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Sutured manifolds & SFH
Juhász 2006, Holomorphic discs and sutured manifolds

Sutured manifold (M,Γ)

M 3-manifold with boundary.
Γ collection of disjoint simple closed curves on boundary,
dividing ∂M into positive/negative regions.

(Balanced.)

(M,Γ) SFH(M,Γ)

Take sutured Heegaard decomposition, symmetric product
of Heegaard surface.

Chain complex generated by intersection points of α, β tori.

Differential counts certain holomorphic curves in
symmetric product with certain boundary conditions.

Invariant of (balanced) sutured manifold.
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Contact elements
Closed case Ozsváth–Szabó 2005, Honda–Kazez–Matić 2007; sutured case
Honda–Kazez–Matić 2007, The contact invariant in sutured Floer homology

Contact structutre on sutured manifold

ξ contact structure on (M,Γ):

∂M convex

Γ dividing set

Positive/negative regions.

Theorem (Honda–Kazez–Matić)

A contact structure ξ on (M,Γ) gives a well-defined
contact element c(ξ) ∈ SFH(−M,−Γ).

We take Z2 coefficients throughout.
With Z coefficients, c(ξ) subset of form {±x}.
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Properties of SFH

Contact element properties:
(HKM 2007, The contact invariant in sutured Floer homology)

ξ overtwisted ⇒ c(ξ) = 0

(M,Γ, ξ) embeds in closed (N, ξ′) with
c(ξ′) 6= 0 ⇒ c(ξ) 6= 0.

Every generator of chain complex has a spin-c structure s.
SFH splits over spin-c structures:

SFH(M,Γ) =
⊕

s

SFH(M,Γ, s).
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TQFT property
Honda–Kazez–Matić 2008, Contact structures, sutured Floer homology and TQFT

Theorem

Given

(M ′,Γ′) →֒ (M,Γ) inclusion of sutured manifolds.

ξ′′ contact structure on (M − M ′,Γ ∪ Γ′)

there is a natural map

SFH(M ′,Γ′) −→ SFH(M,Γ).

Further
c(ξ′) 7→ c(ξ′ ∪ ξ′′).

“TQFT-inclusion”.
(Actually −→ SFH(M,Γ) ⊗ V m where m is number of “isolated”
components).
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The question

Motivating question:

How do contact elements lie in SFH?



Background Contact elements in SFH(T ) Contact geometry applications Idea of proof

Outline

1 Background
Sutured Floer homology, contact elements, TQFT
Solid tori, Catalan, Narayana

2 Contact elements in SFH(T )
Computation, addition of contact elements
Creation operators, basis of contact elements
Partial order, main theorem

3 Contact geometry applications
Stackability
Contact 2-category

4 Idea of proof of main theorems
Comparable pairs and bypass systems



Background Contact elements in SFH(T ) Contact geometry applications Idea of proof

Solid tori

Only sutured 3-manifolds we consider are solid tori.

Sutured manifold (T , n)

Solid torus D2 × S1

Convex boundary ∂D2 × S1

Longitudinal dividng set F × S1,
F finite, |F | = 2n.

(Notational cover-up: (T , n) = (−(D2 × S1),−(F × S1)).)

Part of the (1 + 1)-dimensional TQFT discussed in HKM
2008.

To classify contact structures:

consider dividing sets on convex meridian disc and
boundary torus
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Convex surfaces
Giroux 1991, Convexité en topologie de contact

Generic property for embedded surface in contact 3-manifold.

Convex surface S

There exists a contact vector field X transverse to S.

“Invariant vertical direction”.

Dividng set

Γ = {x ∈ S : X (x) ∈ ξ}.

“Where ξ is perpendicular”.
Dividing set divides S into positive/negative regions S±.
Euler class evaluation:

e(ξ)[S] = χ(S+) − χ(S−).
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Contact structure near a convex surface
Giroux 1991, Convexité en topologie de contact;
Honda 2000, On the classification of tight contact structures. I

Theorem (Giroux)

The dividing set essentially determines the contact structure
near a convex surface.

