(Γ0, Γ1) =
m(Γ0 − γ0, Γ1 − γ1).

(iii) (Lemma 9.6) If Γ0, Γ1 are related by a bypass move then, when placed in the right order, m(Γ0, Γ1)
is tight. (The order is made explicit in lemma 9.6.)

The last lemma relates stackability to bypass moves. In fact, if Γ1 can be obtained from Γ0 by
attaching bypasses on top of Γ0, then we have a construction of M(Γ0, Γ1), along with a contact
structure on the solid cylinder, not just the boundary. Under certain conditions, one can prove that
this contact structure is tight: such questions were considered in [27], and the results of that paper
are applied here. In fact, bypass triples naturally give rise to triples of tight contact solid cylinders.

More generally, we will also show that our explicit construction of bypass moves from Γw1 to Γw2 ,
via the bypass system FBS(w1, w2) for any w1 � w2, when considered as actual contact-geometric
bypass attachments, gives a tight contact structure on M(Γw1 , Γw2). For a given chord diagram Γ
with first and last basis elements Γ−, Γ+, this means that the triple (Γ, Γ−, Γ+) can be considered as
a “multiple bypass” bypass triple, and is a generalisation of a bypass triple. That is:

(i) (Lemma 10.4) m(Γ, Γ−) = m(Γ+, Γ) = m(Γ−, Γ+) = 1.

(ii) (Lemma 11.8) There are tight contact structures on M(Γ, Γ−), M(Γ+, Γ) and M(Γ−, Γ+) ob-
tained by attaching bypasses along the bypass systems FBS(Γ−, Γ+) and BBS(Γ−, Γ+).

1.9 Contact elements are tangled

Finally, we will be able to use the above results to give some more information about contact elements.
We know that their first and last basis elements correspond to comparable words, and that the first and
last basis elements must determine the rest of the decomposition; but what about the basis elements
between them?

First, we will prove that contact elements have a total maximum and minimum. In particular, if Γ
has first and last basis elements v−, v+ corresponding to words w−, w+, then for every vw occurring
in the decomposition of Γ, w− � w � w+. Actually this is part of our main theorem 1.21.

Second, we will prove results about the number of basis elements in a contact element. For a basis
element, this answer is clear: one — itself. In any other case, we will show that the answer is even.
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Proposition 1.28 (Size of basis decomposition) Every chord diagram which is not a basis ele-
ment has an even number of basis elements in its decomposition.

Third, we will exhibit some formulas expressing relations between the basis elements of a contact
element (lemma 11.13):

Γ+ =
∑

Γw∈Γ

[Γ−, Γw] and Γ− =
∑

Γw∈Γ

[Γw, Γ+].

Here Γw ∈ Γ means that the basis chord diagram Γw appears in the decomposition of Γ.
Fourth, and perhaps our main result in this regard, is to show that basis elements of Γ are “tangled

up”, in some sense. We have said that the first and last basis elements v−, v+ of Γ are comparable to
all others in the decomposition. We will show that no other basis elements in Γ have this property.

Theorem 1.29 (Not much comparability) Suppose Γw occurs in the basis decomposition of Γ and
is comparable (with respect to �) with every other basis element occurring in Γ. Then Γw = Γ+ or Γ−.

We can think of this as saying that the basis elements of Γ are “completely tangled”. We cannot
“untangle” the partial ordering among them, at any interior point, in any nice way.

More generally, we will show that for any basis element vw in the decomposition of Γ, other than
v±, the number of basis elements vw′ of Γ such that w′ � w is even; and the number of vw′ with
w � w′ is even also (proposition 11.15). This implies the above theorem.

1.10 Computation by rotation

None of the above gives a good way to compute all contact elements (not just basis elements). One
good way to enumerate them is to use the fact that we may always rotate a chord diagram until there
is an outermost region adjacent to the base point, and then it lies in the image of B±. Such a rotation
gives a linear operator in sutured Floer homology, and we will give a recursive formula (proposition
12.1) for this operator, as well as describing it explicitly (proposition 12.2).

1.11 Reading the symbolic encoding

Our main theorem, from an information theoretic perspective, gives an encoding of a chord diagram of
n+1 chords in 2n bits, with redundancy. And the algorithm described above shows how to reconstruct
a chord diagram from this 2n-bit encoding. But some other properties can be seen directly:

(i) (Lemma 11.2) A chord diagram has an outermost region at the base point, if and only if Γ−, Γ+

begin with the same symbol, if and only if all basis elements of Γ begin with the same symbol.

(ii) (Lemmas 11.3-11.7) Similarly, a chord diagram has an outermost regions at various other loca-
tions, if and only if Γ−, Γ+ have various other properties (ending with the same symbol; having
the j’th − sign not the first in its block; etc.), if and only if all basis elements of Γ have the same
properties.

1.12 A contact 2-category and a simplicial structure

We will also consider interesting algebraic structures which arise in our SFH(T, n, e). Honda has
defined a contact category closely related to SFH . The objects of his category are dividing sets on a
given surface, and the objects are contact structures between them.

One interpretation of our main theorem is that in our simple case (i.e. a disc), the objects of this
category can themselves be viewed themselves as morphisms. For chord diagrams are described by
pairs w0 � w1, and a partial order is nothing more than a category, with � giving the morphisms.
Thus, we can obtain a contact 2-category C(n + 1, e): the objects of Honda’s contact category can be
regarded themselves as its 1-morphisms, and the morphisms of that category become 2-morphisms, or
“morphisms between morphisms”.
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Proposition 1.30 (Contact 2-category) There is a 2-category C(n + 1, e) such that:

(i) its objects are words w ∈W (n−, n+), or equivalently chord diagrams Γw;

(ii) its 1-morphisms are chord diagrams Γ of n + 1 chords with relative euler class e;

(iii) its 2-morphisms Γ0 → Γ1 are contact structures on M(Γ0, Γ1), with (vertical) composition of
given by stacking contact structures.

Honda’s category obeys some of the properties of a triangulated category: there are certain triangles
of morphisms called distinguished, and they obey certain properties. We thus obtain, for each pair
(n+1, e) a 2-category C(n+1, e) which has some of the properties of a triangulated category — and in
a certain fairly trivial sense, even more such properties. It may even be that considering the situation
over all values of n and e, the contact category becomes a 3-category.

We will also show that there is a simplicial structure on the SFH vector spaces forming the various
diagonals of Pascal’s triangle. We note that our creation and annihilation operators A±, B± were
defined at a particular point, namely the base point, but there are many other points. Choosing
other points gives more creation and annihilation operators, with obey the same relations as face
and degeneracy maps in simplicial structures. The associated boundary maps make the categorified
Pascal’s triangle into a double chain complex. We can compute the homology of all the complexes
arising.

Proposition 1.31 (Simplicial structure, Pascal’s double complex) On each diagonal of Pas-
cal’s triangle, there are face and degeneracy maps giving it a simplicial structure, with boundary maps
making each diagonal into a chain complex with trivial homology, and the whole triangle into a double
complex. Its homology is zero, i.e. the complexes are all exact.

1.13 Structure of this paper

We begin in sections 2–3 by giving preliminaries on contact geometry and sutured Floer homology.
In section 2, we recall facts about convex surfaces, contact structures on balls and solid tori, edge-
rounding, and bypasses. In section 3, we recall the definition of sutured Floer homology and briefly
indicate the origin of the computation of theorem 1.8.

In part II, we prove the first elementary results. In section 4, we begin to build up our picture
of SFH groups categorifying Pascal’s triangle. We prove the properties of creation and annihilation
operators, the categorification of Pascal’s triangle recursion, the bypass relation, the result that SFH
is combinatorial, the bijection between chord diagrams and contact elements, and the construction
of a basis. In section 5, we return to enumerative combinatorics, proving the Catalan and Narayana
recursions, and in so doing giving it a pictorial interpretation which allows us to construct an SFH
version of it, hence categorifying the Narayana recursion. We will also analyse the combinatorics of
the partial order �.

Part III contains the bulk of the technical results, and consists of a thorough study of our basis
chord diagrams. In section 6, we show how to construct the chord diagram corresponding to a word,
in multiple ways, giving two useful algorithms. The mechanics of these algorithms describe the chords
in basis diagrams exactly, and are crucial for subsequent results. Section 7 gives the construction of
the bypass systems taking Γw0 to Γw1 , for any w0 � w1. As noted above, we build up some machinery
giving correspondences between combinatorial moves on words and bypass moves on chord diagrams,
of more and more general type. This takes some time, and possibly some tedium, so the reader is
encouraged to skip it on a first reading. However, with this machinery in place, the proof of our main
theorem in section 8 is immediate.

Part IV then turns to contact geometry applications. In section 9 we introduce M(Γ0, Γ1) and
m(Γ0, Γ1) and prove various basic elementary properties. In section 10 we give the result relating
stackability to the partial order �, giving this partial order a contact interpretation. And then in
section 11, we will use this to prove more advanced properties ofM and m, such the number of basis
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elements in a decomposition, and relations within contact elements. In this section we will also give
results on symbolic encoding of various properties of a chord diagram, and generalised bypass triples.

Finally, part V makes some further considerations. In section 12 we introduce the rotation operator,
and compute it, recursively then explicitly. In section 13 we give the simplicial structure on the various
diagonals of the categorified Pascal’s triangle, arising from various creation and annihilation operators;
we also give a symbolic interpretation; and we show how we then make the categorified Pascal’s triangle
into a double complex. And we close with section 14, in which we introduce our contact 2-category
and make some remarks about improving it, and extending our results beyond discs.

2 Contact geometry preliminaries

We recall some basic facts about 3-dimensional contact geometry. In general, the reader is referred to
[8, 24, 25, 34] for general introductions to the subject.

2.1 Fundamental facts

A contact structure ξ on a 3-manifold M is a totally non-integrable 2-plane field. A contact structure
can always be described locally as the kernel of a 1-form α; the non-integrability condition then becomes
α ∧ dα 6= 0 everywhere.

A curve everywhere tangent to ξ is called legendrian. A simple closed legendrian curve C bounding
a surface Σ has a Thurston-Bennequin number tb(C), which is given by how many times ξ rotates
along C, relative to the trivialization of the tangent bundle along C given by Σ.

Contact structures naturally diverge into two types. Overtwisted contact structures are those
which contain an overtwisted disc. An overtwisted disc is an embedded disc bounded by a legendrian
curve with Thurston–Bennequin number 0. The classification of such contact structures is homotopy-
theoretic [6]. A non-overtwisted contact structure is called tight, and their classification is much more
subtle: see, e.g., [14, 15, 16, 20, 21].

An embedded surface Σ in a contact manifold (M, ξ) has a characteristic foliation, which is the
singular foliation given by TΣ∩ξ. The characteristic foliation on a surface in fact determines the germ
of the contact structure along the surface [13].

2.2 Convex surfaces

A fundamental tool for understanding contact structures on 3-manifolds is that of convex surfaces
[13]. A convex surface is an embedded surface Σ in a contact manifold (M, ξ) for which there exists
a contact vector field X transverse to Σ. (A contact vector field is a vector field whose flow preserves
ξ.) If a convex surface has boundary, we usually require it to be legendrian.

Convex surfaces are generic. In particular, every closed embedded surface Σ in M is C∞ close to
a convex surface; if Σ has boundary, we may need to make a C0 perturbation near the boundary.

The dividing set Γ of a convex surface is the subset of Σ where X ∈ ξ; we can think of this as
where “ξ is vertical”. The dividing set of a convex surface is a properly embedded 1-manifold [13]. If
we have a 1-form α for our contact structure, then Γ divides Σ into regions R+, R− where α(X) > 0
or α(X) < 0 respectively. The dividing set “divides” the characteristic foliation in the sense that this
foliation can be directed by a vector field which dilates an area form on R+ and contracts it on R−. In
fact, given a dividing set Γ, any characteristic foliation on Σ which is divided by Γ can be taken to any
other by a C0-small isotopy of Σ in M . Thus, in some sense, the dividing set is what fundamentally
describes the contact structure near the surface.

It’s easy to determine tightness near a convex surface: a convex surface Σ 6= S2 has a tight
neighbourhood if and only if it dividing set has no contractible components; and a convex S2 has a
tight neighbourhood if and only if its dividing set has a single component [13, 20].

For a 3-manifold with boundary, we can assume the boundary is convex, and then the dividing set
will form sutures on the boundary. Hence, given a sutured manifold (M, Γ), we will say that ξ is a

18
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Figure 8: Edge rounding of convex surfaces.

contact structure on the sutured manifold (M, Γ) if ξ is a contact structure such that ∂M is convex
with dividing set Γ.

In the following, we will often consider two convex surfaces Σ1, Σ2 with dividing sets Γ1, Γ2 which
meet along a common boundary C, forming a “corner”. We require this common boundary to be
legendrian. If so, the dividing sets Γ1, Γ2 must “interleave” along C, as shown on the left of figure 8.
The number of intersections |Γ1 ∩C| = |Γ2 ∩C| is precisely half |tb(C)|. We may round the corner to
obtain a smooth surface. The dividing curves then behave as shown on the right of figure 8; we may
think of the rule as “down and to the right; up and to the left”.

2.3 Contact structures on balls and solid tori

The classification of tight contact structures on a ball is simple. We have already seen that on a
convex boundary S2, the contact structure in a neighbourhood is tight if and only if the dividing set
Γ is connected. It is a theorem of Eliashberg that in this case, the space of tight contact structures,
fixed on the boundary sphere, is connected [7].

We next turn to tight contact structures ξ on (T, n), i.e. the solid torus with 2n longitudinal
sutures. We can cut along a convex meridional disc D with legendrian boundary, and obtain a 3-ball.
Then on D, the dividing set ΓD gives a chord diagram. As it turns out, no matter what choice we take
for our convex D, we obtain the same chord diagram: this follows from [21] or [23]. (This is not the
case when the sutures are not longitudes; for other slopes, when Γ has two components, the number
of tight contact structures is related to the continued fraction expansion of the slope: see [20].)

Thus, the contact structure ξ determines the chord diagram ΓD. Conversely, the dividing set ΓD

determines ξ up to contact isotopy. Conversely, any chord diagram ΓD on D, taken as a dividing set,
determines an S1-invariant contact structure ξ on the torus D × S1 = T . Hence there is a bijective
correspondence {

Chord diagrams
with n chords

}
↔

{
Contact structures

on (T, n)

}

Moreover, the dividing set ΓD cuts D into regions with signs, in the same way as noted above in section
1.1. The relative euler class e(ξ) of ξ takes the class of the meridional disc to the number obtained by
summing the euler characteristics of these regions with sign. Since the regions are all discs, we simply
add the number of positive regions and subtract the number of negative regions, giving the “relative
euler class” described in 1.1.
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Figure 9: Possible attaching arcs on a tight ∂B3. We view this as looking at ∂B3 from the outside.

2.4 Bypasses

Our bypass moves come from actual contact geometric objects called bypasses. A bypass is “half an
overtwisted disc”; attaching it to a surface along an attaching arc, above or below, and rounding gives
the surgery on dividing sets we have called an upwards and downwards bypass move. See [20].

We will be interested in bypasses along an attaching arc on a tight 3-ball with convex boundary.
We can ask two questions:

(i) After adding a bypass to the outside of the ball, does it remain tight? Since a bypass is “half an
overtwisted disc”, adding the bypass will often lead to an overtwisted contact structure. However
in some cases we can guarantee it remains tight.

(ii) Does a bypass exist along our attaching arc, inside the manifold? If so, the manifold must remain
tight; a submanifold of a tight contact manifold is again tight.

Topologically, an arc of attachment may be arranged in only two ways on a tight S2 boundary: see
figure 9.

In the first case, the answer to the first question is “yes” and the second question “no”. To see this,
we note that adding a bypass to the outside of the ball has no change on the effect of the topology of
the dividing set; it is still connected. Thus, there is a tight contact structure on the enlarged ball with
the bypass attached. Moreover, the specific contact structure on the enlarged ball, obtained by adding
the bypass (with its standard contact structure) to the pre-existing tight contact structure on the
ball, is again tight. This last sentence is an application of Honda’s mischievously named “right to life
principle”, which essentially says that trivial bypass attachments (i.e. having trivial topological effect
on the dividing set) have trivial effect on the contact structure [23, 26]. The second answer is “no”,
since if such a bypass existed, removing it would lead to a disconnected dividing set, contradicting the
tightness of the contact structure.

In the second case we obtain precisely the opposite answers, and for the same reasons: “no” and
“yes” respectively.

In the first case, we can call the arc of attachment outer, and in the second case inner.

3 Sutured Floer homology preliminaries

3.1 Brief overview of SFH

The theory of sutured Floer homology was introduced by Juhasz in [32]. It is an extension of Heegaard
Floer homology theory [37, 38, 39, 40] for manifolds with boundary. We mention a few basic results
of this theory, and refer to those papers for details and proofs.

Sutured Floer homology is an invariant of a balanced sutured manifold. Following the definitions
of [32], a sutured manifold (M,Γ) is a compact oriented 3-manifold with boundary M , with a set
Γ ⊂ ∂M of disjoint annuli and tori on the boundary. The annuli in Γ have oriented core curves called
sutures. Removing the set Γ from ∂M breaks ∂M −Γ into connected components, which are oriented
so that their boundaries agree with the sutures; in particular, orientations alternate on ∂M as we
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cross a suture. The components of ∂M − Γ are given a sign, positive or negative, respectively as the
normal vector defined by their orientation enters or exits M . The positive and negative components
are denoted R+(Γ) and R−(Γ) respectively.

A sutured manifold (M,Γ) is balanced if it satisfies the following conditions: M has no closed
components; χ(R+(Γ)) = χ(R−(Γ)); and every boundary component of M has an annular suture. (In
particular, there are no toric sutures.)

As in from Heegaard Floer homology, we consider a Heegaard decomposition of our manifold. A
sutured Heegaard diagram is a surface Σ with boundary, with some simple closed curves {α1, . . . , αd}
and {β1, . . . , βd} drawn on it. The set α of αi are pairwise disjoint; and the set β of βi are pairwise
disjoint.

From a sutured Heegaard diagram, one constructs a sutured manifold by taking Σ×I and gluing 2-
handles to αi×{0} and βi×{1}. This is our 3-manifold with boundary M . The sutures are then defined
by the annuli Γ = ∂Σ× I, with oriented core curves ∂Σ× {1/2}. The balanced condition means that
the following conditions hold: |α| = |β| (which we have already implicitly assumed); every component
of Σ\∪αi contains a boundary component of Σ; and every component of Σ\∪ βi contains a boundary
component of Σ. Every balanced sutured manifold has a sutured Heegaard diagram satisfying these
conditions.

Again as in Heegaard Floer homology, one considers the symmetric product Sym d(Σ) = Σd/Sd,
where d = |α| = |β| and Sd is the symmetric group acting by permuting coordinates. If Σ has a complex
structure, then so also does this 2d-manifold. There are two totally real tori Tα = (α1 × · · · ×αd) and
Tβ = (β1 × · · · × βd) in Sym d(Σ).

Given a sutured Heegaard diagram (Σ, α, β), we consider a chain complex CF (Σ, α, β) generated
by Tα ∩ Tβ , which correspond to d-tuples of intersection points of αi and βi, one on each αi and one

on each βi. to define a differential ∂ on this complex, we consider holomorphic curves in Sym d(Σ)
with certain boundary conditions.

First, we consider a more elementary notion. A Whitney disc from x ∈ Tα to y ∈ Tβ is a map

u from the unit disc D ⊂ C into Sym d(Σ) satisfying the following boundary conditions: u(−i) = x;
u(i) = y; u takes the “left side” of ∂D (i.e. with real part ≤ 0) into Tα; and u takes the “right side” of
∂D into Tβ . The set of homotopy classes of such discs is denoted π2(x,y). We consider holomorphic
discs which are Whitney discs.

We need to consider how our Whitney discs intersect the various regions of Σ\(
⋃

αi∪
⋃

βi). There
is a well-defined intersection number with each such region, depending only on the homotopy class of
a Whitney disc. We label the regions of Σ\(

⋃
αi ∪

⋃
βi) as D1, . . . , Dm, and call linear combinations

of the Di domains. To measure the intersection number with a region, we take a random point zi in
each Di; then a Whitney disc has a well-defined intersection number nzi

(u) with each zi. This is the
algebraic intersection number of u with {zi}×Sym d−1(Σ), and it depends only on the homotopy class
of u and the component Di in which zi lies. The domain of u is then D(u) =

∑
nzi

(u)Di; since it
depends only on the homotopy class of u, we may speak of D(φ), where φ ∈ π2(x,y). When we have
a Whitney disc connecting x to y, its domain D has boundary which (algebraically) runs from x to y
along every αi and βi: that is, ∂(∂D∩αi) = (x∩αi)−(y∩αi) and ∂(∂D∩βi) = (x∩βi)−(y∩β−i). A
domain D satisfying these two equalities is called a domain connecting x to y; the set of such domains
is called D(x,y).

For a domain D connecting x to y, we may define M(D) to be the moduli space of holomorphic
Whitney discs with domain D. Our differential will count index-1 families of such discs. Since there
is an R-action on D preserving −i and i, we may quotient an index-1 family of curves by this action
and obtain M̂(D). Our differential ∂ on CF (Σ, α, β) is then defined by

∂x =
∑

y∈Tα∩Tβ

∑

D∈D(x,y)

Index=1

#M̂(D) y.

Our sutured Heegaard diagram is also required to be admissible. An admissible diagram is one for which
every periodic domain has positive and negative coefficients; a domain is periodic if its boundary is a
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sum of closed curves αi and βi (i.e. each arc in each αi and βi covered an equal number of times). One
can show that any balanced sutured Heegaard diagram is isotopic to an admissible one. Admissibility
guarantees that the set of positive domains (i.e. having all coefficients positive) connecting x to y is
finite: since holomorphic discs have positive domains by positivity of intersection, this means that the
above sum is finite.

One can show, using Gromov compactness, that ∂2 = 0. The homology of the complex is called
sutured Floer homology SFH(M,Γ); one can show that it is invariant of the choice of admissible
balanced sutured Heegaard diagram.

3.2 Spin-c structures

We will now briefly explain how SFH splits as a direct sum over spin-c structures.
For our purposes, again following [32], we can regard a spin-c structure on (M,Γ) as a vector field,

satisfying certain boundary conditions, up to homotopy relative to the boundary in the complement
of a ball.

More precisely, we require a vector field on (M,Γ) to point out of M along R+(Γ), in along R−(Γ),
and along the annuli Γ to be tangent to ∂M , as the gradient of the height function S1 × I −→ I. We
will say such a vector field is compatible with Γ. Two vector fields v, w on M , compatible with Γ, are
said to be homologous if there exists an open ball B in the interior of M such that v, w are homotopic
in M −B.

A spin-c structure on (M,Γ) is a homology class of vector fields on M compatible with Γ. We call
the set of such homology classes Spin c(M,Γ). And given s ∈ Spin c(M,Γ), its first chern class c1(s)
is defined as follows. Take a vector field v representing s, and form the perpendicular 2-plane field v⊥.
Then c1(s) = c1(v

⊥) ∈ H2(M ; Z).
Note that c1(s) cannot be any element of H2(M ; Z); since v is compatible with Γ, c1(v

⊥) restricts
to a particular homology class in H2(∂M ; Z). Since c1 only depends only on the homotopy class of
v⊥ over a 2-skeleton, altering v⊥ inside a ball has no effect, and homotopy outside a ball has no effect
either; so that c1(s) is well defined.

Each generator x ∈ Tα ∩ Tβ of CF (Σ, α, β) gives a spin-c structure s(x) as follows. The sutured
Heegaard diagram gives a Morse function f : M −→ R for which Σ is a level set and the α, β curves
are intersections of stable and unstable manifolds with this level set. Moreover, f is easily chosen so
that gradf is compatible with Γ. The point x is a d-tuple of intersection points of αi and βi curves,
one on each curve; and each such intersection point corresponds to a trajectory γx between an index
one and index two critical point of f . Thus x gives a set of pairwise disjoint trajectories of grad f
connecting all the index one and index two critical points of f in pairs. We may modify grad f on
a neighbourhood of each of these trajectories to give a nowhere zero vector field v. Then s(x) is the
spin-c structure represented by v.

Given two points x,y ∈ Tα ∩ Tβ , we may join the corresponding trajectories as γx − γy to obtain
a collection of oriented simple closed curves in M , which we denote ǫ(x,y) ∈ H1(M ; Z). We can then
prove that ǫ(x,y) ∈ H1(M ; Z) is Poincaré dual to s(x)− s(y). Note that ǫ(x,y) can be homotoped to
lie entirely on the α and β curves, and hence corresponds to some curves in Tα ∪ Tβ ⊂ Sym d(Σ). We
note that H1(Σ; Z) = H1(M ; Z) under inclusion, and we may regard ǫ(x,y) ∈ H1(Σ; Z) also.

Now, if s(x) 6= s(y) then ǫ(x,y) 6= 0 ∈ H1(Σ; Z); this curve is not a boundary. But any Whitney
disc connecting x to y must have such a boundary; so there are no Whitney discs in this case, and in
particular, no holomorphic Whitney discs.

