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Abstract

In this thesis we study some interesting mathematics arising at the intersection of

the studies of contact topology and sutured Floer homology. Although this work was

originally motivated by the study of contact elements in sutured Floer homology, we

also obtain results in pure contact topology.

We consider contact elements in the sutured Floer homology of solid tori, as

part of the (1+1)-dimensional topological quantum field theory defined by Honda–

Kazez–Matić in [33]. We find that the Z2 sutured Floer homology of solid tori with

longitudinal sutures forms a “categorification of Pascal’s triangle”, a triangle of vector

spaces. Contact structures on solid tori with longitudinal sutures correspond bijec-

tively to chord diagrams, which are sets of disjoint properly embedded arcs in the

disc; these may in turn be identified with contact elements. The contact elements

form distinguished subsets of the vector spaces in the categorified Pascal’s triangle,

of order given by the Narayana numbers. We find natural “creation and annihilation

operators” which allow us to define a QFT-type basis of each SFH vector space,

consisting of contact elements. We show that sutured Floer homology in this case

reduces to the combinatorics of chord diagrams. We prove that contact elements are

in bijective correspondence with comparable pairs of basis elements with respect to

a certain partial order, and in a natural and explicit way. We also prove numer-

ous results about the structure of contact elements and investigate various algebraic

structures which arise.

Our main theorem, describing how contact elements lie in sutured Floer homol-

ogy, has a purely combinatorial interpretation, as a statement about chords on discs

iv



subject to a certain surgery and a single addition relation. The algebraic and com-

binatorial structures which naturally arise in this description have intrinsic contact-

topological meaning.

In particular, the QFT-type basis of sutured Floer homology, and its partial or-

der, have a natural interpretation in pure contact topology, related to the contact

category of a disc: the partial order enables us to tell when the sutured solid cylinder

obtained by “stacking” two chord diagrams has a tight contact structure. This leads

us to extend Honda’s notion of contact category to a “bounded” contact category,

containing chord diagrams and contact structures which occur within a given contact

solid cylinder. We compute this bounded contact category in certain cases. Moreover,

the decomposition of a contact element into basis elements naturally gives a triple

of contact structures on solid cylinders which we regard as a type of “distinguished

triangle” in the contact category. We also use the algebraic structures arising among

contact elements to extend the notion of contact category to a 2-category.
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Chapter 1

Introduction

We begin by surveying our results and how they fit into previously existing work.

Since much of our work is simply about the combinatorics of arranging chords on

circles, we begin in section 1.1 starting from a completely elementary perspective. We

then summarise our results, as they relate to the study of contact elements in sutured

Floer homology (section 1.2); and then, as they relate to pure contact topology and

the study of contact categories (section 1.3). We also make some remarks about

future directions and questions (section 1.4) and some notes about the structure of

this thesis (section 1.5).

1.1 Fun with chord diagrams

The main results of this thesis can be described as elementary combinatorial results

about chord diagrams, which have applications to contact topology and sutured Floer

homology.

Definition 1.1.1 (Chord diagram) A chord diagram Γ is a set of disjoint properly

embedded arcs (chords) in a disc D2, considered up to homotopy relative to endpoints.

Consider a chord diagram with n chords; it has 2n marked points on the boundary

of the disc, connected in pairs by disjoint chords. We declare one of those marked

1
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Figure 1.1: Base point and sign of regions.

points on the boundary a base point; rotating a chord diagram will generally give a

distinct chord diagram.

(Most rigorously, a chord diagram of n chords is an embedding of pairs

(
[0, 1] × {1, . . . , n}, {0, 1} × {1, . . . , n}

)
−→

(
D2, {p1, . . . , p2n}

)
,

where p1, . . . , p2n are 2n distinct distinguished points on ∂D, and p1 is the base

point; embeddings are considered up to relative homotopy and pre-composition by

permutations of {1, . . . , n}. We identify Γ with the image of this map.)

The chords of a chord diagram divide the disc D into regions, which we alternately

label as positive or negative. The labelling is induced from a labelling on the arcs

of ∂D2 between marked points; we declare that the arc immediately clockwise of the

base point is positive, and the arc immediately anticlockwise is negative. See figure

1.1.

Remark 1.1.2 (Denoting base point) The base point will always be denoted by a

solid red dot in our diagrams.

Definition 1.1.3 (Euler class of chord diagram) The (relative) euler class e of

a chord diagram Γ is the sum of the signs of the regions of D − Γ.

That is, a + region counts as +1 and a − region counts as −1. It’s not difficult to

see that e has opposite parity to n, and |e| ≤ n − 1.

We consider a certain vector space generated by chord diagrams.
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+ + = 0

Figure 1.2: The bypass relation.

Definition 1.1.4 (Combinatorial SFH) The Z2-vector space generated by chord

diagrams of n chords and euler class e, subject to the bypass relation in figure 1.2,

is called SFHcomb(T, n, e). The Z2-vector space generated by all chord diagrams of n

chords, subject to the same relation, is called SFHcomb(T, n).

We will show that these combinatorial objects are isomorphic to SFH(T, n, e)

and SFH(T, n), which are objects defined by counting certain holomorphic curves in

certain almost complex manifolds, in due course. The letters SFH stand for “sutured

Floer homology”.

The bypass relation means that if we have three chord diagrams Γ1, Γ2, Γ3 which

are all identical, except in a sub-disc D′ ⊂ D, on which each of Γ1, Γ2, Γ3 contains

three arcs, respectively in the three arrangements shown in figure 1.2, then we consider

them to sum to zero.

The terminology “bypass” comes from contact geometry. A bypass is a “physical”

contact-geometric object, that is, a concrete contact 3-manifold with boundary. We

shall make the contact geometry clear as we go on, but the idea of “bypasses” here

can be considered purely as a type of surgery on a chord diagram, which we call a

“bypass move”.

Definition 1.1.5 (Arc of attachment) An arc of attachment, or attaching arc in

a chord diagram Γ is an embedded arc which intersects the chords of Γ at precisely

three points, namely, its two endpoints, and one interior point.

We consider attaching arcs equivalent if they are homotopic through attaching

arcs. (Most rigorously, an attaching arc is an embedding of pairs

(
[0, 1],

{
0,

1

2
, 1

})
−→ (Int D, Int Γ)
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c

Figure 1.3: Upwards bypass move.

c

Figure 1.4: Downwards bypass move.

up to homotopy and pre-composition by reflection of [0, 1]. We identify the attaching

arc with the image of this map.)

A bypass move is something done along an arc of attachment, and it may be done

upwards or downwards.

Definition 1.1.6 (Bypass moves) Let c be an attaching arc in a chord diagram Γ.

(i) The upwards bypass move Upc along c on Γ consists of removing a small disc

neighbourhood of c and replacing it with another disc with chords as shown in

figure 1.3.

(ii) The downwards bypass move Downc along c on Γ consists also of removing a

small neighbourhood of c, but now replacing it as shown in figure 1.4.

We see that chord diagrams related by bypass moves naturally come in triples,

and such triples are defined to sum to 0 in SFHcomb. In particular, in Γ′ = Upc Γ,

there is an attaching arc c′ such that Downc′ Γ
′ = Γ, and in Γ′′ = Downc Γ, there is an

attaching arc c′′ such that Upc′′ Γ
′′ = Γ. We can think of bypass moves as performing

a local 60◦ rotation on part of a chord diagram; see figure 1.5. Since a local 180◦
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UpUp

Up

c

c′′

Γ′ Γ′′

Γ

c′

Figure 1.5: Bypass triple.

rotation gives the identity, “three bypass moves is the identity”. This observation, as

we will see, is the source of much interesting algebraic and categorical structure.

Definition 1.1.7 (Bypass triple) Three chord diagrams Γ, Γ′, Γ′′ form a bypass

triple if there exists an attaching arc c on Γ such that

Γ′ = Upc Γ, Γ′′ = Downc Γ.

The above observation makes it clear that the existence of such an attaching arc on

Γ is equivalent to existence of such arcs on Γ′ or Γ′′. If two distinct chord diagrams

are related by a bypass move, then there is a unique third chord diagram forming a

bypass triple.

In general a bypass move on a chord diagram need not produce a chord diagram;

it may produce a closed loop. A diagram with a closed loop is considered to be zero

in SFHcomb. In this case, the effect of the bypass move in the opposite direction

leaves the chord diagram unchanged; the bypass relation still holds and is of the form

x + x + 0 = 0.

The main combinatorial result of this thesis gives a nice basis for each vector space

SFHcomb(T, n, e), and shows that when chord diagrams are decomposed into a sum of

basis elements, this decomposition has certain nice properties. There will be a partial



CHAPTER 1. INTRODUCTION 6

+

+

+

+

+

+

+

+
+

+

-

- -

-

-
-

-

-

-
-

-
-

-
+-

- -

-

+

Figure 1.6: Chord diagrams in SFH(T, 4,−1).

order on this basis, and chord diagrams will correspond bijectively with pairs of basis

elements which are comparable with respect to this partial order.

For instance, consider SFHcomb(T, 4,−1). This vector space is spanned by the 6

chord diagrams which have 4 chords and relative euler class −1: see figure 1.6.

We will show, and it was essentially known previously in [33], that

SFHcomb(T, 4,−1) = Z3
2.

Our basis will consist of the three chord diagrams in the top row of figure 1.6, labelled

with the words, respectively:

−− +, − + −, + −−.

Note that they are labelled by words w on {−, +} containing 2 minus signs and 1 plus

sign. The number of such words is
(
3
1

)
; in general, the basis for SFHcomb(T, n + 1, e)

will be labelled by words on {−, +} of length n whose symbols sum to e, and the

number of such words is
(

n

k

)
, where k = (n + e)/2. We will write vw to denote the

basis element labelled by w.

On this set of words, there is a partial order defined by “all minus signs move

right (or stay where they are)”. (In this simple case, it is actually a total order; but
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this will not be true for words of longer length. For instance, in SFHcomb(T, 5, 0) we

find the words − + +− and + −−+, which are not comparable.) Thus,

−− + � − + − � + −−.

In terms of our basis, the 6 chord diagrams (arranged as in figure 1.6) are

v−−+ v−+− v+−−

v−−+ + v−+− v−−+ + v+−− v−+− + v+−−.

Moreover, there are six pairs of words w1, w2 which are comparable with respect to

�, namely three “doubles”

(−− +,−− +), (− + −,− + −), (+ −−, + −−)

and three less trivial pairs

(−− +,− + −), (−− +, + −−), (− + −, + −−).

And in fact, for each pair, there is precisely one chord diagram having that pair as

its first and last basis element.

That is, there is a bijection

{Chord diagrams} ↔ {Comparable pairs of words}

given by taking a chord diagram to the first and last basis elements in its basis

decomposition.

This is a general fact, and our main theorem. Moreover, this bijection, and its

inverse, can be described explicitly. That is, given a chord diagram, we can algorith-

mically extract its first and last basis elements, and they are comparable. Conversely,

given two comparable words, we can algorithmically produce the chord diagram for

which those words give its first and last basis elements. We will also say more about
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the set of basis chord diagrams that occur in a given chord diagram; as well as rela-

tionships between the various vector spaces SFHcomb(T, n, e).

An information-theoretic note from this result is that a chord diagram of 4 chords

can be encoded in 6 bits, with the redundancy that the first 3 bits form a word lesser

than the second 3 bits, with respect to �. In general, a chord diagram of n+1 chords

can be encoded in 2n bits, with a similar redundancy.

This particular example, with 4 chords and e = −1, is actually the essence of

Honda’s octahedral axiom (see [21], also section 3.1.6 below).

While this result is largely combinatorics, the motivation, notation, and appli-

cations come from the theory of sutured Floer homology, with its connections to

topological quantum field theory and contact topology.

1.2 Contact elements in SFH of solid tori

The original motivation for this work was to understand in detail the contact elements

in the sutured Floer homology of a very simple sutured manifold, namely a solid torus

with longitudinal sutures. We now give an overview of this aspect of our results.

1.2.1 Sutured Floer homology and contact structures

We will review the theory of sutured Floer homology more fully in section 2.2. For

the purposes of introduction, it is sufficient to note four facts about sutured Floer

homology.

First, sutured Floer homology theory associates to certain sutured 3-manifolds

(M,Γ) a Z2-vector space SFH(M,Γ). For present introductory purposes, a sutured

manifold can be thought of as a 3-manifold M with boundary, with some disjoint

oriented simple closed curves Γ drawn on the boundary ∂M , dividing ∂M into al-

ternating positive and negative regions. The sutured manifolds for which SFH is

defined are called balanced.

Remark 1.2.1 (Notation: the letter Γ) This letter is used to denote chord dia-

grams, and also to denote sutures on sutured manifolds. This is not unusual, because
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in the present context, both arise as dividing sets on convex surfaces in contact mani-

folds; and dividing sets are often denoted by Γ. However, to avoid confusion, for now

we shall use the letter Γ to denote chord diagrams; to denote sutures, we shall use the

boldface Γ.

For present purposes, we consider our sutured manifold to be a solid torus, with

2n parallel longitudinal sutures, denoted (T, n). Its sutured Floer homology is known

to be Z2n−1

2 (see [33]).

Second, sutured Floer homology associates to a contact structure ξ on (M,Γ) an

element c(ξ) ∈ SFH(−M,−Γ). Here the minus signs refer to reversed orientation.

When we refer to a contact structure on a sutured 3-manifold (M,Γ), we require it to

be compatible with the sutures Γ, in the sense that the boundary ∂M is convex with

dividing set Γ, and the positive/negative regions of ∂M as a convex surface agree with

the positive/negative regions arising from the sutures. The contact element satisfies

c(ξ) = 0 if ξ is overtwisted; if c(ξ) 6= 0 then ξ is tight. We will review the notions of

tight and overtwisted, and other relevant contact geometry, more fully in section 2.1

and chapter 4.

In our case of a solid torus with longitudinal sutures, a tight contact structure

can be described by examining the dividing set on a convex meridional disc, which

is a chord diagram of n chords. The tight contact structures on (T, n), up to isotopy

rel boundary, are in bijective correspondence with chord diagrams of n chords (see

[22], but note [24], also [23, 25, 17, 18]; we also prove this as part of our study of

bypasses, as proposition 4.2.11). That is, there is exactly one tight contact structure,

up to isotopy rel boundary, for each such chord diagram. And, in a notationally-

executed blatant cover-up of the unpleasant reversals of orientation and extra minus

signs, we will write SFH(T, n) to denote the SFH of the appropriately orientation-

reversed manifold. The orientation reversal is never an issue in the following, so

hopefully the abuse of notation will not cause too much confusion. We still have

SFH(T, n) = Z2n−1

2 .

In any case, the upshot is that:

We may regard chord diagrams of n chords as contact elements in SFH(T, n).
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Third, sutured Floer homology SFH(M,Γ) splits as a direct sum. This direct

sum is over spin-c structures on (M,Γ).

In our simple case of (T, n), for which SFH(T, n + 1) = Z2n

2 , this sum over spin-c

structures corresponds to a row of Pascal’s triangle.

Theorem 1.2.2 (Honda–Kazez–Matić [33], Juhász [37]) SFH(T, n+1) = Z2n

2

and splits as a direct sum over spin-c structures

SFH(T, n + 1) = Z
(n

0)
2 ⊕ · · · ⊕ Z

(n

n)
2 .

If ξ is a contact structure on the sutured manifold (T, n + 1) with relative euler class

e, then its contact element c(ξ) lies in the summand Z
(n

k)
2 , where k = (e + n)/2.

The relative euler class of a contact structure (evaluated on a meridional disc,

which generates H2(T, ∂T )) is precisely the relative euler class of the corresponding

chord diagram. With n + 1 chords, this is an integer e of the same parity as n,

and −n ≤ e ≤ n. The n + 1 possible values of e correspond precisely to the n + 1

direct summands above. We denote by SFH(T, n + 1, e) the summand containing

the contact elements of relative euler class e.

Fourth, an inclusion of sutured manifolds induces a map on SFH [33]. More

precisely, an inclusion of sutured manifolds (M ′,Γ′) →֒ (M,Γ) together with a contact

structure ξ′′ on (M − M ′,Γ ∪ Γ′) determines a map on SFH . This map takes the

contact element c(ξ′) of a contact structure ξ′ on (M ′,Γ′) to the contact element

c(ξ′ ∪ ξ′′) of the contact structure ξ′ ∪ ξ′′ on (M,Γ). This is a property of the type

found in topological quantum field theories, and we can call it TQFT-inclusion. We

will use this principle to describe our basis for SFH , among other things.

The above indicates (but does not explain) the origin of the letters “SFH” in the

definition of the combinatorial vector space in section 1.1.

The original motivation of this work was to answer the question:

How do contact elements lie in sutured Floer homology?

A first proposition in this direction is that all tight contact elements are distinct

in SFH(T, n). This was known to Honda–Kazez–Matić in [33]; we will prove it again.
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Proposition 1.2.3 (Contact elements distinct) Distinct tight contact structures

(up to isotopy) on (T, n), or equivalently, distinct chord diagrams, give distinct contact

elements of SFH(T, n).

Recalling the bijection between chord diagrams and tight contact structures on (T, n),

this means that chord diagrams of n chords may be identified with contact elements

in SFH(T, n).

A second proposition is that the meaning of addition in SFH corresponds in a

precise sense to bypass moves on chord diagrams. This was probably known to the

authors of [33], although the whole of this result was not made explicit. The set of

contact elements in SFH(T, n, e) is not a subgroup under addition, but the extent to

which it is closed under addition is described by bypass moves.

Proposition 1.2.4 (Addition means bypass moves) Suppose a, b are contact el-

ements in SFH(T, n, e). Then a+b is a contact element if and only if a, b are related

by a bypass move. If so, then a + b is the third element of their bypass triple.

(Note here we are identifying chord diagrams with contact elements, and we will

continue this abuse of notation throughout.)

The combinatorial version of sutured Floer homology described in section 1.1

seems to have been known in [33], although it was not made explicit; it also appears

to be the origin of Honda’s “contact category” [21]. In any case, the bypass relation

alone does not show that SFH is the combinatorial object described in section 1.1.

But it is; in some sense the “only” relation between contact elements is the bypass

relation.

Proposition 1.2.5 (SFH is combinatorial) There is an isomorphism

SFHcomb(T, n, e)
∼=

−→ SFH(T, n, e).

This isomorphism takes a chord diagram to the contact element of the tight contact

structure on (T, n) with that chord diagram as its dividing set on a meridional disc.
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1.2.2 Categorification of Pascal’s triangle

If we consider all the sutured Floer homology groups SFH(T, n) and their decompo-

sitions into direct sums of SFH(T, n+1, e), over all possible n and e, we can arrange

these in a triangle. (Recall −n ≤ e ≤ n and e ≡ n mod 2.)

SFH(T, 1, 0)

SFH(T, 2,−1) ⊕ SFH(T, 2, 1)

SFH(T, 3,−2) ⊕ SFH(T, 3, 0) ⊕ SFH(T, 3, 2)

These vector spaces are isomorphic respectively to the following “categorification

of Pascal’s triangle”.

Z
(0
0)

2

Z
(1
0)

2 ⊕ Z
(1
1)

2

Z
(2
0)

2 ⊕ Z
(2
1)

2 ⊕ Z
(2
2)

2

Z
(3
0)

2 ⊕ Z
(3
1)

2 ⊕ Z
(3
2)

2 ⊕ Z
(3
3)

2

We will see that there are various maps between these vector spaces. There are

maps denoted

B−, B+ : SFH(T, n) −→ SFH(T, n + 1)

∼ = ∼ =

Z2n−1

2 −→ Z2n

2

which we call creation maps. They are defined by the picture in figure 1.7 of “creating

a chord and adding a ± outermost region near the base point”. They take chord

diagrams to chord diagrams, i.e. contact elements to contact elements.

In the combinatorial definition of SFH , it is clear that they are linear maps. The

fact that they are linear in bona fide sutured Floer homology comes from the TQFT-

inclusion property [33], as we will see in chapter 3; we will define the operators more

precisely in section 3.1.

The maps B−, B+ respectively subtract or add 1 to the relative euler class of

the chord diagram / contact structure; so that, restricting to particular summands,
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- +
+

+

+
+

+
+

+

-

-
-

-
-

-

-

B− B+

Figure 1.7: Creation maps B±.

B−, B+ respectively define maps

SFH(T, n, e)
B−

−→ SFH(T, n + 1, e − 1)

Z
(n−1

k )
2 −→ Z

(n

k)
2

and

SFH(T, n, e)
B+
−→ SFH(T, n + 1, e + 1)

Z
(n−1

k )
2 −→ Z

( n

k+1)
2

where k = (n + e− 1)/2. (Strictly speaking, a B± is defined on each SFH(T, n, e) or

SFH(T, n), but we denote them all by B±; alternatively, B± may be considered to

act on the direct sum of all the SFH(T, n).)

These two maps “categorify the Pascal recursion”.

Proposition 1.2.6 (Categorification of Pascal recursion) There are maps

B± : SFH(T, n, e) −→ SFH(T, n + 1, e ± 1)

which correspond to “creating” a chord as in figure 1.7 above. These are injective

linear maps and

SFH(T, n + 1, e) = B+ (SFH(T, n, e − 1)) ⊕ B− (SFH(T, n, e + 1)) .
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- + +
++

+ - -- - -
+

A− A+

Figure 1.8: Annihilation maps A±.

Similarly, there are two maps

A−, A+ : SFH(T, n + 1) −→ SFH(T, n)

∼ = ∼ =

Z2n

2 −→ Z2n−1

2

which we may call annihilation maps, defined by “closing off an outermost ± region

near the base point”. See figure 1.8.

Again, this is clearly linear in the combinatorial version of SFH ; it is also linear

as an application of the TQFT-property of SFH ; further details in chapter 3.

The maps A+, A− respectively add or subtract 1 to the relative euler class of the

chord diagram / contact structure; so that, restricting to these summands, again, we

have

SFH(T, n + 1, e)
A−

−→ SFH(T, n, e − 1)

Z
(n

k)
2 −→ Z

(n−1
k−1)

2

and

SFH(T, n + 1, e)
A+
−→ SFH(T, n, e + 1)

Z
(n

k)
2 −→ Z

(n−1
k )

2

where k = (n + e)/2.

The creation and annihilation operators satisfy some relations.

Proposition 1.2.7 (Annihilation operators) There are maps

A± : SFH(T, n + 1, e) −→ SFH(T, n, e ± 1)

which correspond to “annihilating” a chord in a chord diagram as in figure 1.8 above.
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These are surjective and satisfy

A+ ◦ B− = A− ◦ B+ = 1 and A+ ◦ B+ = A− ◦ B− = 0.

Thus, the A±, B± operators give a categorification of Pascal’s triangle, in the sense

of the following diagram:

Z
(0
0)

2
B+

��

B−

��

Z
(1
0)

2

A+

DD

B+

��

B−

��

Z
(1
1)

2

A−

ZZ

B+

��

B−

��

Z
(2
0)

2

A+

DD

B+

��

B−

��

Z
(2
1)

2

A+

DD

A−

ZZ

B+

��

B−

��

Z
(2
2)

2

A−

ZZ

B+

��

B−

��

Z
(3
0)

2

A+

DD

Z
(3
1)

2

A+

DD

A−

ZZ

Z
(3
2)

2

A+

DD

A−

ZZ

Z
(3
3)

2

A−

ZZ

(The effect of a composition B±◦A± is also easily understood, with the basis described

in the next section.)

1.2.3 Basis, words, orderings, and quantum field theory

Denote by v∅ the nonzero element of SFH(T, 1) = Z2 (the “vacuum”), which corre-

sponds to the unique chord diagram with 1 chord (lemma 3.1.1). Then in

SFH(T, n + 1, e) ∼= Z
(n

k)
2

there are
(

n

k

)
contact elements of the form

B± B± · · · B± v∅

where there are n+ of the B+’s, and n− of the B−’s, satisfying k = n+, n = n+ + n−

and e = n+ − n−.
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Denote by W (n−, n+) the set of all words on {−, +} of length n = n+ + n−,

with n− minus signs and n+ plus signs; equivalently, which sum to e = n+ − n−.

For every word w ∈ W (n−, n+) there is a corresponding element vw = Bwv∅ in

SFH(T, n + 1, e). Here Bw denotes the string of B+’s and B−’s corresponding to w.

Each vw ∈ SFH(T, n + 1, e) is a contact element, corresponding to a chord diagram

Γw of n + 1 chords and relative euler class e.

Remark 1.2.8 (Conventions for variables) Unless mentioned otherwise, we will

assume that the variables n−, n+, n, e, k are related so that SFH(T, n + 1, e) = Z
(n

k)
2

contains the contact elements vw with w ∈ W (n−, n+). That is, they are related by

k = (e + n)/2, e = 2k − n, n+ = k, n = n+ + n−, e = n+ − n−.

The set W (n−, n+) has some orderings.

Definition 1.2.9 (Lexicographic ordering) There is a total order on W (n−, n+)

obtained from regarding − as coming before + in the dictionary. This also induces a

total order on the elements vw ∈ SFH(T, n + 1, e) and the chord diagrams Γw.

We will usually read words from left to right, but we note that reading words from

right to left also gives a total lexicographic order.

Definition 1.2.10 (Partial ordering �) There is a partial order � on W (n−, n+)

defined by: w1 � w2 if and only if, for all i = 1, . . . , n−, the i’th − sign in w1 occurs

to the left of (or in the same position as) the i’th − sign in w2. This also induces a

partial order, also denoted �, on the elements vw ∈ SFH(T, n + 1, e) and the chord

diagrams Γw.

Thus the partial order � essentially says “all minus signs move right (or stay where

they are)”. It is clear that this is a partial order, and a sub-order of the lexicographic

total order. It is equivalent to “all + signs move left (or stay where they are)”.