Given S, Γ, is the nearby contact structure tight?

For S 6= S2:

Contact structure is tight iff Γ has no contractible components.

For S = S2:

Contact structure is tight iff Γ has one component.

If S2 = ∂B3, tight contact structure near boundary extends
uniquely over ball (Eliashberg).
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Corners & rounding
Honda 2000, On the classification of tight contact structures. I

When convex surfaces meet transversely along a
legendrian curve, dividing sets interleave.

Corners can be rounded in a standard way.

Figure: Rounding corners.
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Contact structures on (T , n) and chord diagrams

Dividing set Γ on meridional disc (convex, leg. b’dy)

Interleaves with sutures F ×S1 on boundary; 2n endpoints.

For tight contact structure, Γ has no closed components.

Chord diagram

Collection of disjoint properly embedded arcs on disc.
Up to homotopy rel endpoints.

E.g.

+

− −+
+

+

−

−
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Euler class of chord diagram

Chord diagram has relative euler class e.

|e| ≤ n − 1, e + n ≡ 1 mod 2.

��
��
��
��

− +

-

+

-+

-

+

Figure: Basepoint, convention for signs of regions.
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Contact structures on (T , n) are chord diagrams
Honda 2000, On the classification of tight contact structures. II;
Honda 2002, Gluing tight contact structures;
Giroux 2001, Structures de contact sur les variétés fibrées en cercles...

Chord diagram determines at most one tight contact structure
on D2 × S1:

Cut into solid cylinder, round corners of D3

For solid tori in general:
Chord diagrams on D may give overtwisted contact
structure on D2 × S1

Distinct chord diagrams may give isotopic contact
structures.

However with longitudinal sutures of (T , n), neither occurs.

Theorem (Honda, Giroux)
{

Tight contact structures
on (T , n)

}

↔

{

Chord diagrams
with n chords

}
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Catalan and Naryana numbers

#

{

Tight contact
structures on (T , n)

}

= #

{

Chord diagrams
n chords

}

Catalan numbers Cn = 1, 1, 2, 5, 14, 42, 132, 429, . . .

#







Tight contact
structures on (T , n)

euler class e







= #







Chord diagrams
n chords

euler class e







Narayana numbers Ce
n :

1
1 1

1 3 1
1 6 6 1

1 10 20 10 1
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The Catalan disease
and Narayana symptoms

Catalan:

tight ct. str’s on (T , n)

chord diagrams, n chords

pairings of n brackets

Dyck paths length 2n

rooted planar bin. trees

Recursion

Cn+1 =
∑

n1+n2=n

Cn1Cn2 .

Narayana:

# with euler class e

# with euler class e

# with k occurrences of “()”

# with k peaks

# with k “left” leaves

Recursion:

Ce
n+1 =

∑

n1+n2=n
e1+e2=e

Ce1
n1

Ce2
n2

.
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Computation of SFH(T , n)
Juhász 2008, “Floer homology and surface decompositions”
Honda–Kazez–Matić 2008, Contact structures, sutured Floer homology and TQFT

Theorem

SFH(T , n + 1) = Z
2n

2 .

Split over spin-c structures:

SFH(T , n + 1) =
⊕

k

Z
(n

k)
2 .

For ξ with euler class e,

c(ξ) ∈ Z
(n

k)
2 where k =

e + n
2

so let
SFH(T , n + 1, e) = Z

(n
k)

2 .
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“Categorified Pascal triangle”

SFH(T, 1) = SFH(T, 1, 0)
SFH(T, 2) = SFH(T, 2, −1) ⊕ SFH(T, 2, 1)
SFH(T, 3) = SFH(T, 3, −2) ⊕ SFH(T, 3, 0) ⊕ SFH(T, 3, 2)
SFH(T, 4) = SFH(T, 4, −3) ⊕ SFH(T, 4, −1) ⊕ SFH(T, 4, 1) ⊕ SFH(T, 4, 3)