Thus, the differential ∂ on CF (Σ, α, β) takes x ∈ Tα ∩ Tβ to points of Tα ∩ Tβ having the same
spin-c structure. Hence SFH splits as a sum over spin-c structures:

SFH(M,Γ) =
⊕

s∈Spin c(M,Γ)

SFH(M,Γ, s).
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3.3 Contact elements and TQFT

We now briefly explain how a contact structure ξ on (M,Γ) gives rise to an element of SFH(−M,−Γ).
If we use Z-coefficients, there is a (±1) ambiguity; but with Z2 coefficients the contact element is a
well-defined single element. Here we follow the definition of Honda–Kazez–Matić in [28], and we only
consider Z2 coefficients. It is an extension of the definition of a contact class in the Heegaard Floer
homology of a closed manifold, as defined in [39] and reformulated in [29].

The central concept in this definition is that of a partial open book decomposition (S, R+(Γ), h) of
a sutured manifold (M,Γ). Here S is a surface with boundary, R+(Γ) ⊂ S is a subsurface and h is
the partial monodromy map, h : S −R+(Γ) −→ S. We first consider S × [−1, 1]/ ∼, thickening S and
taking the quotient by the relation ∼, which identifies all boundary points (x, t) ∼ (x, t′) for x ∈ ∂S
and t, t′ ∈ [−1, 1]: this is the “binding” of the open book.

The manifold M is then given by gluing (x, 1) to (h(x),−1), for x ∈ S − R+(Γ). This manifold
has boundary consisting of R+(Γ) × {1}, which becomes R+(Γ) in the sutured manifold; also (S −
Im (h))×{−1}, which becomes R−(Γ) in the sutured manifold; and their boundaries ∂(R+(Γ))×{1},
∂((S − Im (h))× {−1}, which have been glued together, form the sutures.

Now, we recall Giroux’s theorem [17] (see also [9]) that isotopy classes of contact structures on a
(closed) 3-manifold correspond precisely to open book decompositions modulo positive stabilization. In
their paper [28], Honda–Kazez–Matić extend this result to sutured manifolds and partial open books.

Thus, given a contact structure on (M,Γ), we take a corresponding partial open book decomposi-
tion. A partial open book decomposition then gives rise to a sutured Heegaard splitting along a surface
Σ, obtained by gluing together two “opposite pages” of the partial open book. (In this partial open
book, however, two opposite pages will not usually be homeomorphic surfaces.) We take a basis for
(S, R+(Γ)), which is a set of pairwise disjoint properly embedded arcs ai in S −R+(Γ), so that after
cutting S along the ai, the surface deformation retracts to R+(Γ). From such a basis, it is possible
to obtain some α and β curves on our sutured Heegaard surface, giving rise to a balanced sutured
Heegaard diagram. For α and β curves obtained by their method, there is a canonical pairing between
αi and βi curves, and there is a canonical intersection point x ∈ Tα∩Tβ of each pair near the boundary
of S.

In this construction, it turns out that ∂Σ and ∂(R+(Γ)), which are equal as sets, have opposite
orientation. Thus we end up with x ∈ CF (Σ, β, α), rather than CF (Σ, α, β).

It is then shown that this point x satisfies ∂x = 0, so we may consider x as an element of SFH . How-
ever, because of the orientation issue, it turns out that x ∈ SFH(−M,−Γ). Moreover, for a different
choice of partial open book decomposition or basis curves, this element behaves naturally under cor-
responding isomorphisms of SFH . Thus we may speak of the contact element c(ξ) ∈ SFH(−M,−Γ).

The contact class is known to satisfy various properties, also noted in [28]: for instance, c(ξ) = 0
when ξ is overtwisted, or when the partial monodromy h is not “right-veering”.

In [30], Honda–Kazez–Matić proved that SFH has some of the properties of a topological quantum
field theory. We give a Z2 version.

Theorem 3.1 (Honda–Kazez–Matić [30]) Let (M ′,Γ′) be a sutured submanifold of (M,Γ), and
let ξ be a contact structure on (M − Int (M ′),Γ∪Γ′). Let M − Int (M ′) have m components which are
isolated, i.e. components which do not intersect ∂M . Then ξ induces a natural map

Φξ : SFH(−M ′,−Γ′) −→ SFH(−M,−Γ)⊗ V m,

where V = Z2 ⊕ Z2 = ĤF (S1 × S2). This map has the property that for any contact structure ξ′ on
(M ′,Γ′),

Φξ (c(ξ′)) = c(ξ′ ∪ ξ)⊗ x⊗m,

where x is the contact class of the standard tight contact structure on S1 × S2.

23



4 FIRST OBSERVATIONS IN SFH

Figure 10: Chord diagram with 1 chord.

3.4 Solid tori

Juhasz [33] and Honda–Kazez–Matić [28, 30] have proved theorems to calculate SFH when two sutured
manifolds are glued together in certain ways. One immediate corollary, given in [30], is a computation
of SFH for solid tori with longitudinal sutures. We have seen in the introduction that

SFH(T, n) = Z
2n−1

2

and the direct sum over spin-c structures is

SFH(T, n) = Z
(n−1

0 )
2 ⊕ Z

(n−1
1 )

2 ⊕ · · · ⊕ Z
(n−1

n−1)
2 =

⊕

e

SFH(T, n, e)

The relative euler class of the chord diagram, or contact structure, corresponds precisely to these
summands [28, 30, 33]. Recall that contact structures on (T, n) are in bijective correspondence with
chord diagrams of n chords; and the relative euler class of the contact structure is the relative euler
class of the chord diagram. Thus, a chord diagram Γ with n chords and euler class e gives rise to an
element of SFH(T, n, e). This is theorem 1.8 from section 1.2 in our overview.

Part II

First steps

4 First observations in SFH

4.1 The vacuum

Let us begin by considering the case of (T, 1). We have SFH(T, 1) = SFH(T, 1, 0) = Z2. Contact
elements in SFH(T, 1) correspond to chord diagrams with 1 chord. There are not many of these! See
figure 10.

As we have seen, this corresponds to an S1-invariant contact structure on D2 × S1 with boundary
dividing set / sutures consisting of two longitudinal curves. It is the unique tight contact structure on
this sutured manifold; and it is a standard neighbourhood of a closed legendrian curve. Such a contact
manifold can be contact embedded in the standard contact S3; or even in a slightly smaller sutured
manifold S3 − B3 = B3 with one suture; it is generally true that ĤF (M) = SFH(M −B3,Γ) where
Γ is a single curve on the sphere. In either of these cases, the contact element for the standard contact
structure is nonzero; by Stein fillability of S3, for instance. By TQFT-inclusion, we have the following
lemma.

Lemma 4.1 The contact element of the unique tight contact structure on (T, 1) is the nonzero element
v∅ ∈ Z2 = SFH(T, 1). �

We think of this contact element v∅ as “the vacuum”, in our tenuous quantum field theory inter-
pretation. The vacuum state in quantum field theory is not zero.
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+

B+B−

−

Figure 11: Inclusion of sutured manifolds for B±.

4.2 Creation and annihilation

We have defined orientation and sign conventions on chord diagrams in section 1.1. We now define
creation and annihilation operators properly.

We consider an embedding of (T, n) in (T, n + 1), and a contact structure on (T, n + 1) − (T, n),
in order to use TQFT-inclusion. Such an embedding is given by embedding a disc inside a larger
disc, all times S1. On the intermediate manifold (T, n + 1) − (T, n), which is an annulus times S1

with 2n + 2 longitudinal sutures “on the outside” and 2n longitudinal sutures “on the inside”, we can
specify an S1-invariant contact structure by drawing a dividing set on the annulus, which is assumed
to be convex. We use the following two dividing sets, respectively for positive and negative creation
operators. Note we must mark basepoints; recall these are denoted by a solid red dot.

Definition 4.2 (Creation operators) The ±-creation operators are the Z2-vector space maps

B−, B+ : SFH(T, n) −→ SFH(T, n + 1)

given by TQFT-inclusion, from the inclusion (T, n) →֒ (T, n + 1) together with the contact structures
on (T, n + 1)− (T, n) described by the dividing sets given in figure 11.

Given a contact structure on (T, n), described by a chord diagram Γ of n chords, applying B± to
its contact element gives a chord diagram with (n + 1) chords, as described in the introduction.

Moreover, if Γ has relative euler class e, then after applying B±, we have a chord diagram with euler
class e±1. So B± takes contact elements in SFH(T, n, e) to contact elements in SFH(T, n+1, e±1).

As an aside, note that B+ and B− “create” an extra chord by the “creation” of an extra piece on
our solid torus. But they can also be viewed as “creating” an extra chord by “annihilating” part of
the manifold as shown in figure 12. This is a direct proof that they take tight contact structures to
tight contact structures.

Similarly, we can define annihilation maps corresponding to a similar inclusion of sutured manifolds
(T, n + 1) →֒ (T, n), with certain dividing sets specified on an annulus in (T, n)− (T, n + 1).

Definition 4.3 (Annihilation operators) The ±-annihilation operators are the Z2-vector space
maps A+, A− : SFH(T, n + 1) −→ SFH(T, n) given by TQFT-inclusion, from the inclusion (T, n +
1) →֒ (T, n) together with the contact structures on (T, n) − (T, n + 1) described by the dividing sets
given in figure 13.

It’s clear that A± has the effect on chord diagrams described in the introduction. And A± takes
contact elements in SFH(T, n + 1, e) to contact elements in SFH(T, n, e± 1).

Note that if A+ is applied to a chord diagram with an outermost positive region at the base point,
then we do not obtain a chord diagram, but a diagram with a closed loop. The corresponding contact
structure is overtwisted, and the contact element is zero.
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B+

Figure 12: “Creating by annihilating”.

A−

− +

A+

Figure 13: Inclusion of sutured manifolds for A±.

Again as an aside, A+ and A− actually “annihilate” a chord by the “creation” of an extra piece
on our solid torus. (While we can “create by creating” and “create by annihilating”, we can only
“annihilate by creating” — we cannot “annihilate by annihilating”.)

Note that there are actually “creation” and “annihilation” operators which we can consider, not
just near the basepoint, but in any specific location. We will refer specifically to some of these later;
for now we note that they exist.

It’s also now clear that the creation and annihilation effects have the relations A+◦B− = A−◦B+ =
1 and A+ ◦ B+ = A− ◦ B− = 0, when applied to contact elements. Just place these figures of annuli
together.

4.3 Nontriviality and uniqueness

We can now see that contact classes are distinct and nonzero; this argument also appeared in Honda–
Kazez–Matić [30].

Lemma 4.4 Any tight contact structure ξ on (T, n), corresponding to a chord diagram Γ, has nonzero
contact element c(ξ).

Proof For any such contact element c(ξ), corresponding to a chord diagram Γ, at least one of the
annihilation operators A+ or A− reduces it to a chord diagram with fewer chords (i.e. at most one
of these can create a closed loop). By repeatedly applying annihilation operators in this way we may
reduce the chord diagram to one chord, i.e. the vacuum v∅ 6= 0. The composition of these annihilation
operators is a linear map which takes the c(ξ) to v∅ 6= 0. Hence c(ξ) 6= 0. �

The following argument also appeared in [30]: this is proposition 1.10.

Proposition (Contact elements are distinct) For any two distinct dividing sets Γ1, Γ2 consisting
of n disjoint properly embedded chords, the corresponding contact elements are distinct.
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Figure 14: Chord diagrams in SFH(T, 3, 0).

Proof There is a sequence of annihilation operators which reduces Γ1 to the vacuum state but which,
when applied to Γ2, at some point creates a closed curve in the dividing set. These annihilation
operators might not be applied in the positions of A+, A−, but may be at other positions; we have
noted that there is nothing special about annihilating at the base point. The composition of these
operators takes the contact element c(Γ1) to v∅ but takes c(Γ2) to 0; hence they cannot be equal. �

Remark 4.5 (Chord diagrams / contact elements: lax notation) We will often denote by Γ a
chord diagram, or its corresponding contact element, and drop the notation c(ξ) or the already lax c(Γ).
The meaning should be clear.

4.4 Bypasses and addition

The simplest case for which there is more than one chord diagram is 3 chords and e = 0. Since
SFH(T, 3, 0) = Z2

2 and C0
3 = 3, there are 3 chord diagrams giving 3 distinct elements of Z2

2: see figure
14.

These three dividing sets are related by bypass moves, as described in section 1.1. They form the
simplest possible bypass triple.

The 3 nonzero elements of Z2
2 have the property that the sum of any two of them is equal to the

third; or equivalently in mod 2 arithmetic, the sum of all three is zero. Hence the 3 contact elements
have the same property. Thus in this case, bypasses do mean addition. The result in general follows
from TQFT-inclusion.

Proposition 4.6 Suppose that Γ1, Γ2, Γ3 form a bypass triple. Then Γ1 + Γ2 + Γ3 = 0.
Conversely, suppose three chord diagrams Γ1, Γ2, Γ3 satisfy Γ1 +Γ2 +Γ3 = 0. Then Γ1, Γ2, Γ3 form

a bypass triple.

Proof Suppose Γ1, Γ2, Γ3 form a bypass triple in SFH(T, n, e). Then they are obtained by taking
the three chord diagrams of 3 chords in figure 14, and adding an annulus to the outside of the disc
containing the same diagram. This gives an inclusion of one solid torus inside another, with a contact
structure specified in the intermediate region, and hence by TQFT-inclusion we obtain a linear map
Z2

2 = SFH(T, 3, 0) −→ SFH(T, n, e). Since the sum of the three contact classes in SFH(T, 3, 0) is
zero, after applying this linear map, the sum of Γ1, Γ2, Γ3 is zero also.

For the converse: proof by induction on the number of chords n. For n = 3 it is clear. Note that
if three chord diagrams sum to zero then they all have the same relative euler class. Furthermore, if
the Γi then they are all distinct.

We use the following fact: given any two distinct chord diagrams with n ≥ 3 chords and the same
relative euler class, there exists an annihilation operator, annihilating at some location (possibly not
at the base point), that creates no closed curves on either. If annihilating at every position creates a
closed curve on at least one of the diagrams, then the two chord diagrams consist entirely of outermost
chords, enclosing all positive regions on one chord diagram, and enclosing all negative regions on the
other. Thus the chord diagrams have distinct relative euler class, a contradiction.

Applying this to Γ1 and Γ2, we find an annihilation operator A which reduces the number of chords
by 1, and such that AΓ1, AΓ2 are nonzero. If AΓ1 and AΓ2 are distinct then from linearity of A and
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Γ1 +Γ2 +Γ3 = 0 we find that AΓ3 is also nonzero; and thus we have reduced to a smaller case and are
done by induction. If AΓ1 and AΓ2 are equal, then we have the situation that an annihilation operator
takes two distinct dividing sets and outputs the same dividing set. It follows that the situation must be
as in the diagram below; and hence Γ1, Γ2 are related by a bypass. Annihilating all the other chords,
we reduce to the 3-arc case and we are done. �

This proposition is simply a reformulation of proposition 1.9, which is now also proved. So, the
set of contact elements does not form an additive subgroup; but the extent to which it is closed under
addition precisely describes the existence of bypasses.

4.5 The basis

We now show that the elements vw, for w ∈ W (n−, n+), form a basis for SFH(T, n + 1, e). Recall vw

is obtained from applying B± to v∅ ∈ SFH(T, 1, 0) repeatedly, according to the word w.
We can now prove proposition 1.17:

Proposition (QFT basis) The vw for w ∈W (n−, n+) form a basis for SFH(T, n + 1, e).

Proof First we show the vw are linearly independent. For this suppose that some vw1 + · · ·+vwj
= 0.

Then, to this sum apply a sequence of annihilation operators which undoes the creation operators in
the definition of w1. The composition A of these operators takes ew1 to the vacuum v 6= 0 and every
other vwi

to 0; hence A(vw1 + · · ·+ vwj
) = v∅ = 0, a contradiction.

The number of vw is the number of w ∈ W (n−, n+), which is
(
n
k

)
, which is the dimension of

SFH(T, n + 1, e). Hence they form a basis. �

Moreover, since we now know that contact elements span every SFH(T, n + 1, e), we know that
the creation operators can be refined to maps B± : SFH(T, n, e) −→ SFH(T, n + 1, e ± 1) and the
annihilation operators to maps A± : SFH(T, n + 1, e) −→ SFH(T, n, e± 1); previously we only knew
such refinements on relative euler classes could be done on that part of SFH spanned by contact
elements. Also, the relationships A+ ◦ B− = A− ◦ B+ = 1 and A+ ◦ B+ = A− ◦ B− = 0 are true for
all SFH(T, n, e) as well.

So we have proved proposition 1.13 on annihilation operators. We can also prove proposition 1.12.

Proposition (Categorification of Pascal recursion) B± is injective and

SFH(T, n + 1, e) = B+SFH(T, n, e− 1)⊕B−SFH(T, n, e + 1).

Proof The basis of SFH(T, n + 1, e) consists of elements vw. If w begins with a +, w = +w′,
then vw = B+vw′ ∈ B+SFH(T, n, e − 1). If w begins with a −, w = −w′, then vw = B−vw′ ∈
B−SFH(T, n, e + 1). �

Given any chord diagram / contact element, there is a simple algorithm (actually several simple
algorithms!) to determine its decomposition as a sum of basis elements. This will be described in
detail in section 6. Essentially, there is either an outermost region at the base point, or there is not.
If there is an outermost region, then we can factor out a B± and reduce to a smaller chord diagram.
If there is no such outermost region, then we can perform upwards and downwards bypass moves near
the basepoint to write our chord diagram a sum of two dividing sets, each of which containing an
outermost region at the base point. We can proceed in this way until we reach the vacuum; and at
this point we have our decomposition.

We illustrate with an example: see figure 15.
We can now prove proposition 1.11.

Proposition (SFH is combinatorial) There is an isomorphism

SFHcomb(T, n, e) ∼= SFH(T, n, e).

This isomorphism takes a chord diagram to the contact element of the tight contact structure on (T, n)
with that chord diagram as its dividing set on a meridional disc.
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Figure 15: Decomposition of a basis element. From here we have B−B−B+B+v∅, B−B+B+B−v∅,
B+B−B−B+v∅ and B+B−B+B−v∅, hence v−−++ + v−++− + v+−−+ + v+−+−.

Proof Recall that SFHcomb(T, n, e) is defined as the Z2-vector space generated by appropriate chord
diagrams, say Z2[V ], modulo bypass relations; let the subspace of Z2[V ] generated by bypass rela-
tions be B. There is certainly a map φ : Z2[V ] −→ SFH(T, n, e), taking chord diagrams to the
corresponding contact elements in SFH . Moreover, this map takes B 7→ {0}, and so descends to a
map φ : SFHcomb −→ SFH . Since SFH is generated by chord diagrams, φ is surjective. Now in
SFHcomb(T, n, e), the basis of SFH is not necessarily a basis (yet!), but it is a spanning set: ev-
ery chord diagram can be decomposed, using the bypass relation, as a sum of chord diagrams Γw

for words w ∈ W (n−, n+). Thus the dimension of SFHcomb is ≤
(
n
k

)
, while the dimension of SFH

is
(
n
k

)
. However φ is surjective, so the dimension of SFH must actually be

(
n
k

)
and φ must be an

isomorphism. �

4.6 The octahedral axiom

We now pause briefly to return to the example of SFH(T, 4,−1) = Z3
2 discussed in section 1.1. Recall

we have 6 chord diagrams, 3 basis elements v−−+, v−+− and v+−−, and the 6 contact elements are

v−−+, v−+−, v+−−, v−−+ + v−+−, v−−+ + v+−−, v−+− + v+−−

Thus the 6 contact elements in Z3
2 consist of the 3 basis elements and all sums of them in pairs. We

may consider the elements of Z3
2 as the vertices of a cube with coordinates (x, y, z), with planes through

the origin corresponding to 2-dimensional subspaces and lines through the origin corresponding to 1-
dimensional subspaces. We see that each 2-dimensional subspace generated by two basis elements
(with equations x = 0, y = 0 and z = 0) contains 3 contact elements which form a bypass triple; and
also the subspace x + y + z = 0. Thus, the 6 vertices of the cube which are contact elements contain
between them 4 triangles which are bypass triples. We can thus take these 6 vertices and arrange
them as an octahedron; then 4 of the 8 faces are exact. This is the arrangement which appears in the
octahedral axiom of Honda [19].

One can think of every SFH(T, n, e) as containing contact elements which describe some higher-
order version of the octahedral axiom.
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Γ1 Γ1Γ2 Γ2

+ +

+−

− −

Figure 16: Merging operation.

5 Enumerative combinatorics

In this section we collect some enumerative results that we will need later.

5.1 Catalan, Narayana, and merging

We will not discuss much of the combinatorics in these numbers, and limit ourselves to what we need.
We will define the Catalan numbers recursively by C0 = 1, C1 = 1 and then

Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−1C0. (1)

We will define our (shifted) Narayana numbers Cn+1,k = Ce
n+1 recursively by C0

1 = 1 and

Ce
n+1 = Ce−1

n + Ce+1
n +

∑

n1+n2=n

e1+e2=e

Ce
n1

Ce
n2

(2)

We will show that the number of chord diagrams with n chords satisfies the Catalan recursion, and
the number of chord diagrams with n chords and relative euler class e satisfies the Narayana recursion.
The initial values are clearly right.

One easy way to see this recursion is a merging operation. Given two chord diagrams Γ1, Γ2 with
n1, n2 chords and relative euler classes e1, e2, we can combine them into a larger chord diagram with
n1 + n2 + 1 chords, and relative euler class e1 + e2, as shown in figure 16.

Note the specification of base points. The merging operation is also defined when n1 = 0 or n2 = 0;
in this case the chord diagram added on one side is null; and the operation reduces to the effect of B+

or B−. It’s easy to see that any given chord diagram with at least 2 chords can be expressed as the
merge of two smaller (possibly null) chord diagrams, and in precisely one way.

Counting the number of chord diagrams of n chords without regard to relative euler class gives
the Catalan recursion, where each term CkCn−k counts the number of merged chord diagrams with k
chords in the left diagram and n− k in the right. Doing the same thing but keeping track of relative
euler class, we obtain the Narayana recursion.

And it is now clear from this interpretation that

Cn =
∑

e

Ce
n.

We have now proved proposition 1.18.
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We further note that the “merging” operation precisely describes an inclusion of sutured manifolds
— in this case, (T, n1) ⊔ (T, n2) → (T, n1 + n2 + 1) — together with a contact structure on the
intermediate manifold (T, n1 + n2 + 1) − ((T, n1) ⊔ (T, n2)). Thus TQFT-inclusion applies. Note
SFH((T, n1) ⊔ (T, n2)) = SFH(T, n1)⊗ SFH(T, n2).

Definition 5.1 (Merge operator) The inclusion of sutured manifolds, and contact structure on the
intermediate manifold, described by the merging of two chord diagrams as above, gives a linear map

M : SFH(T, n1)⊗ SFH(T, n2) −→ SFH(T, n1 + n2 + 1)

which restricts to a map

M : SFH(T, n1, e1)⊗ SFH(T, n2, e2) −→ SFH(T, n1 + n2 + 1, e1 + e2)

on each summand.

Having defined M in this way, we see that M restricts to B± when n1 = 0 or n2 = 0. And
our counting argument makes clear that every contact element in SFH(T, n, e) can be written in
precisely one way as M of two contact elements. Since every contact element in SFH(T, n, e) lies in
the image of M , and contact elements span SFH(T, n, e), then the sum of M applied to all appropriate
SFH(T, ni, ei), we must obtain all of SFH(T, n, e). This proves proposition 1.19.

5.2 The baseball interpretation of �

We will give a sporting interpretation of our partial order, which will be useful later.

Definition 5.2 (Word as baseball score) Given a word w ∈ W (n−, n+), call the m’th symbol from
the left the m’th innings. Call the sum of the first m symbols the score after m innings.

Lemma 5.3 (Baseball interpretation of �) Take w0, w1 ∈ W (n−, n+). The relation w0 � w1 is
true if and only if after every innings, w1 has a score higher than (or equal to) w0.

This is a low-scoring version of baseball: in every innings, each team scores ±1 run. If is also a fixed
version of baseball: since w0, w1 ∈ W (n−, n+), the scores at the end of the game, after all n innings,
are equal. In any case, an innings where the lead changes from one team to the other is precisely the
case when the corresponding words are not comparable; these are uninteresting as spectator sport,
unfortunately. Two words are comparable only if they describe a low-scoring, fixed, and uninteresting
baseball game!

Proof If w0 � w1, then w1 can be obtained from w0 by performing the operation of replacing
a substring −+ with +−, in various locations, finitely many times. Every time we perform that
operation, we increase w1’s lead over w0 for one innings where previously the lead did not increase.
After performed all the operations, we have w1 ahead (or equal) at every innings.