Note that |W (n−, n+)| =
(

n

n+

)
=
(

n

k

)
, so that there are as many contact elements

vw ∈ SFH(T, n + 1, e) as the dimension of SFH(T, n + 1, e). Even better:
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Proposition 1.2.11 (QFT basis) The set of vw, for w ∈ W (n−, n+), forms a basis

for SFH(T, n + 1, e).

The analogy, of course, is with operators for the creation and annihilation of

particles in quantum field theory. We think of particles with charge (spin?) ±1,

and consider SFH(T, n + 1, e) as the space generated by n-particle states of charge

e. Each chord diagram with n + 1 chords and relative euler class e becomes an

“n-particle state of charge e”; the chord diagram with 1 chord, “the vacuum”. We

think of B+ as “creating a charge +1 particle” and B− as “creating a charge −1

particle”; and similarly, we think of A+ as “annihilating a charge −1 particle” and

A− “annihilating a charge +1 particle”. The bypass relation can be thought of as

saying “the superposition of two bypass-related states is the third state in their triple”.

The fact that the vw form a basis says that “the space of n-particle states has

a basis obtained by applying creation operators to the vacuum”. This is usual in

quantum field theory. However, for bosons, creation operators commute; for fermions,

they anti-commute; in our case, there is no commutation relation whatsoever, and

any applications of creation operators in different orderings are independent. Perhaps

our particles have “irrational spin”, then. Or, ours are “free particles”, where “free”

is understood in the sense of “free group”.

1.2.4 Catalan and Narayana numbers

Since one of our goals is to understand how contact elements / chord diagrams lie in

SFH , a simple first question is: How many contact elements are there in SFH(T, n)?

The number of distinct chord diagrams of n chords is given by the Catalan number

Cn =
1

n + 1

(
2n

n

)
.

The first few Catalan numbers are

1, 1, 2, 5, 14, 42, 132, . . . .
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The Catalan numbers are classical combinatorial objects and have been studied ex-

tensively for centuries; they are prolific in mathematics. For instance, the number of

ways of arranging n pairs of brackets meaningfully is Cn; it is not difficult to see that

such bracketings are in bijective correspondence with chord diagrams of n chords.

The Catalan numbers can also be defined recursively by C0 = 1, C1 = 1 and then

Cn = C0Cn−1 + C1Cn−2 + · · · + Cn−1C0.

The number of distinct chord diagrams with n chords is Cn; and by proposition

1.2.3 above each chord diagram gives a distinct contact element; thus the contact

elements form a distinguished subset of size Cn in SFH(T, n) ∼= Z2n−1

2 , which has

22n−1
elements.

We can then refine our question, splitting according to relative euler class: How

many contact elements are there in SFH(T, n + 1, e)?

Let this number be Ce
n+1. So there are Ce

n+1 chord diagrams with n+1 chords and

relative euler class e; and e is an integer of the same parity as n satisfying −n ≤ e ≤ n.

It will also be useful to define Cn+1,k = C2k−n
n+1 = Ce

n+1, following our convention in

remark 1.2.8; so that k is an integer, 0 ≤ k ≤ n.

From counting chord diagrams of various relative euler classes, we have

Cn+1 = Cn+1,0 + Cn+1,1 + · · ·+ Cn+1,n = C−n
n+1 + C−n+2

n+1 + · · · + Cn
n+1.

The numbers Ce
n+1 form a triangle, which is known as the Catalan triangle. Its

entries are known as the Narayana numbers.

C0
1 1

C−1
2 C1

2 1 1

C−2
3 C0

3 C2
3 = 1 3 1

C−3
4 C−1

4 C1
4 C3

4 1 6 6 1

C−4
5 C−2

5 C0
5 C2

5 C4
5 1 10 20 10 1

The Narayana numbers are usually given as Nn,k = Cn,k−1; we have shifted them for
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our purposes. They have an explicit formula, although we shall not use it:

Nn,k =
1

n

(
n

k

)(
n

k − 1

)

or

Ce
n+1 = Cn+1,k = Nn+1,k+1 =

1

n + 1

(
n + 1

k + 1

)(
n + 1

k

)
.

There is a substantial literature on the Narayana numbers (e.g. [1, 3, 4, 6, 11, 20, 35,

40, 45, 46, 47]); we will restate some of their properties.

Proposition 1.2.12 (Narayana numbers) The Narayana numbers give the num-

ber of chord diagrams Ce
n+1 in SFH(T, n + 1, e), and satisfy the following relations:

(i) Cn+1 = Cn+1,0 + Cn+1,1 + · · ·+ Cn+1,n.

(ii)

Cn+1,k = Cn,k + Cn,k−1 +
∑

n1+n2=n
k1+k2=k−1

Cn1,k1 Cn2,k2,

or equivalently,

Ce
n+1 = Ce−1

n + Ce+1
n +

∑

n1+n2=n
e1+e2=e

Ce1
n1

Ce2
n2

.

One can think of this recursion as a slightly more complicated version of Pascal’s

triangle, incorporating the Catalan recursion. In fact, we will also show that there is

a “categorification” of this recursion also, in a certain tenuous sense.

Proposition 1.2.13 (Categorification of Catalan recursion) There is an oper-

ator

M : SFH(T, n1, e1) ⊗ SFH(T, n2, e2) −→ SFH(T, n1 + n2 + 1, e1 + e2)

which, applied to contact elements c(ξ1)⊗ c(ξ2), gives the contact element obtained by

“merging” the corresponding chord diagrams. The operator M reduces to a creation
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operator B± (a “degenerate merge” regarding SFH(T, 0) as trivial) in the case n1 = 0

or n2 = 0. Every contact element in SFH(T, n+1, e) can then be written uniquely as

M(c(ξ1), c(ξ2)), where c(ξi) is a contact element in SFH(T, ni, ei), and ni, ei satisfy

n1 + n2 = n and e1 + e2 = e (possibly ni = 0). That is,

{
Contact el’ts in

SFH(T, n + 1, e)

}
=

⊔

n1+n2=n
e1+e2=e

M

({
Contact el’ts in

SFH(T, n1, e1)

}
,

{
Contact el’ts in

SFH(T, n2, e2)

})

In particular,

SFH(T, n + 1, e) =
∑

n1+n2=n
e1+e2=e

M(SFH(T, n1, e1), SFH(T, n2, e2)).

Note this is by no means a direct sum; this is simply a statement about surjectivity

of M .

We also have a crucial enumerative result for our main theorem: a bijection be-

tween comparable pairs and chord diagrams (section 3.2). Recall that the partial

order � of W (n−, n+) indexes the basis elements of SFH(T, n + 1, e).

Proposition 1.2.14 (Number of comparable pairs) The number of pairs w0, w1

in W (n−, n+) with w0 � w1 is Ce
n+1.

1.2.5 Contact elements and comparable pairs

Our main theorems flesh out the purely enumerative bijection of proposition 1.2.14,

giving an explicit bijection between contact elements and comparable pairs of words.

A little more precisely, a general contact element is determined by decomposing it in

terms of basis elements and looking at the first and last basis elements among them.

Alternatively, we can think of every state as a morphism from a first state to a

last state. This is one origin of our categorical perspective.

Theorem 1.2.15 (Min, max basis elements) Consider a contact element

v ∈ SFH(T, n + 1, e).
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Writing v as a sum of basis vectors vw, where w ∈ W (n−, n+), there is a lexicograph-

ically first vw−
and last vw+ basis vector amongst them. Then for every basis vector

vw occurring in the sum, w− � w � w+. In particular, w− � w+.

Theorem 1.2.16 (Contact elements and comparable pairs) The map

Φ :





Contact

elements in

SFH(T, n + 1, e)





∼=





Chord diagrams

with n + 1 chords,

euler class e





−→





Comparable pairs

of words w1 � w2

in W (n−, n+)





given by taking a contact element v, and sending it to (w−, w+), where vw−
, vw+ are

respectively the first and last basis vectors in the basis decomposition of v, is a bijec-

tion.

That is, given any comparable pair w1 � w2, there is precisely one contact element

which, when written as a sum of basis elements, has vw1 as its first and vw2 as its

last.

We will denote the unique contact element with first basis element vw−
and last

basis element vw+ by [w−, w+] or [vw−
, vw+] or [Γw−

, Γw+ ], and throughout we will

abuse notation, often identifying contact elements with chord diagrams and basis

contact elements with words; hopefully this will not cause too much confusion.

1.2.6 Moves on chord diagrams and words

The proofs of the main theorems are by explicit construction. Given w− � w+, we

show how to construct a chord diagram whose decomposition has vw−
as its first and

vw+ as its last element. Then by the enumerative bijection of proposition 1.2.14, this

is shown to be a bijection.

We will build up a method for performing bypass moves on basis chord diagrams,

in order to turn any Γw1 into Γw2, whenever w1 � w2, by upwards bypass moves.

And conversely, we will show how to turn Γw2 into Γw1 by downwards bypass moves.

This method will be explicitly analogous to certain combinatorial “word-processing”
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moves on the corresponding words, consisting of moving certain blocks of − signs

past certain blocks of + signs.

Multiple bypass moves will be performed on bypass systems.

Definition 1.2.17 (Bypass system) A bypass system is a finite set of disjoint arcs

of attachment.

We will build up enough machinery to construct bypass moves to take us from any w1

to w2, for w1 � w2. This will give us a bypass system of the comparable pair w1 � w2.

Then, we will show that performing all these bypass moves in the opposite di-

rection, gives us a chord diagram whose decomposition has w1, w2 as first and last

elements.

Proposition 1.2.18 (Bypass system of a comparable pair) Suppose Γ1 � Γ2

are basis chord diagrams.

(i) On Γ1, there exists a bypass system FBS(Γ1, Γ2) such that performing upwards

bypass moves on it gives Γ2.

(ii) On Γ2, there exists a bypass system BBS(Γ1, Γ2) such that performing down-

wards bypass moves on it gives Γ1.

Proposition 1.2.19 (Bypass system of pair, opposite direction) Performing

downwards bypass moves on FBS(Γ1, Γ2) or upwards bypass moves on BBS(Γ1, Γ2)

gives a chord diagram Γ such that in its basis decomposition, Γ1 and Γ2 appear, and

for every basis element Γw in this decomposition, Γ1 � Γw � Γ2. That is, Γ1 is a total

minimum and Γ2 a total maximum, with respect to �, among all the basis elements

occurring in the decomposition.

(Again we are identifying chord diagrams with contact elements.)
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The proofs of these propositions are based on correspondences between the fol-

lowing notions, which we will define in due course.

{
elementary move

on a word

}
↔

{
bypass move

on an attaching arc

}

{
generalised elementary

move on a word

}
↔





bypass moves on the

bypass system of a

generalised attaching arc









nicely ordered sequence of

generalised elementary moves

on a word





↔





bypass moves on the

bypass system of a

nicely ordered sequence of

generalised attaching arcs





.

The final correspondence is strong enough to give the constructions in the above two

propositions, explicitly; which in turn give the main theorems.

1.2.7 Contact elements are tangled

Having shown that contact elements are determined by the first and last basis elements

in their decomposition, a natural question arises: what are the other basis elements

between the ones between the first and last? We can give some answers about what

lies in between.

A first property, from theorem 1.2.15, is that every other basis element lies between

the first and last, with respect to �.

Second, we can prove results about the number of basis elements in a contact

element. For a basis element, this answer is clear: one — itself. In any other case,

we will show that the answer is even.

Proposition 1.2.20 (Size of basis decomposition) Every chord diagram which

is not a basis element has an even number of basis elements in its decomposition.

Third, we can show that basis elements occurring in the decomposition of a contact

element are “tangled up”, in some sense. We have said that the first and last basis
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elements of a contact element Γ are comparable to all others in the decomposition.

We show that no other basis element has this property.

Theorem 1.2.21 (Not much comparability) Suppose vw occurs in the basis de-

composition of v = [vw−
, vw+ ] and is comparable, with respect to �, with every other

basis element occurring in the decomposition. Then w = w− or w+.

In a sense, therefore, we cannot “untangle” the partial ordering among the basis

elements in the decomposition of a contact element.

More generally, we will show that for any basis element vw in the decomposition

of v, other than vw±
, the number of basis elements vw′ of Γ such that w′ � w is even;

and the number of vw′ with w � w′ is even also (proposition 7.3.11). This implies the

above theorem.

Fourth, the presence of ± symbols in certain positions in both w− and w+ implies

the presence of certain symbols in similar positions in all w occurring in the decompo-

sition of [vw−
, vw+ ]. In fact, such symbols also tell us about the corresponding chord

diagram:

• (Lemma 7.3.2) A chord diagram Γ = [Γ−, Γ+] has an outermost region at the

base point, if and only if the words for Γ−, Γ+ begin with the same symbol,

if and only if all basis elements of Γ have words which begin with the same

symbol.

• (Lemmas 7.3.3-7.3.7) Similarly, for various locations on the disc, a chord di-

agram has an outermost region at that location, if and only if the words for

Γ−, Γ+ both possess a certain property (ending with the same symbol; having

the j’th − sign not the first in its block; etc.), if and only if each basis element

of Γ has the same property.

Fifth, and finally, we note it is possible to give an algorithm to write down the

basis decomposition of any [vw−
, vw+ ] with w− � w+. However, this basically just

replicates the construction of bypass systems in the construction of the chord dia-

gram, in combinatorial language (or writes a computer program to manipulate chord

diagrams!). We make some remarks along these lines in section 7.3.4.
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1.2.8 Computation by rotation

None of the above gives a good way to compute all contact elements (not just basis

elements). One good way to enumerate them is to use the fact that we may always

rotate a chord diagram until there is an outermost region adjacent to the base point,

and then it lies in the image of B±. Such a rotation gives a linear operator in sutured

Floer homology, and we will give a recursive formula (proposition 8.1.1) for this

operator, as well as describing it explicitly (proposition 8.1.2). There is interesting

combinatorics in the matrix of this operator; we wonder if it has other applications.

1.2.9 Simplicial structure

We will also show that there is a simplicial structure on the SFH vector spaces

forming the various diagonals of Pascal’s triangle. We note that our creation and

annihilation operators A±, B± were defined at a particular point, namely the base

point, but there are 2n marked points on the boundary of the disc. Choosing other

points gives more creation and annihilation operators, which, as it turns out, obey the

same relations as face and degeneracy maps in simplicial structures. The associated

boundary maps make the categorified Pascal’s triangle into a double chain complex.

Proposition 1.2.22 (Simplicial structure) On each diagonal of Pascal’s triangle,

there are face and degeneracy maps giving it a simplicial structure, with boundary

maps making each diagonal into a chain complex with trivial homology, and the whole

triangle into a double complex.

1.3 Contact categories, stacking

Our investigations of the sutured Floer homology of the solid torus, arguably the

simplest nontrivial sutured 3-manifold, lead us to develop some considerable algebraic

and combinatorial structure: chord diagrams, creation and annihilation operators,

bypass moves, QFT-type basis, and partial order; as related by the various results of

the previous section.
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We now find that much of this structure has direct contact-geometric meaning;

it has applications independent of sutured Floer homology. Moreover, some of these

notions are contact-geometric to begin with, like “bypass moves”. We find that these

algebraic and combinatorial structures are intimately related to contact structures on

solid cylinders D × I, by regarding the bypass moves of the preceding constructions

as actual bypass attachments. This leads us to consider the “contact category” of

Honda [21], and various extensions and generalisations of it. Indeed, we seem to be

led in the direction of a “categorification of contact geometry”.

1.3.1 Contact “cobordisms” and stackability

Bypass moves arise from the contact-geometric construction of attaching a bypass. A

bypass is a thickened half-disc with a particular contact structure; we will discuss con-

tact geometry preliminaries in section 2.1, and we will analyse bypasses and bypass

attachments in some detail in section 4.1. Bypasses are very interesting objects be-

cause they can be considered both as elementary building blocks of contact manifolds,

and also as half of an overtwisted disc, which “spoils” a contact manifold. Overtwisted

contact geometry is “trivial” in the sense that it reduces to homotopy theory [7], and

most of the interest in contact topology lies in tight (i.e. non-overtwisted) contact

structures.

Attachment of bypasses on a disc gives a cylinder D2 × I with distinct dividing

sets on D2 × {0} and D2 × {1}, leading to a construction we call stacking. Given

two chord diagrams Γ0, Γ1, we form a sutured solid cylinder M(Γ0, Γ1). This is a

3-manifold with boundary (and corners) D2 × I, with sutures on the bottom D×{0}

and top D × {1} being Γ0 and Γ1 respectively. We can ask whether there is a tight

contact structure on this sutured manifold: if so, we say Γ1 is stackable on Γ0. We

then think of the contact structure on the solid cylinder as a “cobordism” between

the two convex discs given by the chord diagrams Γ0, Γ1 (even though the boundary

of the cylinder consists of more than D×{0, 1}). More details will be given in section

4.2.

The question of whether Γ1 is stackable on Γ0 is a linear question in SFH .
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Proposition 1.3.1 (Stackability map) There is a linear map

m : SFH(T, n) ⊗ SFH(T, n) −→ Z2

which takes pairs of contact elements, corresponding to pairs of chord diagrams Γ0,

Γ1, to 0 or 1 respectively as M(Γ0, Γ1) is overtwisted or tight.

Thus, the linear map m is the answer, as a boolean function, to the question

“is Γ1 stackable on Γ0?” Moreover, the summands SFH(T, n, e) of SFH(T, n) are

“orthogonal” with respect to this question:

Proposition 1.3.2 (Relative euler class orthogonality) Let Γ0 and Γ1 be chord

diagrams with n chords. If Γ0, Γ1 have distinct relative euler class then m(Γ0, Γ1) = 0.

We can actually give a complete description of m. Whether M(Γ0, Γ1) is tight

is intimately related to the partial order �; in fact, on basis chord diagrams Γw for

w ∈ W (n−, n+), the answer is � (regarded as a boolean function).

Proposition 1.3.3 (Contact interpretation of �) M(Γw0, Γw1) is tight if and

only if w0 � w1.

Then we can use this to obtain a result for general chord diagrams.

Proposition 1.3.4 (General stackability) Let Γ0 and Γ1 be two chord diagrams

of n chords with relative euler class e. Then Γ1 is stackable on Γ0 (i.e. M(Γ0, Γ1) is

tight) if and only if the cardinality of the set

{
(w0, w1) :

w0 � w1

Γwi
occurs in the decomposition of Γi

}

is odd.

We will show various other properties of m and M:

(i) (Lemma 4.2.4) m(Γ, Γ) = 1, i.e. M(Γ, Γ) is tight.

(ii) (Lemma 4.2.5) If Γ0, Γ1 respectively have outermost chords γ0, γ1 in the same

position, then m(Γ0, Γ1) = m(Γ0 − γ0, Γ1 − γ1).
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(iii) (Lemma 4.2.6) If Γ0, Γ1 are related by a bypass move then, when placed in the

right order, m(Γ0, Γ1) is tight. (The order is made explicit in lemma 4.2.6.)

The last lemma relates stackability to bypass moves. In fact, if Γ1 can be obtained

from Γ0 by attaching bypasses on top of Γ0, then we have a construction of M(Γ0, Γ1),

along with a contact structure on the sutured solid cylinder. Under certain conditions,

one can prove that this contact structure is tight: such questions were considered in

[29], and the results of that paper, including the important notion of pinwheels, are

applied here.

We will see that bypass triples naturally give rise to triples of tight contact cobor-

disms (lemma 4.2.6). Further, we will see that our explicit construction of bypass

moves from Γw1 to Γw2, via a bypass system FBS(w1, w2) for any w1 � w2, when

considered as a set of actual contact-geometric bypass attachments, gives a tight

contact structure on M(Γw1, Γw2). More generally (lemma 7.2.2), for a given chord

diagram Γ = [Γ−, Γ+], there are tight contact structures on M(Γ, Γ−), M(Γ+, Γ) and

M(Γ−, Γ+) obtained by attaching bypasses along bypass systems FBS(Γ−, Γ+) and

BBS(Γ−, Γ+). This is a generalisation of the notion of bypass triple; we will have

more to say about various possible generalisations of bypass triples as we proceed.

1.3.2 Contact categories

The question of which dividing sets are stackable on which others arises naturally in

the notion of contact category defined by Honda [21]. Honda shows that this category

possesses certain properties similar to those of a triangulated category, and behaves

functorially with respect to SFH . For a given surface Σ, the contact category C(Σ)

has objects corresponding to dividing sets on Σ, and morphisms corresponding to

contact structures on Σ × I with dividing sets specified on Σ × {0, 1} (as we need

it, a rigorous definition is given in 4.2.15). A nontrivial (tight) morphism Γ0 −→ Γ1

precisely means that Γ1 is stackable on Γ0. Our map m then precisely describes the

nontrivial morphisms in the contact category of a disc.

We can go further, or rather, narrower. We can start from a given cobordism
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M(Γ0, Γ1) with tight contact structure, and ask what chord diagrams occur as di-

viding sets of discs inside this cobordism (definition 4.2.8). We can give a criterion

for when a chord diagram Γ exists (lemma 4.2.9). Using this, we obtain easily, for

instance, that the only chord diagram existing in M(Γ, Γ) is Γ itself (lemma 4.2.10).

This leads us to define the notion of bounded contact category (definition 4.2.18)

Cb(Γ0, Γ1). The idea is that it is the “subcategory of the contact category of the

disc which is contained in M(Γ0, Γ1)”, or the “subcategory of the contact category

bounded by Γ0 and Γ1”. Its objects are those dividing sets Γ which occur in a

tight M(Γ0, Γ1), and its morphisms are those cobordisms M(Γ, Γ′) which occur in

M(Γ0, Γ1). We prove (lemma 4.2.19) that this Cb(Γ0, Γ1) is indeed a category.

Therefore, lemma 4.2.10, that the only chord diagram existing in M(Γ, Γ) is Γ,

says that the bounded contact category Cb(Γ, Γ) is trivial.

Any partially ordered set can be considered as a category; hence the set of words

W (n−, n+) with the partial order � can be considered as a category. Conversely,

it’s easy to specify under what conditions a given category can be considered as a

partially ordered set (lemma 4.2.20). We can then prove the following.

Proposition 1.3.5 The bounded contact category Cb(Γ0, Γ1) is partially ordered.

In fact, suppose a tight contact structure on M(Γ0, Γ1) is obtained by attaching

bypasses to Γ0 along a bypass system c. Then “each successive bypass attachment

creates another morphism”. The set of subsets of c (i.e. the power set P(c) of the

finite set of attaching arcs) can be considered a partially ordered set under inclusion,

and hence a category. Then we obtain a covariant functor Up from P(c) to Cb(Γ0, Γ1)

by performing bypass attachments along subsets of c; and similarly we can obtain a

contravariant Down functor (lemma 4.2.21).

Contact categories have structures resembling “exact triangles” and “cones”, anal-

ogously to a triangulated category. Bypass triples resemble exact triangles: the com-

position of two morphisms in the triangle is overtwisted, since a bypass is half an

overtwisted disc. Two bypass-related chord diagrams determine a third one (their

sum in SFH), which can be regarded as the cone of the morphism between them.

When M(Γ0, Γ1) can be obtained by multiple bypass attachments along a bypass
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system (an elementary cobordism), we have generalised versions of bypass triples,

exact triangles and cones. This includes triples (Γ, Γ−, Γ+) where Γ = [Γ−, Γ+].

However, we believe these notions are still in an unsatisfactory state; they leave us

discontented. In particular, not every cobordism is elementary (lemma 4.2.14), so

there is no general notion of “cone” or “exact triangle” for a morphism.

We discuss these and related issues in sections 4.2.5, 4.2.10, 7.2.2 and 7.2.3.

1.3.3 Computation of bounded contact categories

Using our interpretation of the partial order � as describing stackability, we can

compute some bounded contact categories.

First, we can compute Cb(Γw0, Γw1) for any basis chord diagrams Γw0, Γw1 corre-

sponding to words w0, w1 ∈ W (n−, n+); for a tight cobordism, we assume w0 � w1.

Definition 1.3.6 (Partially ordered set W (w0, w1)) Given two words w0, w1 in

W (n−, n+) which are comparable, w0 � w1, let

W (w0, w1) = {w ∈ W (n−, n+) : w0 � w � w1}

i.e. the subset of W (n−, n+) bounded below by w0 and above by w1. We endow

W (w0, w1) with the partial order inherited from W (n−, n+).

As W (w0, w1) is a partially ordered set, it may be considered as a category. The

result is that this is precisely the bounded contact category.

Proposition 1.3.7 (Bounded contact category of basis cobordism) For

words w0 � w1 in W (n−, n+) corresponding to basis chord diagrams Γw0 , Γw1,

Cb (Γw0 , Γw1)
∼= W (w0, w1).

The word w ∈ W (w0, w1) corresponds to the basis chord diagram Γw.

That is, the chord diagrams occurring in M(Γw0, Γw1) are precisely the basis chord

diagrams Γw with w0 � w � w1; and convex discs in the cobordism with dividing sets

Γw, Γw′ can be separated, Γw below Γw′, if and only if w � w′.
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If we take w0 and w1 to be the total minimum and maximum in W (n−, n+),

i.e. (−)n−(+)n+ and (+)n+(−)n− respectively, then the bounded contact category is

precisely W (n−, n+); the chord diagrams occurring are precisely all the basis chord

diagrams. This leads us to consider a sort of “universal cobordism”.

Definition 1.3.8 (The “universal cobordism”) We denote the cobordism

M
(
Γ(−)n− (+)n+ , Γ(+)n+ (−)n−

)

by U(n−, n+) and call it the “universal cobordism”.

We can denote its bounded contact category by

Cb (U(n−, n+)) = Cb
(
Γ(−)n− (+)n+ , Γ(+)n+ (−)n−

)
.

Then as a special case of the preceding proposition we have:

Proposition 1.3.9 (Bounded contact category of universal cobordism) For

any n−, n+, there is an isomorphism of categories

Cb (U(n−, n+)) ∼= W (n−, n+).