· · · · · · · · · · · · · · · · · · · · · · · ·

SFH(T , 1) = Z
(0

0)
2

SFH(T , 2) = Z
(1

0)
2 ⊕ Z

(1
1)

2

SFH(T , 3) = Z
(2

0)
2 ⊕ Z

(2
1)

2 ⊕ Z
(2

2)
2

SFH(T , 4) = Z
(3

0)
2 ⊕ Z

(3
1)

2 ⊕ Z
(3

2)
2 ⊕ Z

(3
3)

2
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Catalan and Pascal triangle

Contact elements in each SFH(T , n, e) form a distinguished
subset of order Ce

n .















1
1 1

1 3 1
1 6 6 1















⊂















Z
1
2

Z
1
2 ⊕ Z

1
2

Z
1
2 ⊕ Z

2
2 ⊕ Z

1
2

Z
1
2 ⊕ Z

3
2 ⊕ Z

3
2 ⊕ Z

1
2















Question:

How do the Ce
n contact elements lie in Z

(n
k)

2 ?
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Addition and bypasses

Are the contact elements a subgroup?

No.
Closure under addition described by bypasses.

c

Figure: Upwards bypass surgery along arc c.

c

Figure: Downwards bypass surgery along arc c.



Background Contact elements in SFH(T ) Contact geometry applications Idea of proof

Addition and bypasses

Are the contact elements a subgroup?

No.
Closure under addition described by bypasses.

c

Figure: Upwards bypass surgery along arc c.

c

Figure: Downwards bypass surgery along arc c.



Background Contact elements in SFH(T ) Contact geometry applications Idea of proof

Addition and bypasses

Are the contact elements a subgroup?

No.
Closure under addition described by bypasses.

c

Figure: Upwards bypass surgery along arc c.

c

Figure: Downwards bypass surgery along arc c.



Background Contact elements in SFH(T ) Contact geometry applications Idea of proof

The bypass relation

Bypass-related chord diagrams naturally come in triples.

Proposition

Suppose a, b ∈ SFH(T , n, e) are contact elements.
Then a + b is a contact element if and only if a, b are related by
a bypass surgery.
In this case, a + b is the third chord diagram in the triple.

+ + = 0

Figure: Bypass relation.
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Reduction to kindergarten

In fact one can show:

Proposition (SFH is combinatorial)

SFH(T , n, e) =
Z2 〈Chord diag’s, n chords, euler class e〉

Bypass relation

Also:

There is a basis of contact elements.

Distinct contact structures / chord diagrams all give distinct
contact elements.



Background Contact elements in SFH(T ) Contact geometry applications Idea of proof

Reduction to kindergarten

In fact one can show:

Proposition (SFH is combinatorial)

SFH(T , n, e) =
Z2 〈Chord diag’s, n chords, euler class e〉

Bypass relation

Also:

There is a basis of contact elements.

Distinct contact structures / chord diagrams all give distinct
contact elements.



Background Contact elements in SFH(T ) Contact geometry applications Idea of proof

Outline

1 Background
Sutured Floer homology, contact elements, TQFT
Solid tori, Catalan, Narayana

2 Contact elements in SFH(T )
Computation, addition of contact elements
Creation operators, basis of contact elements
Partial order, main theorem

3 Contact geometry applications
Stackability
Contact 2-category

4 Idea of proof of main theorems
Comparable pairs and bypass systems



Background Contact elements in SFH(T ) Contact geometry applications Idea of proof

Creation operators

A well-defined way to create create chords, enclosing
positive/negative regions at the basepoint.

- +

B− B+

Figure: Creation operators.

We obtain maps

B± : SFH(T , n, e) −→ SFH(T , n + 1, e ± 1).
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Origin of creation operators

B± arise from TQFT-inclusion

(T , n) →֒ (T , n + 1)

with intermediate contact structure

+

B+B−

−

Figure: Creation operator inclusion.
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Annihilation operators

Similarly

A± : SFH(T , n + 1, e) −→ SFH(T , n, e ± 1)

A− A+

Figure: Annihilation operators.