Suppose conversely that w0 does not precede w1 in �. Then there is some i for which the i’th −
sign in w1 lies to the left of the i’th − sign in w0. Let the position of the i’th − sign in w1 be m. Then
after m innings, w1 has a lower score than w0. �

5.3 Counting comparable pairs

We consider words w0, w1 ∈W (n−, n+), i.e. of length n with sum e. This is proposition 1.20.

Proposition The number of pairs w0, w1 ∈W (n−, n+) with w0 � w1 is Ce
n+1 = Cn+1,k
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Proof First, there is a bijection between pairs of comparable words of length n with k plus signs,
and functions f : {1, . . . , n +1} −→ {1, . . . , n+ 1} satisfying f(i) ≤ i for all i and taking k + 1 distinct
values. The bijection is described as follows. Given a pair of comparable words w0 � w1, we know
that for all j, the j’th + sign in w0 is to the right of the j’th + sign in w1. We use this to define a
decreasing function.

Insert a + at the start of w0 and w1 to obtain w′
0, w

′
1, so these are now words of length n + 1 with

k + 1 plus signs. For i ∈ {1, . . . , n + 1}, let the number of + signs up to and including the i’th symbol
of w0 be j(i); then define f(i) to be the position of the j(i)’th + sign in w1.

Conversely, given such a function, we can easily reconstruct the words w0, w1. The positions of the
+ signs in w′

1 are precisely the values of f . And the positions of the + signs in w′
0 are precisely those

i for which f(i) jumps, f(i) > f(i− 1).
The number of such functions f : {1, . . . , n+1} −→ {1, . . . , n+1} with k +1 distinct values is well

known to be Nn+1,k+1 = Cn+1,k. �

Part III

Combinatorics of chord diagrams

6 Construction of basis elements

We now examine basis chord diagrams in detail.
On a chord diagram, we have our basepoint. When that chord diagram is a basis chord diagram,

we will also define another sort of base point, which we will call the root point, as well.

6.1 An example

Consider the basis element v−+−++. Suppose we want to draw the corresponding chord diagram.
One way to proceed is to note that by definition v−+−++ = B−(v+−++). Hence there is an

outermost chord which encloses a negative region and which lies immediately to the “left” of the
basepoint; one of its endpoints is the basepoint. If we were to consider removing this outermost
chord, including its endpoints (including the basepoint), and placing a new basepoint to its “left”
(i.e. “jumping over” the location of the previous outermost chord), we should then have v+−++. But
v+−++ = B+(v−++), hence v+−++ has an outermost chord at the base point enclosing a positive
region; this also tell us the location of a chord on v+−++.

We can then repeat. Since v−++ = B−(v++), there must be an outermost chord at the base point
in this new chord diagram, enclosing a negative region; and hence we may locate chord on v−++,
v+−++ and v−+−++. Similarly, we can locate the remaining chords, until we reduce to the vacuum
diagram v∅. See figure 17.

6.2 The base point construction algorithm

This can be formalised into an algorithm to construct the chord diagram of a basis element vw. It will
construct the diagram, starting from the base point; hence the name.

Algorithm 6.1 (Base point construction algorithm) Let w be a word of length n in the symbols
+ and −. Consider a disc with 2n + 2 points marked on the boundary, and one of those marked points
called the base point. Proceed through the word from left to right, and at each stage draw a chord and
move to a new, temporary base point as follows. Once there is a chord ending at a marked point, that
marked point is called used.

(i) If the symbol is −, draw a chord from the current temporary base point to the next unused marked
point anticlockwise (“left” in the diagram) from it. After drawing this chord, move the temporary
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− + −

+ +

Figure 17: Construction of v−+−++.

base point to the next unused marked point in the anticlockwise direction (“left” in the diagram).
(I.e., immediately anticlockwise of the new chord.)

(ii) If the symbol is +, draw a chord from the current temporary base point to the next unused marked
point clockwise (“right”) from it. After drawing this chord, move the temporary base point to
the next unused marked point in the clockwise direction. (I.e., immediately clockwise of the new
chord.)

This constructs n chords connecting 2n marked points. Finally, connect the remaining two marked
points with a chord. The base point returns to its initial position, which is the “permanent” base point.

The stages in the construction of v−+−++ are depicted in figure 17.
The words “left” and “right” to describe directions around a circle may seem horrendously bad as

terminology, only being appropriate near the basepoint, and eventually conflicting around the other
side of the circle! But we will see there is a reason for it, and it does make some sense.

That this produces vw may appear rather obvious, but since the details will be needed later we
provide them. In fact, we will need to describe the mechanics of this algorithm in gruesome detail.

Proposition 6.2 (Base point construction algorithm works) The base point construction algo-
rithm is well-defined; in particular, at every stage of this algorithm, the chord described can be made
disjoint from all previously drawn chords; and uniquely up to homotopy rel endpoints within the disc
minus the previously drawn chords.

Moreover, it actually produces the chord diagram Γw.

First, a little notation.

Definition 6.3 (Labels of marked points relative to basepoint.) We label the 2n + 2 marked
points with integers modulo 2n + 2. The base point is labelled 0 and the numbering proceeds clockwise.
(So the marked point immediately “right” / clockwise of the base point 0 is the point 1.)

Remark 6.4 (Labelling convention) Marked points will always be labelled with respect to the (per-
manent) base point, unless otherwise noted. In the various steps of the base point algorithm, as the
“temporary base point” moves, the numbering of marked points does not change. We will have another
labelling system subsequently, but this one will remain the usual one.

Note that with this choice of labelling, a chord connecting two consecutive points (2j − 1, 2j)
encloses a negative region; while an chord connecting two consecutive points (2j, 2j + 1) encloses a
positive region.

Definition 6.5 (Discrete interval) We define a discrete interval of marked points [a, b] on the circle
to be a set of marked points of the form {a, a + 1, . . . , b}.
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Definition 6.6 (Substring) A substring of a word/string w is a set of adjacent/contiguous symbols
of w.

So, for instance, −+ is a substring of −−+ +−−++ but −−−+ is not.

Definition 6.7 (Block) Maximal substrings of identical symbols are called blocks.

Definition 6.8 (Leading and following symbols) A symbol in w which is the first in its block
(read left to right) we shall call a leading symbol. Non-leading symbols are called following.

Now we can describe the mechanics of the algorithm precisely. We can locate how the temporary
base point moves at each step of the algorithm; and where the chord is drawn at every step. As it
turns out, the odd -numbered marked points serve as useful indicators of where we are up to in the
base point algorithm. We consider the base point construction algorithm for a word w ∈ W (n−, n+),
describing a basis element of SFH(T, n + 1, e), with our usual notation conventions.

Lemma 6.9 (Mechanics of base point construction algorithm)

(i) Consider the stage of the base point algorithm which processes the i’th − sign (1 ≤ i ≤ n−) in
w. Let i+ be the number of + symbols processed up to this point. At this stage:

(a) A chord is drawn with endpoints:

(1− 2i, 2i+) if the present (i.e. i’th) − sign is leading

(1− 2i, 2− 2i) if the present − sign is following

In particular, the chord has an endpoint at the odd-numbered marked point 1− 2i.

(b) The temporary base point then moves to the marked point −2i.

(c) The set of used marked points is the discrete interval [1− 2i, 2i+].

(ii) Consider the stage of the base point algorithm which processes the j’th + sign (1 ≤ j ≤ n+) in
w. Let j− be the number of − signs processed up to this point. At this stage:

(a) A chord is drawn with endpoints:

(−2j−, 2j − 1)if the present (i.e. j’th) + sign is leading

(2j − 2, 2j − 1)if the present + sign is following

In particular, the chord has an endpoint at the odd-numbered marked point 2j − 1.

(b) The temporary base point then moves to the marked point 2j.

(c) The set of used marked points is the discrete interval [−2j−, 2j − 1].

Proof (Of proposition 6.2 and lemma 6.9) Proof by induction on the number of symbols pro-
cessed in w. We consider processing + signs; − signs are obviously similar. The result is clear as
we process the first symbol in w. A leading + sign will “switch sides” and connect a “negatively
labelled”, or “left”, or anticlockwise-of-the-basepoint marked point to a “positively labelled”, “right”
or clockwise-of-the-basepoint marked point. A following + sign will give a chord enclosing a positive
outermost interval clockwise from the temporary base point.

At each stage before termination, the set of used marked points is then as given by 6.9, as is the
temporary base point. Hence the next chord can always be drawn, and uniquely up to homotopy in
the disc (minus the previous chords) rel endpoints. At the final stage before termination, the discrete
interval of used marked points consists of all but two of the marked points; hence the remaining two
must be adjacent, and connecting them is possible (and uniquely up to homotopy in the same way).

That the algorithm produces vw is easily seen by induction on the length of the word. For words
of length 1 (or even 0) it is clear. Let w = sw′ where s is a symbol (i.e. + or −) and w′ is a word
one symbol shorter than w. Then by induction the algorithm applied to w′ produces vw′ ; and it’s also
clear that the algorithm for w produces Bs(vw′) as claimed. �
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6 CONSTRUCTION OF BASIS ELEMENTS

Lemma 6.10 (Existence of root point) The position of the final chord constructed in the base
point construction algorithm only depends on n, e (or equivalently n−, n+) and the final symbol of w.
The final chord encloses an outermost region of sign given by that final symbol, and has an endpoint
at the point numbered 2n+ + 1 = −2n− − 1 = e + n + 1 = e− (n + 1) with respect to the basepoint.

Proof After having processed all symbols, from the previous lemma, the used marked points form
the discrete interval

[−2n−, 2n+ − 1] if the final symbol is a + sign

[1− 2n−, 2n+] if the final symbol is a − sign

Hence if w ends in a +, then the final chord connects the two remaining unused points

(2n+, 2n+ + 1) = (−2n− − 2,−2n− − 1)

and hence encloses an outermost positive region; while if w ends in a −, then the final chord connects

(2n+ + 1, 2n+ + 2) = (−2n− − 1,−2n−)

and encloses an outermost negative region. �

Definition 6.11 (Root point) The marked point numbered 2n+ + 1 = −2n− − 1 = e± (n + 1) with
respect to the basepoint is called the root point.

Remark 6.12 (Denoting root point) In our pictures, the root point will be denoted by a hollow
red dot.

We now see that our terminology of “left” and “right” is not so horrendous after all. For as we
perform the base point algorithm, all chord additions are done so that the discrete interval of used
marked points never crosses the root point; and hence talking about “left” and “right” of the base point
(i.e. anticlockwise and clockwise) never ceases to make sense. We can then define the terminology
properly.

Definition 6.13 (Left/west and right/east side) The marked points forming the discrete interval
[e− n− 1, 0] are called the left side or westside of the circle. The marked points forming the discrete
interval [0, e + n + 1] are called the right side or eastside.

Thus, to move left from the base point is to move anticlockwise; but to move left from the root
point is to move clockwise. We can now use this algorithm to number chords and regions in the chord
diagram Γw corresponding to vw.

Definition 6.14 (Base-± numbering of chords and regions)

(i) The chord created in the base point construction algorithm by processing the i’th − sign of w is
called the base-i’th − chord. It encloses a − region, which is also a region of the completed chord
diagram Γw, which we call the base-i’th − region.

(ii) The chord created in the base point construction algorithm by processing the j’th + sign of w
is called the base-j’th + chord. It encloses a + region, which is also a region of the completed
chord diagram Γw, which we call the base-j’th + region.

Note that every chord has a base-± numbering, except the final one constructed in our algorithm, i.e.
the chord at the root. And every region has a base-± numbering, except the two regions adjacent to
the root point, of which there is one positive and one negative.

We remark that this consideration makes it explicit how the relative euler class of the chord diagram
Γw is e = n+−n−; every− sign creates a− region, and every + sign creates a + region, in the algorithm;
with two regions left at the end, of opposite sign.
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6 CONSTRUCTION OF BASIS ELEMENTS

6.3 The root point construction algorithm

The above algorithm takes a word w and constructs the corresponding chord diagram, starting from
the basepoint, reading w from left to right. But equally, we can construct the chord diagram from the
root point, reading w from right to left. In some sense this is more natural, since the word denotes a
composition of the creation operators B±, and compositions proceed from right to left.

The algorithm is basically identical; except that, because we proceed from the “bottom” of our chord
diagram to the “top”, clockwise and anticlockwise are reversed. However, if we draw our diagrams as
we do, then “left” and “right” are not reversed — and if we choose our labellings of marked points
appropriately, then the various expressions above do not change at all.

Algorithm 6.15 (Root point construction algorithm) We process a word w ∈W (n−, n+), from
right to left. Begin with a disc with 2n + 2 marked points on its boundary, and one of those points
called the root point. At each stage draw a chord and move to a new, temporary root point as follows.

(i) For a − symbol, draw a chord from the current root point to the next unused marked point
clockwise/left from it. After drawing this chord, move the temporary root point to the next unused
marked point in the clockwise/left direction. (I.e., immediately clockwise of the new chord.)

(ii) For a + symbol, draw a chord from the current basepoint to the next unused marked point anti-
clockwise/right from it. After drawing this chord, move the basepoint to the next unused marked
point in the anticlockwise/right direction. (I.e., immediately anticlockwise of the new chord.)

This constructs n chords connecting 2n marked points. Finally, connect the remaining two marked
points with a chord. The root point now moves back to its initial, permanent position.

We remark that there are similar results to proposition 6.2 and lemma 6.9 for this algorithm: it
works, and actually constructs Γw.

We also have root-numberings of chords and regions, which we will need later, in analogy to our
base-numberings.

Definition 6.16 (Root-± numbering of chords and regions)

(i) The chord created in the root point construction algorithm by processing the i’th − sign of w
(from the left) is called the root-i’th − chord. It encloses a − region, which is also a region of
the completed chord diagram Γw, which we call the root-i’th − region.

(ii) The chord created in the base point construction algorithm by processing the j’th + sign of w
(from the left) is called the root-j’th + chord. It encloses a + region, which is also a region of
the completed chord diagram Γw, which we call the root-j’th + region.

Note especially that the root point construction algorithm processes w from right to left : but when
we speak of the root-i’th ± region we are reading w from left to right. This is confusing, but makes
subsequent considerations easier.

Also note that every chord has a root-± numbering, except the chord at the base point. And every
region has a root-± numbering, except the two regions adjacent to the base point, of which there is
one positive and one negative.

Thus, every chord has some numbering, whether from the base or the root.

6.4 Basis decomposition of a chord diagram

We saw in section 4.5 that there is a natural way to expand out a given chord diagram as a sum of
basis elements. We now formalise this procedure. As with constructing basis elements, this algorithm
may be carried out “from the base point” or “from the root point”. The procedure may seem obvious,
from the example, but will actually give us interesting information about the elements that occur in
the decomposition of a chord diagram.
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6 CONSTRUCTION OF BASIS ELEMENTS

Given a diagram Γ with basepoint and root point identified, we label the marked points with respect
to the root point. We will successively obtain sets of chord diagrams

{Γ} = Υ0  Υ1  · · · Υn

where Υk is the set of all diagrams obtained at the k’th stage, and obtained from decomposing the
diagrams in Υk−1. The final set Υn will contain precisely the elements of the basis decomposition of
Γ. In particular, |Υk| > |Υk−1| and

Γ =
∑

Γ′∈Υ0

Γ′ =
∑

Γ′∈Υ1

Γ′ = · · · =
∑

Γ′∈Υn

Γ′.

In fact, each Υk consists of chord diagrams Γw·; each Γw· is the sum of those basis elements of Γ whose
words begin with w.

To make this precise, note that the first k steps of the base point construction algorithm depend
only on the first k symbols of the word w; and the first k steps of the root point construction algorithm
depend only on the last k symbols of w.

Definition 6.17 (Partial chord diagrams) Let w be a word of length k.

(i) The partial chord diagram for w· is a disc with 2n + 2 marked points, including a base and root
point, and the first k chords drawn in processing any word of length n beginning with w in the
base point construction algorithm.

(ii) The partial chord diagram for ·w is a disc with 2n + 2 marked points, including a base and root
point, and the first k chords drawn in processing any word of length n ending in w in the root
point construction algorithm.

The dots in w· and ·w describe “where the rest of the word goes”.
We will label the elements of Υk as Γw·, where w is a word of length k. The chord diagram Γw·

will be the sum of all basis elements of Γ whose words begin with w, and it will contain the partial
chord diagram for w·.

We may think of Γ as corresponding to the empty word, Γ = Γ∅·.

Algorithm 6.18 (Base point decomposition algorithm) Let Υ0 = {Γ} = {Γ∅·}. At the k’th
step, we take Υk−1, and for each element Γw· of Υk−1, corresponding to the word w of length k − 1,
we do the following.

(i) If there exists a word w′ = w+ or w− such that Γw· contains the partial chord diagram for w′·,
then we place Γw· in Υk and name it Γw′·.

(ii) Otherwise, there is no such word. Hence neither of the two chords added in the k’th stage of
the base point construction algorithm for the words w± lie in Γw·. Equivalently, we consider the
location of the base point after k− 1 stages of the base point construction algorithm for w; then,
on the unused disc of Γw, there is no outermost chord at the base point.

We then consider an arc of attachment which runs close to the boundary of the unused disc,
which is centred on the chord emanating from the base point (as shifted after k − 1 stages of
the base point construction algorithm for w), and which has its two ends on the two chords
emanating from the marked points adjacent to the base point on the unused disc. We perform
the two possible bypass moves, obtaining two distinct chord diagrams. One of these contains the
partial chord diagram for w − ·, and the other contains the partial chord diagram for w + ·. We
label them Γw−· and Γw+· and place them in Υk.

This constructs Υk from Υk−1.

It’s clear from the algorithm that the Υk have the desired properties. Precisely, we have the
following.
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7 BYPASS SYSTEMS ON BASIS CHORD DIAGRAMS

Lemma 6.19 For each k, the elements of Υk obtained in the base point decomposition algorithm can
be grouped in some fashion so as to be summable, and they sum to Γ. The basis decomposition of Γw·

contains all the basis elements of Γ whose words begin with w, and contains the partial chord diagram
for w·. The elements of Υn are basis elements and are precisely those occurring in the decomposition
of Γ. �

In fact, to see how to sum the elements of Υ, we bracket them exactly according to how they came from
Υk−1; the decomposition process actually gives us a directed binary tree of chord diagrams, equivalent
to a bracketing. To see that Υn consists of basis elements, note that they contain the partial chord
diagrams for words of length n; this leaves only one possible place for the remaining chord.

We may apply the same idea from the root point rather than the base point. We obtain Υk

containing Γ·w, where w is a word of length k, which is the sum of all basis elements of Γ ending in w.

Algorithm 6.20 (Root point decomposition algorithm) Let Υ0 = {Γ} = {Γ·∅. At the k’th step,
we take Υk−1, and for each element Γ·w of Υk−1, corresponding to the word w of length k − 1, we do
the following.

(i) If there exists a word w′ = −w or +w such that Γ·w contains the partial chord diagram for ·w′,
then we place Γ·w in Υk and name it Γw′ .

(ii) Otherwise, there is no such word. Hence neither of the two chords added in the k’th stage of
the root point construction algorithm for the words ±w lie in Γ·w. Equivalently, we consider the
location of the base point after k − 1 stages of the root point construction algorithm for w; then,
on the unused disc of Γ·w, there is no outermost chord at the base point.

We then consider an arc of attachment which runs close to the boundary of the unused disc, which
is centred on the chord emanating from the base point (as shifted after k−1 stages of the root point
construction algorithm for w), and which has its two ends on the two chords emanating from the
marked points adjacent to the base point on the unused disc. We perform the two possible bypass
moves, obtaining two distinct chord diagrams. One of these contains the partial chord diagram
for · − w, and the other contains the partial chord diagram for · + w. We label them Γ·−w and
Γ·+w and place them in Υk.

This constructs Υk from Υk−1.

Lemma 6.21 For each k, the elements of Υk obtained in the root point decomposition algorithm can
be grouped in some fashion so as to be summable, and they sum to Γ. The basis decomposition of Γ·w

contains all the basis elements of Γ whose words end with w, and contains the partial chord diagram
for ·w. The elements of Υn are basis elements and are precisely those occurring in the decomposition
of Γ. �

7 Bypass systems on basis chord diagrams

7.1 The idea

In this section we will investigate performing multiple bypass moves on basis chord diagrams. We will
show that by using bypasses in a controlled way, we can go from a given basis chord diagram to many
others — in particular, to any other chord diagram to which it is comparable under the partial order
�.

Definition 7.1 (Bypass system) A bypass system on a chord diagram is a finite set of disjoint
nontrivial arcs of attachment.

Here, as usual, a nontrivial arc of attachment is one whose three points of intersection with chords
all lie on distinct chords.
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Figure 18: Upwards move from Γ−−−++++ to Γ−−++−++.

In this section we will prove proposition 1.23, constructing bypass systems FBS(Γ1, Γ2) and
BBS(Γ1, Γ2) that take Γ1 to Γ2 and vice versa. And we will prove proposition 1.24, describing how
performing bypass moves in the opposite direction along such bypass systems gives a chord diagram
with a prescribed minimum and maximum. The construction will be explicit.

This is the bijection between comparable pairs of basis elements, and chord diagrams, claimed in
theorem 1.22. We will prove theorem 1.22 in section 8.

Our approach will be to develop a series of increasingly involved analogies between combinatorial
manipulations on words w ∈ W (n−, n+), and bypass systems on basis chord diagrams Γw. We will
start with single bypass moves, and proceed to general bypass systems.

7.2 A menagerie of examples

We begin with some illustrative examples of increasing difficulty. These illustrate various phenomena
one observes when combining several bypass moves on a chord diagram. We will give a set of attaching
arcs to show how we can take a basis chord diagram to another.

First, we show how to go from Γ−−−++++ to Γ−−++−++. Here we “move the third − sign past
the first two + signs”. Moves like this are called forwards elementary moves and they are obtained by
single upwards bypasses. See figure 18.

Next, we show how to go from the same starting diagram Γ−−−++++ to Γ−++−−++, moving both
the second and third − sign past the first two + signs. This is also a forwards elementary move, and is
obtained from a single upwards bypass. In general, an elementary move consists of taking a string of
contiguous − symbols and moving them to the right, past an adjacent string of contiguous + symbols.
See figure 19.

Note that here we included one bypass move which can be thought of as encoding the instruction
“move the second − sign past the first + sign”. If we think of the − signs as remaining in order,
then in this process, the third − sign must be “brought along for the ride”, past the first + sign as
well. Alternatively, if we “treat the two − signs individually”, and perform one bypass move for each,
respectively encoding the instruction to move them past the first + sign, we obtain figure 20.

We see it gives the same result. This is an instance of a more general phenomenon of redundancy
of bypasses, when they occur in the following arrangements. See figure 21

Next, we show how to go from Γ−−++−−++ to Γ++−−++−−. Here we “move the first and second
− signs past the first and second + signs, and move the third and fourth − signs past the third and
fourth + signs”. There are two forwards elementary moves involved, but in some sense they do not
interfere with each other; this is obtained by two upwards bypasses. See figure 22.

While the position of each of these bypass arcs, taken individually, might seem clear now from
the foregoing, note that there are actually two distinct ways to place them relative to the other. If
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Figure 19: Upwards move from Γ−−−++++ to Γ−++−−++.
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Figure 20: Upwards move from Γ−−−++++ to Γ−++−−++.
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Figure 21: Redundancy of bypasses.
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Figure 22: Upwards moves from Γ−−++−−++ to Γ++−−++−−.
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Figure 23: Upwards moves from Γ−−++−−++ to Γ++++−−−−.

we consider these attaching arcs, placed in the other possible arrangement, we obtain a drastically
different result: we go from Γ−−++−−++ to Γ++++−−−−. See figure 23.

Thus, the relative positioning of bypass arcs in this way corresponds to some sort of “carrying” or
“compounding” phenomenon. Each arc itself moves some string of − signs past some string of + signs.
But if two arcs are in this arrangement, those − signs moved right by the first elementary move are
then carried in the second also. Alternatively, the “treating each − sign individually” approach here,
from Γ−−++−−++ to Γ++++−−−− requires six bypass arcs: 2 for the first − sign, 2 for the second, 1
for the third, and 1 for the fourth. See figure 24.

In general, in the following, we will apply the “take individual care” approach, because it is easier
to formalise, even though the sets of bypass moves so obtained often contain massive redundancy. This
will lead to the notion of the bypass system of a pair of comparable basis chord diagrams.

We will spend the rest of this section formalizing all the above constructions.

7.3 Elementary moves on words

Given a word w, recall we group it into blocks of + and − symbols and hence may write

w = (−)a1(+)b1 · · · (−)ak(+)bk .

Possibly k = 1; possibly a1 = 0; possibly bk = 0. But every other ai and bi is nonzero. So w as written
above has 2k blocks (or 2k − 1 or 2k − 2 blocks if a1 = 0 or/and bk = 0.)
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Figure 24: “Individual care” approach to Γ−−++−−++ → Γ++++−−−−.

We now make a combinatorial definition of moves on words of + and − symbols.

Definition 7.2 (Elementary moves on words) Let w be a word in the symbols {+,−}.