The word w ∈ W (n−, n+) corresponds to the basis chord diagram Γw.

We may therefore regard U(n−, n+) as a “geometric realisation” of the category

W (n−, n+), in a moral (not technical) sense; and similarly, each M(Γw0, Γw1) with

w0 � w1 as “realizing” the sub-category W (w0, w1).

Although in a sense U(n−, n+) has the “most complicated” bounded contact cat-

egory among cobordisms between basis chord diagrams with given n±, it is just a

bypass cobordism. Indeed, Γ(+)n+ (−)n− can be obtained from Γ(−)n− (+)n+ by a single

bypass attachment (see section 6.1.4). In effect, the computation of Cb(U(n−, n+))

tells us what “bypasses exist inside the bypass”. The presence of extra chords near

the attaching arc allows for extra “intermediate” bypasses.

As it turns out, the universal cobordism actually describes the “bypasses inside any

bypass”. We can compute the bounded contact category of any bypass cobordism,
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i.e. any cobordism M(Γ0, Γ1) obtained from attaching a single bypass above Γ0.

Here Γ0, Γ1 need not be basis chord diagrams. The answer is isomorphic to the

bounded contact category of some universal cobordism. In fact, if we take the “largest

universal cobordism” that can be embedded into the chord diagram around the bypass

attachment, the bounded contact category of the cobordism is isomorphic to that

of the corresponding universal cobordism. The presence of other chords makes no

difference to the bounded contact category. The precise statement (theorem 6.2.4)

and proof is given in section 6.2.2.

1.3.4 Categorical meaning of main theorems

Our main theorems can be interpreted in this language of contact categories. This

largely amounts to saying the same thing with fancier words, but may still be of

interest.

These theorems show that for w− � w+, we have a bypass system FBS(w−, w+)

such that UpFBS(w−,w+) Γw−
= Γw+ and DownFBS(w−,w+) Γw−

= Γ = [Γw−
, Γw+]. In

terms of the bounded contact category, the pair w− � w+ corresponds to a morphism

Γw−
−→ Γw+ in the bounded contact category of the universal cobordism U(n−, n+),

representing an embedded cobordism M(Γw−
, Γw+) in U(n−, n+). Morphisms between

basis chord diagrams are precisely the morphisms of the bounded contact category of

the universal cobordism.

Moreover, attaching bypasses along FBS(w−, w+) actually gives the tight contact

structure on M(Γw−
, Γw+) (lemma 7.2.2); so it is elementary.

Proposition 1.3.10 (Tight basis cobordisms elementary) Let Γ0 and Γ1 be ba-

sis chord diagrams, and suppose M(Γ0, Γ1) is tight. Then M(Γ0, Γ1) is elementary.

We may therefore consider Γ, Γw−
, Γw+ as a “generalised bypass triple” or “exact

triangle”. In fact, Γ = [Γw−
, Γw+] can be regarded as the “cone”, the third element

in an exact triangle arising from the morphism Γw−
−→ Γw+ between basis chord

diagrams.

Hence chord diagrams of n chords and euler class e are in bijective correspondence

with the morphisms of the bounded contact category Cb(U(n−, n+)) of the universal
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cylinder, and may be regarded as their cones. We make this precise in proposition

7.2.3.

1.3.5 A contact 2-category

We can also consider generalisations of Honda’s contact category in another direction.

The abstract nonsense interpretation of our main theorem in proposition 7.2.3

says that in our simple case (i.e. a disc), the objects of the contact category can

themselves be viewed as morphisms. For chord diagrams are described by pairs

w0 � w1, and as we have seen, a partial order is a category. In this spirit, we can

obtain a contact 2-category C(n+1, e): the objects of Honda’s contact category can be

regarded themselves as its 1-morphisms, and the morphisms of that category become

2-morphisms, or “morphisms between morphisms”.

Proposition 1.3.11 (Contact 2-category) There is a 2-category C(n + 1, e) such

that:

(i) its objects are words w ∈ W (n−, n+), or equivalently basis chord diagrams Γw;

(ii) its 1-morphisms are chord diagrams of n + 1 chords with relative euler class e;

(iii) its 2-morphisms Γ0 → Γ1 are contact structures on M(Γ0, Γ1), with (vertical)

composition given by stacking contact structures.

Note that C(n+1, e) ∼= Cb(U(n−, n+)) ∼= W (n−, n+) as a 1-category; so C(n+1, e)

can be regarded as a “2-category” structure on W (n−, n+) or U(n−, n+). It may even

be that considering the situation over all values of n and e, the contact category

becomes a 3-category.

1.4 Questions and directions

The results of these thesis lead to many further questions, in several different direc-

tions. Here we present some thoughts.
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From the perspective of sutured Floer homology, we have given a basis for the SFH

of certain sutured solid tori, and a description of the contact elements. These are the

solid tori with longitudinal sutures. Even if we confine our attention to solid tori, we

can ask: what occurs for sutures of different slope? If the situation is at all similar

to the longitudinal case, then there should be interesting combinatorics, even in the

case of only 2 sutures, since the number of contact structures on a solid torus with 2

boundary sutures of slope p/q is related to the continued fraction decomposition of

p/q (see [22]).

Sticking with longitudinal sutures, our solid tori are of the form D2 × S1, with

sutures of the form F × S1, F a finite set. Sutured manifolds of this type — Σ × S1

with sutures F × S1 for F ⊂ ∂Σ finite — form the dimensionally reduced (1 + 1)-

dimensional TQFT described in [33], and which we discuss in section 8.3.1. From

this perspective, our results describe some aspects of this TQFT for a disc. We can

ask how our results extend to more complicated surfaces: we make some remarks in

this direction in section 8.3.4, and note how our computations apply immediately to

other surfaces, but there is certainly more work to be done here.

We are working only with SFH with Z2 coefficients. Our work clearly carries over

to Z coefficients. We must note however that with Z coefficients, contact elements

are only defined up to sign ([33]; see also [30], [43], [31]). What are the details in the

Z-coefficient case, and do they lead to any new consequences? What about twisted

coefficients?

We show in section 8.3.2 that the structures arising in the SFH of our solid

tori lead to a notion of contact 2-category. Does this extend further, for instance

to a 3-category? The two types of morphisms in the 2-category correspond to “two

different directions” in a contact 3-manifold; can a 3-category incorporate the three

dimensions of the manifold? Does this extend in any nice way to more complicated

surfaces than discs? Can we improve the TQFT structure? We make some remarks

on the possibilities in section 8.3.3.

From the perspective of contact topology, we have introduced a notion of “bounded

contact category” and computed it in some simple cases. We have also noted that

in principle there is an algorithm to compute it in any given case. Is there a simpler
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description? Our computations for cobordisms of basis chord diagrams or single

bypass cobordisms give the bounded contact category as a partially ordered category

of words on two symbols. More complicated cobordisms will have bounded contact

categories which are in some sense “amalgamated products” of these; what can we

say about them?

We have considered only contact categories on discs; of course we would like to

know about higher genus surfaces, which we expect to be more complicated. More-

over, we have used the word “cobordism” to describe topologically trivial “cobor-

disms”, indeed not even really cobordisms. Can anything be said for more general

cobordisms?

Our categorical structures are somewhat rudimentary, although they do seem to

be of interest to contact topology. Can we refine or redefine these structures so as

to have more pleasing algebraic properties? Are there more general notions of exact

triangles, cones, kernels, or other concepts, than those we discuss in sections 4.2.10

and 7.2.3? For instance, does our “snake lemma” (lemma 7.2.4) have more than

coincidental significance?

We have computed an operator on SFH for rotation of a chord diagram; can we

use this for any pure contact-topology applications?

We have some interesting results about the contact manifolds given by attaching

bypasses to convex surfaces; even though not every contact structure arises from a

bypass system, can we describe contact structures purely from some sort of deco-

rated surface? Is there then some form of “contact Reidemeister moves”, related to

manipulations of bypasses, that allow us to better understand contact geometry?

1.5 Structure of this thesis

This introductory chapter gives an overview of our results, in a narrative order; results

relating to contact elements in sutured Floer homology are described separately from

results about contact categories and cobordisms. However, the body of this thesis

presents results in a more logical ordering, which is a little different, proving results

about contact elements in SFH , and results about contact categories, in parallel; see
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figure 1.9.

We begin in chapter 2 by giving some preliminaries on contact geometry (section

2.1) and on sutured Floer homology (section 2.2). We briefly review some fundamen-

tals of contact geometry, including convex surfaces and edge-rounding (section 2.1.2),

and contact structures on balls and solid tori (section 2.1.3). We recall the definition

of sutured Floer homology (section 2.2.1), its splitting over spin-c structures (sec-

tion 2.2.2), and briefly review contact elements and topological quantum field theory

properties (section 2.2.3).

In chapter 3, we take our first steps, in sutured Floer homology (section 3.1)

and in enumerative combinatorics (section 3.2). We build up our picture of SFH

vector spaces categorifying Pascal’s triangle: beginning from the vacuum (section

3.1.1), we introduce creation and annihilation operators (section 3.1.2), show the

distinctness of contact elements (section 3.1.3), the bypass relation and meaning of

addition (section 3.1.4), we establish our basis and related results (section 3.1.5),

and remark on the octahedral axiom (section 3.1.6). Then we turn to enumerative

combinatorics, proving a TQFT -version of the Narayana recursion (section 3.2.1),

and the relationship of Narayana numbers to the partial order � (section 3.2.2).

In chapter 4, we return to contact geometry with a thorough study of bypasses

(section 4.1) and contact categories and “cobordisms” (section 4.2). In section 4.1 we

describe the contact geometry of a bypass (section 4.1.1); we consider when bypasses

can be found in a given manifold (section 4.1.2), including in particular our usual case

of 3-balls (section 4.1.3). We explain how topologically trivial contact structures can

be built out of bypasses (section 4.1.4), and consider multiple bypasses and pinwheels

(section 4.1.5). In section 4.2, we introduce the notion of stackability (section 4.2.1)

and establish basic properties of the stackability map m (section 4.2.2). We then

consider bypass cobordisms (section 4.2.3) and give a combinatorial criterion for the

existence of a chord diagram in a cobordism (section 4.2.4). We generalise to con-

sider elementary cobordisms (section 4.2.5), before formally introducing the contact

category (section 4.2.6) and its bounded variant (section 4.2.7), which we show is a

partial order (section 4.2.8). Having defined all these categories, we note some func-

torial properties (section 4.2.9) and other categorical structures such as distinguished
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triangles (section 4.2.10).

After this abstract nonsense, we turn in chapter 5 to consider concrete basis chord

diagrams. We show how to construct them from given words (section 5.1) — in fact,

two different ways (sections 5.1.2 and 5.1.3) — how to decompose contact elements

in this basis (section 5.2), and then prove the relationship between the partial order

on these basis elements and stackability (section 5.3), including our general result on

stackability (section 5.3.4).

With basis chord diagrams thus understood, in chapter 6 we consider bypass sys-

tems on them. Section 6.1 describes in detail the possible bypass moves on basis

diagrams, giving a bypass system taking Γw0 to Γw1, for any w0 � w1; and then

in section 6.2 we use these results to compute certain bounded contact categories

explicitly. As noted in the introduction, we build up machinery giving correspon-

dences between combinatorial moves on words and bypass moves on chord diagrams,

of increasingly general type. After illustrating our methods with some examples (sec-

tion 6.1.1), we formalise them. We first consider elementary moves on words and

bypass moves on attaching arcs, and establish a correspondence between them (sec-

tions 6.1.2–6.1.4). After some general remarks about bypass systems (section 6.1.5),

we consider generalised elementary moves on words, generalised attaching arcs and

their bypass systems, and establish a correspondence between them (sections 6.1.6–

6.1.8). Even more generally, we then consider multiple generalised attaching arcs

(sections 6.1.9–6.1.11), and multiple generalised elementary moves (section 6.1.12).

For any comparable pair of words, we define a sequence of generalised elementary

moves (section 6.1.13) and a bypass system; and establish a correspondence between

them (sections 6.1.14–6.1.15). Having completed all this, without too much more

effort we may compute the bounded contact category of a basis cobordism (section

6.2.1); and with some more effort, we may compute the bounded contact category of

a bypass cobordism (section 6.2.2).

Chapter 7 then turns to a study of contact elements. We complete the proof of

our main theorems (section 7.1) and then give various consequences and properties

of contact elements (sections 7.2–7.3). We discuss how the main theorem describes

a generalised bypass triple with contact and categorical implications (section 7.2.2),
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and we give a categorical restatement of our main theorems (section 7.2.3). We

then establish properties of contact elements such as the number of elements in a

decomposition (section 7.3.1), symbolic interpretation of outermost regions (section

7.3.2), various algebraic and ordering relations within contact elements (section 7.3.3);

we then remark on more general questions (section 7.3.4).

Finally, chapter 8 contains numerous additional considerations. In section 8.1

we introduce the rotation operator, and compute it, recursively (section 8.1.2) and

then explicitly (section 8.1.3). In section 8.2 we give the simplicial structure on

the various diagonals of the categorified Pascal’s triangle, and make the categorified

Pascal’s triangle into a double complex. And we close with section 8.3, in which we

introduce our contact 2-category and make some remarks about improving it, and

extending our results beyond discs.
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Figure 1.9: Approximate dependency and flavour of chapters and sections.



Chapter 2

Preliminaries

2.1 Contact geometry preliminaries

We recall some basic facts about 3-dimensional contact geometry. For general intro-

ductions to the subject, the reader is referred to any of [9, 26, 27, 38].

2.1.1 Fundamental facts

A contact structure ξ on a 3-manifold M is a totally non-integrable 2-plane field. A

contact structure can always be described locally as the kernel of a 1-form α; the

non-integrability condition then becomes α ∧ dα 6= 0.

A curve in M everywhere tangent to ξ is called legendrian. A simple closed

legendrian curve C bounding a surface Σ has a Thurston-Bennequin number tb(C),

which is given by how many times ξ rotates along C, relative to the trivialisation of

the tangent bundle of M along C given by Σ.

Contact structures naturally diverge into two types. Overtwisted contact struc-

tures are those which contain an overtwisted disc. An overtwisted disc is an embedded

disc bounded by a legendrian curve with Thurston–Bennequin number 0. The clas-

sification of such contact structures is homotopy-theoretic [7]. A non-overtwisted

contact structure is called tight. The classification of tight contact structures is much

more subtle: see, e.g., [16, 17, 18, 22, 23].

40
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An embedded surface Σ in a contact manifold (M, ξ) has a characteristic foliation,

which is the singular foliation given by TΣ∩ξ. The characteristic foliation on a surface

determines the germ of the contact structure nearby [15].

2.1.2 Convex surfaces

A fundamental notion for understanding contact structures on 3-manifolds is that

of convex surfaces: for a general reference the reader is referred to [15]. A convex

surface is an embedded surface Σ in a contact manifold (M, ξ) for which there exists a

contact vector field X transverse to Σ. (A contact vector field is a vector field whose

flow preserves ξ.) If a convex surface has boundary, we require it to be legendrian.

Convex surfaces are generic. In particular, every closed embedded surface Σ in

M is C∞ close to a convex surface; if Σ has boundary, we may need to make a C0

perturbation near the boundary.

The dividing set Γ of a convex surface is the subset of Σ where X ∈ ξ; we can

think of this as where “ξ is vertical”. The dividing set of a convex surface is a

properly embedded 1-manifold. If we have a 1-form α for our contact structure, then

Γ divides Σ into positive and negative regions R+, R− where α(X) > 0 or α(X) < 0

respectively. The dividing set “divides” the characteristic foliation in the sense that

this foliation can be directed by a vector field which dilates an area form on R+ and

contracts it on R−. In fact, given a dividing set Γ, any characteristic foliation on Σ

which is divided by Γ can be taken to any other by a C0-small isotopy of Σ in M .

Thus, in some sense, the dividing set is what fundamentally describes the contact

structure near the surface.

As a special case, certain curves C on a convex surface Σ can be realised as

legendrian curves: this is the legendrian realisation principle (see [22]). Cutting Σ

along Γ ∪ C, we obtain several components; if each component has boundary which

intersects Γ, then C can be legendrian realised.

It’s easy to determine tightness near a convex surface: a convex surface Σ 6= S2 has

a tight neighbourhood if and only if its dividing set has no contractible components;

and a convex S2 has a tight neighbourhood if and only if its dividing set has a single
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component [15, 22].

For a 3-manifold with boundary M , we can assume the boundary ∂M is convex,

and then the convexity gives M the structure of a sutured manifold. We can define

a sutured manifold (M,Γ) (following [36]) as a compact oriented 3-manifold with

boundary M , with a set Γ ⊂ ∂M of disjoint annuli and tori on the boundary. The

annuli in Γ have oriented core curves called sutures. Removing the set Γ from ∂M

breaks ∂M−Γ into connected components, which are oriented so that their boundaries

agree with the sutures; in particular, orientations alternate on ∂M as we cross a

suture. The components of ∂M −Γ are given a sign, positive or negative, respectively

as the normal vector defined by their orientation enters or exits M . The positive and

negative components are denoted R+(Γ) and R−(Γ) respectively.

For a contact 3-manifold with convex boundary, a neighbourhood of the dividing

set on ∂M forms a set of annuli, the curves of the dividing set form sutures, and the

positive and negative regions of the convex surface can be taken as the positive and

negative regions of the sutured manifold. For our purposes we may abuse notation

and regard Γ as the dividing set. Hence, given a sutured manifold (M,Γ), we will say

that ξ is a contact structure on the sutured manifold (M,Γ) if ξ is a contact structure

such that ∂M is convex with dividing set Γ and appropriate positive and negative

regions.

In the following, we will often consider two convex surfaces Σ1, Σ2 with dividing

sets Γ1, Γ2 which meet along a common boundary C, forming a “corner”. We re-

quire this common boundary to be legendrian. If so, the dividing sets Γ1, Γ2 must

“interleave” along C, as shown on the left of figure 2.1. The number of intersections

|Γ1 ∩ C| = |Γ2 ∩ C| is precisely half |tb(C)|. We may round the corner to obtain a

smooth surface. The dividing curves then behave as shown on the right of figure 2.1;

we may think of the rule as “down and to the right; up and to the left”.

2.1.3 Contact structures on balls and solid tori

The classification of tight contact structures on a ball is simple. We have already

seen that on a convex boundary S2, the contact structure in a neighbourhood is tight
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Figure 2.1: Edge rounding of convex surfaces.

if and only if the dividing set Γ is connected. It is a theorem of Eliashberg that

in this case, the space of tight contact structures, fixed on the boundary sphere, is

connected; hence, up to isotopy, there is a unique tight contact structure [8].

We next turn to tight contact structures ξ on (T, n), i.e. the solid torus with 2n

longitudinal sutures. We can cut along a convex meridional disc D with legendrian

boundary, and obtain a 3-ball. Then on D, the dividing set ΓD is a properly embedded

1-manifold; if it has closed components then D has an overtwisted neighbourhood;

hence ΓD is a chord diagram. As it turns out, no matter what choice we take for our

convex D, we obtain the same chord diagram: this follows from [23] or [25]; we will

also prove it as proposition 4.2.11 as a corollary of our study of bypasses. (This is

not the case when the sutures are not longitudes: see e.g. [22].)

Thus, the contact structure ξ determines the chord diagram ΓD. Conversely, any

chord diagram ΓD on D determines an S1-invariant contact structure ξ on the torus

D × S1 = T ; one can show this is tight (again see [23], [25] or proposition 4.2.11).

Hence there is a bijective correspondence

{
Chord diagrams

with n chords

}
↔

{
Tight contact structures

on (T, n) up to isotopy

}
.

Moreover, the dividing set ΓD cuts D into regions with signs; in specifying the sutured

manifold (T, n), we also specify positive and negative regions on the boundary torus;
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this determines which regions of D − ΓD are positive and negative, as in section 1.1.

The relative euler class e(ξ) of ξ takes the class of the meridional disc to the number

obtained by summing the euler characteristics of these regions with sign. Since the

regions are all discs, we simply add the number of positive regions and subtract the

number of negative regions, giving the “relative euler class” described in 1.1.

2.2 Sutured Floer homology preliminaries

2.2.1 Brief overview of SFH

The theory of sutured Floer homology was introduced by Juhász in [36]. It is an

extension of Heegaard Floer homology theory, developed in [41, 42, 43, 44], for mani-

folds with boundary. We mention a few basic results of this theory, and refer to those

papers for details and proofs.

Sutured Floer homology is an invariant of a balanced sutured manifold. A sutured

manifold (M,Γ) is balanced if it satisfies the following conditions: M has no closed

components; χ(R+(Γ)) = χ(R−(Γ)); and every boundary component of M has an

annular suture. (In particular, there are no toric sutures.)

As in Heegaard Floer homology, we consider a Heegaard decomposition of our

manifold. A sutured Heegaard diagram is a compact oriented surface with boundary

Σ, with some simple closed curves αi and βi drawn on it. The αi are pairwise disjoint,

and the βi are pairwise disjoint.

From a sutured Heegaard diagram, one constructs a sutured manifold by taking

Σ × I and gluing 2-handles to αi × {0} and βi × {1}. This is our 3-manifold with

boundary M . The sutures are then defined by the annuli Γ = ∂Σ × I, with oriented

core curves ∂Σ×{1/2}. The balanced condition means that the following conditions

hold: |α| = |β| = d, where α (resp. β) is the set of αi (resp. βi); every component

of Σ\ (∪αi) contains a boundary component of Σ; and every component of Σ\ (∪βi)

contains a boundary component of Σ. Every balanced sutured manifold has a sutured

Heegaard diagram satisfying these conditions.

Again as in Heegaard Floer homology, we consider a symmetric product Symd(Σ),
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which is Σd/Sd, where Sd is the symmetric group acting by permutation of coordi-

nates. If Σ has a complex structure, then so also does this 2d-manifold. There are

two totally real tori

Tα = (α1 × · · · × αd)/Sd and Tβ = (β1 × · · · × βd)/Sd in Symd(Σ).

These tori Tα, Tβ will generally intersect in a finite set of points, corresponding to

d-tuples of intersection points of αi and βi, one on each αi and one on each βi.

Given a sutured Heegaard diagram (Σ, α, β), we consider CF (Σ, α, β), a chain

complex generated by the finite set of points Tα ∩ Tβ. To define a differential ∂

on this complex, we consider holomorphic curves in Symd(Σ) with certain boundary

conditions, given below.

First, we consider a more elementary notion. A Whitney disc from x ∈ Tα to

y ∈ Tβ is a map u from the unit disc D ⊂ C into Symd(Σ) satisfying the following

boundary conditions: u(−i) = x; u(i) = y; u takes the “left side” of ∂D (i.e. with real

part ≤ 0) into Tα; and u takes the “right side” of ∂D into Tβ . The set of homotopy

classes of such discs is denoted π2(x,y). We consider holomorphic discs which are

Whitney discs.

We consider how our Whitney discs intersect the various regions of Σ\(
⋃

αi∪
⋃

βi).

There is a well-defined intersection number with each such region, depending only on

the homotopy class of a Whitney disc. We label the regions of Σ\(
⋃

αi ∪
⋃

βi)

as D1, . . . , Dm, and call linear combinations of the Di domains. To measure the

intersection number with a region, we take a random point zi in each Di; then a

Whitney disc has a well-defined intersection number nzi
(u) with each zi. This is the

algebraic intersection number of u with {zi} × Symd−1(Σ), and it depends only on

the homotopy class of u and the component Di in which zi lies. The domain of u is

then D(u) =
∑

nzi
(u)Di; since it depends only on the homotopy class of u, we may

speak of D(φ), where φ ∈ π2(x,y). When we have a Whitney disc connecting x to

y, its domain D has boundary which (algebraically) runs from x to y along every αi

and βi: that is, ∂(∂D ∩αi) = (x∩αi)− (y∩αi) and ∂(∂D ∩βi) = (x∩βi)− (y∩βi).

A domain D satisfying these two equalities is called a domain connecting x to y; the
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set of such domains is called D(x,y).

For a domain D connecting x to y, we may define M(D) to be the moduli space

of holomorphic Whitney discs with domain D. Our differential will count index-1

families of such discs. Since there is a holomorphic R-action on D preserving −i and

i, we may take a quotient of an index-1 family of curves by this action and obtain

M̂(D). Our differential ∂ on CF (Σ, α, β) is then defined by

∂x =
∑

y∈Tα∩Tβ

∑

D∈D(x,y)
Index=1

#M̂(D) y.

Our sutured Heegaard diagram is also required to be admissible. An admissible

diagram is one for which every periodic domain has positive and negative coefficients;

a domain is periodic if its boundary is a sum of closed curves αi and βi (i.e. for each

αi and each βi, each arc is covered an equal number of times). One can show that any

balanced sutured Heegaard diagram is isotopic to an admissible one. Admissibility

guarantees that the set of positive domains (i.e. having all coefficients positive)

connecting x to y is finite: since holomorphic discs have positive domains by positivity

of intersection, this means that the above sum is finite.

One can show, using Gromov compactness, that ∂2 = 0. The homology of the

complex is called sutured Floer homology SFH(M,Γ); one can show that it is invari-

ant of the choice of admissible balanced sutured Heegaard diagram.

2.2.2 Spin-c structures

We will now briefly explain how SFH splits as a direct sum over spin-c structures.

For our purposes, again following [36], we can regard a spin-c structure on (M,Γ)

as a vector field, satisfying certain boundary conditions, up to homotopy relative to

the boundary in the complement of a ball.

More precisely, we require a vector field on (M,Γ) to point out of M along R+(Γ),

in along R−(Γ), and along the annuli Γ to be tangent to ∂M , as the gradient of the

height function S1 × I −→ I. We will say such a vector field is compatible with Γ.

Two vector fields v, w on M , compatible with Γ, are said to be homologous if there
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exists an open ball B in the interior of M such that v, w are homotopic in M −B. A

spin-c structure on (M,Γ) is a homology class of vector fields on M compatible with

Γ. We call the set of such homology classes Spinc(M,Γ).