A−

− +

A+

Figure: Annihilation operator inclusion.
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Morphisms in Pascal’s triangle
“Full categorification”

Z
(0

0)
2

B
−

ւ
A+

ր
A
−

տ
B+

ց

Z
(1

0)
2 Z

(1
1)

2
B
−

ւ
A+

ր
A
−
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A+ ◦ B− = A− ◦ B+ = 1
A+ ◦ B+ = A− ◦ B− = 0

Proposition (Categorification of Pascal recursion)
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SFH(T , n + 1, e) = “n-particle states of charge e”

Figure: “The vacuum” v∅ ∈ SFH(T , 1, 0) = Z2.

“Basis: apply creation operators to the vacuum”

W (n−, n+) = {Words on {−,+}, n− − signs, n+ + signs}

For w ∈ W (n−, n+), form vw ∈ SFH(T , n + 1, e).
(n = n− + n+, e = n+ − n−.)
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Orderings on W (n−, n+)

Lexicographic ordering: Total order.
Partial order �: “All minus signs move right (or stay where
they are).”

E.g.
−− ++ � + − +−

but
− + +−, + −− + not comparable.

Theorem

Write a contact element v as a sum of basis vectors

v =
∑

w

vw , w ∈ W (n−, n+).

Let w−, w+ be (lex.) first and last words occurring.
Then for all words w in decomposition, w− � w � w+.
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Chord diagram = comparable pair

Now have

Φ : {Contact elements} −→ {Comparable pairs of words}

v =
∑

w

vw 7→ (w−, w+)

Proposition

These sets have the same cardinality.
I.e. # comparable pairs of words = Ce

n .

Theorem
Φ is a bijection.

I.e. for any w− � w+ ∃! contact element with vw
−

first, vw+ last.
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Other properties of contact elements

Notation v = [w−, w+].

Proposition

The number of terms in the basis decomposition of a contact
element v is

{

1 if v is a basis element.
even otherwise.

Theorem (Not much comparability)

Suppose vw occurs in the basis decomposition of the contact
element v = [w−, w+].
Suppose w is comparable with every other element in the
decomposition.
Then w = w− or w+.
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Summary of results

Distinct chord diagrams/contact structures give distinct
contact elements.

Contact elements not a subgroup, but “addition means
bypasses”.

Can give a basis for each SFH(T , n, e) consisting of chord
diagrams / contact elements.

There is a partial order � on each basis.

Chord diagrams / contact structures correspond precisely
to comparable pairs of basis elements.
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Stacking construction

Given Γ0,Γ1 chord diagrams, consider M(Γ0,Γ1):

sutured solid cylinder D × I

Γi sutures along D × {i}

Vertical interleaving sutures along ∂D × I.

Γ1

Γ0

Figure: M(Γ0, Γ1).

M(Γ0,Γ1) is tight if it admits a tight contact structure.
I.e. after rounding corners, sutures form single component.
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Stackability constructions

Proposition (Stackability map)

There is a linear map

m : SFH(T , n, e) ⊗ SFH(T , n, e) −→ Z2

taking (Γ0,Γ1) to 1 if M(Γ0,Γ1) is tight, and 0 if overtwisted.

Proposition (Contact interpretation of �)

M(Γw0 ,Γw1) is tight iff w0 � w1.

Proposition (General stackability)

Γ0,Γ1 chord diagrams, n chords, euler class e.

M(Γ0,Γ1) is tight ⇔ #

{

(w0, w1) :
w0 � w1

Γwi occurs in Γi

}

is odd.
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Other stackability properties

m(Γ,Γ) = 1.

Suppose Γ0,Γ1 have an outermost chord γ in the same
position.
Then m(Γ0,Γ1) = m(Γ0 − γ,Γ1 − γ).