(i) A forwards elementary move consists of taking a contiguous substring of w of the form (−)a(+)b

and replacing it with (+)b(−)a.

(ii) A backwards elementary move consists of taking a contiguous substring of w of the form (+)b(−)a

and replacing it with (−)a(+)b.

Collectively we call these elementary moves.

The effect of an elementary move is therefore to “slide some −’s past some +’s”. The forwards or
backwards nature of the move corresponds to the − signs moving forwards or backwards, as the word
is read from left to right. Note that if w′ is obtained from w by a forwards elementary move, then
w � w′; while if w′ is obtained from w by a backwards elementary move, then w′ � w.

Lemma 7.3 (Number of elementary moves) The word w = (−)a1(+)b1 · · · (−)ak(+)bk has pre-
cisely

a1b1 + a2b2 + · · ·+ akbk

forward elementary moves and
b1a2 + b2a3 + · · ·+ bk−1ak

backward elementary moves, for a total of

a1b1 + b1a2 + a2b2 + · · ·+ bk−1ak + akbk

elementary moves.

Proof For a forward move, we must choose a substring of (−)ai(+)bi for some i of the form (−)A(+)B,
and move them past each other. There are aibi such substrings. For a backward move, we must choose
a substring of (+)bi(−)ai+1 for some i of the form (+)B(−)A, and move them past each other. There
are biai+1 such substrings. �

Definition 7.4 (Denoting elementary moves)

(i) The (i, j) forwards elementary move FE(i, j) moves the i’th − sign (from the left), and all the
minus signs to its right in the same block, to the position immediately to the right of the j’th +
sign (from the left).
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Figure 25: General basis chord diagram (−)a1 · · · (+)bk .

(ii) The (i, j) backwards elementary move BE(i, j) moves the j’th + sign (from the left), and all
the plus signs to its right in the same block, to the position immediately to the right of the i’th −
sign (from the left).

Note that we must have 1 ≤ i ≤ n− and 1 ≤ j ≤ n+ in this definition. But for i, j satisfying these
inequalities, FE(i, j) is not always defined; FE(i, j) is only defined if the i’th − sign is to the left of
the j’th + sign, and the j’th + sign lies in block of + symbols to the immediate right of the block
with the i’th − sign. For any pair (i, j), at most one of FE(i, j) or BE(i, j) can be defined.

7.4 Anatomy of attaching arcs on basis chord diagrams

We now give a complete description of attaching arcs on basis chord diagrams. As it turns out, these
correspond in a precise way to elementary moves on words. Again writing a word w as

w = (−)a1(+)b1 · · · (−)ak(+)bk ,

the corresponding chord diagram Γw is as shown in figure 25.

Lemma 7.5 (Number of arcs of attachment) There are precisely

a1b1 + b1a2 + a2b2 + · · ·+ bk−1ak + akbk

topologically distinct possible nontrivial arcs of attachment for Γw. (We consider arcs of attachment
to be topologically equivalent if they are homotopic in the disc, subject to the constraint that the three
intersection points must lie on chords.)

Proof The proof is based on the observation that the non-outermost chords neatly compartmentalise
the disc into pieces.

We will give the proof when a1 6= 0 and bk 6= 0; the cases where one or both of these are zero is
similar. An arc of attachment intersects the chord diagram Γw in three points; for a nontrivial arc
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of attachment, the middle of these must lie on a non-outermost chord. There are precisely 2k − 1
non-outermost chords, corresponding to the 2k − 1 leading symbols in w (other than the very first
symbol). Let these non-outermost chords be c1, d1, c2, d2, . . . , ck−1, dk−1, ck, respectively from base to
root. We count the number of nontrivial arcs of attachment with its middle intersection point lying
on each of these 2k − 1 chords.

So ci separates two regions; one of these (towards the base) has boundary with ai other components
of Γw; and the other (towards the root) has boundary with bi other components of Γw. Thus there
are aibi possible arcs of attachment centred on ci.

Similarly, di separates two regions; one of these (towards the base) has boundary with bi other
components of Γw; the other (towards the root) has boundary with ai+1. This gives biai+1 possible
arcs of attachment centred on di. �

Suspiciously, the number of elementary moves on w equals the number of nontrivial arcs of attach-
ment on Γw. There is indeed a nice bijection between them.

Definition 7.6 (Prior and latter chords of arc of attachment) Given an arc of attachment, con-
sider the chords on which its endpoints lie.

(i) The chord which was created first in the base point construction algorithm, we call the prior chord
of the arc.

(ii) The chord created later, we call the latter chord of the arc.

A nontrivial arc of attachment on a disc intersects three distinct chords which are adjacent to four
distinct regions; two of these do not intersect the arc at all.

Definition 7.7 (Outer regions of an arc of attachment) Let (D, Γ) be a chord diagram and c an
arc of attachment. The two regions of D−Γ which are adjacent to chords intersecting c, but which do
not themselves intersect c, are called the outer regions of c.

(i) The outer region of c adjacent to its prior chord is called the prior outer region of c.

(ii) The outer region of c adjacent to its latter chord is called the latter outer region of c.

Note that the prior outer region and latter outer region necessarily have different signs. Considering
the signs of these regions will be useful.

Definition 7.8 (Forwards and backwards arcs of attachment)

(i) An arc of attachment whose prior outer region is negative (and latter outer region positive) is
called a forwards arc of attachment.

(ii) An arc of attachment whose prior outer region is positive (and latter outer region negative) is
called a backwards arc of attachment.

Now, for any nontrivial arc of attachment, the prior outer region is certainly not adjacent to the
root point, and the latter outer region is not adjacent to the base point. Hence we may make the
following definition.

Definition 7.9 (Denoting forwards and backwards arcs of attachment)

(i) The forwards attaching arc whose prior outer region is the base-i’th − region and whose latter
outer region is the root-j’th + region is called the forwards (i, j)-attaching arc FA(i, j).

(ii) The backwards attaching arc whose prior outer region is the base-j’th + region and whose latter
outer region is the root-i’th − region is called the backwards (i, j) attaching arc BA(i, j).

Note that these attaching arcs do not exist for all (i, j). The next lemma answers precisely when
they do.
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Figure 26: Forwards attaching arc FA(i, j).

Lemma 7.10 (Existence of attaching arcs) For a given word w, there is a forwards (resp. back-
wards) (i, j) attaching arc FA(i, j) (resp. BA(i, j)) on Γw if and only if there is a forwards (resp.
backwards) (i, j) elementary move FE(i, j) (resp. BE(i, j)) in w.

Proof We prove the forwards case; the backwards case is similar. Suppose there exists such an
elementary move; so that the i’th − sign and j’th + sign appear as desired; within blocks of the form
(−)a(+)b. Then, considering the base point construction algorithm, we see that the chord diagram for
w contains an arrangement as shown in figure 26.

Thus there is a forwards or backwards (i, j) attaching arc, as desired. Conversely, any forwards or
backwards (i, j) attaching arc comes in this arrangement, and hence there is a forwards or backwards
(i, j) elementary move, as desired. �

Remark 7.11 (Forwards and backwards; notation) Throughout this section, we will have con-
structions and lemmas which come in two varieties, one “forwards version” and one “backwards ver-
sion”. For the most part the backwards versions are entirely analogous to the forwards versions. To
save space, we will often give arguments, and sometimes statements, for the forwards version only; but
state the final results for both forwards and backwards versions.

7.5 Single bypass moves and elementary moves

We now give a complete description of bypass moves on basis chord diagrams. They are in analogy
with elementary moves.

Lemma 7.12 (Bypass moves and elementary moves) The chord diagram obtained from Γw by
an upwards bypass move along FA(i, j) (resp. downwards along BA(i, j)) is the basis chord diagram
Γw′ , where w′ = FE(i, j)(w) (resp. BE(i, j)(w)).

w
FE(i,j)
7→ w′

↓ ↓

Γw
Up (FA(i,j))
7→ Γw′

and
w

BE(i,j)
7→ w′

↓ ↓

Γw
Down (BA(i,j))

7→ Γw′
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Figure 27: Effect of bypass move along FA(i, j).

In the other direction, a downwards bypass move along FA(i, j) (resp. upwards along BA(i, j)) gives
Γw + Γw′ .

Proof If we have an (i, j) forwards elementary move FE(i, j), corresponding to the (i, j) forwards
attaching arc FA(i, j), then the i’th − sign and j’th + sign occur in consecutive blocks, with the j’th
+ sign in the block to the right of the block containing the i’th − sign. In our chord diagram, then, we
have the situation depicted in figure 27, where we number the base-i’th − region (and adjacent base
− regions), and we number the root-j’th + region (and adjacent root + regions). Let the last − sign
in the block with the i’th − sign be the l’th − sign in w (so l ≥ i, possibly l = i), and let the first +
sign in the block with the j’th + sign be numbered m (so m ≤ j, possibly m = j).

An upwards bypass move along FA(i, j) then has the effect shown. This has the effect of producing
a basis chord diagram for the word w′, where w′ is obtained from w by swapping the string of i’th
thru l’th − signs with the string of m’th thru j’th + signs, (−)l−i+1(+)j−m+1 7→ (+)j−m+1(−)l−i+1.
Thus w′ is precisely the word obtained from w by moving the i’th − sign (and all − signs to the right
of the i’th one, in the same block) past the j’th + sign, i.e. by FE(i, j).

A similar argument works for backwards arcs of attachment and backwards elementary moves. The
bypass relation then gives the final statement. �

In particular, performing a bypass move on a basis chord diagram gives either a basis diagram or
a sum of two basis diagrams.

7.6 Bypass systems in general

We can now give some basic results about performing bypass moves along bypass systems.

Lemma 7.13 Suppose we have a bypass system consisting entirely of forwards (resp. backwards)
attaching arcs c1, . . . , cm. After performing an upwards (resp. downwards) bypass move along c1, then
for each other ci, either:

(i) ci remains a forwards (resp. backwards) attaching arc, or

(ii) ci becomes trivial, in the sense that performing an upwards (resp. downwards) bypass move along
ci now has trivial effect on the chord diagram.

Proof The arc ci intersects either 0, 1, 2 or 3 of the same three chords as c1. If it intersects none
of the same chords, then their order of construction in the root point algorithm remains unchanged,
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Figure 28: Effect of single bypass move and order of chords.

so that ci remains a forwards attaching arc. If it intersects one of the same chords, and the situation
must be one of those shown in figure 28, with order of the chords as shown; the result then holds.

If ci intersects two of the same chords as c1, then it becomes trivial, as discussed above, see figure
21. If it intersects all three of the same chords, then it clearly becomes trivial. �

Lemma 7.14 The effect of performing upwards (resp. downwards) bypass moves on a basis chord
diagram Γw1 along a bypass system consisting entirely of forwards (resp. backwards) attaching arcs is
again a chord diagram Γw2 , with w1 � w2 (resp. w1 � w1).

Proof Let the attaching arcs of the bypass system be c1, . . . , cm. After performing an upwards bypass
move along a forwards attaching arc on a basis chord diagram, by lemma 7.12 we obtain another basis
chord diagram; and by lemma 7.13, all the other arcs of attachment either become trivial or remain
forwards attaching arcs. Remove the trivial ones and repeat. By induction we eventually obtain a
basis chord diagram Γw2 . At the performance of each bypass move we move ahead with respect to our
partial order, by lemma 7.12. �

7.7 Generalised elementary moves on words

So far, we have defined elementary moves FE(i, j) and BE(i, j) on a word w. The forwards move
FE(i, j) moves the i’th − sign (and all − signs to its right, in the same block) to the right, past the
j’th + sign: provided that the j’th + sign is in the block immediately to the right of the i’th − sign.
This is a useful notion because it corresponds precisely to bypass moves on the chord diagram Γw. We
now generalise this notion to what we call generalised elementary moves. These are basically identical
to elementary moves, without the proviso in italics; an extension of the same definition.

Definition 7.15 (Generalised elementary move) Let w be a word on {−, +} with n− − signs and
n+ + signs. Let 1 ≤ i ≤ n− and 1 ≤ j ≤ n+.

(i) If the i’th − sign in w occurs to the left of the j’th + sign, we define the forwards generalised
elementary move FE(i, j) to take the i’th − sign, and all − signs between it and the j’th + sign,
and move them to a position immediately after the j’th + sign.

(ii) If the j’th + sign in w occurs to the left of the i’th − sign, we define the backwards generalised
elementary move BE(i, j) to take the j’th + sign, and all + signs between it and the i’th − sign,
and move them to a position immediately after the i’th − sign.
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It’s clear that when the i’th − sign and the j’th + sign are in adjacent blocks, then the definitions of
forwards and backwards generalised elementary moves reduce to forwards and backwards elementary
moves. Thus this definition is indeed a generalization of elementary moves, and we may use the same
notation without contradiction.

So, for instance, if w = − − −+ + − ++, then FE(2, 3) produces the word − + + +− − − + +.
The generalised elementary move BE(4, 1) produces the word −−−−+ + ++.

Since forwards generalised elementary moves move − signs to the right, and backwards generalised
elementary moves move + signs to the right, the following lemma is clear.

Lemma 7.16 (Forwards moves move forward) If w′ is obtained from w by a generalised forwards
(resp. backwards) elementary move, then w � w′ (resp. w′ � w). �

We have seen that a (forwards or backwards) elementary move on a word can be effected on a basis
chord diagram by a single upwards bypass move along a (forwards or backwards) arc of attachment.
It is also true that a (forwards or backwards) generalised elementary move can be effected by upwards
bypass moves along (forwards or backwards) arcs of attachment — but more than one is required. We
will now see how.

7.8 Generalised arcs of attachment

Recall that we have denoted forwards and backwards arcs of attachment FA(i, j), BA(i, j). The
forward arc FA(i, j) connects the base-i’th − region to the root-j’th + region. The backward arc
BA(i, j) connects the base-j’th + region to the root-i’th − region. We will now generalise this notion.

Definition 7.17 (Generalised arc of attachment) A generalised arc of attachment in a chord di-
agram (D, Γ) is an arc which intersects Γ in an odd number of points. A generalised arc of attachment
is nontrivial if all its intersection points with Γ lie on different components of Γ. Two generalised arcs
of attachment are considered equivalent if they are homotopic, with their intersection points with Γ
constrained to lie on Γ.

For chord diagrams on a disc (D, Γ), it is clear that for any two chords, there is at most one
nontrivial generalised arc of attachment between them, up to equivalence. We will usually implicitly
consider generalised arcs of attachment up to equivalence. We will therefore speak of the generalised
arc of attachment between two chords.

We have notions of prior and latter chords, prior and latter outer regions, and forwards and back-
wards, as for bona fide arcs of attachment.

Definition 7.18 (Prior and latter chords) Given a generalised arc of attachment on a basis chord
diagram, consider the chords on which its endpoints lie.

(i) The chord which was created first in the base point construction algorithm, we call the prior chord
of the generalised attaching arc.

(ii) The chord created later, we call the latter chord of the generalised attaching arc.

Definition 7.19 (Outer regions of a generalised arc of attachment) Let (D, Γ) be a chord di-
agram and c a generalised arc of attachment. The two regions of D − Γ which are adjacent to chords
of Γ intersecting c, but which do not themselves intersect c, are called the outer regions of c.

(i) The outer region of c adjacent to its prior chord is called the prior outer region of c.

(ii) The outer region of c adjacent to its latter chord is called the latter outer region of c.

Given a prior outer region and a latter outer region for c, it’s clear that there is at most one chord
between them. Hence we may speak of the generalised arc of attachment between the two regions.
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Definition 7.20 (Forwards and backwards generalised attaching arcs)

(i) A generalised arc of attachment whose prior outer region is negative, and latter outer region
positive, is called a forwards generalised arc of attachment.

(ii) A generalised arc of attachment whose prior outer region is positive, and latter outer region
negative, is called a backwards generalised arc of attachment.

We can use similar notation — in fact, generalise the same notation — to describe generalised
arcs of attachment. For a generalised arc of attachment, as for any nontrivial arc of attachment, the
prior outer region is not the outermost region at the root point, and the latter outer region is not the
outermost region at the base point.

Definition 7.21 (Denoting generalised attaching arcs)

(i) The forwards generalised attaching arc whose prior outer region is the base-i’th − region and
whose latter outer region is the root-j’th + region is called the forwards (i, j) generalised attaching
arc FA(i, j).

(ii) The backwards generalised attaching arc whose prior outer region is the base-j’th + region and
whose latter outer region is the root-i’th − region is called the backwards (i, j) generalised at-
taching arc BA(i, j).

It’s clear that this notation generalises the notation for attaching arcs. In fact, for any meaningful
pair (i, j), precisely one of FA(i, j) or BA(i, j) exists, as the next lemma makes clear.

Lemma 7.22 (Existence of generalised attaching arcs)

(i) There is an FA(i, j) in Γw if and only if the i’th − sign in w occurs before the j’th + sign.

(ii) There is a BA(i, j) in Γw if and only if the j’th + sign in w occurs before the i’th − sign.

Thus, for every i, j with 1 ≤ i ≤ n− and 1 ≤ j ≤ n+, precisely one of FA(i, j) or BA(i, j) exists.
Moreover, every nontrivial generalised attaching arc in (D, Γ) is of the form FA(i, j) or BA(i, j) for
some (i, j).

Proof Certainly, if FA(i, j) exists, then its prior outer region is the base-i’th − region, and its latter
outer region is the root-j’th + region; and by definition of prior and latter, and a little consideration of
the relationship between the base and root algorithms, we see that the i’th − sign must occur before
the j’th + sign.

Conversely, suppose the i’th − sign occurs before the j’th + sign. Then in the base point construc-
tion algorithm, the i’th − sign produces a chord γi, enclosing a negative region ri. The j’th + sign
produces a chord γ′, and the next symbol in w (or the final chord drawn in the algorithm) produces a
chord γj ; this chord is produced in the root point algorithm by the j’th + sign, and encloses a positive
region rj in that algorithm. Since the base point algorithm produces γi before γ′ before γj , it cannot
be that ri and rj are adjacent. Therefore, there is a generalised attaching arc connecting γi to γj.

The proof is similar for backwards attaching arcs. For the final statement, suppose we have a
generalised attaching arc. It has a prior outer region and a latter outer region, one positive and one
negative, which have numberings. �

Clearly, a generalised attaching arc is not something that we can perform a bypass move on. But
from it, we can obtain attaching arcs, forming a bypass system, and then we can perform bypass moves
on them.
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7.9 Bypass system of a generalised attaching arc

We will need now to consider multiple bypass moves on chord diagrams. Recall that a generalised
attaching arc intersects the chords of our diagram at an odd number of points. Hence it may be
broken into several bona fide attaching arcs, in a unique way. However they are not disjoint: they
overlap at the endpoints. We can, however, break a generalised attaching arc into attaching arcs, and
then perturb their endpoints in a specified way so that they are disjoint.

To make this precise, let c be a generalised attaching arc in a basis chord diagram (D, Γw). Let p
be an intersection point of c with a chord γ of Γw, at an interior point of c. Then there is a “prior”
and a “latter” direction along c from p, towards the endpoints of c on its prior and latter chords,
respectively. Also, since c intersects distinct chords of Γw, other than γ, in both directions from p, γ
cannot be an outermost chord. Thus by our classification of chords in basis chord diagrams (lemma
6.9), γ runs from the westside to the eastside of (D, Γ). Hence, from p, there is a well-defined “west”
and “east” direction along γ.

Definition 7.23 (Bypass system of a generalised attaching arc) Let c be a nontrivial gener-
alised attaching arc in a basis chord diagram (D, Γw) which intersects Γw in 2m+1 points. Then there
is a unique way to split c into a series of attaching arcs c1, . . . , cm, labelled from prior chord to latter
chord, which intersect each other only at the endpoints. The bypass system of c is given as follows.

(i) If c a forwards generalised attaching arc, then c1, . . . , cm are forwards attaching arcs, and we
perturb them as follows. At the intersection point p of ci and ci+1 on a non-outermost chord γ
of Γw, we move the endpoint of ci slightly west of p, and the endpoint of ci+1 slightly east of p.

(ii) If c a backwards generalised attaching arc, then c1, . . . , cm are backwards attaching arcs, and we
perturb them as follows. At the intersection point p of ci and ci+1 on a non-outermost chord γ
of Γw, we move the endpoint of ci slightly east of p, and the endpoint of ci+1 slightly west of p.

It’s clear that this is indeed a bypass system. See figure 29 for an example. We now show that this
edifice of definitions (and we have more to come!) is meaningful.

Lemma 7.24 (Generalised attaching arcs and elementary moves)

(i) If we perform upwards bypass moves on Γw along the bypass system of FA(i, j), then we obtain
Γw′ , where w′ = FE(i, j)(w) .

(ii) If we perform downwards bypass moves on Γw along the bypass system of BA(i, j) then we obtain
Γw′ , where w′ = BE(i, j)(w)

w
FE(i,j)
7→ w′

↓ ↓

Γw
Up (FA(i,j))
7→ Γw′

and
w

BE(i,j)
7→ w′

↓ ↓

Γw
Down (BA(i,j))

7→ Γw′

Proof From lemma 7.22, FA(i, j) exists precisely when the i’th − sign occurs before the j’th + sign
in w. First suppose that j < n+, so there is a (j + 1)’th + sign in w. Let the substring of w between
the i’th − sign and the (j + 1)’th + sign be (−)a1(+)b1 · · · (+)bk−1(−)ak(+)bk . Then the situation
appears as shown in figure 29. (Note that the chords constructed prior to the base-i’th − chord lie in
regions A or B accordingly as the i’th − sign is following or leading; similarly, the chords constructed
after the root-j’th + chord lie in C or D accordingly as the j’th + sign is the last in its block, or not.)

Performing upwards bypass moves along the arcs of attachment produces the result shown, which
corresponds to replacing the substring

(−)a1(+)b1 · · · (+)bk−1(−)ak(+)bk
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Figure 29: Effect of upwards bypass moves along a forwards generalised attaching arc.

of w with
(+)b1+···+bk−1(−)a1+···+ak(+).

That is, all the minus signs from the i’th − sign, up to the j’th + sign, have been moved to the
immediate right of the j’th + sign.

If j = n+, the the picture is similar; the generalised arc of attachment has an endpoint on the
chord created in the root point algorithm as the rightmost + sign in w is processed. The effect is to
move all minus signs, from the i’th onwards, to the end of the word.

The backwards case is similar. �

Loosely, the effect of performing upwards (resp. downwards) bypass moves along the bypass system
of a forwards (resp. backwards) generalised attaching arc is to create one “long chord” running all
along the generalised attaching arc, and “closing off” all the chords on either side of it.

7.10 Anatomy of multiple generalised arcs of attachment

We now consider taking several disjoint generalised arcs of attachment, and performing bypass moves
along their bypass systems.

Note that for any two given forwards arcs of attachment FA(i1, j1) and FA(i2, j2), it is not always
the case that there is only one way to place their bypass systems. A unique bypass system is not
necessarily well defined. For one thing, the two generalised arcs might intersect. Even if they do not
intersect, it might be that having placed FA(i1, j1), we can place FA(i2, j2) on either side of FA(i1, j1);
and the results of performing bypass moves along the resulting bypass systems might be different.

Thus, in placing several generalised arcs of attachment, we need to specify precisely how they are
placed. To this end, let us make some definitions. We note that a forward generalised arc of attachment
FA(i, j), taken together with its prior and latter chords, split the disc D into four regions; we group
these into “southwest” and “northeast” halves as shown.

Definition 7.25 (Compass points for forward generalised arc) A forward generalised arc of at-
tachment FA(i, j), taken together with its prior and latter chords, can be taken to split the disc D into
four pieces, proceeding clockwise around the disc:

(i) The piece containing the prior outer region of FA(i, j).

(ii) The piece which contains the marked points on the eastside immediately anticlockwise/right of
the latter chord of FA(i, j)
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Figure 30: Compass points.

(iii) The piece containing the latter outer region of FA(i, j).

(iv) The piece which contains the marked points on the westside immediately anticlockwise/left of the
prior chord of FA(i, j).

Pieces (i) and (ii) are called the northeast of FA(i, j). Pieces (iii) and (iv) are called the southwest
of FA(i, j).

Note that all chords and regions constructed in the base point construction algorithm prior to the
base-i’th − region lie in the northeast of FA(i, j), and all chords and regions created after the root-j’th
+ region lie to the southwest.

Similar definitions exist in the backwards case. The compass points are chosen with our west-
side/eastside in mind, thinking of the base point as the “north pole” and the root point as the “south
pole”. See figure 30.

7.11 Placing two generalised arcs of attachment

These compass points can be used to define how to place multiple generalised arcs of attachment
disjointly. We will consider the case of FA(i1, j1) and FA(i2, j2), where i1 < i2 and j1 ≤ j2.

Recall that FA(i2, j2) joins the base-i2’th − region to the root-j2’th + region. Now from the base
point construction algorithm, since i1 < j1, the base-i2’th − region either lies

(i) entirely in the southwest of FA(i1, j1); in this case there is no choice for the prior endpoint of
FA(i2, j2), up to equivalence; or

(ii) in both the southwest and northeast regions of FA(i1, j1), and there is a choice: the prior
endpoint of FA(i2, j2) may be southwest or northeast of FA(i1, j1).