Any spin-c structure s ∈ Spinc(M,Γ) has a first chern class c1(s), defined as

follows. Take a vector field v representing s, and form a perpendicular 2-plane field

v⊥. Then c1(s) = c1(v
⊥) ∈ H2(M ; Z). Note that c1(s) cannot be any element of

H2(M ; Z); since v is compatible with Γ, c1(v
⊥) restricts to a particular homology

class in H2(∂M ; Z). Since c1 only depends on the homotopy class of v⊥ over a 2-

skeleton, altering v⊥ inside a ball has no effect; so c1(s) is well defined. Indeed, we

see that Spinc(M,Γ) is an affine space over H2(M, ∂M ; Z).

Each generator x ∈ Tα∩Tβ of CF (Σ, α, β) gives a spin-c structure s(x) as follows.

The sutured Heegaard diagram gives a Morse function f : M −→ R for which Σ is a

level set and the α, β curves are intersections of stable and unstable manifolds with

this level set. Moreover, f is easily chosen so that grad f is compatible with Γ. The

point x is a d-tuple of intersection points of αi and βi curves, one on each curve;

and each such intersection point corresponds to a trajectory γx between an index-1

and index-2 critical point of f . Thus x gives a set of pairwise disjoint trajectories of

grad f connecting all the index one and index two critical points of f in pairs. We

may modify grad f on a neighbourhood of each of these trajectories to give a nowhere

zero vector field v. Then s(x) is the spin-c structure represented by v.

Given two points x,y ∈ Tα ∩ Tβ , we may join the corresponding trajectories as

γx − γy to obtain a collection of oriented simple closed curves in M , which we denote

ǫ(x,y) ∈ H1(M ; Z). We can then prove that ǫ(x,y) ∈ H1(M ; Z) is Poincaré dual to

s(x) − s(y) (since Spinc(M,Γ) is affine over H2(M, ∂M ; Z)). Note that ǫ(x,y) can

be homotoped to lie entirely on the α and β curves, and hence corresponds to some

curves in Tα ∪ Tβ ⊂ Symd(Σ). We note that H1(Σ; Z) = H1(M ; Z) under inclusion,

and we may regard ǫ(x,y) ∈ H1(Σ; Z) also.

Now, if s(x) 6= s(y) then ǫ(x,y) 6= 0 ∈ H1(Σ; Z); this curve is not a boundary.

But any Whitney disc connecting x to y must give such a boundary; so there are no

Whitney discs in this case, and in particular, no holomorphic Whitney discs.

Thus, the differential ∂ on CF (Σ, α, β) takes x ∈ Tα ∩ Tβ to points of Tα ∩ Tβ
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having the same spin-c structure. Hence SFH splits as a sum over spin-c structures:

SFH(M,Γ) =
⊕

s∈Spinc(M,Γ)

SFH(M,Γ, s).

2.2.3 Contact elements and TQFT

We now briefly explain how a contact structure ξ on (M,Γ) gives rise to a con-

tact element or contact class in SFH(−M,−Γ). If we use Z-coefficients, there is a

(±1) ambiguity; but with Z2 coefficients the contact element is a well-defined single

element. Here we follow the definition of Honda–Kazez–Matić in [30], and we only

consider Z2 coefficients. The contact class in this case is an extension of the definition

of a contact class in the Heegaard Floer homology of a closed manifold, as defined in

[43] and reformulated in [31].

The central concept in this definition is that of a partial open book decomposition

(S, R+(Γ), h) of a sutured manifold (M,Γ). Here S is a surface with boundary, R+(Γ)

is a subsurface of S, and h is a partial monodromy map S − R+(Γ) −→ S. We first

consider S×[−1, 1]/ ∼, thickening S and taking the quotient by the relation ∼, which

identifies all boundary points (x, t) ∼ (x, t′) for x ∈ ∂S and t, t′ ∈ [−1, 1]: this is the

“binding” of the open book.

The manifold M is then given by gluing (x, 1) to (h(x),−1), for x ∈ S − R+(Γ).

This manifold has boundary consisting of R+(Γ)×{1}, which becomes R+(Γ) in the

sutured manifold; also (S − Im (h)) × {−1}, which becomes R−(Γ) in the sutured

manifold; and their boundaries ∂(R+(Γ)) × {1}, ∂(S − Im (h)) × {−1}, which have

been glued together, form the sutures.

Now, we recall Giroux’s theorem [19] (see also [10]) that isotopy classes of contact

structures on a (closed) 3-manifold correspond precisely to open book decompositions

modulo positive stabilisation. In their paper [30], Honda–Kazez–Matić extend this

result to sutured manifolds and partial open books.

Thus, given a contact structure on (M,Γ), we take a corresponding partial open

book decomposition. The partial open book decomposition then gives rise to a sutured

Heegaard splitting along a surface Σ, obtained by gluing together two “opposite
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pages” of the partial open book. (In this partial open book, however, two opposite

pages will not usually be homeomorphic surfaces.) We take a basis for (S, R+(Γ)),

which is a set of pairwise disjoint properly embedded arcs ai in S − R+(Γ), so that

after cutting S along the ai, the surface deformation retracts to R+(Γ). From such a

basis, it is possible to obtain some α and β curves on our sutured Heegaard surface,

giving rise to a balanced sutured Heegaard diagram. For α and β curves obtained by

their method, there is a canonical pairing between αi and βi curves, and there is a

canonical intersection point x ∈ Tα ∩ Tβ of each pair near the boundary of S.

In this construction, it turns out that ∂Σ and ∂(R+(Γ)), which are equal as

sets, have opposite orientation. Thus we end up with x ∈ CF (Σ, β, α), rather than

CF (Σ, α, β).

It is then shown that this point x satisfies ∂x = 0, so we may consider x as

an element of SFH . However, because of the orientation issue, we must take x in

SFH(−M,−Γ). For a different choice of partial open book decomposition or basis

curves, this element behaves naturally under corresponding isomorphisms of SFH .

Thus we may speak of the contact element c(ξ) ∈ SFH(−M,−Γ).

The contact class is known to satisfy various properties, also noted in [30]: for

instance, c(ξ) = 0 when ξ is overtwisted, or when the partial monodromy h is not

“right-veering” (see [32, 34]).

In [33], Honda–Kazez–Matić proved that SFH has some of the properties of a

topological quantum field theory. We give a Z2 version.

Theorem 2.2.1 (Honda–Kazez–Matić [33]) Let (M ′,Γ′) be a sutured submani-

fold of (M,Γ) lying in IntM , and let ξ be a contact structure on (M−Int (M ′),Γ∪Γ′).

Let M − Int (M ′) have m components which are isolated, i.e. components which do

not intersect ∂M . Then ξ induces a natural map

Φξ : SFH(−M ′,−Γ′) −→ SFH(−M,−Γ) ⊗ V m,

where V = Z2 ⊕ Z2 = ĤF (S1 × S2). This map has the property that for any contact
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structure ξ′ on (M ′,Γ′),

Φξ (c(ξ′)) = c(ξ′ ∪ ξ) ⊗ x⊗m,

where x is the contact class of the standard tight contact structure on S1 × S2.

2.2.4 Solid tori

Juhász [37] and Honda–Kazez–Matić [30, 33] have proved theorems to calculate SFH

when two sutured manifolds are glued together in certain ways. One immediate

corollary, given in [33], is a computation of SFH for solid tori with longitudinal

sutures. We have seen in the introduction that

SFH(T, n) = Z2n−1

2

and the direct sum over spin-c structures is

SFH(T, n + 1) = Z
(n

0)
2 ⊕ Z

(n

1)
2 ⊕ · · · ⊕ Z

(n

n)
2 =

⊕

e

SFH(T, n + 1, e)

The relative euler class of the chord diagram, or contact structure, corresponds pre-

cisely to these summands [30, 33, 37]. Recall that contact structures on (T, n) are in

bijective correspondence with chord diagrams of n chords; and the relative euler class

of the contact structure is the relative euler class of the chord diagram. Thus, a chord

diagram Γ with n chords and euler class e gives rise to an element of SFH(T, n, e).

This is theorem 1.2.2 from section 1.2.1 in our overview.



Chapter 3

First steps

3.1 First observations in SFH

3.1.1 The vacuum

Let us begin by considering the case of (T, 1), the solid torus with one pair of lon-

gitudinal sutures. We have SFH(T, 1) = SFH(T, 1, 0) = Z2. Contact elements in

SFH(T, 1) arise from contact structures which correspond to chord diagrams with

1 chord. There are not many of these! See figure 3.1. This chord diagram gives

the unique tight contact structure on this sutured manifold; and it is a standard

neighbourhood of a closed legendrian curve.

Such a contact manifold can be contact embedded in the standard contact S3;

or even in a slightly smaller sutured manifold S3 − B3 = B3 with one suture. It

is generally true that ĤF (M) = SFH(M − B3,Γ) where Γ is a single curve on the

sphere. In either of these cases, the contact element for the standard contact structure

Figure 3.1: Chord diagram with 1 chord: the vacuum.

51
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− +

B+B−

Figure 3.2: Inclusion of sutured manifolds for B±.

is nonzero; by Stein fillability of S3, for instance. By TQFT-inclusion, we have the

following lemma.

Lemma 3.1.1 The contact element of the unique tight contact structure on (T, 1) is

the nonzero element v∅ ∈ Z2 = SFH(T, 1). �

We call this contact element v∅ the vacuum, in our quantum field theory interpre-

tation. The vacuum state in quantum field theory is not zero.

3.1.2 Creation and annihilation

We have defined orientation and sign conventions on chord diagrams in section 1.1.

We now define creation and annihilation operators properly.

We consider an embedding (T, n) →֒ (T, n + 1), together with a contact structure

on (T, n + 1) − (T, n), in order to use TQFT-inclusion. Such an embedding is given

by embedding a disc inside a larger disc, all times S1. On the intermediate manifold

(T, n+1)−(T, n), which is an annulus times S1 with 2n+2 longitudinal sutures “on the

outside” and 2n longitudinal sutures “on the inside”, we can specify an S1-invariant

contact structure by drawing a dividing set on the annulus, which is assumed to be

convex. We use the two dividing sets depicted in figure 3.2, respectively for positive

and negative creation operators. Note we must mark base points; recall these are

denoted by a solid red dot.
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B+

Figure 3.3: “Creating by annihilating”.

Definition 3.1.2 (Creation operators) The creation operators are the maps

B−, B+ : SFH(T, n) −→ SFH(T, n + 1)

given by TQFT-inclusion, from (T, n) →֒ (T, n+1) together with the contact structures

on (T, n + 1) − (T, n) described by the dividing sets given in figure 3.2.

Given a contact structure on (T, n), described by a chord diagram Γ of n chords,

applying B± to its contact element gives the contact element of the contact structure

described by the chord diagram with (n + 1) chords, adding a chord enclosing an

outermost ± region near the base point, as described in the introduction.

Moreover, if Γ has relative euler class e, then after applying B± to its contact

element, we have the contact element arising from a chord diagram with euler class

e ± 1. So B± takes contact elements lying in SFH(T, n, e) to contact elements lying

in SFH(T, n + 1, e ± 1).

As an aside, note that B+ and B− “create” an extra chord by the “creation” of

an extra piece on our solid torus. But they can also be viewed as “creating” an extra

chord by “annihilating” part of the manifold as shown in figure 3.3. This is a direct

proof that the associated inclusion of contact manifolds takes tight contact structures

to tight contact structures.

Similarly, we can define annihilation maps corresponding to a similar inclusion

of sutured manifolds (T, n + 1) →֒ (T, n), with certain dividing sets specified on an

annulus in (T, n) − (T, n + 1).
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+−

A− A+

Figure 3.4: Inclusion of sutured manifolds for A±.

Definition 3.1.3 (Annihilation operators) The annihilation operators are the

maps

A+, A− : SFH(T, n + 1) −→ SFH(T, n)

given by TQFT-inclusion, from the inclusion (T, n + 1) →֒ (T, n) together with the

contact structures on (T, n) − (T, n + 1) described by the dividing sets given in figure

3.4.

It’s clear that the effect of A± on contact elements corresponds to the effect on

chord diagrams described in the introduction. And A± takes contact elements lying

in SFH(T, n + 1, e) to contact elements lying in SFH(T, n, e ± 1).

Note that if A+ is applied to a contact element arising from a chord diagram with

an outermost positive region at the base point, then we obtain a contact element

not arising from a chord diagram, but from a diagram with a closed loop. The

corresponding contact structure is overtwisted, and the contact element is zero.

(We note parenthetically that A+ and A− “annihilate” a chord by the “creation”

of an extra piece on our solid torus. While we can “create by creating” and “create

by annihilating”, we can only “annihilate by creating” — we cannot “annihilate by

annihilating”.)

Note that there are actually “creation” and “annihilation” operators which we

can consider, not just near the base point, but at any specific location. We will refer

specifically to some of these later; for now we note that they exist.
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It’s also now clear that the creation and annihilation effects have the relations

A+ ◦ B− = A− ◦ B+ = 1 and A+ ◦ B+ = A− ◦ B− = 0,

when applied to contact elements. Just place these figures of annuli together. Re-

stricting to each summand SFH(T, n + 1, e), we have now proved proposition 1.2.7.

3.1.3 Nontriviality and uniqueness

We can now see that contact classes are distinct and nonzero; this argument also

appeared in Honda–Kazez–Matić [33].

Lemma 3.1.4 Any tight contact structure ξ on (T, n), corresponding to a chord di-

agram Γ, has nonzero contact element c(ξ).

Proof For any such contact element c(ξ), corresponding to a chord diagram Γ, at

least one of the annihilation operators A+ or A− reduces it to the contact element of

a chord diagram with fewer chords (i.e. at most one of these can create a closed loop).

By repeatedly applying annihilation operators in this way we may reduce the chord

diagram to one chord, i.e. the vacuum v∅ 6= 0. The composition of these annihilation

operators is a linear map which takes the c(ξ) to v∅ 6= 0. Hence c(ξ) 6= 0. �

The following argument also appeared in [33]: this is proposition 1.2.3.

Proposition (Contact elements distinct) Distinct tight contact structures (up to

isotopy) on (T, n), or equivalently, distinct chord diagrams, give distinct contact ele-

ments of SFH(T, n).

Proof Let Γ1, Γ2 be two distinct dividing sets of n chords. There is a sequence of

annihilation operators which reduces the contact element of Γ1 to the vacuum state

but which, when applied to the contact element of Γ2, at some point creates a closed

curve in the corresponding dividing set. These annihilation operators might not be

applied in the positions of A+, A−, but may be at other positions; we have noted

that there is nothing special about annihilating at the base point. The composition
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Figure 3.5: Chord diagrams in SFH(T, 3, 0).

of these operators takes the contact element of Γ1 to v∅ but takes that of Γ2 to 0;

hence they cannot be equal. �

This establishes a bijective correspondence:

{
Tight contact

structures on (T, n)

}
∼=

{
Chord diagrams

of n chords

}
∼=

{
Nonzero contact

elements in SFH(T, n)

}
,

and also on the corresponding refinements by relative euler class.

Remark 3.1.5 (Lax notation) We will often denote by Γ a chord diagram, or its

corresponding contact element, and drop the notation c(ξ). The meaning should be

clear.

3.1.4 Bypasses and addition

The simplest case for which there is more than one chord diagram is 3 chords and

e = 0. Since SFH(T, 3, 0) = Z2
2 and C0

3 = 3, there are 3 chord diagrams giving 3

distinct elements of Z2
2: see figure 3.5.

These three dividing sets are related by bypass moves, as described in section 1.1.

They form the simplest possible nontrivial bypass triple.

The 3 nonzero elements of Z2
2 have the property that the sum of any two of them

is equal to the third; or equivalently in mod 2 arithmetic, the sum of all three is zero.

Hence the 3 contact elements have the same property. Thus in this case, “bypasses

do mean addition”. The result in general follows from TQFT-inclusion.
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Proposition 3.1.6 Suppose that three chord diagrams Γ1, Γ2, Γ3 form a bypass triple.

Then Γ1 + Γ2 + Γ3 = 0.

Conversely, suppose three chord diagrams Γ1, Γ2, Γ3 satisfy Γ1+Γ2+Γ3 = 0. Then

Γ1, Γ2, Γ3 form a bypass triple.

Proof Suppose Γ1, Γ2, Γ3 form a bypass triple in SFH(T, n, e). Then they are ob-

tained by taking the three chord diagrams of 3 chords in figure 3.5, and adding an

annulus to the outside of their discs containing the same diagram. This gives an

inclusion of one solid torus inside another, with a contact structure specified in the

intermediate region, and hence by TQFT-inclusion we obtain a linear map

Z2
2
∼= SFH(T, 3, 0) −→ SFH(T, n, e).

Since the sum of the three contact classes in SFH(T, 3, 0) is zero, after applying this

linear map, the sum of Γ1, Γ2, Γ3 is zero also.

For the converse: proof by induction on the number of chords n. For n = 3 it

is clear. Note that if three chord diagrams sum to zero then they all have the same

relative euler class. Furthermore, since all contact elements of chord diagrams are

nonzero, if the Γi sum to zero then they are all distinct.

We use the following fact: given any two distinct chord diagrams with the same

number of chords and relative euler class, there exists an annihilation operator, anni-

hilating at some location (possibly not at the base point), that creates no closed curves

on either. If annihilating at every position creates a closed curve on at least one of the

diagrams, then the two chord diagrams consist entirely of outermost chords, enclosing

all positive regions on one chord diagram, and enclosing all negative regions on the

other. Thus the chord diagrams have distinct relative euler class, a contradiction.

Applying this to Γ1 and Γ2, we find an annihilation operator A which reduces

the number of chords by 1, and such that AΓ1, AΓ2 are nonzero. If AΓ1 and AΓ2 are

distinct then from linearity of A and Γ1+Γ2+Γ3 = 0 we find that AΓ3 is also nonzero;

and thus we have reduced to a smaller case and are done by induction. If AΓ1 and

AΓ2 are equal, then we have the situation that an annihilation operator takes two

distinct dividing sets and outputs the same dividing set. It follows that the situation
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Figure 3.6: Distinct Γ1, Γ2 for which AΓ1 = AΓ2. Here α, β, γ, δ, ǫ denote that the
two diagrams contain identical chords in these regions.

must be as in figure 3.6; and hence Γ1, Γ2 are related by a bypass. Then Γ3 = Γ1 +Γ2

(by the first part of the proposition) is the third diagram in their bypass triple. �

This proposition is simply a reformulation of proposition 1.2.4, which is now also

proved. So, the set of contact elements does not form an additive subgroup; but

the extent to which it is closed under addition precisely describes the existence of

bypasses.

3.1.5 The basis

We now show that the elements vw, for w ∈ W (n−, n+), form a basis. Recall (section

1.2.3) vw is obtained from applying B± to v∅ ∈ SFH(T, 1, 0) repeatedly, according to

the word w. We prove proposition 1.2.11:

Proposition (QFT basis) The set of vw, for w ∈ W (n−, n+), forms a basis for

SFH(T, n + 1, e).

Proof First we show the vw are linearly independent. For this suppose that some

vw1 + · · · + vwj
= 0. Then, to this sum apply a sequence of annihilation operators

which undoes the creation operators in the definition of w1. The composition A of

these operators takes ew1 to the vacuum v∅ 6= 0 and every other vwi
to 0; hence

A(vw1 + · · ·+ vwj
) = v∅ = 0,

which is a contradiction.
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The number of vw is the number of w ∈ W (n−, n+), which is
(

n

k

)
, which is the

dimension of SFH(T, n + 1, e). Hence they form a basis. �

We can now prove proposition 1.2.6; it only remains to prove that the B−, B+ are

injective and form the “categorification of the Pascal recursion”:

SFH(T, n + 1, e) = B+SFH(T, n, e − 1) ⊕ B−SFH(T, n, e + 1).

Proof The basis of SFH(T, n + 1, e) consists of elements vw. If w begins with a +,

w = +w′, then vw = B+vw′ ∈ B+SFH(T, n, e − 1). If w begins with a −, w = −w′,

then vw = B−vw′ ∈ B−SFH(T, n, e+ 1). This proves the recursion, and injectivity is

clear. �

Given any chord diagram / contact element, there are simple algorithms to deter-

mine its decomposition as a sum of basis elements. These will be described in detail

in section 5.2. Essentially, there is either an outermost region at the base point, or

there is not. If there is an outermost region, then we can factor out a B± and reduce

to a smaller chord diagram. If there is no such outermost region, then we can perform

upwards and downwards bypass moves near the base point to write our chord diagram

as a sum of two other chord diagrams, each of which contains an outermost region at

the base point. We can proceed in this way until we reach the vacuum; and at this

point we have our decomposition. We illustrate with an example in figure 3.7.

We can now prove proposition 1.2.5.

Proposition (SFH is combinatorial) There is an isomorphism

SFHcomb(T, n, e)
∼=

−→ SFH(T, n, e).

This isomorphism takes a chord diagram to the contact element of the tight contact

structure on (T, n) with that chord diagram as its dividing set on a meridional disc.

Proof Recall that SFHcomb(T, n, e) is defined as the Z2-vector space freely generated

by appropriate chord diagrams, say Z2〈V 〉, modulo bypass relations; let the subspace

of Z2〈V 〉 generated by bypass relations be B. There is certainly a linear vector space
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Figure 3.7: Decomposition into basis elements. From here we have B−B−B+B+v∅,
B−B+B+B−v∅, B+B−B−B+v∅ and B+B−B+B−v∅, hence v−−++ + v−++− + v+−−+ +
v+−+−.

map Z2〈V 〉 −→ SFH(T, n, e), taking chord diagrams to the corresponding contact

elements in SFH . Moreover, this map takes B 7→ {0}, and so descends to a map

φ : SFHcomb −→ SFH . Since SFH is generated by chord diagrams, φ is surjective.

Now in SFHcomb(T, n, e), the chord diagrams Γw for w ∈ W (n−, n+) form a spanning

set: every chord diagram can be decomposed, using the bypass relation, as a sum of

Γw. Thus the dimension of SFHcomb is ≤
(

n

k

)
, while the dimension of SFH is

(
n

k

)
.

However φ is surjective, so the dimension of SFH must actually be
(

n

k

)
and φ must

be an isomorphism. �

3.1.6 The octahedral axiom

We now pause briefly to return to the example of SFH(T, 4,−1) = Z3
2 discussed in

section 1.1. Recall we have 6 chord diagrams, 3 basis elements v−−+, v−+− and v+−−,

and the 6 contact elements are

v−−+ v−+− v+−−

v−−+ + v−+− v−−+ + v+−− v−+− + v+−−.
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Thus the 6 contact elements in Z3
2 consist of the 3 basis elements and all sums

of them in pairs. We may consider the elements of Z3
2 as the vertices of a cube with

coordinates (x, y, z), with planes through the origin corresponding to 2-dimensional

subspaces and lines through the origin corresponding to 1-dimensional subspaces. We

see that each 2-dimensional subspace generated by two basis elements (with equations

x = 0, y = 0 and z = 0) contains 3 contact elements which form a bypass triple; and

also the subspace x + y + z = 0. Thus, the 6 vertices of the cube which are contact

elements contain between them 4 triangles which are bypass triples. We can thus

take these 6 vertices and arrange them as an octahedron; then 4 of the 8 faces are

exact. This is the arrangement which appears in the octahedral axiom of Honda [21].

One can think of every SFH(T, n, e) as containing contact elements which describe

some higher-order version of the octahedral axiom.

3.2 Enumerative combinatorics

In this section we collect some enumerative results that we will need later.

3.2.1 Catalan, Narayana, and merging

Recall the Catalan numbers are given recursively by C0 = 1, C1 = 1 and

Cn = C0Cn−1 + C1Cn−2 + · · · + Cn−1C0.

We will define our (shifted) Narayana numbers Cn+1,k = Ce
n+1 recursively by C0

1 = 1

and

Ce
n+1 = Ce−1

n + Ce+1
n +

∑

n1+n2=n
e1+e2=e

Ce
n1

Ce
n2

We will show that the number of chord diagrams with n chords satisfies the Catalan

recursion, and the number of chord diagrams with n chords and relative euler class e

satisfies the Narayana recursion. The initial values are clearly right.

One easy way to see this recursion is a merging operation. Given two chord

diagrams Γ1, Γ2 with n1, n2 chords and relative euler classes e1, e2, we can combine
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Γ1 Γ2 Γ2Γ1

Figure 3.8: Merging operation.

them into a larger chord diagram with n1 + n2 + 1 chords, and relative euler class

e1 + e2, as shown in figure 3.8.

Note the specification of base points. The merging operation is also defined when

n1 = 0 or n2 = 0; in this case the chord diagram added on one side is null; and the

operation reduces to the effect of B+ or B−. It’s easy to see that any given chord

diagram can be expressed as the merge of two smaller (possibly null) chord diagrams,

and in precisely one way.

Counting the number of chord diagrams of n chords without regard to relative

euler class gives the Catalan recursion, where each term CkCn−k counts the number

of merged chord diagrams with k chords in the left diagram and n − k in the right.

Doing the same thing but keeping track of relative euler class, we obtain the Narayana

recursion. And it is now clear from this interpretation that

Cn =
∑

e

Ce
n.

We have now proved proposition 1.2.12.

We further note that the “merging” operation precisely describes an inclusion

of sutured manifolds — in this case, (T, n1) ⊔ (T, n2) → (T, n1 + n2 + 1) — to-

gether with a contact structure on the intermediate manifold (T, n1 + n2 + 1) −

((T, n1) ⊔ (T, n2)). Thus TQFT-inclusion applies. Note SFH((T, n1) ⊔ (T, n2)) =
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SFH(T, n1) ⊗ SFH(T, n2).