Γ0,Γ1 related by bypass move (in correct order).
Then m(Γ0,Γ1) = 1.
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Contact category
Honda (unpublished...)

Σ surface.

Contact category C(Σ)

Objects:

Dividing sets Γ on Σ (= Contact structures near Σ)

Morphisms Γ0 −→ Γ1:

Contact structures on Σ × I with ΓΣ×{i} = Γi .

Properties:

Behaves functorially w.r.t. SFH.
Obeys some of the axioms of a triangulated category:

Distinguished triangles = bypass triples
Octahedral axiom ∼ 6 contact elements in
SFH(T , 4, 1) ∼= Z

3
2.
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A 2-category

On D2 have C(D2, n, e)
(restrict to chord diagrams, n chords, euler class e):

Objects in C(D2, n, e) (= chord diagrams) given by partial
order [w−, w+].

A partial order is a category.

Contact 2-category C(n + 1, e)

Objects = words in W (n−, n+) = basis chord diagrams

1-morphisms = {partial order �} = chord diagrams

2-morphisms = contact structures on M(Γ0,Γ1).

Proposition

This is a 2-category.
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An explicit construction

Prove correspondence

{

Chord diagrams
}

↔

{

Comparable pairs
of words

}

Essential idea:

Given w1 � w2, construct a chord diagram Γ whose
decomposition has w1 first and w2 last.

Along the way, show that every other word w in the
decomposition has w1 � w � w2.

Elementary combinatorics gives
# {pairs (w1 � w2)} = Ce

n .

Done.
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Bypass systems

Take Γw1 ,Γw2 basis chord diagrams, w1 � w2.

Proposition

1 On Γw1 there exists a bypass system FBS(Γw1,Γw2) such
that performing upwards bypass moves along it gives Γw2 .

2 On Γw2 there exists a bypass system BBS(Γw1 ,Γw2) such
that performing downwards bypass moves gives Γw1 .

Proposition

Performing either:
1 downwards bypass moves on Γw1 along FBS(Γw1,Γw2), or
2 upwards bypass moves on Γw2 along BBS(Γw1,Γw2)

gives a chord diagram containing w1, w2 in decomposition and:

for all words w in the decomposition, w1 � w � w2.
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Bypass systems

Take Γw1 ,Γw2 basis chord diagrams, w1 � w2.

Proposition

1 On Γw1 there exists a bypass system FBS(Γw1,Γw2) such
that performing upwards bypass moves along it gives Γw2 .

2 On Γw2 there exists a bypass system BBS(Γw1 ,Γw2) such
that performing downwards bypass moves gives Γw1 .

Proposition

Performing either:
1 downwards bypass moves on Γw1 along FBS(Γw1,Γw2), or
2 upwards bypass moves on Γw2 along BBS(Γw1,Γw2)

gives a chord diagram containing w1, w2 in decomposition and:

for all words w in the decomposition, w1 � w � w2.
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Proof by increasingly difficult example
Easy level

“Elementary move” on word = Bypass move on “attaching arc”.

−

−

−

−

−

−

−

−

+

+

+
+

+ +

+

+
+

+

Up

Figure: Upwards move from Γ−−−++++ to Γ−−++−++.
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Proof by incresingly difficult example
Medium level

{

“Generalized elementary
move” on word

}

=

{

Bypass moves on
“generalized attaching arc”

}

Up

+

+

+

+

+

-

-

-

-

+

+

+

-

-

-

- +
+

-

Figure: Upwards moves from Γ−−++−−++ to Γ++++−−−−.
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Proof by increasingly difficult example
Hard level







“Nicely ordered sequence”
of “generalized elementary

moves” on word







=







Bypass moves on
“well placed sequence” of

“generalized attaching arcs”







Up

+

+

+

+

-

-

-

-

+

+

+

+

-

-

-

-

Figure: Upwards moves from Γ−+−+−+ to Γ++−+−−.
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