If there is a choice, we choose southwest. See figure 31 showing case (ii).
Similarly, since j1 ≤ j2, the root-j2’th + region either lies

(i) entirely in the southwest of FA(i1, j1), and identical to the root-j1’th + region (i.e. j1 = j2);
so there is a choice how to place the latter endpoint of FA(i2, j2), which may be southwest or
northeast of FA(i1, j1) along the same latter chord;

(ii) entirely in the southwest of FA(i1, j1) in region (iv) of figure 30; so there is no choice how to
place the latter endpoint of FA(i2, j2); or

(iii) entirely in the southwest of FA(i1, j1) in region (iii) of figure 30, so FA(i2, j2) might lie southwest
or northeast of FA(i1, j1).
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Figure 32: Placing two arcs: j1 < j2.

If there is a choice, we again take the southwest choice. See figure 32 showing case (iii).
Note, further, that the conditions i1 < i2 and j1 ≤ j2, with our “southwest choices”, ensure that

the arcs can be drawn disjoint from each other: the inequalities ensure that the prior and latter chords
at least partially lie in the southwest of FA(i1, j1).

So, with the above choices if necessary, we have a well-defined way to draw FA(i2, j2). Moreover,
having drawn FA(i2, j2), it is “southwestmost” in a certain sense.

Lemma 7.26 (Placing two generalised arcs) Let w be a word such that forward generalised ele-
mentary moves FE(i1, j1) and FE(i2, j2) exist, where i1 < i2 and j1 ≤ j2. There is one, and only one
way (up to equivalence) to draw FA(i1, j1) and FA(i2, j2) on Γw so that

(i) FA(i1, j1) and FA(i2, j2) are disjoint;

(ii) for every chord of Γw which intersects both FA(i1, j1) and FA(i2, j2), the intersection point with
FA(i2, j2) lies southwest of FA(i1, j1). �

There is a similar result for backwards generalised attaching arcs also.

7.12 Placing nicely ordered multiple generalised arcs of attachment

We actually wish to consider multiple generalised arcs of attachment, which are “nicely ordered” in a
similar way.

Definition 7.27 (Nicely ordered generalised arcs of attachment)

(i) A sequence of forward generalised arcs of attachment

FA(i1, j1), FA(i2, j2), . . . , FA(im, jm)
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on Γw is nicely ordered if

i1 < i2 < · · · < im and j1 ≤ j2 ≤ · · · ≤ jm,

(ii) A sequence of backward generalised arcs of attachment

BA(i1, j1), BA(i2, j2), . . . , BA(im, jm)

on Γw is nicely ordered if

jm < jm1 < · · · < j1 and im ≤ im−1 ≤ · · · ≤ i1.

Given a set of generalised attaching arcs, which are nicely ordered in this way, we now describe
how we should like to place them, and obtain a bypass system. The idea is that, for forwards arcs, if
we keep making the “southwest” choice any time we are faced with a choice, then there is only one
possibility for placing all the generalised arcs of attachment. For backwards arcs the result is similar,
placing arcs from BA(im, jm) to BA(i1, j1), always taking the “northwest” choice.

Lemma 7.28 Let FA(i1, j1), FA(i2, j2), FA(i3, j3) be a nicely ordered sequence of forwards gener-
alised attaching arcs. Suppose both FA(i1, j1) and FA(i3, j3) intersect a chord of Γw. Then so does
FA(i2, j2).

Proof In general, FA(i, j) intersects precisely the following chords:

(i) The chord created by processing the i’th − in w in the base point construction algorithm (or
the symbol immediately preceding it, in the root point construction algorithm). This is the prior
chord.

(ii) The chord created by processing the j’th + in w in the root point construction algorithm (or the
symbol immediately following it, in the base point construction algorithm). This is the latter
chord.

(iii) The non-outermost chords created by processing “changes of sign” in w in between: more pre-
cisely, processing the leading − and + signs strictly after the j’th + sign and up to and including
the i’th − sign in the base point construction algorithm;

If both FA(i1, j1) and FA(i3, j3) intersect a chord γ, then in the base point construction algorithm,
it is created in the base point construction algorithm by processing some symbol, which is one of:

(i) (from FE(i1, j1)) either the i1’th − sign, or a leading − or + sign after the i1’th minus sign, up
to and including the j1’th + sign, or the symbol immediately after the j1’th + sign;

(ii) (from FE(i3, j3)) either the i3’th − sign, or a leading − or + sign after the i3’th minus sign, up
to and including the j3’th + sign, or the symbol immediately after the j3’th + sign.

Combining these, since i1 < i3, and j1 ≤ j3, γ must be created by a symbol which is:

(i) the i3’th − sign, which is leading;

(ii) a leading − or + sign after the i3’th − sign, up to and including the j1’th + sign; or

(iii) the symbol immediately after the the j3’th + sign, and j1 = j3.

In every case, since i1 < i2 < i3 and j1 ≤ j2 ≤ j3, this chord γ also intersects FA(i2, j2). �
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So now, suppose we have a nicely ordered sequence of forwards generalised arcs of attachment

FA(i1, j1), . . . , FA(im, jm).

We know that we can place FA(i1, j1), and then place FA(i2, j2) “southwest” of it, as described in
lemma 7.26. Then, we wish to place FA(i3, j3). Let γ be a chord of Γw that intersects FA(i3, j3). We
note that the previous lemma governs how the forwards generalised arcs of attachment can intersect
it. In particular, if either of FA(i1, j1) or FA(i2, j2) intersects γ, then FA(i2, j2) certainly does. So
if we require the intersection point of FA(i3, j3) with γ to be southwest of FA(i2, j2), then it is also
southwest of FA(i1, j1).

Proceeding inductively, we obtain the following lemma.

Lemma 7.29 (Placing multiple generalised attaching arcs) Let FA(i1, j1), . . ., FA(im, jm) be
a nicely ordered sequence of forwards generalised arcs of attachment. They can be placed on Γw, so
that:

(i) they are disjoint;

(ii) for any chord γ of Γw which nontrivially intersects at least one of these arcs, the set of FA(ik, jk)
intersecting γ is a discrete interval of k, of the form

FA(is, js), FA(is+1, js+1), . . . , FA(it, jt)

and moreover, for u < v, the intersection γ ∩ FA(iv, jv) lies southwest of γ ∩ FA(iu, ju);

(iii) none of the FA(ik, jk) intersect the southwest region of FA(im, jm).

Moreover, there is only one way to place the arcs satisfying these conditions, up to equivalence.

There is also a backwards version of this result.

Proof For small m, we have proved the lemma. We show that we can inductively add a further
FA(im, jm) to a previously constructed FA(i1, j1), . . . , FA(im−1, jm−1). We place FA(im, jm) to lie
southwest of FA(im−1, jm−1) as described in lemma 7.26. We note that, by inductive assumption (iii),
there are no other arcs southwest of FA(im−1, jm−1), and hence this specifies a unique way to place
FA(im, jm); and disjointly, so (i) is true. Moreover, there are now no arcs southwest of FA(im, jm);
so (iii) is true.

For every chord γ nontrivially intersecting one of these arcs, if it does not intersect FA(im, jm),
then (ii) is true by inductive assumption. Otherwise, it intersects FA(im, jm), and the intersection
point FA(im, jm) is southwest of all others; so (ii) is true again. �

We give a name to this construction.

Definition 7.30 (Bypass system of nicely ordered generalised attaching arcs) Let

FA(i1, j1), . . . , FA(im, jm)

be a nicely ordered sequence of forwards generalised arcs of attachment. The bypass system of this
sequence is the bypass system obtained from placing these arcs as described in lemma 7.29.

7.13 Generalised elementary moves of a comparable pair

We first extend the notion of “nicely ordered” to elementary moves.

Definition 7.31 (Nicely ordered generalised elementary moves)
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(i) A sequence of forward generalised elementary moves

FE(i1, j1), FE(i2, j2), . . . , FE(im, jm)

on w is nicely ordered if

i1 < i2 < · · · < im and j1 ≤ j2 ≤ · · · ≤ jm,

(ii) A sequence of backward generalised elementary moves

BE(i1, j1), BE(i2, j2), . . . , BE(im, jm)

on w is nicely ordered if

jm < jm1 < · · · < j1 and im ≤ im−1 ≤ · · · ≤ i1.

Suppose we have two words comparable words w1, w2 ∈ W (n−, n+). Then, for every 1 ≤ i ≤ n−,
the i’th − sign in w1 lies to the left of the i’th − sign in w2. That is, the i’th − sign in w1 has fewer
+ signs to its left, than does the i’th − sign in w2. Suppose that the i’th − sign has αi + signs to its
left in w1, and βi + signs to its left in w2; so αi ≤ βi. So we have two sequences

α1 ≤ α2 ≤ · · ·αn−
and β1 ≤ β2 ≤ · · ·βn−

,

which respectively describe w1 and w2.
Now, we can consider the generalised forwards elementary moves

FE(1, β1), FE(2, β2), . . . , FE(n−, βn−
)

on w1. Note this is a nicely ordered sequence. The first move FE(1, β1) moves the first − sign, and all
− signs between it and the β1’th + sign, to the immediate right of the β1’th + sign. If β1 = β2, then
in a vague sense, “the move FE(2, β2) has already been done”: all − signs between the second − sign
and the β1 = β2’th + sign have already been moved to the immediate right of the β1 = β2’th + sign.
If, however, β1 < β2, then the generalised forwards elementary move FE(2, β2) is still well-defined,
and we may perform it. In fact, in this case, we note that, from w1, the two moves FE(1, β1) and
FE(2, β2) commute — they may be applied, one after the other, to w1, being well-defined in every
case, and yielding the same result, which is (+)β1(−)(+)β2−β1(−) · · · .

These considerations immediately yield the following results; and similar results for backwards
moves.

Lemma 7.32 (Redundancy of generalised moves) Let w be a word. Let FE(i1, j) and FE(i2, j)
be well-defined forwards generalised elementary moves on w, with i1 < i2. Then:

(i) After applying FE(i1, j), then FE(i2, j) is no longer well-defined.

(ii) After applying FE(i2, j), then FE(i1, j) is still well-defined, and after applying it, the result is
the same as simply applying FE(i1, j) alone:

FE(i1, j) (w) = FE(i1, j) ◦ FE(i2, j) (w)
�

In the case where FE(i2, j) is no longer well-defined, we may regard it as “the null move” and having
trivial effect. Thus, we can extend the definition of FE(i2, j), to be the identity, where otherwise it is
not defined. With this definition, we see that FE(i1, j) and FE(i2, j) commute, and their composition
in either order is equal to FE(i1, j).

Lemma 7.33 (Non-redundancy of generalised moves) Let w be a word on which FE(i1, j1) and
FE(i2, j2) are well-defined nontrivial forwards generalised elementary moves, with i1 < i2 and j1 < j2.
Then:
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(i) After applying either of FE(i1, j1) or FE(i2, j2) to w, the other is still well-defined and nontrivial.

(ii) The effect of applying both FE(i1, j1) and FE(i2, j2) to w, in either order, is identical:

FE(i1, j1) ◦ FE(i2, j2) (w) = FE(i2, j2) ◦ FE(i1, j1) (w).
�

With the extended definition of FE(i, j) and BE(i, j) to be trivial when not otherwise defined, we
obtain a general commutativity result:

Lemma 7.34 (General commutativity of generalised moves) For any i1 ≤ i2 and j1 ≤ j2, then
FE(i1, j1) and FE(i2, j2) commute. �

Thus, for any nicely ordered set of generalised forwards elementary moves, they all commute; and
hence we may speak of applying them to a word, without regard to their order. There are forwards
and backwards versions.

Definition 7.35 (Generalised forwards elementary moves of a comparable pair) Let w1 �
w2.

(i) Let βi denote the number of + signs to the left of the i’th − sign in w2. Then the generalised
forwards elementary moves of the pair (w1, w2) are

FE(1, β1), FE(2, β2), . . . , FE(n−, βn−
).

(ii) Let αj denote the number of − signs to the left of the j’th + sign in w1. Then the generalised
backwards elementary moves of the pair (w1, w2) are

BE(α1, 1), BE(α2, 2), . . . , BE(αn+ , n+).

Note that while w1 � w2 means that “all − signs move to the right”, some may not move at all. In
particular, if the i’th − sign does not move, then the forwards generalised elementary move FE(i, βi)
is trivial. If we like, we could delete such moves from the sequence; but since we define such moves to
be trivial, it is easier to keep such moves in the sequence. (This is our way of “taking individual care”
of each symbol, even though it might be redundant.)

Since we have a nicely ordered sequence of moves, by lemma 7.34, we may apply them to w1 in any
order and obtain the same result.

Lemma 7.36 (Elementary moves between comparable words)

(i) The result of applying the generalised forwards elementary moves of the pair (w1, w2), to w1, is
w2.

(ii) The result of applying the generalised backwards elementary moves of the pair (w1, w2), to w2, is
w1.

Proof After applying all the forwards moves, in any order, to w1, then for all 1 ≤ i ≤ n−, the number
of + signs to the left of the i’th − sign is βi; thus we must have w2. Similarly for backwards moves.�

Thus we can go from w1 to w2 (and vice versa) by a well-defined nicely ordered sequence of
generalised elementary moves. It now remains to show that this can be paralleled by bypass moves
along the bypass system of a well-defined nicely ordered sequence of generalised arcs of attachment.
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Figure 33: Redundancy with two generalised arcs.

7.14 Mechanics of bypass systems of nicely ordered sequences

We now consider in more detail the effect of performing bypass moves along the bypass system of a
nicely ordered sequence of generalised attaching arcs. As we know from lemma 7.24, if we restrict to
a single generalised attaching arc, then we obtain the basis chord diagram for the word obtained by
performing a corresponding generalised elementary move.

We now see, in this subsection, that if we perform bypass moves along the bypass system of
multiple generalised attaching arcs, when they are nicely ordered (as in definition 7.27) and then placed
appropriately (as in definition 7.30), then we also obtain a basis chord diagram, and in particular the
basis chord diagram for the word obtained by performing a composition of generalised elementary
moves on the original word. More generally, all the lemmata of the previous section are paralleled by
bypass systems of nicely ordered sequences of generalised attaching arcs.

In particular, in the previous section we proved (lemma 7.34) that generalised elementary moves
in nicely ordered sequences commute — once we expand the definition a little to say that “when a
generalised elementary move does not exist, it has trivial effect”. A corresponding result is obvious for
bypass moves on bypass systems: in a bypass system, the arcs of attachment are all disjoint, so the
bypass moves on them obviously commute.

First, we consider redundancy.

Lemma 7.37 (Redundancy of generalised attaching arcs) Let Γw be a basis chord diagram on
which forwards generalised arcs of attachment FA(i1, j) and FA(i2, j) exist, with i1 < i2. Then:

(i) After performing upwards bypass moves along the bypass system of FA(i1, j), then the bypass
system of FA(i2, j) consists entirely of trivial bypasses. That is, performing upwards bypass
moves along the bypass system FA(i2, j) has trivial effect.

(ii) After performing upwards bypass moves along the bypass system of FA(i2, j), then FA(i1, j) is
still well-defined, and after applying it, the result is the same as simply applying FE(i1, j) alone:

Up(FA(i1, j)) (Γw) = Up(FA(i1, j)) ◦ Up(FA(i2, j)) (Γw)

Proof This is a proof by picture; we draw the picture for the forwards case, and the backwards case
is similar. See figure 33. �

We now consider this redundancy in more detail, so that it can be extended to the case of multiple
attaching arcs.
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Figure 34: Pushing off trivial parts of a generalised attaching arc.

Lemma 7.38 (Detailed redundancy in two generalised arcs) Let FA(i1, j1), FA(i2, j2) be a
nicely ordered sequence of two forwards generalised attaching arcs on the basis chord diagram Γw. We
write FAw(i1, j1), FAw(i2, j2) to denote that they refer to Γw. After performing upwards bypass moves
along FAw(i1, j1), we obtain a basis chord diagram Γw′ , where w′ = FE(i1, j1)(w), by lemma 7.24.

On Γw′ , FAw(i2, j2) may no longer be a nontrivial generalised attaching arc; but it is equivalent
to the generalised attaching arc FAw′(i2, j2) on Γw′ , in the following sense. If on Γw′ , there is no
forwards generalised attaching arc FAw′(i2, j2), then j1 = j2 and the bypass system of FAw(i2, j2)
consists entirely of trivial arcs of attachment. Otherwise:

(i) The generalised attaching arc FAw(i2, j2) can be homotoped, rel endpoints, to FAw′(i2, j2).

(ii) This homotopy consists of finitely many (possibly none) local “pushing off” moves, of the sort
depicted in figure 34.

(iii) Performing upwards bypass moves along the bypass system of FAw(i2, j2) or FAw′(i2, j2) gives
the same chord diagram.

Proof This is largely a proof by picture. Note that the chord created by the processing the i2’th −
sign in w or w′ (or any word for that matter), in the base point algorithm, is the chord emanating from
the marked point 1− 2i2, by lemma 6.9. Thus, even after performing bypass moves along the bypass
system of FAw(i1, j1), FAw(i2, j2) still has an endpoint on the chord created by processing the i2’th
− sign in w in the base point construction algorithm; and similarly, it still has an endpoint on the
chord created by processing the j2’th + sign in the root point construction algorithm. In particular,
FAw(i2, j2) remains adjacent to the same marked points: it has the same “west end” for its prior
chord and the same “east end” for its latter chord.

If FE(i2, j2) does not exist in w′, but did exist in w, then we must have j1 = j2; otherwise the
move FE(i1, j1) would not move the i2’th − sign far enough, and FE(i2, j2) would still have nontrivial
effect. This is precisely the case when FA(i2, j2) becomes redundant, as described above in lemma
7.37.

As we have seen, the effect of performing upwards bypass moves along the bypass system of a
forwards generalised attaching arc is to create a “long chord”, to close off outermost negative regions
to the southwest, and to close off outermost positive regions to the northeast. Some of these outermost
negative regions now have parts of FAw(i2, j2) inside them, and they are pushed off. After performing
this homotopy, we certainly have FAw′(i2, j2).

As for the final claim, the effect of upwards bypass moves along the bypass systems before and
after the homotopy are also best conveyed by picture; as in figure 33, there are many trivial bypasses,
and by the principle expressed in figure 35, the effect is the same, after the “pushing off” homotopy
of figure 34. �

We now consider a general nicely ordered sequence of forwards generalised attaching arcs.

Lemma 7.39 Consider the bypass system of the nicely ordered sequence of forwards generalised at-
taching arcs on the basis chord diagram Γw

FAw(i1, j1), FAw(i2, j2), FAw(im, jm).
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Figure 35: Pushing off makes no difference to effect of bypass moves.

Figure 36: Pushing off trivial parts of multiple generalised attaching arcs.

We use the subscript w to denote that they refer to Γw. After performing upwards bypass moves along
the bypass system of FAw(i1, j1), we obtain a basis chord diagram Γw′ , where w′ = FE(i1, j1)(w), by
lemma 7.24.

On w′, each of FAw(i2, j2), . . . , FAw(im, jm) may no longer be a generalised attaching arc. If
the forwards generalised elementary move FE(ik, jk) does not exist on w′ then the bypass system of
FAw(ik, jk) consists entirely of trivial arcs of attachment. But the other, nontrivial arcs are equiva-
lent to the nontrivial generalised attaching arcs among FAw′(i2, j2), . . . , FAw′(im, jm) on Γw′ , in the
following sense.

(i) The nontrivial arcs among FAw(i2, j2) ∪ · · · ∪ FAw(im, jm) can be simultaneously homotoped,
rel endpoints, to FAw′(i2, j2), . . . , FAw′(im, jm), placed “northeast to southwest” as described in
definition 7.30.

(ii) This homotopy consists of finitely many (possibly none) local “pushing off” moves, possibly “push-
ing several arcs off several chords at once”, of the sort depicted in figure 36.

(iii) Performing upwards bypass moves on Γw′ along the bypass system of FAw(i2, j2), . . ., FAw(im, jm),
or of FAw′(i2, j2), . . ., FAw′(im, jm), has the same effect.

Proof This is again a proof by picture, except the pictures are a little more complicated than in
the previous lemma. Again, the chords created by the processing the i2’th − sign in w or w′ (or any
word for that matter), in the base point algorithm, emanate from the same marked point 1 − 2i2,
by lemma 6.9, so even after performing bypass moves along the bypass system of FAw(i1, j1), all the
other FAw(ik, jk) have endpoints on the appropriate chords.

The picture of the local homotopy is similar, as now the outermost regions closed off in performing
bypass moves along the bypass system of FAw(i1, j1) may now have parts of several FAw(ik, jk) inside
them, but they can all be pushed off simultaneously; and after performing this homotopy, we have all
the FAw′(ik, jk).

As for the final claim, it is again best conveyed by picture. The general arrangement is shown in
figure 37.

We now easily obtain a complete analogy between multiple generalised elementary moves and
multiple generalised attaching arcs.
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Up Up

Figure 37: Pushing off several generalised attaching arcs makes no difference to effect of bypass moves.

Lemma 7.40 (Multiple elementary moves and bypass systems) Suppose there is a nicely or-
dered sequence of forwards generalised elementary moves

FE(i1, j1), . . . , FE(im, jm)

on w, and equivalently, a nicely ordered sequence of forwards generalised attaching arcs

FA(i1, j1), . . . , FA(im, jm)

on Γw. If we perform upwards bypass moves along the bypass system of this nicely ordered sequence
of forwards generalised attaching arcs, then we obtain Γw′ , where w′ is obtained from w by performing
the above forwards generalised elementary moves.

w
FE(i1,j1)◦···◦FE(im,jm)

7→ w′

↓ ↓

Γw
Up(FA(i1,j1),...,FA(im,jm))

7→ Γw′

Proof Proof by induction on m. For m = 1 it is true by lemma 7.24; and now consider the case
for general m. We know again from lemma 7.24 that performing the bypass moves of FA(i1, j1), we
obtain Γw′′ , where w′′ = FE(i1, j1)(w). Then, by lemma 7.38, on Γw′′ , some of the arcs FAw(i2, j2),
. . ., FAw(im, jm) are trivial (namely those with jk = j1), resulting in only trivial bypass moves; and
the rest can be simultaneously homotoped to FAw′′(i2, j2), . . . , FAw′′(im, jm), again placed properly
“northeast to southwest”, and in such a way that the effect of bypass moves along their bypass systems
is unchanged. Then we are done by induction. �

The same all applies in a backwards version.

7.15 Bypass system of a comparable pair

We have now built so much superstructure that we can almost use it. Consider two comparable words
w1 � w2. We have a nicely ordered sequence of generalised elementary moves of the pair; now we
define some the generalised arcs and then a bypass system.

Definition 7.41 (Generalised attaching arcs of a comparable pair) Let w1, w2 ∈ W (n−, n+)
with w1 � w2.

(i) Let βi denote the number of + signs to the left of the i’th − sign in w2. Then the nicely ordered
sequence of forwards generalised attaching arcs of the pair (w1, w2) is

FA(1, β1), FA(2, β2), . . . , FA(n−, βn−
).
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(ii) Let αj denote the number of − signs to the left of the j’th + sign in w1. Then the nicely ordered
sequence of backwards generalised attaching arcs of the pair (w1, w2) is

BA(α1, 1), BA(α2, 2), . . . , BA(αn+ , n+).

It’s clear that these are indeed nicely ordered sequences.
As noted for elementary moves, while “all − signs move right”, some may not move at all. If the

i’th − sign does not move, then we consider FA(i, βi) to be a null arc, with a null bypass system. For
such − signs at the start of the words, we might have β = 0. From all these generalised attaching arcs,
we obtain a bypass system.

Definition 7.42 (Bypass system of a comaparable pair) Let w1 � w2 be comparable words.

(i) The forwards bypass system FBS(w1, w2) of the pair (w1, w2) is the bypass system of the nicely
ordered sequence of forwards generalised attaching arcs of (w1, w2).

(ii) The backwards bypass system BBS(w1, w2) of the pair (w1, w2) is the bypass system of the nicely
ordered sequence of backwards generalised attaching arcs of (w1, w2).

Now, at last, we can prove proposition 1.23, that performing bypass moves along these bypass
systems turns Γw1 into Γw2 and vice versa.

Proof (of proposition 1.23) By lemma 7.36, the corresponding sequences of generalised elemen-
tary moves take w1 to w2 and vice versa. The corresponding effect on basis chord diagrams is now
immediate from lemma 7.40. �

And, we can now prove proposition 1.24; that performing bypass moves on these systems in the
other direction gives a chord diagram whose basis decomposition has minimum Γw1 and maximum
Γw2 , with respect to �.