Definition 3.2.1 (Merge operator) The inclusion of sutured manifolds, and con-

tact structure on the intermediate manifold, described by the merging of two chord

diagrams as above, gives a linear map

M : SFH(T, n1) ⊗ SFH(T, n2) −→ SFH(T, n1 + n2 + 1)

which restricts to a map

M : SFH(T, n1, e1) ⊗ SFH(T, n2, e2) −→ SFH(T, n1 + n2 + 1, e1 + e2)

on each summand.

When n1 or n2 is 0, the definition of M naturally extends as a creation operator.

Since every contact element in SFH(T, n, e) lies in the image of M , applied to con-

tact elements, and contact elements span SFH(T, n, e), we have proved proposition

1.2.13.

3.2.2 Counting comparable pairs

This is proposition 1.2.14.

Proposition The number of pairs w0, w1 in W (n−, n+) with w0 � w1 is Ce
n+1.

In order to prove this, we give a “baseball” interpretation of the partial order

�. Given a word w ∈ W (n−, n+), call the m’th symbol from the left the m’th

innings. Call the sum of the first m symbols the score after m innings. Then, for

w0, w1 ∈ W (n−, n+), the relation w0 � w1 means precisely that after every innings,

w1 has a score higher than (or equal to) w0.

(Note, this is a low-scoring version of baseball: in every innings, each team scores

±1 run. If is also a fixed version of baseball: since w0, w1 ∈ W (n−, n+), the scores at

the end of the game, after all n innings, are equal. In any case, an innings where the

lead changes from one team to the other is precisely the case when the corresponding
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words are not comparable; comparable words are uninteresting as spectator sport,

unfortunately. Two words are comparable if and only if they describe a low-scoring,

fixed, and uninteresting baseball game.)

Proof (of proposition 1.2.14) First, there is a bijection between pairs of com-

parable words of length n with k plus signs, and monotone increasing functions

f : {1, . . . , n + 1} −→ {1, . . . , n + 1},

i.e. f : [n+1] −→ [n+1], satisfying f(i) ≤ i for all i and taking k +1 distinct values.

The bijection is described as follows. Given a pair of comparable words w0 � w1, we

know that for all j, the j’th + sign in w0 is to the right of the j’th + sign in w1.

Insert a + at the start of w0 and w1 to obtain w′
0, w

′
1, so these are now words of length

n + 1 with k + 1 plus signs. For i ∈ {1, . . . , n + 1}, let the number of + signs up to

and including the i’th symbol of w0 be j(i); then define f(i) to be the position of the

j(i)’th + sign in w1.

Conversely, given such a function, we can easily reconstruct the words w0, w1. The

positions of the + signs in w′
1 are precisely the values of f . And the positions of the

+ signs in w′
0 are precisely those i for which f(i) jumps, f(i) > f(i − 1).

The number of such functions f : [n + 1] −→ [n + 1] with k + 1 distinct values is

well known to be Nn+1,k+1 = Cn+1,k = Ce
n+1.

To see this, we can show that Fn,k, the number of increasing f : [n] −→ [n] with

f(i) ≤ i taking k values, satisfies the Narayana recursion; clearly Fn,k = Nn,k for small

values. Clearly any such function has the fixed point f(1) = 1. The number with

no other fixed points is Fn−1,k. The number with a fixed point f(2) = 2 is Fn−1,k−1.

Otherwise let j be the least fixed point ≥ 2. We can then “break the function into

two” at that fixed point, and the number of such functions is given by Fj−2,k1Fn−j+1,k2

over the possible k1, k2 where k1 + k2 = k. �



Chapter 4

Contact considerations:

Combinatorial, categorical,

cobordisms

4.1 On Bypasses

Having covered some contact geometry preliminaries in section 2.1, we now move on to

consider bypasses in some detail. Bypasses can be considered as the “smallest building

blocks” of contact structures; the contact structures we consider can be constructed

entirely out of bypasses. On the other hand, a bypass is “half an overtwisted disc”.

Hence, the smallest step in contact geometry is half way to oblivion. Such is the

precariousness of all tight contact life.

4.1.1 The bypass manifold

Our bypass moves come from actual contact geometric objects called bypasses. A

bypass is essentially half an overtwisted disc. Recall that an overtwisted disc is a

disc bounded by a legendrian curve with Thurston-Bennequin number 0. A convex

overtwisted disc D has dividing set consisting of a single closed loop. A thickened

convex overtwisted disc D × I has dividing set on its boundary consisting of 3 closed

65
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Figure 4.1: Bypass with convex boundary.

Figure 4.2: Attaching a bypass.

loops: one on each of D×{0}, D×{1}, and another loop in ∂D×I. A bypass is then

half of this object, where we slice through a diameter of D, times I; we consider the

“sliced” part of the bypass to be the “base”. On this slice, the dividing set consists

of three arcs of the form {·} × I; see figure 4.1.

Since the contact structure near a surface is (up to C0 isotopy) determined by the

dividing set, we may attach a bypass to any convex surface along an attaching arc,

above (resp. below): see figure 4.2. Rounding (figure 4.3) and flattening (figure 4.4

then gives the surgery on dividing sets we have called an upwards (resp. downwards)

bypass move.

Clearly, then, adding two bypasses, above and below a convex surface, along the

same attaching arc, attaches an overtwisted disc — hence gives an overtwisted contact

structure.
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Figure 4.3: Rounding a bypass attachment.

Figure 4.4: Effect of bypass attachment.
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4.1.2 When do bypasses exist?

In the following, we often consider the question of whether a bypass exists in a given

contact manifold. More precisely, suppose we have a contact 3-manifold (M, ξ) with

convex boundary, and we would like to know whether there exists a bypass inside M

along an attaching arc c on ∂M . There are some situations in which there is an easy

answer to this question: and this will be enough for our purposes.

(i) If ξ is tight, and performing the bypass attachment along c, inwards into M ,

would result in a convex surface with an overtwisted neighbourhood (easily

detected by looking at the dividing set, see section 2.1), then no such bypass

exists.

(ii) If performing the bypass attachment along c, inwards into M , would result

in a convex surface with dividing set isotopic to the original ∂M , then the

bypass exists. This principle — “trivial bypasses always exist” — has been

mischievously named the “right to life” principle by Honda–Kazez–Matić [25,

28].

(iii) If a bypass exists in a certain location, then a bypass necessarily exists at other

locations too: this principle is called “bypass rotation” in [29]. The idea behind

bypass rotation is that, after attaching a bypass along one attaching arc, other

arcs of attachment may become trivial, and hence bypasses along them exist

by the right-to-life principle. In particular, consider figure 4.5 below: if there

exists a bypass above the (solid) arc in the right of the figure, then there also

exists a bypass along the (dotted) arc in the left of the figure. The slogan for an

upwards bypass is: “bypasses to my left are redundant after me”. Conversely,

for downwards bypasses, “bypasses to my right are redundant after me”.

4.1.3 Bypasses on a tight 3-ball

We will be interested in bypasses along an attaching arc on a tight 3-ball with convex

boundary. We can ask two questions:
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Figure 4.5: Bypass rotation.

Figure 4.6: Possible attaching arcs on a tight ∂B3. We view this as looking at ∂B3

from the outside.

(i) After adding a bypass to the outside of the ball, does it remain tight?

(ii) (As in the previous subsection.) Does a bypass exist along our attaching arc,

inside the manifold?

Topologically, an arc of attachment may be arranged in only two ways on a tight

S2 boundary: see figure 4.6.

In the first case, the answer to the first question is “yes” and the second question

“no”. To see this, we note that adding a bypass to the outside of the ball has no

change on the effect of the topology of the dividing set; it is still connected. Moreover,

the contact structure on the enlarged ball, obtained by adding the bypass to the pre-

existing tight contact structure on the ball, is again tight — this follows from the

right-to-life principle. The second answer is “no”, since if such a bypass existed,

removing it would lead to a disconnected dividing set, contradicting the tightness of

the contact structure.

In the second case we obtain precisely the opposite answers, and for similar rea-

sons: “no” and “yes” respectively.

In the first case, we call the arc of attachment outer, and in the second case inner.

Since a solid cylinder is a 3-ball, the above applies to any attaching arc on a tight

contact D × I.
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4.1.4 Bypasses are building blocks

We now examine how bypasses are “elementary building blocks” for contact struc-

tures. In particular, we show how a tight solid cylinder can be constructed out of

bypasses. The proof is in essence a version of Honda’s imbalance principle (see [22]),

although there are complications arising from the corners and boundary.

Lemma 4.1.1 (Cobordisms constructed out of bypasses) Suppose that on the

cylinder D×I there is a tight contact structure ξ with dividing sets Γ0, Γ1 on D×{0},

D×{1} and with vertical dividing set along ∂D×I. Then (D×I, ξ) is contactomorphic

to the thickened convex surface D × {0} with some finite set of bypass attachments.

Proof Obviously Γ0, Γ1 must have the same number n of chords. Our proof is by

induction on n. For n = 1 or 2 the tightness of D×I implies that Γ0 = Γ1; if Γ0 6= Γ1

then it is easy to see after edge rounding that we have an overtwisted 3-ball.

Suppose now that Γ0, Γ1 have a common outermost chord γ enclosing an outermost

region R. Then we consider another arc δ in D running close and parallel to γ,

enclosing it and the outermost region R. We can legendrian realise δ and (possibly

after perturbing) consider the convex surface δ × I. After some edge rounding, we

can make ∂(δ × I) a legendrian curve, which intersects the dividing set on ∂(D × I)

in two points. Since the contact structure is tight, there is only one possible dividing

set on δ × I. Indeed, cutting along δ × I we obtain two solid cylinders, both of which

must be tight, and both of which (after re-sharpening corners) have vertical sutures

on ∂D × I. One of these contains the same dividing set γ on the top and bottom,

and hence is contactomorphic to an I-invariant contact structure. The other cylinder

has dividing sets on both ends with n − 1 chords; hence by induction is obtained by

attaching bypasses to the base. Thus the original cylinder is constructed by bypass

attachments.

Now suppose that Γ1 has an outermost chord γ which does not occur in Γ0. Let

its endpoints, labelled clockwise, be p and q, and let the next marked point clockwise

on D be r. Then on Γ0, there is no outermost chord joining p and q (by assumption),

nor joining q and r (which after edge rounding would give a closed component along

with γ of the dividing set). Thus the two chord diagrams must appear as shown in
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Figure 4.7: Arc δ on Γ0, Γ1.

q
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Figure 4.8: Dividing set on cylinder obtained by cutting along δ×I. Here δ×I forms
the back of the picture; its dividing set is to be determined but its boundary points
are shown.

figure 4.7, and we may take an arc δ on D as shown, which intersects Γ0 in 3 points

and Γ1 in 1 point.

After perturbing if necessary, we consider a convex δ × I; we will determine the

dividing set on δ×I. By the interleaving property of dividing sets, the dividing set on

δ × I has six boundary points (3 from Γ0, 1 from Γ1, and 2 from the vertical sutures

after rounding), hence contains 3 arcs. Cutting the cylinder along δ × I gives two

smaller cylinders. The smaller cylinder containing {p, q, r}×I has boundary dividing

set as shown in figure 4.8. Since this is tight, we see there is only one possible dividing

set on δ × I, as shown in figure 4.9.
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δ × {0}

δ × {1}

Figure 4.9: Dividing set on δ × I. The red dots show interleaving intersections with
the dividing set ∂(D × I).

Hence there is a bypass above Γ0 along a sub-arc of δ. Attaching this bypass to Γ0

gives a dividing set with an outermost chord in the same position as Γ1. Hence, after

removing a layer containing this bypass attachment, we have reduced to the previous

case and we are done. �

4.1.5 Bypass systems and pinwheels

We now increase the level of difficulty and consider attaching several bypasses to a

surface S, along a bypass system (recall definition 1.2.17).

Obviously, as in the previous section, we are interested in taking a convex disc

and adding bypasses above a bypass system. The question of when the resulting

contact manifold is tight has been completely answered by Honda–Kazez–Matić [29];

the same paper has more general results also. The key indicator is an object known

as a pinwheel.

Definition 4.1.2 (Pinwheel) An (upwards) pinwheel is an embedded polygonal re-

gion P on a convex surface satisfying the following conditions.
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α2

α3

γ3

P

γ1

α1

γ2

Figure 4.10: An (upwards) pinwheel.

(i) The boundary of P consists of 2k (k ≥ 1) consecutive sides

γ1, α1, γ2, α2, . . . , γk, αk,

labelled anticlockwise, where γi is an arc on a chord of the dividing set Γ, and

αi is half of an arc of attachment ci.

(ii) For each i, ci extends beyond αi in the direction shown in figure 4.10, and does

not again intersect P .

It’s clear enough that attaching bypasses above a surface along the attaching arcs

of a pinwheel results in an overtwisted contact structure. The result of Honda–Kazez–

Matić is that the converse is true as well: if there is no pinwheel, then the result is

tight.

Theorem 4.1.3 (Honda–Kazez–Matić [29]) Let D be a convex disc with legen-

drian boundary and c a bypass system. The contact manifold obtained by attaching

bypasses above a standard neighbourhood of D along c is tight if and only if there are

no pinwheels in D. �

A similar result obviously holds for attaching bypasses downwards along a convex disc;

the orientation of the pinwheels is reversed. Hence we speak of upwards pinwheels

and downwards pinwheels.
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4.2 Contact cobordisms

The precariousness of tight contact life, with every bypass move half way to the obliv-

ion of overtwistedness, leads to interesting combinatorial and categorical relationships.

However, not all of these are (yet) as nice as one might hope.

Although this section purports to be about “contact cobordisms”, the only “cobor-

disms” we consider are manifolds D× I, which we consider as “cobordisms” between

D × {0} and D × {1}. Moreover, we consider only vertical sutures F × I ⊂ ∂D × I,

where F ⊂ ∂D is finite. This situation is difficult enough for our purposes; and clearly

some of the following applies in far greater generality.

4.2.1 Stackability

We now formalise a construction we have already seen in the foregoing.

Suppose we have two chord diagrams Γ0, Γ1, both with the same number of chords

n, and with marked base points. Then we consider the cylinder D × I, where D is a

disc and I = [0, 1]. Its boundary is (D × {0})∪ (∂D × I) ∪ (D × {1}). We now draw

some sutures on this boundary. We draw the chord diagram Γ0 on D × {0}, and Γ1

on D×{1}. We do this so that the marked points are aligned at points {pi}×{0, 1},

and the base points are aligned at points {p0}×{0, 1}. We then choose 2n points {qi}

on ∂D, evenly spaced between successive pi; and we draw the 2n curves {qi} × [0, 1]

on ∂D × I.

We think of the [0, 1] factor as giving the “vertical” direction: the positive direction

is up and the negative direction is down.

Thus D × I can now be considered as a sutured 3-ball (with corners). It can

also be considered as a 3-ball with corners and a contact structure specified near the

boundary. The “corners” ∂D × {0, 1} can be made Legendrian, and the two surfaces

intersecting along these corners have interleaving dividing sets as required. Hence we

may round the corners and obtain a 3-ball B, with dividing set still denoted Γ in

abusive notation. If Γ on this rounded ball is connected, then we can take the unique

tight contact structure (up to isotopy rel boundary) on B with boundary dividing set

Γ. If Γ is disconnected, then any contact structure on the ball with this boundary
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Γ1

Γ0

Figure 4.11: M(Γ0, Γ1).

dividing set is overtwisted. Such contact structures can be considered equally as

structures on a rounded ball, or the cylinder D × I.

The manifold so obtained from Γ0, Γ1 is really a sutured manifold, but we can call

it “tight” or “overtwisted”.

Definition 4.2.1 (M(Γ0, Γ1)) Given two chord diagrams Γ0, Γ1 with n chords, the

sutured manifold M(Γ0, Γ1) is D × I with sutures

(Γ0 × {0}) ∪
((⋃

{qi}
)
× I
)

∪ (Γ1 × {1}) .

See figure 4.11.

Definition 4.2.2 (Tight/overtwisted M(Γ0, Γ1)) We say M(Γ0, Γ1) is tight if

it admits a tight contact structure, i.e. if after rounding corners, the sutures of

M(Γ0, Γ1) are connected. Otherwise we say M(Γ0, Γ1) is overtwisted.

Definition 4.2.3 (Stackable) We say that a chord diagram Γ1 is stackable on an-

other chord diagram Γ0 if M(Γ0, Γ1) is tight.

We can now define a map m from the TQFT-property of SFH . Suppose we take

the boundary of M(Γ0, Γ1), which after rounding we consider an S2, and remove a

small neighbourhood of a point on one of the vertical curves running between Γ0 and

Γ1, to obtain a (large) disc with sutures / dividing set. Then, taking a product of

this disc with S1, with S1-invariant contact structure from the dividing sets, we can

regard this construction as arising from an inclusion of two solid tori (each with 2n
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longitudinal boundary sutures) into a single solid torus (with 2 longitudinal boundary

sutures), i.e.

(T, n) ∪ (T, n) →֒ (T, 1),

and with a specified contact structure on the intermediate (pants)×S1. Hence there

is a map

m : SFH(T, n) ⊗ SFH(T, n) −→ SFH(T, 1) = Z2.

(Note that on our ∂B3 = S2, the two discs with chord diagrams Γ0, Γ1 are oriented;

one agrees with the orientation of S2, the other does not. Thus, one of the SFH(T, n)

factors above should have reversed orientation. This is in addition to the orientation

issues discussed in section 1.2.1! Nonetheless, by precomposing by the a linear map

on the orientation-reversed SFH(T, n) factor, such a map m still exists.)

Two chord diagrams Γ0, Γ1 give contact elements in SFH(T, n) and hence give

a contact element in SFH(T, 1). This is an overtwisted contact structure, in the

case that M(Γ0, Γ1) has disconnected sutures, and hence gives contact element 0.

Otherwise, it is the unique tight contact structure on (T, 1), in the case that M(Γ0, Γ1)

has connected sutures, i.e. is tight, and then gives the contact element 1. Clearly

this restricts to maps on various summands SFH(T, n, e).

That is, m(Γ0, Γ1) ∈ Z2 is 0 or 1, respectively as M(Γ0, Γ1) is overtwisted or

tight. In fact, the map m could also be defined purely combinatorially with this as

the definition, using the combinatorial version of SFH . We have therefore proved

proposition 1.3.1:

Proposition (Stackability map) There is a linear map

m : SFH(T, n) ⊗ SFH(T, n) −→ Z2

which takes pairs of contact elements, corresponding to pairs of chord diagrams Γ0,

Γ1, to 0 or 1 respectively as M(Γ0, Γ1) is overtwisted or tight. �

Obviously m also restricts to summands to give maps

m : SFH(T, n, e1) ⊗ SFH(T, n, e2) −→ Z2.
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This function is easily calculated, simply by rounding the dividing set on M and

counting components. We next give some properties of m.

4.2.2 First properties of M and m

Lemma 4.2.4 (M(Γ, Γ) tight; m “positive definite”) For any chord diagram

Γ, M(Γ, Γ) is tight. That is, m(Γ, Γ) = 1.

We give two proofs.

Proof (# 1) Since a chord diagram has no closed curves, there is a tight I-invariant

contact structure on D2 × I with convex boundary and dividing set identical to the

sutures of M(Γ, Γ). �

We can alternatively prove the result by looking at the sutures on M(Γ, Γ) in

more detail, and showing explicitly that after rounding, they are connected. This

proof may be less elegant, but it is similar in spirit to some subsequent proofs (e.g.

section 5.3.3 proving proposition 1.3.3), and leads to a useful lemma.

Proof (# 2) Proof by induction on |Γ|, the number of chords in the chord diagram.

For |Γ| = 1, there is only one chord diagram possible on the disc; and the dividing

set on ∂M(Γ, Γ), after rounding corners, is obviously connected.

Now consider a general Γ. Let γ be an outermost chord of Γ. Thus we may

consider Γ − γ to be a chord diagram with |Γ| − 1 components. We reduce the case

of M(Γ, Γ) to the case of M(Γ − γ, Γ − γ), proving the result by induction.

Note that γ × {1} has two endpoints; and after rounding corners, one of these is

connected to an endpoint of γ × {0}. Thus on the rounded ball we have a connected

arc c, part of the dividing set, of the form c = c1 ∪ (γ × {1}) ∪ c2 ∪ (γ × {0}) ∪ c3,

where the ci are (rounded versions of) arcs qi × [0, 1] of M(Γ, Γ). But now folding

corners in a slightly different way, we can perform a “finger move” on the dividing

set and see that this is equivalent to the dividing set of M(Γ − γ, Γ − γ); where all

of c becomes one of the qi × [0, 1] arcs. See figure 4.12. �

The argument of this proof is useful in its own right, so we record it.
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Figure 4.12: M(Γ, Γ) with some edge-rounding.

Lemma 4.2.5 (Cancelling outermost chords) Suppose each of Γ0 and Γ1 has an

outermost chord γ0, γ1 in the same position. Then

M(Γ0, Γ1) is tight iff M(Γ0 − γ0, Γ1 − γ1) is tight.

That is, m(Γ0, Γ1) = m(Γ0 − γ0, Γ1 − γ1). �

We prove now that m is trivial when Γ0, Γ1 have distinct euler classes. We can

therefore say that the splitting

SFH(T, n) =
⊕

e

SFH(T, n, e)

is orthogonal with respect to the bilinear form m. This is proposition 1.3.2:

Proposition (Relative euler class orthogonality) Let Γ0 and Γ1 be chord dia-

grams with n chords. If Γ0, Γ1 have distinct relative euler class then m(Γ0, Γ1) = 0.

Proof Suppose m(Γ0, Γ1) = 1, i.e. M(Γ0, Γ1) is tight, and after rounding corners,

the suture on the boundary S2 of the rounded cobordism has a single component.

This dividing set cuts S2 into two discs D+ and D−, one positive and one negative.

The orientation of S2 as the boundary of M(Γ, Γ) agrees with the orientation on Γ1

and disagrees with the orientation on Γ0.

We can take a polygonal decomposition of S2 where each face lies in D+ or D−; we

can take one with 4n vertices (coming from each of the intersection points of Γi with

∂D), with 8n edges (n from Γ0, n from Γ1, 2n from ∂D×{0}, 2n from ∂D×{1}, and

2n from ∂D×I), and with 4n+2 faces (n+1 from D×{0}, n+1 from D×{1}, and 2n
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from ∂D × I). This polygonal decomposition restricts to a polygonal decomposition

of D+ and D−, with precisely the same vertices, and the same number of edges. The

decompositions of D+, D− both have 4n vertices and 6n edges (n from Γ0, n from Γ1,

n from ∂D×{0}, n from ∂D×{1}, and 2n from ∂D× (0, 1)). Let fi,± be the number

of positive or negative faces in Γi. Then

0 = χ(D+) − χ(D−) = f1,+ + f0,− − f1,− − f0,+ = e(Γ1) − e(Γ0)

as required. �

In fact, the argument of the above proof shows that, restricting to summands, m

becomes

m : SFH(T, n, e1) ⊗ SFH(T, n, e2) −→ SFH(T, 1, e1 − e2)

and SFH(T, 1, e1 − e2) is nontrivial only when e1 = e2.

We now see m is bilinear, satisfies the “positive definite” condition m(Γ, Γ) = 1,

and satisfies a natural orthogonality relation. In this way it behaves something like a

metric. However, m is not symmetric; nor is m antisymmetric; and in fact, for a pair

of chord diagrams (Γ0, Γ1), even with the same euler class, any one of the pairs

(m(Γ0, Γ1), m(Γ1, Γ0)) = (0, 0), (0, 1), (1, 1)

is possible. The pair (1, 1) is possible even when Γ0 6= Γ1.

For example, taking the three pairs shown in figure 4.13 for (Γ0, Γ1) give these

three pairs for (m(Γ0, Γ1), m(Γ1, Γ0)).

4.2.3 Bypass cobordisms and bypass triples

We now consider bypasses, as in section 4.1, in the context of cobordisms M(Γ0, Γ1).

The simplest nontrivial contact cobordism is a bypass cobordism obtained by tak-

ing a disc D, with dividing set Γ, and attaching a bypass along an arc c. We have

seen (lemma 4.1.1) that every tight contact cobordism M(Γ0, Γ1) can be decomposed
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Figure 4.13: Pairs (Γ0, Γ1) giving various values for (m(Γ0, Γ1), m(Γ1, Γ0)).

into bypass cobordisms.

As long as we attach the bypass along a nontrivial attaching arc c (i.e. c intersects

three different components of Γ), there can be no pinwheel, and hence we obtain a

tight contact structure on D × I, where there is dividing set Γ on D × {0}, Upc(Γ)

on D × {1}, and vertical dividing curves on ∂D × I. That is, M(Γ, Upc(Γ)) is tight.

More generally, as we have seen (definition 1.1.7), bypass-related chord diagrams

naturally come in triples Γ, Upc(Γ) and Downc(Γ). Their tightness or overtwistedness

is given by the following lemma.

Lemma 4.2.6 Let c be a nontrivial arc of attachment on a chord diagram Γ. Then

(i) all of M(Γ, Upc(Γ)), M(Upc(Γ), Downc(Γ)) and M(Downc(Γ), Γ) are tight,

with tight contact structure given by a single bypass attachment,

m(Γ, Upc(Γ)) = m(Upc(Γ), Downc(Γ)) = m(Downc(Γ), Γ) = 1;

(ii) all of M(Γ, Downc(Γ)), M(Downc(Γ), Upc(Γ)), M(Upc(Γ), Γ) are overtwisted,

m(Γ, Downc(Γ)) = m(Downc(Γ), Upc(Γ)) = m(Upc(Γ), Γ) = 0.
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Proof We just saw that M(Γ, Upc(Γ)) is tight with contact structure given by

a single bypass attachment. Recalling figure 1.5 and the symmetry between the

chord diagrams of a bypass triple, part (i) follows; and part (ii) follows from showing

M(Γ, Downc(Γ)) is overtwisted.

If Γ has only 3 chords, then there is only one possible arrangement (up to rotation

of the cylinder) for M(Γ, Downc(Γ)); the result is then true by inspection. If there

are more than three chords, then we see that there must be some outermost chord γ

which is disjoint from c; hence it appears in all of Γ, Upc(Γ) and Downc(Γ). Applying

lemma 4.2.5, our manifold is tight if and only if the same is true for Γ−γ, Upc(Γ)−γ

and Downc(Γ) − γ. Repeatedly applying lemma 4.2.5 we reduce to the case of 3

chords. �

This lemma has a more purely contact interpretation. Recall that M(Γ, Γ) is a

tight contact 3-ball.

Lemma 4.2.7 Every nontrivial arc of attachment c on Γ×{0} or Γ×{1} in M(Γ, Γ)

is outer. �

The notion of an outer attaching arc on a ball was defined in section 4.1.3.

A weaker statement can be proved purely algebraically: if Γ0, Γ1 are bypass-related

then precisely one of M(Γ0, Γ1), M(Γ1, Γ0) is tight. This statement is equivalent to

m(Γ0, Γ1) + m(Γ1, Γ0) = 1.

For the third bypass in their triple is Γ0 + Γ1, and from lemma 4.2.4 we have

m(Γ0, Γ0) = m(Γ1, Γ1) = m(Γ0 + Γ1, Γ0 + Γ1) = 1. So

1 = m(Γ0 + Γ1, Γ0 + Γ1)

= m(Γ0, Γ0) + m(Γ0, Γ1) + m(Γ1, Γ0) + m(Γ1, Γ1)

= m(Γ0, Γ1) + m(Γ1, Γ0).
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4.2.4 What bypasses and chord diagrams exist in a cobor-

dism?

Putting together the above considerations, it is now straightforward to describe what

bypasses and chord diagrams exist in a cobordism, in an algorithmic way.

For a tight M(Γ0, Γ1), which is a 3-ball, as discussed in section 4.1.3 above, for

any arc of attachment c, there exists a bypass inside M(Γ0, Γ1) along c if and only if

c is inner. Equivalently, for c on D × {0}, a bypass exists inside M(Γ0, Γ1) along c if

and only if

m(Upc(Γ0), Γ1) = 1.

We also know from lemma 4.1.1 above that any cobordism is constructed from

bypass attachments. Thus, we can determine what chord diagrams “exist inside a

cobordism”. By this, precisely, we mean the following:

Definition 4.2.8 (Existence of chord diagram in cobordism) Let Γ be a chord

diagram and M(Γ0, Γ1) a tight cobordism, where Γ0, Γ1 contain n chords. The chord

diagram Γ is said to exist or occur in M(Γ0, Γ1) if there exists an embedded convex

surface D′ ⊂ M(Γ0, Γ1) = D × I such that:

(i) the boundary ∂D′ lies on ∂D × I and intersects the dividing set of ∂M(Γ0, Γ1)

in precisely 2n points (i.e. as efficiently as possible), and hence inherits a base

point from Γ0 (or Γ1);

(ii) with the base point so inherited, D′ has dividing set Γ.

Thus, a chord diagram Γ exists in M(Γ0, Γ1) if and only if there is a sequence of

inner bypasses which we successively “dig out”, until we find Γ as a boundary of a

smaller “excavated” manifold.

Lemma 4.2.9 (Criterion for existence of Γ in a cobordism) A chord diagram

Γ exists in M(Γ0, Γ1) if and only if there exists a sequence of chord diagrams

Γ0 = G0, G1, . . . , Gk = Γ

and attaching arcs c0, . . . , ck−1, with ci on Gi, such that:
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(i) for i = 0, . . . , k − 1, we have Gi+1 = Upci
Gi.

(ii) ci is inner on M(Gi, Γ1), or equivalently, m(Gi+1, Γ1) = 1. �

There is of course a similar result “excavating” from Γ1 rather than Γ0.

Asking the question for the cobordism M(Γ, Γ), recall that by lemma 4.2.7 all

arcs of attachment are outer. Hence there are no inner arcs of attachment; hence no

bypasses inside; and by the above result, no other chord diagrams existing inside.

Lemma 4.2.10 The only chord diagram existing in M(Γ, Γ), with the unique tight

contact structure, is Γ. �

This lemma actually permits us to prove a classification result for tight contact

structures on solid tori with longitudinal bypasses. We cited this without proof in

section 2.1.3 above, but our methods now permit us to prove it directly (in the spirit

of [25]). Although it is a detour, it illustrates the use of these methods.

Proposition 4.2.11 Tight contact structures up to isotopy on the solid torus D2×S1

with boundary dividing set F × S1, F ⊂ ∂D2 a finite set, |F | = 2n, are in bijective

correspondence with chord diagrams of n chords.

Proof First suppose we have a tight contact structure on this solid torus. Take

a convex meridional disc D intersecting the boundary dividing set in precisely 2n

points; its dividing set is some chord diagram Γ of n chords. Cutting along D gives

M(Γ, Γ) with a tight contact structure, hence isotopic to a standard neighbourhood

of the convex disc D.

If we take any other convex meridional disc D′ intersecting the boundary dividing

set in 2n points, then after taking (if necessary) a finite cover of the solid torus,

we may consider D′ disjoint from D. Cutting along D we still obtain a (thicker!)

M(Γ, Γ) with tight contact structure, a (thicker!) standard convex neighbourhood

of D. Hence the chord diagram on D′ exists in M(Γ, Γ), and by the above result is

Γ. So there is a well-defined map from isotopy classes of tight contact structures to

chord diagrams.
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Conversely, given a chord diagram Γ, we take the tight contact cobordism M(Γ, Γ)

and glue the ends together. This gives an S1-invariant contact structure on the solid

torus D × S1, with desired boundary dividing set, and a convex meridional disc with

dividing set Γ. To see that it is tight, suppose that there were an overtwisted disc D′.

After taking a finite cover if necessary, we may assume D′ disjoint from D. Then,

cutting along D, we have an overtwisted disc in the tight (invariant D × I) M(Γ, Γ),

a contradiction. �

4.2.5 Elementary cobordisms and generalised bypass triples

Another simple type of cobordism is one obtained by attaching bypasses; not just one

bypass, but along a bypass system.

Definition 4.2.12 (Elementary cobordism) A tight cobordism M(Γ0, Γ1) such

that the tight contact structure can be constructed by attaching bypasses above D×{0}

along a bypass system c on Γ0 is called an elementary cobordism.

Obviously a bypass cobordism is a elementary cobordism; every tight cobordism can

be decomposed into elementary cobordisms.

We can think of the multiple bypasses in an elementary cobordism as a “gener-

alised bypass”. However, unlike single bypass attachments, the result of attaching

the bypasses need not be tight; and the result of attaching bypasses even along a

bypass system containing only nontrivial attaching arcs may contain closed curves.

The tightness of elementary cobordisms, and the existence of closed curves, is de-

termined by the existence or non-existence of pinwheels, by section 4.1.5 above. In

following chapters, we will find a large class of elementary cobordisms which contain

no pinwheels, so that the bypass attachments lead to tight contact structures.

In any case, an elementary cobordism M(Γ0, Γ1) with bypass system c0 on Γ0

naturally gives rise to a triple of diagrams

Γ0, Γ1 = Upc(Γ), Γ−1 = Downc(Γ)
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which we can think of as a “generalised bypass triple”. Here we have extended

the notation Upc and Downc to bypass systems in the obvious way. In view of

figure 1.5 and the symmetry of bypass moves, which can be regarded as “local 60◦

rotations”, we note that there is also a corresponding bypass system c1 on Γ1 on

which upwards and downwards bypass moves give Γ−1, Γ0 respectively; and similarly

there is a corresponding bypass system on Γ−1. However, Γ−1 need not be a chord

diagram: for instance, a trivial attaching arc in c may lead to a closed loop in Γ−1.

A generalised bypass triple will not usually sum to zero; the relationship is more

complicated, and we will investigate some aspects of this relationship in detail in the

following. For now, we note that if we expand, say, every downwards bypass move as

a sum of the null and upwards bypass moves, we obtain a sum with 2k terms, where

c contains k arcs; that is, a sum over all subsets of c, including the empty and full

subsets.

Lemma 4.2.13 (Expanding down over up) For any bypass system c on Γ,

Downc(Γ) =
∑

c′⊆c

Upc′(Γ).

Similarly,

Upc(Γ) =
∑

c′⊆c

Downc′(Γ).

�

We might ask whether every tight cobordism M(Γ0, Γ1) is elementary. However,

any such optimism is crushed by the following example.

Lemma 4.2.14 (Not every cobordism is elementary) With Γ0, Γ1 as shown in

figure 4.14, the cobordism M(Γ0, Γ1) is tight but not elementary.

Proof It’s easy to verify, rounding corners, that M(Γ0, Γ1) is tight. Suppose the

cobordism were elementary, so that Γ1 = Upc Γ0 for some bypass system c on Γ0. On

Γ0 there are only three nontrivial attaching arcs, namely α, β, γ as shown in figure

4.14. It’s easy to verify that M(Upα Γ0, Γ1) and M(Upγ Γ0, Γ1) are both overtwisted,

while M(Upβ Γ0, Γ1) is tight. Hence c can only consist of copies of β and trivial

attaching arcs; hence Upc Γ0 = Upβ Γ0. However Upβ Γ0 6= Γ1. �
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β

γ

α

Γ0 Γ1

Figure 4.14: Non-elementary cobordism.

4.2.6 The contact category

Category-theoretic notions have been introduced into contact geometry by Honda

[21]. Given a surface Σ and a finite set of points F on ∂Σ, there is a contact category

C(Σ, F ).

Definition 4.2.15 (Contact category) The category C(Σ, F ) is defined as follows.

• The objects are isotopy classes of tight dividing sets Γ on Σ with ∂Γ = F .

• The morphisms Γ0 −→ Γ1 are:

(i) isotopy classes of tight contact structures on Σ× I, with boundary dividing

set Γ0 on Σ × {0}, Γ1 on Σ × {1}, and a vertical dividing set on ∂Σ × I;

and

(ii) a single morphism, denoted ∗, referring to overtwisted structures on Σ× I

with the same boundary conditions. (We think of this as the zero mor-

phism.)

• Composition of morphisms is given by gluing cobordisms.

Honda has showed that this category obeys many of the properties of a triangu-

lated category. (For a general reference on triangulated categories, see e.g. [14].) In

particular, there are distinguished triangles, arising from bypass additions, and these

obey an octahedral axiom [21]. The TQFT-properties of SFH imply that it also

behaves functorially with respect to SFH .
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In our case Σ = D2, F contains 2n points; we can denote this category by C(D2, n).

Our work already can computed C(D2, n) algorithmically from chord diagrams. The

objects are chord diagrams of n chords, and the morphisms Γ0 −→ Γ1 are contact

structures on M(Γ0, Γ1). If m(Γ0, Γ1) = 0 then there is only the overtwisted morphism

∗ : Γ0 −→ Γ1. If m(Γ0, Γ1) = 1 then there is precisely one other morphism, the

unique (up to isotopy) tight contact structure on M(Γ0, Γ1). Composition of two

morphisms Γ0 −→ Γ1 −→ Γ2 is ∗ if either of the two composed morphisms are.

If both composed morphisms are tight, then the composition is the tight contact

structure if m(Γ0, Γ2) = 1 and Γ1 exists in M(Γ0, Γ2); otherwise it is the overtwisted

morphism.

By relative euler class orthogonality (proposition 1.3.2), a nontrivial morphism

Γ0 −→ Γ1 exists only when Γ0, Γ1 have the same relative euler class e. Hence we

define C(D2, n, e) to be the full subcategory of C(D2, n) on those objects which are

chord diagrams of relative euler class e.

4.2.7 The bounded contact category

A natural way to restrict the contact category is to consider only those objects which

can be embedded in a given tight cobordism. This leads us to the following notion of

bounded contact category, tenuously analogous to the concept of a bounded category.

We start from a given tight cobordism Γ0
ξ
→ Γ1. We would like to consider a category

where

• the objects are those dividing sets which occur in the given cobordism (see

definition 4.2.8); and

• the morphisms are those “cobordisms which exist” in the given cobordism.

Note that with this definition, there are no overtwisted morphisms.

The morphisms are defined precisely as follows. This sounds rather technical

but the intuitive meaning is clear: a contact cobordism which embeds in another,

compatible with the notions of “up” and “down” in the cobordism.
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Definition 4.2.16 (Existence of cobordism inside cobordism) Let M(Γ0, Γ1)

be a cobordism with a contact structure ξ. We say that the cobordism M(Γ, Γ′) with

contact structure ξ′ exists or occurs in M(Γ0, Γ1) if:

• Γ, Γ′ both exist in M(Γ0, Γ1);

• Γ, Γ′ can be taken to lie on discs D, D′ in M(Γ0, Γ1) such that D, D′ are disjoint

and D is below D′ (i.e. cutting along D gives two sutured cylinders M(Γ0, Γ)

and M(Γ, Γ1), and the disc D′ lies in M(Γ, Γ1)); hence M(Γ, Γ′) embeds in

M(Γ0, Γ1) in a way compatible with dividing sets of ξ; and

• the restriction of ξ to this embedded M(Γ, Γ′) is isotopic to ξ′.

Note that if ξ is the unique tight contact structure on M(Γ0, Γ1), then ξ′ must also

be tight, and hence the unique tight contact structure on M(Γ, Γ′). We therefore

may just say that M(Γ, Γ′) occurs in the tight M(Γ0, Γ1).

It might seem at first glance that this clearly forms a category, but there is an

issue with compositions of morphisms. Suppose we have two morphisms Γ → Γ′

and Γ′ → Γ′′, so that there are cobordisms M(Γ, Γ′) and M(Γ′, Γ′′) occurring inside

M(Γ0, Γ1) (with contact structures agreeing up to isotopy). In both of these sub-

cobordisms, there are discs D1, D2 with dividing set Γ′, but there is no reason why

we should be able to glue them together inside M(Γ0, Γ1).

However, we can avoid this problem — indeed avoid geometry altogether — and

use the notion of “gluing cobordisms” in the following lemma.

Lemma 4.2.17 (“Gluing cobordisms”) Suppose that there are two cobordisms

M(Γ, Γ′) and M(Γ′, Γ′′)

which occur in the tight cobordism M(Γ0, Γ1). Then a tight cobordism M(Γ, Γ′′) also

occurs in M(Γ0, Γ1); and in turn the chord diagram Γ′ occurs in this M(Γ, Γ′′).

Proof This is virtually immediate from the criterion (lemma 4.2.9) for the existence

of chord diagrams in a cobordism. Above our first cobordism M(Γ, Γ′) occurring in

M(Γ0, Γ1) we have a cobordism M(Γ′, Γ1). But the fact that the cobordism M(Γ′, Γ′′)
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exists in M(Γ0, Γ1) means that Γ′′ exists in any tight cobordism M(Γ′, Γ1). Hence

above our first cobordism M(Γ, Γ′) is a cobordism M(Γ′, Γ′′); putting these together

yields a cobordism M(Γ, Γ′′) occurring in M(Γ0, Γ1), and containing a disc with

dividing set being chord diagram Γ′. �

This lemma says that a composition Γ −→ Γ′ −→ Γ′′ is always uniquely defined and

always tight. We can therefore make the following definition.

Definition 4.2.18 (Bounded contact category) Let M(Γ0, Γ1) be a tight cobor-

dism. The bounded contact category Cb(Γ0, Γ1) is defined as follows.

• The objects are the chord diagrams Γ which exist in the tight M(Γ0, Γ1). (See

definition 4.2.8.)

• There is one morphism Γ −→ Γ′ whenever the tight cobordism M(Γ, Γ′) exists

in the tight M(Γ0, Γ1). (See definition 4.2.16.)

• Composition of morphisms is given by gluing cobordisms as in lemma 4.2.17:

Γ −→ Γ′ −→ Γ′′ composes to the unique Γ −→ Γ′′.

Thus, between any two objects the number of morphisms will be either zero or one.

Note that we have eschewed geometry from this definition; perhaps there is a more

geometric definition. But lemma 4.2.17 shows that the composition Γ → Γ′ → Γ′′

gives a morphism Γ −→ Γ′′, which contains Γ′, and which has contact structure the

union of the two original morphisms; so it is a natural contact-geometric form of

composition.

Lemma 4.2.19 For any tight M(Γ0, Γ1), C
b(Γ0, Γ1) is a category. �

Clearly the notion of “bounding” cobordisms in this way can be nested. So, if the

tight M(Γ, Γ′) exists in the tight M(Γ0, Γ1), then we get a covariant fully faithful

functor

Cb(Γ, Γ′) −→ Cb(Γ0, Γ1),

injective on objects and morphisms. In particular, Cb(Γ, Γ′) is isomorphic to the full

sub-category on the image of its objects in Cb(Γ0, Γ1).
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4.2.8 The bounded contact category is partially ordered

We now show that the bounded contact category of a tight contact cobordism has

the structure of a partial order.

We begin by noting that a partially ordered set can be considered as a category:

the objects are the elements of the set, and for each pair (x, y) of elements, there is one

morphism x → y between them if they are related by the partial order, x � y, and no

morphisms between them otherwise. It’s clear that the axioms of a partial ordering

imply that the axioms of a category are satisfied. We can call this the category of a

partially ordered set.

On the other hand, we may ask when a given category arises from a partial

ordering. Considering the axioms of a partial ordering, and the construction of the

previous paragraph, the following lemma is clear.

Lemma 4.2.20 (When a category is a partial order) Let C be a category. Sup-

pose that C satisfies the following conditions.

(i) For every pair A, B of objects of C, there is at most one morphism A → B.

(ii) If there are morphisms A → B and B → A, then A = B.

Define the relation on objects of C: A � B if and only if there is a morphism A → B.

Then � is a partial order on Ob (C), and C is the category of this partially ordered

set. �

Having made this observation, we have proposition 1.3.5:

Proposition The bounded contact category Cb(Γ0, Γ1) is partially ordered.

Proof We only need to verify the conditions of lemma 4.2.20 above. The first is

true by definition.

For the second, suppose we have two objects Γ, Γ′ of Cb(Γ0, Γ1) and morphisms

Γ → Γ′ → Γ. After composing, we obtain a sub-cobordism M(Γ, Γ) of M(Γ0, Γ1)

with the inherited tight contact structure, in which the chord diagram Γ′ exists. But

this contradicts lemma 4.2.10 above, unless Γ = Γ′. �
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As a result, we may write � for the partial order on Cb(Γ0, Γ1). Note that for any

Γ � Γ′ in this partial order, we must have m(Γ, Γ′) = 1. As for the converse, we do

not know: if Γ, Γ′ are objects in Cb(Γ0, Γ1) and m(Γ, Γ′) = 1, is Γ � Γ′?

We actually have a little more than a mere partial ordering on Cb(Γ0, Γ1). This or-

dering has a unique minimal element Γ0, and a unique maximal element Γ1. Category-

theoretically, Cb(Γ0, Γ1) has an initial object Γ0 and a final object Γ1.

We may think of M(Γ0, Γ1), with its unique tight contact structure, as a “geo-

metric realisation” — in a moral sense, not the technical sense — of the bounded

contact category Cb(Γ0, Γ1). Slicing this cylinder (generically, i.e. along convex sur-

faces) geometrically realises the objects; and the pieces into which the cobordism is

cut by these slices realise the morphisms.

4.2.9 Functorial properties of elementary cobordisms

Elementary cobordisms, being obtained simply by attaching bypasses along a bypass

system, possess various nice categorical properties.

Let M(Γ0, Γ1) be a tight elementary cobordism obtained by attaching bypasses to

the convex disc D×{0}, with dividing set Γ0, along the bypass system c = {c1, . . . , ck}.

Let P(c) denote the power set of c, i.e. the set of all subsets of c. Clearly P(c) is

partially ordered under inclusion, and hence can be considered as a category. Note

that attaching bypasses along any subset c′ of c gives an object Upc′(Γ0) of Cb(Γ0, Γ1),

and a morphism from the initial object Γ0 → Upc′(Γ0) arising from the sub-cobordism

M(Γ0, Upc′(Γ0)) of M(Γ0, Γ1).

Moreover, if we have two subsets c′ ⊂ c′′ of c, then the convex surface arising from

attaching bypasses along c′ can be taken to lie entirely below the surface arising from

attaching bypasses along c′′. Thus the two objects Upc′(Γ0), Upc′′(Γ0) are related by

a morphism, or by the partial order. Phrasing this in fancier language, and applying

the same reasoning to downwards bypasses from Γ1, gives the following result.

Lemma 4.2.21 (Up and down functors) Let M(Γ0, Γ1) be tight and elementary,

arising from attaching bypasses above Γ0 along a bypass system c. Let P(c) denote
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the power set of c, considered as a category. Then there is a covariant functor

Upc : P(c) −→ Cb(Γ0, Γ1)

c′ 7→ Upc′(Γ0)

(c′ ⊆ c′′) 7→ (Upc′(Γ0) → Upc′′(Γ0)) .

Similarly, the tight elementary M(Γ0, Γ1) can be considered to arise from bypass at-

tachments below Γ1 along a bypass system d, and there is a contravariant functor

Downd : P(d) −→ Cb(Γ0, Γ1)

d′ 7→ Downd′(Γ1)

(d′ ⊆ d′′) 7→ (Downd′′(Γ1) → Downd′(Γ1)) .

�

Note the functors are well-defined on morphisms since, in all the categories con-

cerned, there is at most one morphism between any two objects. Also note the

assumption of tightness implies that c contains no upwards pinwheels and d contains

no downwards pinwheels.

This functor need not be injective or surjective on objects, and usually is neither.

For the functor to be non-injective indicates that some arc of attachment of c is trivial,

or becomes trivial after bypass attachments along other arcs. For the functor to be

non-surjective indicates that not every dividing set existing in M(Γ0, Γ1) arises from

bypass attachments along the given arcs.

4.2.10 Other categorical structures

Suppose we have a generalised bypass triple Γ, Γ′ = Upc Γ, Γ′′ = Downc Γ, where c is a

bypass system without any pinwheels (upwards or downwards). We have correspond-

ing bypass systems on c′, c′′ on Γ′, Γ′′ and successive upwards bypass attachments give
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a triangle of morphisms in C(D, n).

Γ

""DD
DD

DD
DD

D

Downc(Γ)

::uuuuuuuuuu

Upc Γoo

The composition of any two morphisms in this triangle is an overtwisted contact

structure, in fact containing an overtwisted disc along every attaching arc of the

intermediate dividing set, since each bypass is half an overtwisted disc.

We might think of such a “generalised bypass triple” as a “distinguished triangle”

or “exact triangle”. Honda notes that bypass triples can be considered analogous to

the distinguished triangles of a triangulated category. One of the ways in which the

category fails to be triangulated is that not every morphism extends to a distinguished

triangle. The axioms of a triangulated category require that every morphism extends

to a distinguished triangle — the third element in the triangle being the cone of the

morphism.

With our generalised notion of distinguished triangle, every elementary cobordism

arising from a bypass system without (up or down) pinwheels includes into a distin-

guished triangle; however the cone depends on the choice of bypass system, which is

unsatisfactory. (We will see in chapter 6 and discuss in section 7.2.3 certain somewhat

“canonical” bypass systems, but these only exist for basis chord diagrams.) Elemen-

tary cobordisms form a much larger class than bypass cobordisms, but by lemma

4.2.14 not all the tight cobordisms. In any case we may consider Downc(Γ) to be “a

cone” of the morphism Γ −→ Upc(Γ): “The cone of Upc is Downc”.

We might also think of “Down as the kernel/cokernel of Up”. The existence

of kernels or cokernels would make a contact category something like an abelian

category. One natural notion of the kernel of a cobordism M(Γ0, Γ1) might be a

“minimal” cobordism M(ΓK , Γ0) such that gluing the tight M(ΓK , Γ0) to the tight

M(Γ0, Γ1) gives an overtwisted contact structure; and a cokernel might be the cor-

responding object glued at the other end of M(Γ0, Γ1). However, this notion has

several problems. For instance, there may be many bypasses which exist upwards
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within M(Γ0, Γ1) along various attaching arcs ci on Γ0. For each ci, there is a tight

cobordism M(Downci
Γ0, Γ0) such that the composition Downci

Γ0 −→ Γ0 −→ Γ1 is

zero; these are all “minimal” in the sense that they are bypass cobordisms. And the

set of such ci need not be disjoint: there may be bypass attachments along attach-

ing arcs which intersect. The notion of a kernel is therefore problematic; we remain

discontented.



Chapter 5

The basis of contact elements

We now examine basis chord diagrams in detail. We first consider (section 5.1) how to

construct them, and (section 5.2) how to decompose in terms of them. Then (section

5.3) we consider the partial order � and its relation to stackability of basis chord

diagrams.

5.1 Construction of basis elements

5.1.1 An example

Consider the basis element v−+−++. Suppose we want to draw the corresponding

chord diagram.

One way to proceed is to note that by definition v−+−++ = B−(v+−++). Hence

there is an outermost chord which encloses a negative region and which lies imme-

diately to the “left” of the base point; one of its endpoints is the base point. If we

were to consider removing this outermost chord, including its endpoints (including

the base point), and placing a new “temporary” base point to its “left” (i.e. “jumping

over” the location of the previous outermost chord), we should then have v+−++. But

v+−++ = B+(v−++), hence v+−++ has an outermost chord at the base point enclosing

a positive region; this also tells us the location of a chord on v−+−++.

We can then repeat. Since v−++ = B−(v++), there must be an outermost chord at

95
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the “temporary” base point in this new chord diagram, enclosing a negative region;

and hence we may locate a chord on v−+−++. Similarly, we can locate the remaining

chords, until we reduce to the vacuum diagram v∅. See figure 5.1.

5.1.2 The base point construction algorithm

The above can be formalised into an algorithm to construct the chord diagram of a

basis element vw. The algorithm starts from the base point; hence the name.