Proof (of proposition 1.24) We first consider the forwards bypass system FBS(w1, w2). From
proposition 1.23, we know that performing upwards bypass moves along this system on Γw1 gives Γw2 .
As we perform these bypass moves, we may find that some are trivial. It is clear, however, that there
is a minimal bypass system, consisting of c1, . . . , cm, such that

(i) this bypass system contains no trivial attaching arcs,

(ii) performing upwards bypass moves along these attaching arcs gives Γw2 , and

(iii) performing upwards bypass moves along any proper subset of them does not give Γw2 .

(We say nothing about the uniqueness of this minimal bypass system.)
Now let Γ be the chord diagram obtained by performing downwards bypass moves on FBS(w1, w2).

By the addition relation, the chord diagram obtained by a downwards bypass move is the sum of the
chord diagram with an upwards bypass move, and the chord diagram with no bypass move. Thus Γ is
a sum of 2m chord diagrams, corresponding to the 2m subsets of {c1, . . . , cm}, each a bypass system
of forwards attaching arcs, upon which we perform upwards bypass moves. Each of these 2m chord
diagrams is a basis chord diagram, by lemma 7.14. They are not necessarily distinct. However, since
each of the arcs of attachment is nontrivial, the chord diagram Γw1 appears exactly once; and by
minimality, Γw2 appears exactly once also. For every other basis chord diagram Γw which appears,
it is obtained by Γw1 by some sequence of upwards bypass moves along forwards attaching arcs; and
then by attaching some more upwards bypass moves along forwards attaching arcs, we can obtain Γw2 ;
thus w1 � w � w2.

The effect of performing upwards bypass moves on BBS(w1, w2) is similar. �

Corollary 7.43 For every pair w1 � w2, there is a chord diagram such that, if we write it as a sum
of basis chord diagrams, then Γw1 is lexicographically the first and Γw2 is lexicographically the last. �
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8 Proof of main theorems

We now prove theorem 1.22, that there is a bijection between chord diagrams and pairs of comparable
words w1 � w2. This map takes a chord diagram to the lexicographically first and last elements
occurring in its basis decomposition.

Corollary 7.43 above shows that there is a map
{

Comparable pairs of
words w1 � w2

}
−→

{
Chord

Diagrams

}

taking (w1, w2) to a chord diagram in which Γw1 is lexicographically the first in its basis decomposition,
and Γw2 the last. Since basis decompositions are unique, this map is clearly injective. Moreover, by
proposition 1.20, proved in section 5, these two sets have the same cardinality. Thus we have a bijection.

This proves the main theorem 1.22. Moreover, it shows that every chord diagram can be constructed
by the methods of the previous section. In particular, if we take any contact element and write it as
a sum of basis vectors vw, and take the lexicographically first and last basis elements vw−

, vw+ among
them, we have w− � w � w+. This proves theorem 1.21.

Having proved this, we may make a definition.

Definition 8.1 ( Chord diagram notation ) For any two basis chord diagrams Γ− � Γ+, or words
w−, w+, we write [Γ−, Γ+] or [w−, w+] to denote the unique chord diagram which has Γ− and Γ+

respectively as first and last basis element.

The theorem says that every chord diagram can be written uniquely as [Γ−, Γ+] or [w−, w+].
Note that in this definition, “first and last” could be according to the lexicographic order, the

partial order �, or even the right-to-left lexicographic order (reversing Γ−, Γ+). For � is just the
intersection of a left-to-right and a right-to-left lexicographic ordering.

The theorem, along with the idea of proposition 1.24, give the following corollary.

Corollary 8.2 (Upwards vs. downwards bypass moves)

(i) Suppose there is a bypass system B on Γw1 , and Up (B)(Γw1 ) = Γw2 . Then Down (B)(Γw1 ) =
[Γw1 , Γw2 ].

(ii) Suppose there is a bypass system B on Γw2 , and Down (B)(Γw2 ) = Γw1 . Then Up (B)(Γw2 ) =
[Γw1 , Γw2 ].

Proof As in the proof of proposition 1.24, take a minimal version of B. We have immediately
w1 � w2. Summing the downwards bypass system as a sum over all subsets of upwards bypasses, we
see that we have w1 as the minimal element occurring in this sum and w2 the maximum. �

Part IV

Contact geometry applications

9 Contact-geometric criteria for chord diagrams

In this part, we give a construction from contact geometry, and we use what we now know about the
combinatorics of chord diagrams, in order to obtain contact-geometric information.

9.1 Definition of M(Γ0, Γ1) and m(Γ0, Γ1)

Now, suppose we have two chord diagrams Γ0, Γ1, both with the same number of chords n, and with
marked base points (and hence root points). Then we consider the cylinder D × I, where D is a disc
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Γ1

Γ0

Figure 38: M(Γ0, Γ1).

and I = [0, 1]. Its boundary is (D × {0}) ∪ (∂D × I) ∪ (D × {1}). We now draw some curves on this
boundary. We draw the chord diagram Γ0 on D × {0}, and we draw Γ1 on D × {1}. We do this so
that the marked points are aligned at points {pi} × {0, 1}, and the base points are aligned at points
{p0}×{0, 1}. We then choose 2n points {qi} on ∂D, evenly spaced between successive pi; and we draw
the 2n curves {qi} × [0, 1] on ∂D × I.

We will usually think of the [0, 1] direction as the “up / down” direction, where the positive direction
is up and the negative direction is down.

We now note that D× I can be considered as a contact 3-ball, with boundary dividing set given by
Γ. The “corners” along ∂D × {0, 1} can be made Legendrian, and the two surfaces intersecting along
these corners have interleaving dividing sets as required by the contact geometry. Thus we may round
the corners and obtain a 3-ball B with a dividing set (still denoted Γ in abusive notation). If Γ on
this rounded ball has is connected, then we can take the unique tight contact structure (up to isotopy
rel boundary) on B with dividing set Γ. If Γ is disconnected, then any contact structure on the ball
with this boundary dividing set is overtwisted. Such contact structures can be considered equally as
structures on a rounded ball, or the cylinder (“ball with corners”) D × I.

The manifold so obtained is really a sutured manifold, but we can call it “tight” or “overtwisted”.

Definition 9.1 (M(Γ0, Γ1)) Given two chord diagrams Γ0, Γ1 with n chords, the sutured manifold
M(Γ0, Γ1) is D × I with sutures

(Γ0 × {0}) ∪ ((∪{qi})× I) ∪ (Γ1 × {1}) .

See figure 38.

Definition 9.2 (Tight/overtwisted M(Γ0, Γ1)) If M(Γ0, Γ1) is tight if it admits a tight contact
structure, i.e. if after rounding corners, the sutures of M(Γ0, Γ1) are connected. Otherwise we say
M(Γ0, Γ1) is overtwisted.

Definition 9.3 (Stackable) We say that a chord diagram Γ1 is stackable on another chord diagram
Γ0 if M(Γ0, Γ1) is tight.

Note that these definitions are purely combinatorial, but they have contact geometric meaning.
(In some sense, all 3-dimensional contact geometry is combinatorics — at least, to the extent that
3-dimensional contact geometry is about convex surfaces and dividing sets, and to the extent convex
surfaces and dividing sets are combinatorics.)

We can also define a map m from the TQFT-property of SFH . We note that the sutures of
M(Γ0, Γ1) lie on a ∂B3 = S2 and are simply a gluing of the two chord diagrams Γ0, Γ1, with some
curves running between them, as shown in figure 38.

Now suppose we remove a small neighbourhood of a point on one of the curves running between
Γ0, Γ1. Then in our (1 + 1)-dimensional “almost TQFT”, taking the product of all these with S1,
we can regard this construction as arising from an inclusion of two solid tori (each with 2n boundary
sutures) into a single solid torus (with 2 boundary sutures), i.e.

(T, n) ∪ (T, n) →֒ (T, 1),
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and with a specified contact structure on the intermediate (pants)× S1. Hence there is a map

m : SFH(T, n, e)⊗ SFH(T, n, e) −→ SFH(T, 1, 0) = Z2.

Two chord diagrams Γ0, Γ1 correspond to contact elements in SFH(T, n, e) and hence give a contact
element in SFH(T, 1, 0). This is an overtwisted contact structure, in the case that M(Γ0, Γ1) has
disconnected sutures, i.e. is overtwisted, and hence gives contact element 0. Otherwise, it is the
unique tight contact structure on (T, 1), in the case that M(Γ0, Γ1) has connected sutures, i.e. is
tight, and then gives the contact element 1.

That is, m(Γ0, Γ1) ∈ Z2 is 0 or 1, respectively as M(Γ0, Γ1) is overtwisted or tight. In fact, the
map m could also be defined purely combinatorially with this as the definition, using the combinatorial
definition of SFH . We have therefore proved lemma 1.25.

Lemma (Stackability map) There is a linear map

m : SFH(T, n, e)⊗ SFH(T, n, e) −→ Z2

which takes pairs of contact elements, corresponding to pairs of chord diagrams (Γ0, Γ1), to 0 or 1
respectively as M(Γ0, Γ1) is overtwisted or tight. �

Note that although m is bilinear, it is not symmetric. There are many pairs of chord diagrams
Γ0, Γ1 such that m(Γ0, Γ1) = m(Γ1, Γ0) = 0; we will shortly see that m(Γ, Γ) = 1; and we will also see
that among the basis elements, there are many pairs for which m(Γ0, Γ1) = 0 and m(Γ1, Γ0) = 1.

9.2 Properties of M(Γ, Γ) and m(Γ, Γ)

Lemma 9.4 (M(Γ, Γ) tight) For any chord diagram Γ, M(Γ, Γ) is tight. That is, m(Γ, Γ) = 1.

We give two proofs. We include the second, less elegant one, because it is similar in spirit to some
subsequent proofs.

Proof (# 1) Since the chord diagram has no closed loops, let alone closed loops bounding discs,
there is a tight I-invariant contact structure on D2 × I such that each slice D2 × {·} is convex with
dividing set Γ, and such that ∂D2 × {·} is legendrian. This contact structure on D2 × I can be given
convex boundary, so that the dividing set is identical to that ofM(Γ, Γ); and henceM(Γ, Γ) is just a
standard tight neighbourhood of the convex disc (D2, Γ) �

We can alternatively prove the result by looking at the dividing set onM(Γ, Γ) the in more detail,
and showing explicitly that it is connected.

Proof (# 2) Proof by induction on |#Γ|, the number of components in Γ, i.e. the number of chords
in the chord diagram. For |#Γ| = 1, there is only one chord diagram possible on the disc; and the
dividing set on ∂M(Γ, Γ), after rounding corners, is obviously connected.

Now consider a general Γ. Let γ be an outermost chord of Γ. Thus we may consider Γ− γ to be a
chord diagram with |Γ|−1 components. We reduce the case ofM(Γ, Γ) to the case of M(Γ−γ, Γ−γ),
hence proving the result by induction.

Note that γ×{1}, on the boundary ofM(Γ, Γ) has two endpoints; and after rounding corners, one
of these is connected to an endpoint of γ × {0}. Thus on the rounded ball we have a connected arc c,
part of the dividing set, of the form c = c1 ∪ (γ ×{1})∪ c2 ∪ (γ × {0})∪ c3, where the ci are (rounded
versions of) arcs qi × [0, 1] of M(Γ, Γ). But now folding corners in a slightly different way, we see that
this is equivalent to the dividing set of M(Γ − γ, Γ− γ); where all of c becomes one of the qi × [0, 1]
arcs. See figure 39.

That is, the contact manifolds M(Γ, Γ) and M(Γ− γ, Γ− γ) are contactomorphic. �

The argument of this proof is useful in its own right, so we record it.

Lemma 9.5 (Cancelling corresponding outermost chords) Suppose Γ0, Γ1 each has an outer-
most chord γ0, γ1 in the same position. Then M(Γ0, Γ1) is tight iff M(Γ0− γ0, Γ1− γ1) is tight. That
is, m(Γ0, Γ1) = m(Γ0 − γ0, Γ1 − γ1). �
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Figure 39: M(Γ, Γ) with some edge-rounding.

9.3 Bypass-related Γ0, Γ1

If our Γ0, Γ1 are related by a bypass move, then we can easily determine whether M(Γ0, Γ1) is tight
or overtwisted. Bypass-related chord diagrams come naturally in triples, and there are 6 possibilities
among them for our construction. We can determine all of them.

Lemma 9.6 Let c be a nontrivial arc of attachment on a chord diagram Γ. Then

(i) all of M(Γ,Up c(Γ), M(Up c(Γ),Down c(Γ)) and M(Down c(Γ), Γ) are tight,

m(Γ,Up c(Γ)) = m(Up c(Γ),Down c(Γ)) = m(Down c(Γ), Γ) = 1;

(ii) all of M(Γ,Down c(Γ)), M(Down c(Γ),Up c(Γ)), M(Up c(Γ), Γ) are overtwisted,

m(Γ,Down c(Γ)) = m(Down c(Γ),Up c(Γ)) = m(Up c(Γ), Γ) = 0.

Proof We note that bypasses come in triples: with the three chord diagrams under consideration we
have the following.

Γ
ր ց

Down c(Γ) ← Up c(Γ)

Here the arrows denote upwards bypass moves. So in fact it is sufficient to prove M(Γ, Up c(Γ)) is
tight, since all three claimed tight manifolds are of this form; and thatM(Γ, Down c(Γ)) is overtwisted,
since all three claimed overtwisted manifolds are of this form.

If Γ has only 3 chords, then there is only one possible arrangement (up to rotation of the cylinder)
for bothM(Γ, Up c(Γ)) andM(Γ, Down c(Γ)); the result is then true by inspection. If there are more
than three chords, then we see that there must be some outermost chord γ which is disjoint from c;
hence it appears in all of Γ, Up c(Γ) and Down c(Γ). Applying lemma 9.5, the claimed manifold is tight
if and only if the same is true for Γ− γ, Up c(Γ)− γ and Down c(Γ)− γ. Repeatedly applying lemma
9.5 we reduce to the case of 3 chords. �

This lemma has a more purely contact interpretation. Recall thatM(Γ, Γ) is a tight contact 3-ball.
The lemma says that every nontrivial arc of attachment c on Γ×{0} or Γ×{1} is outer, according to
the definition of section 2.4.

A weaker statement can be proved purely algebraically: that if Γ0, Γ1 are bypass-related then
precisely one ofM(Γ0, Γ1), M(Γ1, Γ0) is tight. This statement is equivalent to

m(Γ0, Γ1) + m(Γ1, Γ0) = 1.

For the third bypass in their triple is Γ0 + Γ1, and from lemma 9.4 we have m(Γ0, Γ0) = m(Γ1, Γ1) =
m(Γ0 + Γ1, Γ0 + Γ1) = 1. So

1 = m(Γ0 + Γ1, Γ0 + Γ1)

= m(Γ0, Γ0) + m(Γ0, Γ1) + m(Γ1, Γ0) + m(Γ1, Γ1)

= m(Γ0, Γ1) + m(Γ1, Γ0).
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10 Contact-geometric interpretation of the partial order �

We now considerM(Γ0, Γ1) where each Γi is a basis chord diagram. We shall also require that Γ0, Γ1

have the same number n + 1 of chords and the same relative euler class e. So, each chord diagram
corresponds to a word w ∈ W (n−, n+).

We ask when M(w0, w1) is tight, i.e. when Γw1 is stackable on Γw0 . In this section, we will prove
proposition 1.26:

Proposition M(w0, w1) is tight if and only if w0 � w1.

10.1 Easy direction

Lemma 10.1 If w0 does not precede w1 with respect to �, then M(w0, w1) is overtwisted.

Proof By the “baseball interpretation”, there is some point in the game, playing innings from left to
right, where team 0 takes the lead. Hence there is a point in the game, after the m’th innings, where
team 0 moves precisely one step ahead. That is, there is some m such that in w0, there are i minus
signs and j plus signs up to the m’th position, but in w1 there are i + 1 minus signs and j − 1 plus
signs up to the m’th position. Moreover, since team 0 just took the lead, the m’th symbol in w0 is a
+, while in w1 the m’th symbol is a −.

By lemma 6.9 then, after the m’th stage of the base point algorithm, in Γ0 the discrete interval
of used marked points is [−2i, 2j − 1], while in Γ1 the discrete interval of used marked points is
[1− 2(i + 1), 2(j − 1)] = [−2i− 1, 2j − 2]. After rounding corners, the chords with endpoints in these
intervals precisely match. Since the m’th stage is not the final stage, the curves on the rounded ball
have several components. Thus M(w0, w1) is overtwisted. �

10.2 Preliminary cases

Lemma 10.2 If M(w0, w1) is overtwisted, then a separate component of the dividing set can be ob-
served in constructing the basis chord diagrams Γ0, Γ1 with the base point construction algorithm, before
the final step.

Proof We know that, after rounding, we have a system of curves on S2 and the total euler class is
0; hence there is an odd number of components; hence at least 3 components. Thus there is some
component γ that intersects neither the root point on Γ0 nor the root point on Γ1. OnM(w0, w1), γ
contains some of the chords on Γ0, and some on Γ1, but no chords with endpoints at either root point.
Thus, a separate component γ can be observed at some stage of the base point algorithm before the
final step. �

Lemma 10.3 The proposition for w0, w1 beginning with the same symbol, w0 = sw′
0, w1 = sw′

1, where
s ∈ {+,−}, reduces to the proposition for w′

0, w
′
1, i.e. shorter words.

Proof We note that, by lemma 9.5,M(w0, w1) is contactomorphic toM(w′
0, w

′
1), through rounding

and re-folding. And clearly w0 � w1 iff w′
0 � w′

1. �

Thus, we may assume that w0 begins with a − and w1 begins with a +.

10.3 Proof of proposition

We now suppose that w0 � w1, and show thatM(w0, w1) is tight.
We will prove this by induction on the length n of the words w0 and w1. It is clearly true by

inspection for words of length 1 and 2; we now assume it is true for all lengths less than n, and
consider words w0, w1 of length n.
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By lemma 10.2, we know that ifM(w0, w1) is overtwisted, we will see a closed loop before the final
stage of the base point construction algorithm.

We will show by induction on m, that no closed loop appears at the m’th stage of the base point
construction algorithm, before the final step. By lemma 10.3 and lemma 10.1, we can assume w0

begins with a − and w1 begins with a +; so no closed loop appears at the first stage; the result is
true for m = 1. At the m’th stage of the algorithm, let [am, bm] denote the discrete interval of used
marked points on Γ0 and [cm, dm] on Γ1. The hypothesis w0 � w1 means that for all m, am − 1 < cm

and (equivalently) bm − 1 < dm.
So now suppose that there is no closed loop at any stage before m, but a closed loop appears at

stage m. At the previous (m−1)’th stage, we had discrete intervals of used marked points [am−1, bm−1]
and [cm−1, dm−1]. Let us examine what can happen at the m’th stage.

On Γ0, there are three possible positions for the chord added at the m’th step of the algorithm.
These three possibilities connect the pairs of marked points (am−1−2, am−1−1), (am−1−1, bm−1+1),
or (bm−1 + 1, bm−1 +2). Similarly, on Γ1 there are three possible positions for the new chord. At least
one of these new chords must form part of the new closed loop; else it would have appeared earlier.
We will assume that the new chord on Γ0 is part of the new closed loop; the case where the new chord
lies on Γ1 is similar.

Let this new chord on Γ0, added at the m’th stage, be γm. Note γm cannot include the marked point
am, since am on D×{0} connects to am−1 on D×{1}, and am−1 < cm, so this is left of all used points
of Γ1 at this stage, and cannot form a closed loop. Thus, the γm is (bm−1 +1, bm−1+2) = (bm−1, bm),
and it forms part of a closed loop.

We see that γm encloses an outermost region on the eastside of Γ0, hence a positive outermost
region. Hence it is constructed by processing a following + sign in w0. (If w0 begins with a +, this
also creates a positive outermost region, but we have dealt with the case m = 1.) Let this be the j’th
+ sign in w, so using lemma 6.9, (bm − 1, bm) = (2j − 2, 2j − 1) Thus w0 = u + +v, where u (possibly
empty) contains j − 2 plus signs.

Now, the endpoints of γm on Γ0 connects to the two marked points {bm−2, bm−1} = {2j−3, 2j−2}
on Γ1. We have dm > bm − 1, so these are not the rightmost points among the used points on Γ1, at
this m’th stage. Moreover, the closed loop we have just created cannot involve any of the points right
of 2j − 2 = bm − 1 on Γ1, since these points cannot to marked points right of bm on Γ0, which have
not been used yet.

Thus, the chord emanating from 2j − 2 on Γ1 must go to the westside, enclosing a − region, and
must be created by processing a leading − symbol in w1. And the chord emanating from 2j − 3 on
Γ1, by lemma 6.9, is created by processing the (j − 1)’th + sign in w1. Thus w1 = y + −z, where y
(possibly empty) contains j − 2 plus signs.

Now, rounding the ball and refolding, we may perform a “finger move”, pushing the whole new
chord γm off D × {0} and down to D × {1}, which has the effect of removing γm from D × {0}, and
connecting up the marked points labelled 2j − 3, 2j − 2 on D × {1}. See figure 40.

The chord diagram on D × {0} then reduces to the chord diagram for w′
0 = u + v, deleting the

(j−1)’th + sign from w0. The chord diagram on D×{1} reduces to the chord diagram for w′
1 = y−z,

deleting the (j−1)’th + sign. Thus the situation reduces toM(w′
0, w

′
1) for two smaller words obtained

from deleting the (j − 1)’th + sign both w0 and w1; since we deleted the same numbered + signs,
w′

0 � w′
1. But we know that the proposition is true for all smaller length words, soM(w′

0, w
′
1) is tight;

so there cannot be any closed loop, and we have a contradiction.
Thus, adding the m’th chord in the base point construction algorithm for Γ0 and Γ1, we never see

a closed loop. By induction, at every stage before the end of the algorithm, we never see a closed loop.
Hence there are no closed loops, andM(w0, w1) is tight.

This concludes the proof of proposition 1.26
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2j−3
2j−2

2j−1
2j−2

Figure 40: Finger move onM(Γ0, Γ1).

10.4 Which chord diagrams are stackable?

Notice that the proposition of the previous section gives the value of m on all basis elements. This
defines m precisely, and as discussed in section 9.1, m describes stackability. Thus, we can put this
together to give an answer to the general question: given two chord diagrams Γ0, Γ1, is Γ1 stackable
on Γ0?

We give an answer by proving proposition 1.27:

Proposition (General stackability) Let Γ0, Γ1 be chord diagrams with n chords and relative euler
class e. Then Γ1 is stackable on Γ0 (i.e. M(Γ0, Γ1) is tight) if and only if the cardinality of the set

{
(w0, w1) :

w0 � w1

Γwi
occurs in decomposition of Γi

}

is odd.

Proof The tightness of M(Γ0, Γ1) is equivalent to m(Γ0, Γ1) = 1, and we simply now expand this
out as a sum over basis elements. �

10.5 Contact interpretation of Γ−, Γ+

Let us consider the decomposition algorithms of section 6.4. Note that these algorithms decompose
Γ into its basis elements by performing bypass moves. In the algorithm, these bypass moves were
considered purely combinatorially; but of course we can consider the contact manifolds obtained by
attaching such bypasses. Every basis element is obtained by attaching some bypasses to Γ along
disjoint arcs of attachment, i.e. along a basis system. Most basis elements are obtained by attaching
some bypasses above and some below. But Γ− is obtained by attaching only upwards bypasses, and
is the only such basis element in Γ. Similarly, Γ+ is the one and only basis element in Γ obtained
by attaching only downwards bypasses. Thus the basis decomposition algorithm (either one) naturally
constructsM(Γ, Γ−) andM(Γ+, Γ). However it does this by attaching bypasses along arcs that may
in general intersect; it is not a nice bypass system.

Nonetheless, we immediately see that there are stackability relations:

Lemma 10.4 M(Γ, Γ−) and M(Γ+, Γ) are tight, m(Γ, Γ−) = m(Γ+, Γ) = 1.

Proof Expand out over basis elements: the only Γw in the decomposition of Γ satisfying Γw � Γ− is
Γw = Γ− itself, and similarly for Γ+. �

This result can also be proved directly by considering the dividing set onM(Γ, Γ−) and successively
performing rounding and un-rounding of corners and isotopies. Each chord created in the base point
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construction algorithm for Γ− can be isotoped off the top of the cylinder, and pushed down the cylinder
into the bottom disc, where it simplifies Γ to the chord diagram on the unused disc of an appropriate
Γw·.

11 Properties of contact elements

Based on the above results, we can now give some properties of contact elements. In particular, we
can say some things about the basis elements which occur in the decomposition of a contact element.

11.1 How many basis elements occur in a decomposition?

A natural first question is just how many basis elements there can be. If Γ is a basis chord diagram,
then obviously there is one element in its decomposition, namely itself. Otherwise, the answer is: an
even number. That is, we prove proposition 1.28:

Proposition Every chord diagram which is not a basis element has an even number of basis elements
in its decomposition.