Algorithm 5.1.1 (Base point construction algorithm) Let w be a word in the

symbols + and − of length n. Consider a disc with 2n + 2 points marked on the

boundary, and one of those marked points called the base point. Proceed through the

word from left to right, and at each stage draw a chord and move to a new, temporary

base point as follows. Once there is a chord ending at a marked point, that marked

point is called used.

(i) If the symbol is −, draw a chord from the current temporary base point to the

next unused marked point anticlockwise (“left” in the diagram) from it. After

drawing this chord, move the temporary base point to the next unused marked

point in the anticlockwise direction (“left” in the diagram). (I.e., immediately

anticlockwise of the new chord.)

(ii) If the symbol is +, draw a chord from the current temporary base point to the

next unused marked point clockwise (“right”) from it. After drawing this chord,

move the temporary base point to the next unused marked point in the clockwise

direction. (I.e., immediately clockwise of the new chord.)

This constructs n chords connecting 2n marked points. Finally, connect the remaining

two marked points with a chord. The base point returns to its initial position, which

is the “permanent” base point.

The stages in the construction of v−+−++ are depicted in figure 5.1.

The words “left” and “right” to describe directions around a circle may seem

horrendously bad as terminology, only being appropriate near the base point, only
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Figure 5.1: Construction of v−+−++. The temporary base point at each stage is
denoted by a red cross.

when the base point is drawn at the top of the circle as in our diagrams, and eventually

conflicting around the other side of the circle! But we will see there is a reason for it,

and it does make some sense.

That this produces vw may appear rather obvious, but since the details will be

needed later we provide them. In fact, we will need to describe the mechanics of this

algorithm in gruesome detail.

Proposition 5.1.2 (Base point algorithm works) The algorithm 5.1.1 is well-

defined; in particular, at every stage of this algorithm, the chord described can be

made disjoint from all previously drawn chords; and uniquely up to homotopy rel

endpoints within the disc minus the previously drawn chords.

Moreover, it actually produces the chord diagram Γw.

First, a little notation.

Definition 5.1.3 (Labels of marked points) We label the 2n + 2 marked points

with integers modulo 2n + 2. The base point is labelled 0 and the numbering proceeds

clockwise. (So the marked point immediately “right” / clockwise of the base point 0

is the point 1.)

Remark 5.1.4 (Labelling convention) Marked points will always be labelled with

respect to the (permanent) base point. In the various steps of the base point algorithm,

as the “temporary base point” moves, the numbering of marked points does not change.
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Note that with this choice of labelling, a chord connecting two consecutive points

(2j − 1, 2j) encloses a negative region; while an chord connecting two consecutive

points (2j, 2j + 1) encloses a positive region.

Definition 5.1.5 (Discrete interval) A discrete interval of marked points [a, b] on

the circle is a set of marked points of the form {a, a + 1, . . . , b}.

Definition 5.1.6 (Substring) A substring of a word/string w is a set of adjacent

symbols of w.

So, for instance, −+ is a substring of −− + + −− ++ but −−−+ is not.

Definition 5.1.7 (Block) Maximal substrings of identical symbols are called blocks.

Definition 5.1.8 (Leading and following symbols) A symbol in w which is the

first in its block (read left to right) we shall call a leading symbol. Non-leading symbols

are called following.

Now we can describe the mechanics of the algorithm precisely. We can locate how

the temporary base point moves at each step of the algorithm; and where the chord is

drawn at every step. As it turns out, the odd -numbered marked points serve as useful

indicators of where we are up to in the base point algorithm. We consider the base

point construction algorithm for a word w ∈ W (n−, n+), describing a basis element

of SFH(T, n + 1, e), with our usual notation conventions.

Lemma 5.1.9 (Mechanics of base point construction algorithm)

(i) Consider the stage of the base point algorithm which processes the i’th − sign

(1 ≤ i ≤ n−) in w. Let i+ be the number of + symbols processed up to this

point. At this stage:

(a) A chord is drawn with endpoints:

(1 − 2i, 2i+) if the present (i.e. i’th) − sign is leading

(1 − 2i, 2 − 2i) if the present − sign is following
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In particular, the chord has an endpoint at the odd-numbered marked point

1 − 2i.

(b) The temporary base point then moves to the marked point −2i.

(c) The set of used marked points is the discrete interval [1 − 2i, 2i+].

(ii) Consider the stage of the base point algorithm which processes the j’th + sign

(1 ≤ j ≤ n+) in w. Let j− be the number of − signs processed up to this point.

At this stage:

(a) A chord is drawn with endpoints:

(−2j−, 2j − 1)if the present (i.e. j’th) + sign is leading

(2j − 2, 2j − 1)if the present + sign is following

In particular, the chord has an endpoint at the odd-numbered marked point

2j − 1.

(b) The temporary base point then moves to the marked point 2j.

(c) The set of used marked points is the discrete interval [−2j−, 2j − 1].

Proof (of proposition 5.1.2 & lemma 5.1.9) Proof by induction on the num-

ber of symbols processed in w. We consider processing + signs; − signs are obviously

similar. The result is clear as we process the first symbol in w. A leading + sign will

“switch sides” and connect a “negatively labelled”, or “left”, or anticlockwise-of-the-

base point marked point to a “positively labelled”, “right” or clockwise-of-the-base

point marked point. A following + sign will give a chord enclosing a positive outer-

most interval clockwise from the temporary base point.

At each stage before termination, the set of used marked points is then as given by

5.1.9, as is the temporary base point. Hence the next chord can always be drawn, and

uniquely up to homotopy in the disc (minus the previous chords) rel endpoints. At

the final stage before termination, the discrete interval of used marked points consists

of all but two of the marked points; hence the remaining two must be adjacent, and

connecting them is possible (and uniquely up to homotopy in the same way).
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That the algorithm produces vw is easily seen by induction on the length of the

word. For words of length 1 (or even 0) it is clear. Let w = sw′ where s is a symbol

(i.e. + or −) and w′ is a word one symbol shorter than w. Then by induction the

algorithm applied to w′ produces vw′; and it’s also clear that the algorithm for w

produces Bs(vw′) as claimed. �

Lemma 5.1.10 (Existence of root point) The position of the final chord drawn

in the base point construction algorithm only depends on n, e (or equivalently n−, n+)

and the final symbol of w. The final chord encloses an outermost region of sign given

by that final symbol, and has an endpoint at the point numbered

2n+ + 1 = −2n− − 1 = e + n + 1 = e − (n + 1)

with respect to the base point.

Proof After having processed all symbols, from the previous lemma, the used

marked points form the discrete interval

[−2n−, 2n+ − 1] if the final symbol is a + sign

[1 − 2n−, 2n+] if the final symbol is a − sign

Hence if w ends in a +, then the final chord connects the two remaining unused points

(2n+, 2n+ + 1) = (−2n− − 2,−2n− − 1)

and hence encloses an outermost positive region; while if w ends in a −, then the final

chord connects

(2n+ + 1, 2n+ + 2) = (−2n− − 1,−2n−)

and encloses an outermost negative region. �

Definition 5.1.11 (Root point) The marked point numbered

2n+ + 1 = −2n− − 1 = e ± (n + 1)
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with respect to the base point is called the root point.

Remark 5.1.12 (Denoting root point) In our diagrams, the root point will be

denoted by a hollow red dot.

We now see that our terminology of “left” and “right” is not so horrendous after

all. For as we perform the base point algorithm, all chord additions are done so that

the discrete interval of used marked points never crosses the root point; and hence

talking about “left” and “right” of the base point (i.e. anticlockwise and clockwise)

never ceases to make sense. We can then define the terminology properly.

Definition 5.1.13 (Left/west & right/east) The marked points forming the dis-

crete interval [e−n−1, 0] are called the left side or westside of the circle. The marked

points forming the discrete interval [0, e + n + 1] are called the right side or eastside.

Thus, to move left from the base point is to move anticlockwise; but to move left

from the root point is to move clockwise. We can now use this algorithm to number

chords and regions in the chord diagram Γw corresponding to vw.

Definition 5.1.14 (Base-± numbering of chords and regions)

(i) The chord created in the base point construction algorithm by processing the i’th

− sign of w is called the base-i’th − chord. It encloses a − region, which is

also a region of the completed chord diagram Γw, which we call the base-i’th −

region.

(ii) The chord created in the base point construction algorithm by processing the j’th

+ sign of w is called the base-j’th + chord. It encloses a + region, which is

also a region of the completed chord diagram Γw, which we call the base-j’th +

region.

Note that every chord has a base-± numbering, except the final one constructed in

our algorithm, i.e. the chord at the root. And every region has a base-± numbering,

except the two regions adjacent to the root point, of which there is one positive and

one negative.
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This consideration makes it explicit how the relative euler class of the chord dia-

gram Γw is e = n+ − n−; every − sign creates a − region, and every + sign creates a

+ region, in the algorithm; with two regions left at the end, of opposite sign.

5.1.3 The root point construction algorithm

The above algorithm takes a word w and constructs the corresponding chord diagram,

starting from the base point, reading w from left to right. But equally, we can

construct the chord diagram from the root point, reading w from right to left. In

some sense this is more natural, since the word denotes a composition of the creation

operators B±, and compositions of functions are applied from right to left.

The algorithm is basically identical; except that, because we proceed from the

“bottom” of our chord diagram to the “top”, clockwise and anticlockwise are reversed.

However, if we draw our diagrams as we do, with the base point at the top and root

point at the bottom, then “left” and “right” are not reversed.

Algorithm 5.1.15 (Root point construction algorithm) We process a word w

in W (n−, n+), from right to left. Begin with a disc with 2n + 2 marked points on its

boundary, and one of those points called the root point. At each stage draw a chord

and move to a new, temporary root point as follows.

(i) For a − symbol, draw a chord from the current root point to the next unused

marked point clockwise/left from it. After drawing this chord, move the tempo-

rary root point to the next unused marked point in the clockwise/left direction.

(I.e., immediately clockwise of the new chord.)

(ii) For a + symbol, draw a chord from the current base point to the next unused

marked point anticlockwise/right from it. After drawing this chord, move the

base point to the next unused marked point in the anticlockwise/right direction.

(I.e., immediately anticlockwise of the new chord.)

This constructs n chords connecting 2n marked points. Finally, connect the remain-

ing two marked points with a chord. The root point now moves back to its initial,

permanent position.
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We can easily prove that there are similar results to proposition 5.1.2 and lemma

5.1.9 for this algorithm: it works, and actually constructs Γw.

We also have root-numberings of chords and regions, which we will need later, in

analogy to our base-numberings.

Definition 5.1.16 (Root-± numbering of chords and regions)

(i) The chord created in the root point construction algorithm by processing the i’th

− sign of w (from the left) is called the root-i’th − chord. It encloses a −

region, which is also a region of the completed chord diagram Γw, which we call

the root-i’th − region.

(ii) The chord created in the base point construction algorithm by processing the

j’th + sign of w (from the left) is called the root-j’th + chord. It encloses a +

region, which is also a region of the completed chord diagram Γw, which we call

the root-j’th + region.

Note especially that the root point construction algorithm processes w from right

to left : but when we speak of the root-i’th ± region we are reading w from left to

right. This is confusing, but makes subsequent considerations easier.

Also note that every chord has a root-± numbering, except the chord at the base

point. And every region has a root-± numbering, except the two regions adjacent to

the base point, of which there is one positive and one negative.

Thus, every chord has some numbering, whether from the base or the root.

5.2 Decomposition into basis elements

We now examine the decomposition of a chord diagram as a sum of basis chord

diagrams. We give two algorithms which compute this decomposition. (Of course,

they give the same result!) One proceeds from the base point, and the other from the

root point.

We saw in section 3.1.5 that there is a natural way to expand out a given chord

diagram as a sum of basis elements. We now formalise this procedure. The procedure
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may seem obvious, from the example, but will actually give us interesting information

about the elements that occur in the decomposition of a chord diagram.

Given a diagram Γ with base point and root point identified, we will successively

obtain sets of chord diagrams

{Γ} = Υ0  Υ1  · · · Υn

where Υk is the set of all diagrams obtained at the k’th stage, and obtained from de-

composing the diagrams in Υk−1. The final set Υn will contain precisely the elements

of the basis decomposition of Γ. In particular, |Υk| ≥ |Υk−1| and

Γ =
∑

Γ′∈Υ0

Γ′ =
∑

Γ′∈Υ1

Γ′ = · · · =
∑

Γ′∈Υn

Γ′.

To make this precise, note that the first k steps of the base point construction

algorithm depend only on the k leftmost symbols of the word w; and the first k steps

of the root point construction algorithm depend only on the k rightmost symbols of

w.

Definition 5.2.1 (Partial chord diagrams) Let w be a word of length k ≤ n.

(i) The partial chord diagram for w· is a disc with 2n + 2 marked points on the

boundary, including a base and root point, and the first k chords drawn in pro-

cessing any word of length n beginning with w in the base point construction

algorithm.

(ii) The partial chord diagram for ·w is a disc with 2n + 2 marked points on the

boundary, including a base and root point, and the first k chords drawn in pro-

cessing any word of length n ending in w in the root point construction algo-

rithm.

The dots in w· and ·w describe “where the rest of the word goes”. If we cut our disc

along the chords of a partial chord diagram, all the unused marked points lie in a

single component; we call this the unused disc.



CHAPTER 5. THE BASIS OF CONTACT ELEMENTS 105

We will label the elements of Υk as Γw· (resp. Γ·w), where w varies over words of

length k. The chord diagram Γw· (resp. Γ·w) will be the sum of all basis elements of Γ

whose words begin (resp. end) with w, and it will contain the partial chord diagram

for w· (resp. ·w).

We may think of Γ itself as corresponding to the empty word, Γ = Γ∅· = Γ·∅.

Algorithm 5.2.2 (Base point decomposition algorithm) Begin with

Υ0 = {Γ} = {Γ∅·}.

At the k’th step, we take Υk−1, and for each element Γw· of Υk−1, corresponding to

the word w of length k − 1, we do the following.

(i) If there exists a word w′ = w+ or w− such that Γw· contains the partial chord

diagram for w′·, then we place Γw· in Υk and name it Γw′·.

(ii) Otherwise, there is no such word. Hence neither of the two chords added in the

k’th stage of the base point construction algorithm for the words w± lie in Γw·.

Equivalently, we consider the location of the temporary base point after k − 1

stages of the base point construction algorithm for w; then, on the unused disc

of Γw, there is no outermost chord at the temporary base point.

We then consider an arc of attachment which runs close to the boundary of the

unused disc, which is centred on the chord emanating from the temporary base

point (as shifted after k − 1 stages of the base point construction algorithm for

w), and which has its two ends on the two chords emanating from the marked

points adjacent to the temporary base point on the unused disc. We perform the

two possible bypass moves, obtaining two distinct chord diagrams. One of these

contains the partial chord diagram for w − ·, and the other contains the partial

chord diagram for w + ·. We label them Γw−· and Γw+· and place them in Υk.

This constructs Υk from Υk−1.

It’s clear from the algorithm that the Υk have the desired properties. Precisely,

we have the following.
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Lemma 5.2.3 For each k, the elements of Υk obtained in the base point decomposi-

tion algorithm can be grouped in some fashion so as to be summable, and they sum to

Γ. The basis decomposition of Γw· contains all the basis elements of Γ whose words

begin with w, and contains the partial chord diagram for w·. The elements of Υn are

basis elements and are precisely those occurring in the decomposition of Γ. �

In fact, to see how to sum the elements of Υk, bracket them exactly according to how

they came from Υk−1; the decomposition process actually gives us a directed binary

tree of chord diagrams, equivalent to a bracketing. To see that Υn consists of basis

elements, note that its elements are all partial chord diagrams for words of length n;

this leaves only one possible place for the remaining chord.

We may apply the same idea from the root point rather than the base point, to

Γ·w rather than Γw·.

Algorithm 5.2.4 (Root point decomposition algorithm) Begin with

Υ0 = {Γ} = {Γ·∅}.

At the k’th step, we take Υk−1, and for each element Γ·w of Υk−1, corresponding to

the word w of length k − 1, we do the following.

(i) If there exists a word w′ = −w or +w such that Γ·w contains the partial chord

diagram for ·w′, then we place Γ·w in Υk and name it Γ·w′.

(ii) Otherwise, there is no such word. Hence neither of the two chords added in the

k’th stage of the root point construction algorithm for the words ±w lie in Γ·w.

Equivalently, we consider the location of the temporary root point after k − 1

stages of the root point construction algorithm for w; then, on the unused disc

of Γ·w, there is no outermost chord at the temporary root point.

We then consider an arc of attachment which runs close to the boundary of the

unused disc, which is centred on the chord emanating from the temporary root

point (as shifted after k − 1 stages of the root point construction algorithm for

w), and which has its two ends on the two chords emanating from the marked
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points adjacent to the temporary root point on the unused disc. We perform the

two possible bypass moves, obtaining two distinct chord diagrams. One of these

contains the partial chord diagram for · − w, and the other contains the partial

chord diagram for · + w. We label them Γ·−w and Γ·+w and place them in Υk.

This constructs Υk from Υk−1.

Lemma 5.2.5 For each k, the elements of Υk obtained in the root point decomposi-

tion algorithm can be grouped in some fashion so as to be summable, and they sum to

Γ. The basis decomposition of Γ·w contains all the basis elements of Γ whose words

end with w, and contains the partial chord diagram for ·w. The elements of Υn are

basis elements and are precisely those occurring in the decomposition of Γ. �

5.3 Contact interpretation of the partial order �

We now consider M(Γ0, Γ1), where each Γi is a basis chord diagram, and ask when

it is tight, i.e. when Γ1 is stackable on Γ0. We have seen in proposition 1.3.2 that if

Γ0, Γ1 have distinct relative euler classes then M(Γ0, Γ1) is overtwisted. So the chord

diagrams Γ0, Γ1 correspond to words w0, w1 in the same W (n−, n+).

Write M(w0, w1) = M(Γw0, Γw1). In this section, we will prove proposition 1.3.3:

Proposition M(w0, w1) is tight if and only if w0 � w1.

5.3.1 Easy direction

Lemma 5.3.1 If w0 does not precede w1 with respect to �, then M(w0, w1) is over-

twisted.

Proof By the “baseball interpretation”, there is some point in the game, playing

innings from left to right, where team 0 takes the lead. Hence there is a point in the

game, at the m’th innings, where team 0 moves precisely one step ahead. That is,

there is some m such that in w0, there are i minus signs and j plus signs up to the

m’th position, but in w1 there are i + 1 minus signs and j − 1 plus signs up to the
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m’th position. Moreover, since team 0 just took the lead, the m’th symbol in w0 is a

+, while in w1 the m’th symbol is a −.

By lemma 5.1.9 then, after the m’th stage of the base point algorithm, in Γ0

the discrete interval of used marked points is [−2i, 2j − 1], while in Γ1 the discrete

interval of used marked points is [1 − 2(i + 1), 2(j − 1)] = [−2i − 1, 2j − 2]. After

rounding corners, the chords with endpoints in these intervals precisely match and will

form closed curves on the rounded M(w0, w1). Since the m’th stage is not the final

stage, the rounded M(w0, w1) has several components of sutures. Thus M(w0, w1) is

overtwisted. �

5.3.2 Preliminary cases

Lemma 5.3.2 If M(w0, w1) is overtwisted, then a separate component of the dividing

set can be observed in constructing the basis chord diagrams Γ0, Γ1 with the base point

construction algorithm, before the final step.

Proof We know that, after rounding, we have a system of at least 2 connected

curves on S2 and, by the argument of proposition 1.3.2 (proved in section 4.2.2), the

total euler class is 0; hence there are at least 3 components. Thus there is some

component γ that intersects neither the root point on Γ0 nor the root point on Γ1.

On M(w0, w1), γ contains some of the chords on Γ0, and some on Γ1, but no chords

with endpoints at either root point. Thus, a separate component γ can be observed

at some stage of the base point algorithm before the final step. �

Lemma 5.3.3 The proposition for w0, w1 beginning with the same symbol, w0 = sw′
0,

w1 = sw′
1, where s ∈ {+,−}, reduces to the proposition for w′

0, w
′
1, i.e. shorter words.

Proof We note that, by lemma 4.2.5, cancelling outermost chords, M(w0, w1) is

contactomorphic to M(w′
0, w

′
1), through rounding and re-folding. And clearly w0 �

w1 iff w′
0 � w′

1. �

5.3.3 Proof of proposition

We now suppose that w0 � w1, and show that M(w0, w1) is tight.
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We prove this by induction on the length n of the words w0 and w1. It is clearly

true by inspection for words of length 1 and 2; now assume it is true for all lengths

less than n, and consider words w0, w1 of length n.

By lemma 5.3.2, we know that if M(w0, w1) is overtwisted, we will see a closed

loop before the final stage of the base point construction algorithm.

We will show by induction on m, that no closed loop appears at the m’th stage

of the base point construction algorithm, before the final step. By lemma 5.3.3 and

lemma 5.3.1, we can assume w0 begins with a − and w1 begins with a +; so no closed

loop appears at the first stage; the result is true for m = 1. At the m’th stage of

the algorithm, let [am, bm] denote the discrete interval of used marked points on Γ0

and [cm, dm] on Γ1. The hypothesis w0 � w1 means that for all m, am − 1 < cm and

(equivalently) bm − 1 < dm.

So now suppose that there is no closed loop at any stage before m, but a closed

loop appears at stage m. At the previous (m−1)’th stage, we had discrete intervals of

used marked points [am−1, bm−1] and [cm−1, dm−1]. Let us examine what can happen

at the m’th stage.

On Γ0, there are three possible positions for the chord added at the m’th step of

the algorithm. These three possibilities connect the pairs of marked points

(am−1 − 2, am−1 − 1) , (am−1 − 1, bm−1 + 1) , or (bm−1 + 1, bm−1 + 2) .

Similarly, on Γ1 there are three possible positions for the new chord. At least one of

these new chords must form part of the new closed loop; else it would have appeared

earlier. We will assume that the new chord on Γ0 is part of the new closed loop; the

case where the new chord lies on Γ1 is similar.

Let this new chord on Γ0, added at the m’th stage, be γm. Note γm cannot

include the marked point am, since am on D × {0} connects to am − 1 on D × {1},

and am − 1 < cm, so this is left of all used points of Γ1 at this stage, and cannot form

a closed loop. Thus, γm is (bm−1 + 1, bm−1 + 2) = (bm − 1, bm), and it forms part of a

closed loop.

We see that γm encloses an outermost region on the eastside of Γ0, hence a positive
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2j − 3
2j − 2

2j − 1
2j − 2

Figure 5.2: Finger move on M(Γ0, Γ1).

outermost region. Hence it is constructed by processing a following + sign in w0. (If

w0 begins with a +, this also creates a positive outermost region, but we have dealt

with the case m = 1.) Let this be the j’th + sign in w, so using lemma 5.1.9,

(bm − 1, bm) = (2j − 2, 2j − 1) Thus w0 = u + +v, where u (possibly empty) contains

j − 2 plus signs, and has length m − 2.

Now, the endpoints of γm on Γ0 connect to the two marked points

{bm − 2, bm − 1} = {2j − 3, 2j − 2} on Γ1.

We have dm > bm−1, so these are not the rightmost points among the used points on

Γ1, at this m’th stage. However, the closed loop we have just created cannot involve

any of the points right of 2j−2 = bm −1 on Γ1, since these points connect to marked

points right of bm on Γ0, which have not been used yet.

Thus, the chord emanating from 2j − 2 on Γ1 must go to the westside, enclosing

a − region, and must be created by processing a leading − symbol in w1. And the

chord emanating from 2j − 3 on Γ1, by lemma 5.1.9, is created by processing the

(j − 1)’th + sign in w1. Thus w1 = y + −z, where y (possibly empty) contains j − 2

plus signs.

Now, rounding the ball and refolding, we may perform a “finger move”, pushing

the whole new chord γm off D × {0} and up to D × {1}, which has the effect of

removing γm from D × {0}, and closing off the marked points labelled 2j − 3, 2j − 2

on D × {1}. See figure 5.2.
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The chord diagram on D×{0} then reduces to the chord diagram for w′
0 = u + v,

deleting the (j−1)’th + sign from w0. The chord diagram on D×{1} reduces to the

chord diagram for w′
1 = y − z, also deleting the (j − 1)’th + sign. Thus the situation

reduces to M(w′
0, w

′
1) for two smaller words obtained from deleting the (j − 1)’th +

signs from both w0 and w1; since we deleted the same numbered + signs, w′
0 � w′

1.

But we know that the proposition is true for all smaller length words, so M(w′
0, w

′
1)

is tight; so there cannot be any closed loop, and we have a contradiction.

Thus, adding the m’th chord in the base point construction algorithm for Γ0 and

Γ1, we never see a closed loop. By induction, at every stage before the end of the

algorithm, we never see a closed loop. Hence there are no closed loops, and M(w0, w1)

is tight.

This concludes the proof of proposition 1.3.3.

5.3.4 Which chord diagrams are stackable?

Notice that proposition 1.3.3 gives the value of m on all basis elements. This defines

m completely, and m describes stackability. Thus, we can give an answer to the

general question: given two chord diagrams Γ0 and Γ1, is Γ1 stackable on Γ0? For

we can simply expand out m(Γ0, Γ1) = 1 as a sum over basis elements. This proves

proposition 1.3.4.

Proposition (General stackability) Let Γ0 and Γ1 be two chord diagrams with n

chords and relative euler class e. Then Γ1 is stackable on Γ0 (i.e. M(Γ0, Γ1) is tight)

if and only if the cardinality of the set

{
(w0, w1) :

w0 � w1

Γwi
occurs in the decomposition of Γi

}

is odd. �



Chapter 6

Bypass systems on basis chord

diagrams

In this chapter we will investigate performing bypass moves on basis chord diagrams,

attaching bypasses along bypass systems. This chapter contains the main construc-

tions which are at the core of this thesis.