Proof Consider a non-basis chord diagram Γ. Then its basis decomposition algorithm is nontrivial,
i.e. some decomposition actually occurs. As we perform the decomposition algorithm, we obtain chord
diagrams Γw in Υk associated to words of length k. For each basis element in the decomposition of Γ,
it appears at some stage of this algorithm (possibly not the last). But when it does appear, it comes
from a non-basis chord diagram which is related to it by a bypass move. However, by lemma 7.12, the
only non-basis chord diagrams related by a bypass move to a basis chord diagram, are sums of two
basis chord diagrams. It must be this pair of basis chord diagrams which appears; and so the basis
elements come in pairs. �

In fact, we have proved a little more: if we write out the basis elements of Γ in lexicographic order,
then the (2j − 1)’th and 2j’th are bypass-related; equivalently (lemma 7.12), their words are related
by an elementary move.

Lemma 11.1 (Test for basis element) For any chord diagram Γ with n chords and euler class
e = n+ − n−,

m
(
Γ(−)n− (+)n+ , Γ

)
= m

(
Γ, Γ(+)n+(−)n−

)

=

{
0 if Γ is a basis chord diagram
1 otherwise

Proof Every word w ∈ W (n−, n+) satisfies (−)n−(+)n+ � w � (+)n+(−)n− . We expand out in terms
of basis elements. These expressions simply count the number of basis elements in the decomposition
of Γ, mod 2. �

One can also prove directly, by examination of chord diagrams, that if Γ is a basis chord dia-
gram, then M(Γ(−)n−(+)n+ , Γ) and M(Γ, Γ(+)n+(−)n− ) are both tight; and otherwise they are both
overtwisted.

11.2 Symbolic interpretation of outermost regions

As it turns out, certain symbols appearing in both Γ−, Γ+ imply that certain symbols are repeated in
all the basis elements of Γ, and mean that Γ has an outermost chord in a specific place.

Lemma 11.2 (Outermost regions at base point) Let Γ = [Γ−, Γ+] = [w−, w+]. The following
are equivalent.
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(i) Γ has an outermost chord enclosing a negative region (resp. positive region) at the base point.

(ii) For every Γw in the basis decomposition of Γ, w begins with a − (resp. +).

(iii) Γ− and Γ+ both have outermost chords enclosing a negative region (resp. positive region) at the
base point, i.e. w−, w+ both begin with a − (resp. begin with a +).

Proof That (i) implies (ii) follows immediately from considering the decomposition algorithm. That
(ii) implies (iii) is obvious. That (iii) implies (i) follows immediately from

B−[Γw1 , Γw2 ] = [B−Γw1 , B−Γw2 ] = [Γ−w1 , Γ−w2 ]. �

There is a similar result at the root point.

Lemma 11.3 (Outermost regions at root point) Let Γ = [Γ−, Γ+] = [w−, w+] The following are
equivalent.

(i) Γ has an outermost chord enclosing a negative region (resp. positive region) at the root point.

(ii) For every Γw in the basis decomposition of Γ, w ends with a − (resp. +).

(iii) Γ− and Γ+ both have outermost chords enclosing a negative region (resp. positive region) at the
root point, i.e. w−, w+ both end with a − (resp. begin with a +). �

We can detect other outermost chords in a similar way. In particular, we can detect negative
outermost chords on the westside, and positive outermost chords on the eastside. First, we note
from lemma 6.9 that a basis chord diagram Γw has a negative outermost chord on the westside, at
(−2j − 1,−2j), if and only if the (j + 1)’th − sign in w is following. Similarly, Γw has a positive
outermost chord on the eastside, at (2j, 2j + 1), if and only if the (j + 1)’th + sign in w is following.

As mentioned in sections 1.12 and 4.2, creation and annihilation operators can be defined, not just
at the base point, but elsewhere. One may define linear operators on SFH which have the effect of
adding or removing an outermost chord at any given site.

Definition 11.4 (Eastside/westside creation operators)

(i) For each i = 0, . . . , n−, the operator

Bwest,i
− : SFH(T, n + 1, e)→ SFH(T, n + 2, e− 1)

takes a chord diagram with n+1 chords and relative euler class e, and produces a chord diagram
with n + 2 chords and relative euler class e− 1, adding an outermost chord enclosing a negative
region on the westside, between points (−2i− 3,−2i− 2) (as labelled on the chord diagram with
n + 2 chords).

(ii) For each j = 0, . . . , n+, the operator

Beast,j
+ : SFH(T, n + 1, e)→ SFH(n + 2, e + 1)

takes a chord diagram with n+1 chords and relative euler class e, and produces a chord diagram
with n + 2 chords and relative euler class e + 1, adding an outermost chord enclosing a positive
region on the eastside, between points (2j + 2, 2j + 3).

Definition 11.5 (Eastside/westside annihilation operators)

(i) For each i = 0, . . . , n−, the operator,

Awest,i
+ : SFH(T, n + 1, e) −→ SFH(T, n, e + 1)

takes a chord diagram with n+1 chords and relative euler class e, and produces a chord diagram
with n chords and relative euler class e +1, by joining the chords at positions (−2i− 2,−2i− 1).
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(ii) For each j = 0, . . . , n+, the operator

Aeast,j
− : SFH(T, n + 1, e) −→ SFH(T, n, e− 1)

takes a chord diagram with n+1 chords and relative euler class e, and produces a chord diagram
with n chords and relative euler class e− 1, by joinint the chords at positions (2j + 1, 2j + 2).

Note that the numbering of these operators may seem a little strange. There are however good reasons
for it; see section 13.

We see that, like our original annihilation and creation operators and the base point, we have

Awest,j
+ ◦Bwest,j

− = 1, Aeast,j
− ◦Beast,j

+ = 1,

and we will investigate further relations in section 13.
It’s easy from lemma 6.9 to see that Bwest,j

− has the effect on Γw of producing Γw′ , where w′ is
obtained from w as follows. If 0 ≤ j ≤ n− − 1, then we insert a − sign in w immediately after the
(j + 1)’th − sign. If j = n−, then we add a − sign at the end of w. Similarly, Beast,j

+ adds a + sign
immediately after the (J + 1)’th + sign, if 0 ≤ j ≤ n+ − 1; and adds a + sign at the end, if j = n+.

We can do the same for annihilation operators. The operator Awest,j
+ has the effect of deleting the

(j + 1)’th − sign, for 0 ≤ j ≤ n− − 1; and for j = n−, it deletes the − sign at the end of the word, or
returns 0 if the word ends in a +. The operator Aeast,j

− has the effect of deleting the (j + 1)’th + sign,
for 0 ≤ j ≤ n+ − 1; and for j = n+, it deletes the + sign at the end of the word (if there is one), else
returns 0.

Lemma 11.6 (Outermost negative regions on westside) Let Γ = [Γ−, Γ+] = [w−, w+]. Let j be
an integer from 1 to n− − 1. The following are equivalent.

(i) Γ has an outermost chord enclosing a negative region between the points (−2j − 1,−2j).

(ii) For every Γw in the basis decomposition of Γ, Γw has an outermost chord enclosing a negative
region between (−2j − 1,−2j). Equivalently, every such w has the (j + 1)’th − sign following
(i.e. not the first in its block).

(iii) Both Γ− and Γ+ have an outermost chord enclosing a negative region between (−2j − 1,−2j),
i.e. has (j + 1)’th − sign following..

Proof The proof is similar to the previous two lemmas, after noting

Bwest,j
− Γ = Bwest,j

− [Γ−, Γ+] = [Bwest,j
− Γ−, Bwest,j

− Γ+],

adding a − sign immediately after the j’th − sign in every word occurring in the decomposition of Γ.�

There is a similar lemma on the eastside.

Lemma 11.7 (Outermost positive regions on eastside) Let Γ = [Γ−, Γ+] = [w−, w+]. Let j be
an integer from 1 to n+ − 1. The following are equivalent.

(i) Γ has an outermost chord enclosing a positive region between the points (2j, 2j + 1)..

(ii) For every Γw in the basis decomposition of Γ, Γw has an outermost chord enclosing a positive
region between (2j, 2j + 1). Equivalently, every such w has the (j + 1)’th − sign following (i.e.
not the first in its block).

(iii) Both Γ− and Γ+ have an outermost chord enclosing a negative region between (2j, 2j + 1), i.e.
have (j + 1)’th + sign following. �

All the lemmas in this section say that, if a chord diagram has an outermost region in a specific
place, then so do all the basis chord diagrams in its decomposition. In particular, as we proceed
through the decomposition algorithm, there is no decomposition at that chord. In fact, this can be
seen explicitly from the decomposition algorithm.

72



11 PROPERTIES OF CONTACT ELEMENTS

11.3 Generalised bypass triples

We have seen that bypass-related chord diagrams naturally come in triples. We now consider a “mul-
tiple bypass” version of this phenomenon, namely the triple (Γ+, Γ, Γ−)

Recall that for [Γ−, Γ+] = [w−, w+], we have a bypass system c− = BS(w−, w+) on Γ− such that
Up (c−)Γ− = Γ+ and Down (c−)Γ− = [Γ−, Γ+]. Taking the corresponding bypass systems c+ on Γ+

and c on [Γ−, Γ+], we see that these bypass systems take the three chord diagrams to each other:

Γ
Up (c)ւր Down (c−) Up (c+)տց Down (c)

Up (c−)

Γ− →
← Γ+

Down (c+)

Moreover, we have seen that the cylinders obtained by stacking them in the three ways indicated are
all tight:

m(Γ, Γ−) = m(Γ−, Γ+) = m(Γ+, Γ) = 1.

All this is analogous to a bypass triple. In fact it is a generalisation of a bypass triple: when Γ−, Γ+

are related by a single bypass, or equivalently when w−, w+ are related by an elementary move, this
situation reduces to a bypass triple.

Actually, more is true. Obtaining one chord diagram from another by a sequence of bypass moves,
all in the same direction, and along a bypass system, i.e. a set of disjoint attaching arcs, gives more
than just a dividing set on the boundary of a cylinder. It actually gives a contact structure on the solid
cylinder. This contact structure is given by the standard neighbourhood of the convex disc, with actual
contact-geometric bypasses attached to it (all above or all below). Since we have a bypass system, the
attaching arcs are all disjoint, so there is no ambiguity about what order to add bypasses. So we have
well-defined contact structures onM(Γ, Γ−),M(Γ−, Γ+) andM(Γ+, Γ); the fact that m = 1 for all of
them means that they are tight in a neighbourhood of the boundary; but in fact the whole manifolds
are tight.

Proposition 11.8 (Contact generalised bypass triple) The contact structures on

M(Γ, Γ−), M(Γ−, Γ+) and M(Γ+, Γ)

obtained by attaching bypasses are all tight.

As part of this proof, we will show that it does not matter whether we add the proposed bypasses up
from the bottom or down from the top.

In this proposition, we are asking when a contact manifold obtained by attaching bypasses to
a convex disc along a bypass system produces a tight contact structure. This question has been
completely answered by Honda, Kazez and Matić in [27]: the key indicator is a pinwheel.

Theorem 11.9 (Honda, Kazez, Matić [27]) Let D be a convex disc with legendrian boundary and
c a bypass system. The contact structure on D×I obtained by attaching bypasses on top of the product
contact neighbourhood of D along all the attaching arcs of c is tight if and only if there are no pinwheels
in D.

Thus, to prove our proposition, we only need to check there are no pinwheels.

Definition 11.10 (Pinwheel) A pinwheel is an embedded polygonal region P in (D, Γ) satisfying the
following conditions.
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11 PROPERTIES OF CONTACT ELEMENTS

Figure 41: A pinwheel.

(i) The boundary of P consists of 2k (k ≥ 1) consecutive sides

γ1, α1, γ2, α2, . . . , γk, αk,

labelled anticlockwise, where γi is an arc on a chord of the dividing set Γ, and αi is half of an
arc of attachment ci.

(ii) For each i, ci extends past αi in the direction shown in figure 41, and does not again intersect
P .

Proof (Of proposition 11.8) Since adding bypasses above Γ− along FBS(w−, w+) gives Γ+, we
show that FBS(w−, w+) has no pinwheels. Suppose there were a pinwheel P and consider the re-
quirement for attaching arcs to extend past P in the direction shown. Recall that the chords of Γ−

are ordered by the stage of the base point construction algorithm at which they are constructed; let
si denote the stage at which γi is constructed.

Now, recall that FBS(w−, w+) is a forwards bypass system and hence each attaching arc has a
negative prior outer region. Moreover, proceeding along each attaching arc from prior endpoint to
latter endpoint, the numberings of the chords of Γ− it intersects strictly increases. If P is a negative
region, this implies sk < sk−1 < · · · < s1 < sk, a contradiction. Similarly, if P is a positive region, we
have s1 < s2 < · · · < sk < s1, also a contradiction.

Thus the contact structure on M(Γ−, Γ+) by attaching upwards bypasses along c− to a standard
neighbourhood of (D, Γ−) is tight. Similarly, attaching upwards or downwards bypasses along c+ to a
standard neighbourhood of (D, Γ+) gives a tight contact manifold. Since these two sets of bypasses lie
in the same places and “undo each other”, they give the same contact structure onM(Γ−, Γ+), which
is tight.

By the same argument, attaching downwards bypasses along c− to (D, Γ−) is gives a tight contact
structure on M(Γ, Γ−), which is the same contact structure as obtained by attaching bypasses to c
below Γ. And a similar argument shows that both contact structures onM(Γ+, Γ) are also equivalent,
and tight. �

11.4 Relations within contact elements

We now examine the various basis elements within the decomposition of a chord diagram / contact
element Γ = [Γ−, Γ+] = [w−, w+], using the bypass systems discussed above.

Definition 11.11 (Basis chord diagram in Γ) If Γw appears in the decomposition of Γ, we write
Γw ∈ Γ.

After all, any sum with Z2 coefficients can be regarded as a subset.
Moreover, we have many more tight cylinders.
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11 PROPERTIES OF CONTACT ELEMENTS

Lemma 11.12 (More tight cylinders) For every Γw obtained by performing upwards bypass moves
along some subset A− of of c− on Γ− (or equivalently, by attaching downwards bypasses along some
subset of c+ on Γ+),

m(Γ−, Γw) = m(Γw, Γ+)
= m(Γ, [Γ−, Γw]) = m([Γ−, Γw], Γ−)

= m(Γ+, [Γw, Γ+] = m([Γw, Γ+], Γ) = 1.

In fact, the corresponding solid cylinders all have tight contact structures given by attaching bypasses
to one of Γ−, Γ+, Γ along some subset of c−, c+, c respectively.

Proof We rely heavily on proposition 11.8, and show that these bypass attachments give contact
manifolds which can be embedded inside the tight contact manifolds constructed in that proposition.
For instance, we saw in proposition 11.8 that the contact structure onM(Γ−, Γ+) obtained by attaching
bypasses above Γ− along c− is tight. Attaching only bypasses along the subset A then gives the contact
manifoldM(Γ−, Γw) as a contact submanifold of this tightM(Γ−, Γ+); hence it is also tight.

Similarly, a contact structure onM(Γw, Γ+) is obtained by attaching bypasses below Γ+ along the
subset A+ of c+ corresponding to the complement of A. This is also a contact submanifold of our tight
M(Γ−, Γ+).

By corollary 8.2, since performing downwards bypass moves on Γ+ along A+ gives Γw, then
upwards bypass moves give [Γw, Γ+]; so these attachments of bypasses give a contact structure on
M(Γ+, [Γw, Γ+]). This contact manifold embeds inside the tightM(Γ+, Γ) obtained by attaching by-
passes along all of c+. This same chord diagram is given by downwards bypass moves on Γ along A,
the subset of c corresponding to the complement of A+; and so we obtain a tight contact structure on
M([Γw, Γ+], Γ).

Similarly, upwards bypass moves on Γ− along A− give Γw, so downwards moves give [Γ−, Γw]; we
similarly obtain a tight contact structure on M([Γ−, Γw], Γ−). This same chord diagram is given by
upwards bypass moves on Γ along A. Thus we obtain a tight contact structure onM(Γ, [Γ−, Γw]). �

Now some algebraic shenanigans gives us a couple of interesting formulas.

Lemma 11.13 (Relations between basis elements) The chord diagrams Γ+, Γ− satisfy

Γ+ =
∑

Γw∈Γ

[Γ−, Γw] and Γ− =
∑

Γw∈Γ

[Γw, Γ+].

Proof We have Down (c)(Γ) = Γ+, but let us instead expand this as a sum over subsets of upwards
bypass moves

∑
Ai⊆c Up (Ai)(Γ) over subsets Ai of the bypass system c. But then Up (Ai)(Γ) =

Down (A′
i)(Γ

−), where A′
i is the complement of the corresponding subset of the bypass system of c−.

But Up (A′
i)(Γ

−) is a basis chord diagram Γwi
for some w− � wi � w+. Hence by corollary 8.2,

Down (A′
i) = [w−, wi]. Putting this together,

Γ+ = Down (c)(Γ) =
∑

Ai⊆c

Up (Ai)(Γ) =
∑

A′

i
⊆c−

Down (A′
i)(Γ

−) =
∑

A′

i
⊆c−

[Γ−, Up (A′
i)(Γ

−)]

Now, some of these terms may be identical: they cancel as identical whenever

Up (A′
i)(Γ

−) = Up (A′
j)(Γ

−)

for some subsets A′
i, A

′
j ⊂ c−. But note that the sum

∑

A′

i
⊆c−

Up (A′
i)(Γ

−) = Down (c−)(Γ−) = Γ,

so the terms are identical precisely when they cancel in the expansion of Γ. In other words, the sum
over A′

i ⊆ c− may be regarded as the sum over basis elements which occur in the decomposition of Γ.
This argument, and a similar argument for c+, give us the result. �
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12 THE ROTATION OPERATOR

This result says something about the set of basis elements Γw occurring in Γ: in the sum involved,
there must be a great deal of cancellation. In particular, we have the following consequences.

Proposition 11.14 For Γw ∈ Γ = [Γ−, Γ+],

m(Γ, Γw) =

{
0 Γw = Γ−

1 otherwise

m(Γw, Γ) =

{
0 Γw = Γ+

1 otherwise

Proof Applying the previous lemma to [Γ−, Γw] gives

Γw =
∑

Γw′∈[Γ−,Γw]

[Γ−, Γw′ ].

Hence
m(Γ, Γw) =

∑

Γw′∈[Γ−,Γw]

m(Γ, [Γ−, Γw′ ]).

Now Γw occurs in the basis decomposition of [Γ−, Γ+], hence is obtained by performing upwards
bypass moves along some subset A− of the bypass system c− = BS(Γ−, Γ+) on Γ−. By corollary 8.2,
performing downwards bypass moves on Γ− along A− gives [Γ−, Γw]. To see what basis elements Γw′

occur in [Γ−, Γw], we expand the downwards bypass moves on Γ− along A− as a sum over upwards
bypass moves on Γ− along subsets of A−. This certainly gives [Γ−, Γw] as a sum of basis chord
diagrams; so every Γw′ ∈ [Γ−, Γw] can be obtained by performing upwards bypass moves along some
subset of A−, which in turn is a subset of c−. In particular, proposition 11.8 applies to Γw′ and every
term m(Γ, [Γ−, Γw′ ]) = 1.

Thus m(Γ, Γw) is simply equal to the number of terms in the above sum. If Γw = Γ− then
[Γ−, Γw] = Γ− has one term, and we obtain 1. Otherwise [Γ−, Γw] is not a basis element, hence by
proposition 1.28 has an even number of terms, and the sum is zero. �

Proposition 11.15 For every Γw occurring in the basis decomposition of Γ, other than Γ±, the number
of basis elements of Γ which precede Γw (with respect to �) is even, and the number of basis elements
which follow it (with respect to �) is also even.

Proof Expand out m(Γ, Γw) = 0 and m(Γw, Γ) = 0 over the basis elements of Γ. �

We can now prove theorem 1.29:

Theorem Suppose Γw occurs in the basis decomposition of Γ and is comparable (with respect to �)
with every other basis element occurring in Γ. Then Γw = Γ+ or Γ−.

Proof If Γ is a basis element, it is clear. Otherwise, the number of elements comparable to Γw is
m(Γ, Γw) + m(Γw, Γ) + 1. (We overcount Γw in the sum, so correct by adding 1.) If Γw is comparable
to every basis element in Γ then this number must be even, since Γ contains an even number of basis
elements (proposition 1.28). But by proposition 11.14 it is odd. �

Part V

Further considerations

12 The rotation operator

We now consider the operation of rotating chord diagrams, or equivalently, moving the basepoint. If
we are to keep a negative region anticlockwise from the base point, and a positive region clockwise,
then we must move the base point by two marked points.

76



12 THE ROTATION OPERATOR

Figure 42: The rotation operator.

Such a rotation corresponds to the inclusion of sutured manifolds (T, n) →֒ (T, n) given by thick-
ening the solid torus along its boundary. On the intermediate manifold, which is an annulus ×S1, we
specify an S1-invariant contact structure by giving a dividing set on the annulus, as shown in figure
42.

By TQFT-inclusion, we obtain a linear operator

R : SFH(T, n + 1, e) −→ SFH(T, n + 1, e)

Z
(n

k)
2 −→ Z

(n
k)

2

Obviously Rn is the identity, takes contact elements to contact elements, and rotates chord diagrams
anticlockwise (or, equivalently, moves the base point 2 marked points clockwise). When we wish to

refer to a particular n, e, k we write Rn,k for the above map on Z
(n

k)
2

12.1 Small cases

For SFH(T, 1, 0) = Z2, there is only one nonzero element, corresponding to the vacuum v∅, and it is
fixed by rotation. Thus R is a 1× 1 identity matrix in this case.

Similarly, for an extremal euler class SFH(T, n+1, e = ±n) = Z2 there is only one nonzero element,
corresponding to Γ(±)n , consisting only of outermost chords. Again R is the identity in this case.

The smallest non-identity case is SFH(T, 3, 0) = Z
(2
1)

2 = Z2
2. And C0

3 = 3, with the three chord
diagrams being a bypass triple. We easily obtain

v−+ 7→ v+− 7→ v+− + v+−

and hence

R2,1 =

[
0 1
1 1

]
.

We write matrices using the lexicographically ordered basis
In a similar way we obtain

R3,1 = R3,2 =



0 1 0
0 0 1
1 1 1


 , R4,1 = R4,3 =




0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1


 .
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Note it appears from these examples that perhaps Rn,k = Rn,n−k; that is not the case as we find here.

R5,2 =




0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 1 0
0 0 1 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1




, R5,3 =




0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1




,

(We have suggestively boxed this matrix in a way that will become useful.)

12.2 Computation of R

We now compute R. The computation is recursive: we define Rn,k in terms of smaller R matrices. We
will need to choose basis elements with certain properties: if x is a word in + and −, we will say x-basis
elements to mean those vw where the string w begins with the string x (and possibly w = x). We will
also say x-rows or x-columns to mean the columns correspond to all x-basis elements. And for two
strings x and y, we can take the x × y minor of R to be the submatrix consisting of the intersection
of the x-rows with the y-columns.

For example, in our computation of R5,2 and R5,3 above the boxes have been added to suggest the
following decomposition:

R5,2 =

−−− −−+ −+ +

−−− 0 R1,1 0 0 0

−−+ 0 0 R2,1 0 0

−+ 0 0 0 R3,1 0

+
(−−−)-cols

of R4,1

(−−)-cols
of R4,1

(−)-cols
of R4,1

R4,1

R5,3 =

−− −+ +

−− 0 R2,2 0 0

−+ 0 0 R3,2 0

+
(−−)-cols
of R4,2

(−)-cols
of R4,2

(+)-cols
of R4,2

We will now prove that something similar occurs for all Rn,k.

Proposition 12.1 (Recursive computation of R) Rn,k is described as follows.

(i) The (+)× (+) minor of Rn,k is Rn−1,k−1.

(ii) The (+)×(−+) minor of Rn,k is the (−)-columns of Rn−1,k−1. More generally, the (+)×((−)j+)
minor of Rn,k is the ((−)j)-columns of Rn−1,k−1, for j = 1, . . . , n− k.

(iii) The (−+)× (+−) minor of Rn,k is Rn−2,k−1. More generally, the ((−)j−+)× ((−)j +−) minor
of Rn,k is Rn−j−2,k−1.

(iv) All other entries are zero. To write these remaining entries out exhaustively (with some overlap):

(a) (Below and on the diagonal, in the (−) rows.) The (−+) × (−) minor is zero. More
generally, the ((−)j+)× ((−)j) minor is zero, for j = 1, . . . , n− k.
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(b) (Above the diagonal and the submatrices Rn−j−2,k−1.) The (−−)×(+) minor is zero. More
generally, the ((−)j −−)× ((−)j+) minor is zero, for j = 0, . . . , n− k − 2.

(c) (The pieces in the (−) rows just to the right of the submatrices Rn−j−2,k−1.) The (−)×(++)
minor is zero. More generally, the (−)× ((−)j + +) minor is zero, for j = 0, . . . , n− k.

Proof We simply verify all these conditions. The conditions given are equivalent to the following
equations on operators:

(i) A−RB+ = R.

(ii) A−R(B−)jB+ = A−RB+(B−)j , for j = 1, . . . , n− k.

(iii) A−A+(A+)jR(B−)jB+B− = R, for j = 0, . . . , n− k − 1.

(iv) (a) A−(A+)jR(B−)j = 0, for j = 1, . . . , n− k.

(b) A−A+(A+)jR(B−)jB+ = 0, for j = 0, . . . , n− k − 2.

(c) A+R(B−)jB+B+ = 0, for j = 0, . . . , n− k.

These are now easily proved by examining the corresponding chord diagrams. �

These matrices have interesting combinatorial properties: for instance, for every row, there is
precisely one column which has its highest nonzero element in that row.

12.3 An explicit description

From the above recursive form of the matrix for R, we can write down a recursive formula.

R =
∞∑

n=0

B+RBn
−A−An

+ + Bn+1
− B+RA+A−An

+

=

∞∑

n=0

(
B+RBn

− + Bn+1
− B+RA+

)
A−An

+

=

∞∑

n=0

[
B+RA+, Bn+1

−

]
A−An

+

We can also describe combinatorially R(vw) for each basis vector vw. We will write w in the form

w = (−)a
1(+)b1 · · · (−)ak(+)bk

where possibly a1 = 0 or bk = 0, but all other ai, bi are nonzero. This follows from interpreting the
formula for R above as a set of instructions for operating on w, removing or adding + and − signs.

Proposition 12.2 (Explicit computation of R) If k ≥ 2 then R(vw) is given by taking

(+)b1−1(−)a1+1(+)b2(−)a2 · · · (+)bk−1(−)ak−1(+)bk+1(−)ak−1

= (+)b1−1(−)a1+1
(∏k−1

j=2 (+)bj (−)aj

)
(+)bk+1(−)ak−1

and then, for each possible way of grouping (1, 2, . . . , k) into the form

((1, 2, . . . , l1), (l1 + 1, l1 + 2, . . . , l2), . . . , (lT−1 + 1, lT−1 + 1, . . . , lT = k)),
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taking the term

(+)b1+···+bl1
−1(−)a1+···+al1

+1(+)bl1+1+···+bl2 (−)al1+1+···+al2 · · ·

· · · (+)blT−2+1+···+blT−1 (−)blT−2+1+···+blT−1 (+)blT−1+1+···+blT
+1(−)alT−1+1+···+alT

−1

= (+)b1+···+bl1
−1(−)a1+···+al1

+1
(∏T−1

m=2(+)blm−1+1+···+blm (−)alm−1+1+···+alm

)

(+)blT−1+1+···+blT
+1(−)alT−1+1+···+alT

−1

(including the trivial grouping ((1), (2), . . . , (k)) corresponding to the first term above) and summing
all the corresponding basis elements.

If k = 1, so that w is of the form (−)a or (+)b or (−)a(+)b, then R(vw) is given by a single term
vw′ where w′ is given by:

(i) for w = (−)a, w′ = (−)a also;

(ii) for w = (+)a, w′ = (+)a also;

(iii) for w = (−)a(+)b, w′ = (+)b(−)a; �

Note that every chord diagram has an outermost region: after some rotation, every chord diagram
has an outermost region at the base point. And a chord diagram at the base point is of the form B±Γ,
for some smaller Γ. Thus, these rotation matrices give a quick way to compute all the contact elements
in SFH(T, n+1, e) recursively. If we know all the contact elements of SFH(T, n, e±1), then we apply
B− to all contact elements in SFH(T, n, e + 1) and B+ to all contact elements in SFH(T, n, e− 1).
Applying B− to a contact element (or any element) simply prepends a − to all of the words in its
basis decomposition. And then, applying R will generate all contact elements in SFH(T, n + 1, e). In
fact, when the euler class is not extremal, there are outermost regions of both signs; so it is sufficient
to look at only one of B±.

13 Simplicial structures

Recall that in section 11.2, we defined eastside and westside creation and annihilation operators

Bwest,i
− , Awest,i

+ , Beast,j
+ , Aeast,j

−

for 0 ≤ i ≤ n− and 0 ≤ j ≤ n+, where:

(i) Bwest,i
− inserts a chord (−2i− 3,−2i− 2).

(ii) Awest,i
+ joins the chords at positions (−2i− 2,−2i− 1)

(iii) Beast,j
+ inserts a chord (2i + 2, 2i + 3).

(iv) Aeast,j
− joins the chords at positions (2j + 1, 2j + 2)

Note that it is perfectly compatible with these conditions to take i or j = −1 and obtain our original
operators,

B− = Bwest,−1
− , A+ = Awest,−1

+ , B+ = Beast,−1
+ , A− = Aeast,−1

−

We have seen that
Bwest,j

− ◦Awest,j
+ = 1, Beast,j

+ ◦Aeast,j
− = 1,

but moreover, they satisfy stronger relations for various j. We see that:
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Lemma 13.1 (Westside simplicial structure) For all 0 ≤ i, j ≤ n−, we have

Awest,i
+ ◦Awest,j

+ = Awest,j−1
+ ◦Awest,i

+ i < j

Awest,i
+ ◦Bwest,j

− =





Bwest,j−1
− ◦Awest,i

+ i < j
1 i = j, j + 1

Bwest,j
− ◦Awest,i−1

+ i > j + 1

Bwest,i
− ◦Bwest,j

− = Bwest,j+1
− ◦Bwest,i

− i ≤ j

Proof Clear. Perhaps only the cases involving the extremal A
west,n−

+ requires some explanation, since

the operator A
west,n−

+ joins the points (−2n− − 2,−2n− − 1), where −2n− − 1 is the root point, and

−2n− − 2 is on the eastside. If n+ > 0, then the relations clearly follow, but if n+ = 0, then A
west,n−

+

actually connects the root point to the base point. However in the case n+ = 0 we have e = −n, and
there is only one possible chord diagram, i.e. the one with n + 1 outermost negative regions. With
only one chord diagram to check, the relations are easily verified. �

It follows that there is a simplicial structure on our vector spaces SFH(T, n+1, e), which we think
of as having dimension n− = (n−e)/2, with face maps d+

i = Awest,i
+ and degeneracy maps s+

j = Bwest,j
−

for 0 ≤ i, j ≤ n−. Hence the map d+ =
∑

i d+
i =

∑
i Awest,i

+ satisfies (d+)2 = 0 (recall we have Z2

coefficients), and we obtain chain complexes

SFH(T, n + 1, e)
d+

−→ SFH(T, n, e + 1)
d+

−→ · · ·
d+

−→ SFH

(
T,

n + e

2
+ 1,

n + e

2

)
;

equivalently, the pairs (n−, n+) proceed (n−, n+) 7→ (n− − 1, n+) 7→ (n− − 2, n+) 7→ · · · 7→ (0, n+).

This is a “northeast–southwest” diagonal of Pascal’s triangle. We can call the chain complex C
+,n+
∗ ,

so the i-dimensional part (dimension is i = n−) is

C
+,n+

i = C+,n+
n−

= SFH

(
T,

n + e

2
+ 1 + i,

n + e

2
− i

)

= SFH (T, n+ + n− + 1, n+ − n−) .

Similarly, we have a simplicial structure on the eastside:

Lemma 13.2 (Eastside simplicial structure) For all 0 ≤ i, j ≤ n+, we have

Aeast,i
− ◦Aeast,j

− = Aeast,j−1
− ◦Aeast,i

− i < j

Aeast,i
− ◦Beast,j

+ =





Beast,j−1
+ ◦Aeast,i

− i < j
1 i = j, j + 1

Beast,j
+ ◦Aeast,i−1

− i > j + 1

Beast,i
+ ◦Beast,j

+ = Beast,j+1
+ ◦Beast,i

+ i ≤ j

This similarly gives rise to another simplicial structure, where we consider SFH(T, n + 1, e) to
have dimension n+ = (n + e)/2. We take d−i = Aeast,i

− and and s−j = Beast,j
+ , and boundary map

d− =
∑

d−i , to obtain the chain complex

SFH(T, n + 1, e)
d−

−→ SFH(T, n, e− 1)
d−

−→ · · ·
d−

−→ SFH

(
T,

n− e

2
+ 1,

−n + e

2

)

where the pairs (n−, n+) proceed (n−, n+) 7→ (n−, n+ − 1) 7→ · · · 7→ (n−, 0). This is a “northwest–

southeast” diagonal of Pascal’s triangle. The homology can be denoted C
−,n−

∗ , so that

C
−,n−

i = C−,n−

n+
= SFH

(
T

n− e

2
+ 1 + i,

−n + e

2
+ i

)

= SFH (T, n− + n+ + 1,−n− + n+) .
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13 SIMPLICIAL STRUCTURES

Thus the chain complex groups C
+,n+
n−

and C
−,n−

n+ are both equal to the SFH vector space correspond-
ing to (n−, n+).

It is not difficult to see that the two boundary operators d−, d+ commute. Thus we obtain a double
complex structure on the categorified Pascal’s triangle:

Z
(0
0)

2
d+

ր
d−

տ

Z
(1
0)

2 Z
(1
1)

2
d+

ր
d−

տ
d+

ր
d−

տ

Z
(2
0)

2 Z
(2
1)

2 Z
(2
2)

2
d+

ր
d−

տ
d+

ր
d−

տ
d+

ր
d−

տ

Z
(3
0)

2 Z
(3
1)

2 Z
(3
2)

2 Z
(3
3)

2

· · · · · · · · · · · ·

It is also not too difficult to see that the homology of the chain complexes is rather uninteresting.

Proposition 13.3 (Westside/eastside homology)

(i) The homology of the complex
(
C

+,n+
∗ , d+

)
is

Hi

(
C

+,n+
∗ , d+

)
= 0

for all i

(ii) The homology of the complex
(
C

−,n−

∗ , d−
)

is

Hi

(
C

−,n−

∗ , d−
)

= 0

for all i.

Here we use a similar argument to Frabetti in [11], in the context of planar binary trees. We will
remark on the relationship with planar binary trees in section 14.4.

Proof We note that our original creation operator B− = Bwest,−1
− : C

+,n+
∗ −→ C

+,n+

∗+1 satisfies

Awest,0
+ B− = 1, Awest,i

+ B− = B− for i > 0.

Hence B−d+ + d+B− = 1. Then B− is a chain homotopy from the chain maps 1 to 0 on C
−,n−

∗ . �

Recall that these simplicial face and degeneracy and boundary maps all have symbolic meanings
on words:

(i) Bwest,j
− insert a − sign in w immediately after the (j + 1)’th − sign, if 0 ≤ j ≤ n−− 1; and adds

a − sign at the end, if j = n−.

(ii) Beast,j
+ inserts a + sign immediately after the (j + 1)’th + sign, if 0 ≤ j ≤ n+− 1; and adds a +

sign at the end, if j = n+.

(iii) Awest,j
+ deletes the (j + 1)’th − sign, if 0 ≤ j ≤ n−− 1; and for j = n−, deletes the − sign at the

end of the word (if there is one), else returns 0.
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14 QFT AND CATEGORICAL CONSIDERATIONS

(iv) Aeast,j
− deletes the (j + 1)’th + sign, if 0 ≤ j ≤ n+− 1; and for j = n+, deletes the + sign at the

end of the word (if there is one), else returns 0.

Thus d+ =
∑

Awest,j
+ gives a sum over deleting the various − signs in a word, counting every − sign

once, and counting a − sign at the end of the word separately. Similarly, d− gives a sum over deleting
the various + signs in a word, counting a + sign at the end of the word separately.

The simplicial structure on our SFH vector spaces can therefore be considered to arise from
symbolic manipulations on words. The fact that (d+)2 = 0 then has an easy combinatorial proof.

14 QFT and categorical considerations

14.1 Dimensionally-reduced TQFT

We have seen that sutured Floer homology obeys some of the properties of a topological quantum field
theory.

Moreover, in the case of sutured manifolds of the type (Σ× S1, F × S1), where Σ is a surface with
boundary, and F is a finite collection of points on ∂Σ, sutured Floer homology can be regarded as a
(1 + 1)-dimensional TQFT via dimensional reduction. Clearly, in the case that Σ = D2, these sutured
manifolds are precisely our (T, n).

In [30], it is noted that

SFH(Σ× S1, F × S1) = Z
2n−χ(Σ)

2 ,

where |F | = 2n is the number of boundary sutures. As in the case Σ = D2, contact structures on
such sutured manifolds correspond bijectively to dividing sets K drawn on Σ without any contractible
components: see [21, 17]. Note, however, that in higher genus surfaces, K may have closed components.

The dimensionally-reduced TQFT has the following properties:

(i) To every pair (Σ, F ), where F divides ∂Σ into positive and negative arcs, we associate the vector

space V (Σ, F ) = Z
n−χ(Σ)
2 .

(ii) To every properly embedded 1-manifold K ⊂ Σ with boundary F , dividing Σ into positive and
negative regions, consistent with the signs on ∂Σ−F , we associate an element c(K) of this vector
space V (Σ, F ).

(iii) We consider a certain class of gluings of Σ: we take γ, γ′ ⊂ ∂Σ, disjoint 1-submanifolds, with
endpoints not in F ; we suppose that we have a gluing τ which glues γ to γ′ to preserve all relevant
sign labellings, to obtain (Σ′, F ′). To such a gluing we a associate a map Φτ : V (Σ, F ) −→
V (Σ′, F ′), and it takes any c(K) 7→ c(K̄), where K̄ is obtained by performing the gluing τ on K.

See [30] for further details.
We have given a fairly explicit description of the mechanics of this topological quantum field theory,

in the case where Σ is a disc.
In their paper [30], Honda–Kazez–Matić prove some further properties of this TQFT:

(i) V (Σ, F ) is generated by contact elements;

(ii) c(K) = 0 if and only if K is separating in the sense that Σ −K has components which do not
intersect ∂Σ.

14.2 A contact 2-category

Honda [19] has introduced the notion of a contact category for a pair (Σ, F ). The objects of this category
are the various K in the dimensionally-reduced TQFT described above, i.e. properly embedded 1-
manifolds with boundary F , i.e. dividing sets corresponding to S1-invariant contact structures on
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(Σ × S1, F × S1). The morphisms K0 → K1 in this category are contact structures on Σ × I with
dividing set K0 on Σ×{0} and dividing set K1 on Σ×{1}. This category obeys many of the properties of
a triangulated category. In particular, there are distinguished triangles, arising from bypass additions,
and these obey an octahedral axiom.

We note that in our case Σ = D2, the various K corresponding to nontrivial contact structures
are just chord diagrams Γ. And we have shown that such Γ are naturally described by pairs (Γ−, Γ+),
corresponding to words w− � w+. But a partial order can itself be considered as a category! In
particular, a partial order is a category where every pair of objects has at most one morphism between
them. This leads us to the idea of a 2-category.

We will define a “contact 2-category”, which is a generalisation of Honda’s contact category, in
the sense that the objects of Honda’s category become our 1-morphisms; and its 1-morphisms become
our 2-morphisms. It is a specialisation of Honda’s contact category, in the sense that it only applies
to Σ = D2. (There are isomorphisms between V (Σ, F ) and V (D2, F ′), see section 14.4 below, but
there is no canonical isomorphism; and for any given gluing of D2 to obtain Σ, there may be contact
elements in V (Σ, F ) for which this gluing does not apply. Hence, for the time being at least, we restrict
ourselves to discs.)

Definition 14.1 (Contact 2-category) The contact 2-category C(n + 1, e) is defined as follows.

(i) The objects (or 0-cells) Ob (C) are words on {−, +} with n− − signs and n+ + signs.

(ii) The 1-morphisms w0 → w1 are those arising from the partial order �. There is one 1-morphism
w0 → w1 if w0 � w1, and none otherwise.

• The composition of two morphisms w0 → w1 → w2 is the unique morphism w0 → w2.

• Thus the 1-morphisms correspond precisely to the chord diagrams Γ = [Γw0 , Γw1 ] on the
disc with n + 1 chords; the composition of the two chord diagrams Γ = [Γw0 , Γw1 ] and
Γ′ = [Γw1 , Γw2 ] is

Γ ◦ Γ′ = [Γw0 , Γw2 ].

(iii) The 2-morphisms Γ0 → Γ1 are the tight contact structures on M(Γ0, Γ1), along with one extra
2-morphism {∗} for overtwisted contact structures. There are two types of composition of 2-
morphisms.

• Given two 2-morphisms

Γ0
ξ0
→ Γ1

ξ1
→ Γ2,

their vertical composition ξ0 · ξ1 is the 2-morphism Γ0 → Γ2 is the contact structure on
M(Γ0, Γ2) obtained by stacking M(Γ0, Γ1) and M(Γ1, Γ2).

• Given three objects w0, w1, w2, two pairs of 1-morphisms between them

w0
Γ0,Γ′

0−→ w1, w1
Γ1,Γ′

1−→ w2,

and two 2-morphisms

Γ0
ξ0
−→ Γ′

0, Γ1
ξ1
−→ Γ′

1,

the horizontal composition ξ0ξ1 is a morphism (Γ0◦Γ1)→ (Γ′
0◦Γ1) defined as follows. Since

the 1-morphisms arise from a partial order, Γ0 = Γ′
0 and Γ1 = Γ′

1. Thus ξ0 is a contact
structure on M(Γ0, Γ0) and ξ1 on M(Γ1, Γ1). If these are both the unique tight contact
structures, then we define ξ0ξ1 to be the unique tight contact structure onM(Γ0◦Γ1, Γ0◦Γ1).
Otherwise ξ0ξ1 = {∗}.

Lemma 14.2 (Existence of contact 2-category) C(n + 1, e) is a 2-category.
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14 QFT AND CATEGORICAL CONSIDERATIONS

Proof That the objects and 1-morphisms form a category is clear. That vertical composition is
associative is clear, since it just corresponds to a union of contact structures. Note that {∗} acts as a
zero for this composition; any composition involving {∗} is again {∗}.

That horizontal composition is associative is also clear: if any of the ξi being composed is overtwisted
{∗}, then the horizontal composition is {∗}; else associativity follows immediately since 1-morphisms
arise from a partial order. Again {∗} acts as a zero.

There is an identity 2-morphism for each 1-morphism Γ: the identity 2-morphism Γ
1Γ−→ Γ is the

tight contact structure onM(Γ, Γ). This is just a thickened neighbourhood of a convex surface, so its
vertical composition is indeed the identity; and since it is not {∗}, its horizontal composition is also
the identity.

The “interchange law”
(ξ1 · ξ2)(ξ3 · ξ4) = (ξ1ξ3) · (ξ2 · ξ4)

is only defined when the 2-morphisms ξ1, ξ3 are contact structures on some M([Γ, Γ]), where Γ =
[Γw0 , Γw1 ]; and similarly the 2-morphisms ξ2, ξ4 are contact structures on some M(Γ′, Γ′), where
Γ′ = [Γw1 , Γw2 ]. If any of these is {∗}, we have {∗} on both sides. If not, then ξ1 = ξ3 = 1Γ

and ξ2 = ξ4 = 1Γ′ , being standard neighbourhoods of chord diagrams; thus both sides are equal to
ξ1 · ξ2 = 1Γ◦Γ′ , the unique tight contact structure onM(Γ′′, Γ′′), where Γ′′ = [Γw0 , Γw2 ]. �

We have now proved proposition 1.30.

14.3 Improving the 2-category structure

Honda has shown that the morphisms of his contact category satisfy some, but not all, of the axioms of
a triangulated category. The 2-morphisms of our contact 2-category, therefore obey the same axioms.
In fact, in our simpler case of a disc, more of the axioms are obeyed.

A triangulated category is an additive category with certain triples of morphisms A→ B → C → A
called distinguished triangles satisfying various properties.

The first defect of the contact category from being a triangulated category is that it is not additive.
However, in our case of a disc, it is: there are at most two morphisms between two chord diagrams
Γ0, Γ1, namely {∗}, and the unique tight contact structure, ifM(Γ0, Γ1) is tight. We can simply “add”
morphisms by regarding the tight contact structure as 1 and {∗} as 0. (When replacing D with a more
complicated surface, there may be many more contact structures.)

Note also that for our contact 2-category, there are no triangles among 1-morphisms, since they
come from a partial order. Hence, if our 2-category is to satisfy anything like the axioms of a triangu-
lated category, it is only meaningful to look at the 2-morphisms.

In Honda’s contact category, the distinguished triangles are contact structures arising from bypass
attachments. We could do the same in our case, obtaining distinguished triangles of 2-morphisms; but
in our case we also have more complicated bypass systems, such as bypass systems of generalised arcs of
attachment in section 7, and bypass systems of well-placed sequences of nicely ordered generalised arcs
of attachment. We also have our “generalised bypass triples” arising from a choice of 1-morphism w0 �
w1, which is the triple of chord diagrams (1-morphisms) Γw0 , Γw1 , [Γw0 , Γw1 ]. We could potentially
regard any of these as distinguished triangles.

The second way in which Honda’s contact category fails to be a triangulated category is that not
every morphism can be completed to a distinguished triangle. In our case, with any of the above
choices of definition of distinguished triangles, this also fails. For instance, two basis chord diagrams
for non-comparable words have no bypass systems of well-placed nicely ordered generalised arcs of
attachment to obtain one from the other.

We can ask: Is there a more general definition of distinguished triangle, or improvement of the
category structure, for which this axiom is true?

Honda shows that SFH gives a functor from his contact category to the category of vector spaces.
Here, of course, since our 1- and 2-morphisms are the objects and morphisms of that category. In this
functor, our objects map to basis elements of those vector spaces.
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As a final categorical comment, note that our contact 2-category C(n + 1, e) is specific to an n and
e; in fact, all its objects and morphisms relate to SFH(T, n, e).

If we consider these SFH(T, n, e) over all n and e, we obtain a family of 2-categories. Moreover,
the 0-cells of this 2-category are words on {−, +}. But these can themselves be regarded as paths on
Pascal’s triangle.

This suggests the construction of a 3-category where:

(i) objects are points of Pascal’s triangle, pairs (n + 1, e), or perhaps more generally the integer
lattice, or perhaps just a point;

(ii) 1-morphisms are finite paths on Pascal’s triangle, or the lattice, generated by unit southeast and
southwest moves on the triangle;

(iii) 2-morphisms are generated by the partial order �; equivalently, paths on Pascal’s triangle from
the origin to the same endpoint, one always lying left of the other; equivalently, chord diagrams
Γ or contact elements;

(iv) 3-morphisms are contact structures onM(Γ0, Γ1);

This is a question for further investigation.

14.4 QFT remarks

The dimensionally-reduced TQFT described above has certain gluing isomorphisms, proved in [30].

Theorem 14.3 ([30], 7.9) Suppose that γ, γ′ are disjoint 1-submanifolds of ∂Σ, with endpoints not
in F , and each intersecting F precisely once. Then the gluing τ produces (Σ′, F ′), and

Φτ : V (Σ, F ) −→ V (Σ′, F ′)

is an isomorphism.

Such a gluing decreases |F | = 2n by 2 and decreases χ by 1. Since the dimension of V (Σ, F ) is 2n−χ(σ),
the two vector spaces V (Σ, F ) and V (Σ′, F ′) are the same, as we should expect.

By repeated application of such gluing, or the reverse procedure of cutting, we can obtain many
isomorphisms between different V (Σ, F ). In particular, if we have any (Σ, F ) and K, and we can cut
Σ into a disc along properly embedded arcs or closed curves, each of which intersects K precisely once,
then we have an isomorphism V (D2, F ′) ∼= V (Σ, F ).

In [30] it is proved that contact elements c(K) generate V (Σ, F ). In fact, it’s easy to see from
our isomorphism that V (Σ, F ) is generated by contact elements which are obtained by gluing contact
elements in V (D2, F ′).

However, in general, although there may be an isomorphism between any V (Σ, F ) and some
V (D2, F ′), this need not not give a bijection between contact elements. Every contact element in
V (D2, F ′) gives a corresponding contact element in V (Σ, F ); but not all contact elements in V (Σ, F )
arise in this way. That is, the isomorphism V (D2, F ′)→ V (Σ, F ) induces an injective but not surjective
map on contact elements.

In particular, such an isomorphism exists for any (Σ, F ), where Σ is an m-times punctured disc (m
any nonnegative integer), and F has two points on the boundary of every puncture. We may simply
glue up every puncture and obtain a disc. Such a punctured disc can be regarded as a cobordism from
m “trivial circles”, with two points marked on each, to a “non-trivial circle” with 2n points marked.

In a standard topological quantum field theory picture, this is a good reason why a chord diagram
with 1 chord can be regarded as “the vacuum”. It may be glued up, or “filled in”, or “capped off”,
without any effect. It is, effectively, not there. A cobordism from m vacua, to a higher particle state,
is equivalent to a cobordism from the empty set, in this TQFT.
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We may also remark that our chord diagrams are bijective, in an explicit fashion, with planar binary
trees, and the vector space generated by such objects has been considered previously; they have also
been considered in physical contexts. See, e.g., [4, 11, 12, 18, 35, 36]. The bypass relation translates
into a similar linear relation on trees, which appears not to have been considered previously, so far as
the author could find.

The upshot is that the story is not finished yet, and discovering much of the structure of this TQFT
still lies ahead.
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