In section 6.1, we will show, inter alia, that by performing bypass moves in a

controlled way, we can go from a given basis chord diagram to many others — in

particular, to any other basis chord diagram to which it is comparable under the

partial order �.

Then, in section 6.2, we will turn to more contact-categorical matters, and use

these bypass systems to compute certain bounded contact categories.

6.1 Concrete combinatorial constructions

In this section we will prove proposition 1.2.18, constructing bypass systems that

take Γ1 to Γ2 and vice versa, whenever Γ1 � Γ2 are basis chord diagrams. And

we will prove proposition 1.2.19, describing how performing bypass moves in the

opposite direction along such bypass systems gives a chord diagram with a prescribed

minimum and maximum in its basis decomposition. The construction will be explicit.

As mentioned in section 1.2.6, our approach will be to develop a series of increasingly

112
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Figure 6.1: Upwards move from Γ−−−++++ to Γ−−++−++.

involved analogies between combinatorial manipulations on words w ∈ W (n−, n+),

and bypass systems on basis chord diagrams Γw. We start with single bypass moves,

and proceed to general bypass systems. But first, we begin with some illustrative

examples.

6.1.1 A menagerie of examples

These examples are of increasing difficulty. They illustrate various phenomena one

observes when performing multiple bypass moves on a basis chord diagram.

First, we show how to go from Γ−−−++++ to Γ−−++−++. Here we “move the third

− sign past the first two + signs”. Moves like this are called forwards elementary

moves and they are obtained by single upwards bypasses. See figure 6.1.

Next, we show how to go from the same starting diagram Γ−−−++++ to Γ−++−−++,

moving both the second and third − sign past the first two + signs. This is also a

forwards elementary move, and is obtained from a single upwards bypass. In general,

an elementary move consists of taking a string of contiguous − symbols and moving

them to the right, past an adjacent string of contiguous + symbols. See figure 6.2.

This bypass move can be thought of as encoding the instruction “move the second

− sign past the first + sign”. If we think of the − signs as remaining in order, then

in this process, the third − sign must be “brought along for the ride”, past the first

+ sign as well. Alternatively, if we “treat the two − signs individually”, and perform
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Figure 6.2: Upwards move from Γ−−−++++ to Γ−++−−++.
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Figure 6.3: Upwards move from Γ−−−++++ to Γ−++−−++, another way.

one bypass move for each, respectively encoding the instruction to move them past

the first + sign, we obtain figure 6.3.

We see it gives the same result. This is an instance of the general phenomenon of

“redundancy of bypasses” or “bypass rotation” (see section 4.1.2). See figure 6.4.

Next, we show how to go from Γ−−++−−++ to Γ++−−++−−. Here we “move the first

and second − signs past the first and second + signs, and move the third and fourth

− signs past the third and fourth + signs”. There are two forwards elementary moves

involved, but in some sense they do not interfere with each other; this is obtained by

two upwards bypasses. See figure 6.5.

While the position of each of these bypass arcs, taken individually, might seem

clear now from the foregoing, note that there are actually two distinct ways to place
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Figure 6.4: Redundancy of bypasses, or bypass rotation.
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Figure 6.5: Upwards moves from Γ−−++−−++ to Γ++−−++−−.
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Figure 6.6: Upwards moves from Γ−−++−−++ to Γ++++−−−−.
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Figure 6.7: “Individual care” approach to Γ−−++−−++ → Γ++++−−−−.

them relative to the other. If we consider these attaching arcs, placed in the other

possible arrangement, we obtain a drastically different result: we go from Γ−−++−−++

to Γ++++−−−−. See figure 6.6.

Thus, the relative positioning of bypass arcs in this way corresponds to some sort

of “carrying” or “compounding” phenomenon. Each arc itself moves some string of

− signs past some string of + signs. But if two arcs are in this arrangement, those −

signs moved right by the first elementary move are then carried in the second also.

Alternatively, the “treating each − sign individually” approach here, from Γ−−++−−++

to Γ++++−−−− requires six bypass arcs: 2 for the first − sign, 2 for the second, 1 for

the third, and 1 for the fourth. See figure 6.7.



CHAPTER 6. BYPASS SYSTEMS ON BASIS CHORD DIAGRAMS 117

In general, in the following, we will apply the “take individual care” approach,

because it is easier to formalise, even though the sets of bypass moves so obtained

often contain massive redundancy. This will lead to the notion of the coarse bypass

system of a pair of comparable basis chord diagrams, which we will then refine to a

“minimal” bypass system of a pair.

We will spend the rest of this section formalising all the above constructions.

6.1.2 Elementary moves on words

Given a word w, recall we group it into blocks of + and − symbols and hence may

write

w = (−)a1(+)b1 · · · (−)ak(+)bk .

Possibly k = 1; possibly a1 = 0; possibly bk = 0; but every other ai and bi is nonzero.

So w as written above has 2k blocks (or 2k − 1 or 2k − 2 blocks if a1 = 0 or/and

bk = 0.)

We now make a combinatorial definition of moves on words of + and − symbols.

Definition 6.1.1 (Elementary moves on words) Let w be a word in the symbols

{+,−}.

(i) A forwards elementary move consists of taking a contiguous substring of w of

the form (−)a(+)b and replacing it with (+)b(−)a.

(ii) A backwards elementary move consists of taking a contiguous substring of w of

the form (+)b(−)a and replacing it with (−)a(+)b.

Collectively we call these elementary moves.

The effect of an elementary move is therefore to “slide some −’s past some +’s”.

The forwards or backwards nature of the move corresponds to the − signs moving

forwards or backwards, as the word is read from left to right. Note that if w′ is

obtained from w by a forwards elementary move, then w � w′; while if w′ is obtained

from w by a backwards elementary move, then w′ � w.
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Lemma 6.1.2 (Number of elementary moves) The word

w = (−)a1(+)b1 · · · (−)ak(+)bk

has precisely

a1b1 + a2b2 + · · · + akbk

nontrivial forwards elementary moves and

b1a2 + b2a3 + · · · + bk−1ak

nontrivial backwards elementary moves, for a total of

a1b1 + b1a2 + a2b2 + · · ·+ bk−1ak + akbk

elementary moves.

Proof For a nontrivial forwards move, we must choose a substring of (−)ai(+)bi for

some i of the form (−)A(+)B, and move them past each other. There are aibi such

substrings. For a backwards move, we must choose a substring of (+)bi(−)ai+1 for

some i of the form (+)B(−)A, and move them past each other. There are biai+1 such

substrings. �

Definition 6.1.3 (Denoting elementary moves)

(i) The (i, j) forwards elementary move FE(i, j) moves the i’th − sign (from the

left), and all the minus signs to its right in the same block, to the position

immediately to the right of the j’th + sign (from the left).

(ii) The (i, j) backwards elementary move BE(i, j) moves the j’th + sign (from

the left), and all the plus signs to its right in the same block, to the position

immediately to the right of the i’th − sign (from the left).

Note that we must have 1 ≤ i ≤ n− and 1 ≤ j ≤ n+ in this definition. But for i, j

satisfying these inequalities, FE(i, j) is not always defined; FE(i, j) is only defined



CHAPTER 6. BYPASS SYSTEMS ON BASIS CHORD DIAGRAMS 119

if the i’th − sign is to the left of the j’th + sign, and the j’th + sign lies in block

of + symbols to the immediate right of the block with the i’th − sign. For any pair

(i, j), at most one of FE(i, j) or BE(i, j) is well-defined.

6.1.3 Anatomy of attaching arcs on basis chord diagrams

Let us define various types of attaching arcs.

Definition 6.1.4 (Types of attaching arcs) Let c be an attaching arc on a chord

diagram Γ.

(i) If c intersects three distinct chords of Γ, c is nontrivial.

(ii) If c intersects less than three distinct chords of Γ, c is trivial.

(a) If c intersects precisely two distinct chords of Γ, c is slightly trivial.

(b) If c intersects only one chord of Γ, c is supertrivial.

For any trivial arc, performing a bypass move on it in one direction creates a

closed curve, while performing a bypass move on it in the other direction leaves the

chord diagram unchanged.

Definition 6.1.5 (Upwards, downwards trivial arcs) A trivial attaching arc on

a chord diagram on which

(i) an upwards bypass move produces the same chord diagram, and a downwards

bypass move creates a closed loop, is upwards.

(ii) a downwards bypass move produces the same chord diagram, and an upwards

bypass move creates a closed loop, is downwards.

Finally, a supertrivial attaching arc c may come in two types. We consider traversing

c from one end to the other; let the three intersection points of c with a chord γ, in

some order along c, be p1, p2, p3.

Definition 6.1.6 (Direct, indirect supertrivial arcs) If the three intersection

points p1, p2, p3 lie in order along γ, c is direct. Otherwise, c is indirect.
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Figure 6.8: Types of trivial attaching arcs.

Our typology of trivial attaching arcs is depicted in figure 6.8.

We now give a complete description of nontrivial attaching arcs on basis chord

diagrams. Writing a word w as

w = (−)a1(+)b1 · · · (−)ak(+)bk ,

the corresponding chord diagram Γw is as shown in figure 6.9.

Lemma 6.1.7 (Number of arcs of attachment) There are precisely

a1b1 + b1a2 + a2b2 + · · ·+ bk−1ak + akbk

distinct possible nontrivial arcs of attachment on Γw.

(Recall arcs of attachment are equivalent if they are homotopic in the disc through

attaching arcs.)

Proof The proof is based on the observation that the non-outermost chords neatly

compartmentalise the disc into pieces.

We will give the proof when a1 6= 0 and bk 6= 0; the cases where one or both

of these are zero is similar. An arc of attachment intersects the chord diagram Γw

in three points; for a nontrivial arc of attachment, the middle of these must lie on a

non-outermost chord. There are precisely 2k−1 non-outermost chords, corresponding

to the 2k− 1 leading symbols in w (other than the very first symbol). Let these non-

outermost chords be c1, d1, c2, d2, . . . , ck−1, dk−1, ck, respectively from base to root.
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Figure 6.9: General basis chord diagram (−)a1 · · · (+)bk .

We count the number of nontrivial arcs of attachment with middle intersection point

lying on each of these 2k − 1 chords.

Now ci separates two regions; one of these (towards the base) has boundary with

ai other components of Γw; and the other (towards the root) has boundary with bi

other components of Γw. Thus there are aibi possible arcs of attachment centred on

ci.

Similarly, di separates two regions; one of these (towards the base) has boundary

with bi other components of Γw; the other (towards the root) has boundary with ai+1.

This gives biai+1 possible arcs of attachment centred on di. �

Suspiciously, the number of nontrivial elementary moves on w equals the number

of nontrivial arcs of attachment on Γw. There is a nice bijection between them; to

formalise this we need several definitions.

A small neighbourhood U of an attaching arc c in a chord diagram Γ is cut by

Γ into 4 regions. Two of the components of U − Γ intersect c, and two do not; and

each component of U − Γ lies in some component of D − Γ. If c is nontrivial, these 4
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regions are distinct; if c is trivial, they are not all distinct. Hence we may make the

following definition.

Definition 6.1.8 (Inner & Outer regions of attaching arc)

(i) The two components of U − Γ which intersect c lie in components of D − Γ

which we call the inner regions of c.

(ii) The two regions of U − Γ which do not intersect c lie in components of D − Γ

which we call the outer regions of c.

Clearly one outer region of c is positive and one is negative; similarly for the inner

regions.

These regions all have distinct numberings, and so do the chords involved, moti-

vating another definition.

Definition 6.1.9 (Prior, latter chords, regions) Let c be a nontrivial or slightly

trivial arc of attachment on a basis chord diagram. Consider the chords on which its

endpoints lie.

(i) The chord which was created first in the base point construction algorithm is the

prior chord of c.

(ii) The chord created later is the latter chord of c.

Consider the outer regions of c.

(i) The outer region adjacent to its prior chord is the prior outer region of c.

(ii) The outer region adjacent to its latter chord is the latter outer region of c.

Note that this definition applies to any attaching arc except a supertrivial one.

Noting that the prior and latter outer regions are positive and negative in some

order, we define a “direction” for non-supertrivial attaching arcs.

Definition 6.1.10 (Forwards and backwards arcs of attachment) For a non-

trivial arc of attachment:
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(i) it its prior outer region is negative (and latter outer region positive), it is called

forwards.

(ii) if its prior outer region is positive (and latter outer region negative), it is called

backwards.

For a slightly trivial arc of attachment:

(i) if its prior outer region is negative (and latter outer region positive), it is called

quasi-forwards.

(ii) if its prior outer region is positive (and latter outer region negative), it is called

quasi-backwards.

Now, for any nontrivial arc of attachment, the prior outer region is certainly not

adjacent to the root point, and the latter outer region is not adjacent to the base

point. Hence we may make the following definition, making use of base- and root-

numbering of regions (definitions 5.1.14 and 5.1.16).

Definition 6.1.11 (Denoting forwards and backwards arcs of attachment)

(i) The nontrivial forwards attaching arc whose prior outer region is the base-i’th

− region and whose latter outer region is the root-j’th + region is called the

forwards (i, j) attaching arc FA(i, j).

(ii) The nontrivial backwards attaching arc whose prior outer region is the base-j’th

+ region and whose latter outer region is the root-i’th − region is called the

backwards (i, j) attaching arc BA(i, j).

Note that these attaching arcs do not exist for all (i, j). The next lemma answers

precisely when they do.

Lemma 6.1.12 (Existence of attaching arcs) For a given word w, there is a for-

wards (resp. backwards) (i, j) attaching arc FA(i, j) (resp. BA(i, j)) on Γw if and

only if there is a forwards (resp. backwards) (i, j) elementary move FE(i, j) (resp.

BE(i, j)) on w.
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Figure 6.10: Forwards attaching arc FA(i, j).

Proof We prove the forwards case; the backwards case is similar. Suppose there

exists such an elementary move; so that the i’th − sign and j’th + sign appear

as desired; within blocks of the form (−)a(+)b. Then, considering the base point

construction algorithm, we see that the chord diagram for w contains an arrangement

as shown in figure 6.10.

Thus there is a forwards or backwards (i, j) attaching arc, as desired. Conversely,

any forwards or backwards (i, j) attaching arc comes in this arrangement, and hence

there is a forwards or backwards (i, j) elementary move, as desired. �

Remark 6.1.13 (Forwards and backwards analogous) Throughout this section

we have constructions and lemmas which come in two varieties, one “forwards ver-

sion” and one “backwards version”. For the most part the backwards versions are

entirely analogous to the forwards versions. To save space, we will often give argu-

ments, and sometimes statements, for the forwards version only; but state the final

results for both forwards and backwards versions.
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6.1.4 Single bypass moves and elementary moves

We now give the bijection between bypass moves on basis chord diagrams and elemen-

tary moves on words. This gives a complete combinatorial description of nontrivial

bypass moves.

Lemma 6.1.14 (Bypass & elementary moves) The chord diagram which is ob-

tained from Γw by an upwards bypass move along FA(i, j) (resp. downwards along

BA(i, j)) is the basis chord diagram Γw′, where w′ = FE(i, j)(w) (resp. BE(i, j)(w)).

w � FE(i,j) //
OO

��
�O
�O
�O
�O
�O
�O
�O

w′
OO

��
�O
�O
�O
�O
�O
�O
�O

w � BE(i,j) //
OO

��
�O
�O
�O
�O
�O
�O
�O

w′
OO

��
�O
�O
�O
�O
�O
�O
�O

Γw
� Up(FA(i,j)) // Γw′ Γw

�Down(BA(i,j))// Γw′

In the other direction, a downwards bypass move along FA(i, j) (resp. upwards along

BA(i, j)) gives Γw + Γw′.

Proof Consider the (i, j) forwards elementary move FE(i, j) on w and the forwards

attaching arc FA(i, j) on Γw. By lemma 6.1.12, one of these exists if and only if the

other does. So the i’th − sign and j’th + sign in w occur in consecutive blocks, with

the j’th + sign in the block to the right of the block containing the i’th − sign. In Γw,

then, we have the situation depicted in figure 6.11, where we number the base-i’th −

region (and adjacent base − regions) and the root-j’th + region (and adjacent root

+ regions). Let the last − sign in the block with the i’th − sign be the l’th − sign

in w (so l ≥ i, possibly l = i), and let the first + sign in the block with the j’th +

sign be numbered m (so m ≤ j, possibly m = j).

An upwards bypass move along FA(i, j) then has the effect shown. This has the

effect of producing a basis chord diagram for the word w′, where w′ is obtained from

w by swapping the string of i’th thru l’th − signs with the string of m’th thru j’th +

signs, (−)l−i+1(+)j−m+1 7→ (+)j−m+1(−)l−i+1. Thus w′ is precisely the word obtained

from w by moving the i’th − sign (and all − signs to the right of the i’th one, in the

same block) past the j’th + sign, i.e. by FE(i, j).
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Figure 6.11: Effect of bypass move along FA(i, j).

A similar argument works for backwards arcs of attachment and backwards ele-

mentary moves. The bypass relation then gives the final statement. �

In particular, performing a bypass move on a basis chord diagram gives either a

basis diagram or a sum of two basis diagrams.

6.1.5 Stability of basis diagrams

We can now show how basis chord diagrams remain “stable” as we perform certain

bypass moves on them. The idea is that, beginning with forwards attaching arcs and

performing upwards bypass moves, we always remain within the class of basis chord

diagrams. However, there are some technicalities, since phenomena like the following

may occur:

• a bypass move on an attaching arc ci may convert a nontrivial attaching arc cj

into a trivial one, or a slightly trivial cj into a supertrivial one, or vice versa;

• a bypass move on a trivial attaching arc, while not changing the chord diagram,

may change the locations of the other attaching arcs.

We must therefore take some care in the following lemma; it is for this reason that

the anatomical terminology of “supertrivial”, “quasi-forwards”, “upwards trivial” and

“direct supertrivial” has been introduced.
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Lemma 6.1.15 Suppose we have a bypass system {c1, . . . , cm} on a basis chord dia-

gram, where each ci is one of the following:

(i) a nontrivial forwards attaching arc;

(ii) a slightly trivial, quasi-forwards, upwards attaching arc;

(iii) a supertrivial, direct, upwards attaching arc.

After performing an upwards bypass move along c1, we still have a basis chord dia-

gram, and each remaining attaching arc is of one of the above three types.

There is also a backwards version.

Proof By lemma 6.1.14 or (upwards) triviality of c1, after performing the bypass

move on c1 we still have a basis chord diagram. It remains to show that each ci other

than c1 remains one of the three specified types. We consider each of the possible

3 × 3 = 9 cases for c1 and ci.

(i) c1 nontrivial.

(a) ci nontrivial. The arc ci intersects either 0, 1, 2 or 3 of the same three

chords as c1. If it intersects none of the same chords, then their order of

construction in the base point algorithm remains unchanged, so that ci

remains nontrivial and forwards. If ci intersects one of the same chords

as c1, then the situation must be one of those shown in figure 6.12, with

order of the chords as shown; ci remains nontrivial and forwards.

If ci intersects two of the same chords as c1, then it either becomes slightly

trivial, quasi-forwards, and upwards, as in figure 6.4; or the situation is as

shown in figure 6.13, and ci remains nontrivial and forwards.

If ci intersects all three of the same chords as c1, then it clearly becomes

slightly trivial, upwards, and quasi-forwards.

Note that the cases in figures 6.12 and 6.13 come in pairs related by 180◦

rotations, with reversal of signs and numberings. For the rest of this ar-

gument, we only give one of each such pair of cases.
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(b) ci slightly trivial. By definition, ci intersects two distinct chords of Γ. If

neither of these chords intersects c1, then ci clearly remains slightly trivial,

upwards, and quasi-forwards. If both of these chords intersect c1, then the

quasi-forwards and upwards conditions require the situation to be as in

figure 6.14(a) (or a 180◦ rotated version of it), so that ci becomes super-

trivial direct upwards or remains slightly trivial upwards quasi-forwards.

We may therefore assume that precisely one chord γ intersects both c1 and

ci. If ci only intersects γ once, then it’s clear ci remains slightly trivial

upwards quasi-forwards. Thus we may assume ci intersects γ twice. If the

two intersections of ci with γ lie on the same side of c1, then it’s clear ci

remains slightly trivial upwards quasi-forwards. If the two intersections of

ci with γ lie on opposite sides of c1, then the upwards quasi-forwards con-

ditions require that the situation is as in figure 6.14(b) (or a 180◦ rotation

of it). Thus ci becomes nontrivial forwards.

(c) ci supertrivial. Here ci only intersects one chord γ of Γ. If γ is disjoint

from c1, clearly ci remains supertrivial upwards direct; we therefore assume

c1 intersects γ. If the intersection points of ci with γ all lie on the same

side of c1, clearly ci remains supertrivial upwards direct. If the intersection

points of ci with γ lie on both sides of c1, then the upwards direct conditions

require that the situation is as in figure 6.14(c) (or a 180◦ rotation of it);

so ci becomes slightly trivial upwards quasi-forwards.

(ii) c1 slightly trivial. In this case c1 intersects an chord of Γ twice; let γ be the

arc of this chord lying between the intersection points. If ci does not intersect

γ, then after performing the upwards bypass move on c1, the chord diagram is

unchanged and the position of ci is unchanged. We can therefore assume that

ci intersects γ.

(a) ci nontrivial. The conditions that ci is nontrivial, forwards, and intersects

γ, require that the situation is as in figure 6.15(a) (or a 180◦-reversed ver-

sion). Together with the condition that c1 is quasi-forwards, the ordering

of chords must be as shown. We see that ci remains nontrivial forwards,
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although in a different position on the chord diagram.

(b) ci slightly trivial. Clearly ci intersects γ once or twice. Suppose ci

intersects γ twice. Then the condition that ci is upwards quasi-forwards

requires that the situation is one of those depicted in figure 6.15(b) (or a

rotated version), with ordering of chords as shown. Thus ci either remains

slightly trivial upwards quasi-forwards, or becomes supertrivial upwards

direct. Now suppose ci intersects γ once. If ci intersects both the same

chords as c1 this contradicts quasi-forwardness of ci; thus the situation is

as in figure 6.15(c) (or a rotated version). Thus ci remains slightly trivial

upwards quasi-forwards.

(c) ci supertrivial. Here ci may intersect γ 1, 2 or 3 times. If it intersects

γ once, then the direct upwards condition requires that the situation is

as in figure 6.15(d), so ci becomes slightly trivial upwards quasi-forwards.

The direct upwards condition precludes two intersections of ci with γ. If

ci intersects γ 3 times, clearly ci remains upwards direct supertrivial.
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(iii) c1 supertrivial. In this case c1 only intersects one chord γ of Γ. If ci does not

intersect γ, or intersects γ only once, then after performing the upwards bypass

move on c1, the chord diagram and the position of ci is unchanged. We can

therefore assume that ci intersects γ at least twice; hence we only need consider

ci trivial.

(a) ci slightly trivial. Clearly c1 cuts γ into 4 arcs, and we are assuming

ci intersects γ twice. If the two intersection points of ci with γ lie in the

same component, clearly ci remains slightly trivial upwards quasi-forwards.

Thus we may assume ci intersects γ in different arcs of γ, and the situation

is as in figure 6.16(a) (or a rotated version). Hence ci remains slightly

trivial upwards quasi-forwards.

(b) ci supertrivial. Again c1 cuts γ into 4 arcs, and if ci intersects γ all within

the same arc, clearly ci remains supertrivial direct upwards. Thus we

assume ci intersects γ in distinct arcs; the direct upwards condition requires

that the situation is one of those depicted in figure 6.16(b) (or a rotated

version). In every possibility ci remains upwards direct supertrivial. �

This lemma now easily gives the following useful result.
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Proposition 6.1.16 The effect of performing upwards (resp. downwards) bypass

moves on a basis chord diagram Γw1 along a bypass system consisting entirely of

forwards (resp. backwards) attaching arcs is again a basis chord diagram Γw2, with

w1 � w2 (resp. w2 � w1).

Proof Clearly the bypass system satisfies the hypotheses of lemma 6.1.15. Thus,

after each bypass move, the bypass system still satisfies those hypotheses and the

chord diagram remains a basis diagram. The bypass moves along trivial arcs have no

effect on the chord diagram (although they may affect the bypass system); by lemma

6.1.14 each bypass move along a nontrivial forwards attaching arc produces another

basis chord diagram, moving ahead in the partial order. �

6.1.6 Generalised elementary moves on words

So far, we have defined elementary moves FE(i, j) and BE(i, j) on a word w. The

forwards move FE(i, j) moves the i’th − sign (and all − signs between it and the

j’th + sign) to the right, past the j’th + sign: provided that the j’th + sign is in

the block immediately to the right of the i’th − sign. This is a useful notion because

it corresponds precisely to bypass moves on the chord diagram Γw. But we now

generalise this notion, removing the somewhat artificial proviso in italics, to what we

call generalised elementary moves.

Definition 6.1.17 (Generalised elementary move) Let w be a word on {−, +}

with n− − signs and n+ + signs. Let 1 ≤ i ≤ n− and 1 ≤ j ≤ n+.

(i) If the i’th − sign in w occurs to the left of the j’th + sign, we define the forwards

generalised elementary move FE(i, j) to take the i’th − sign, and all − signs

between it and the j’th + sign, and move them to a position immediately after

the j’th + sign.

(ii) If the j’th + sign in w occurs to the left of the i’th − sign, we define the

backwards generalised elementary move BE(i, j) to take the j’th + sign, and all

+ signs between it and the i’th − sign, and move them to a position immediately

after the i’th − sign.
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It’s clear that when the i’th − sign and the j’th + sign are in adjacent blocks,

generalised elementary moves reduce to elementary moves. So we indeed have a

generalisation, and we may use the same notation without contradiction.

To illustrate: if w = −−−+ +−++, then FE(2, 3) produces −+ + +−−−+,

and BE(4, 1) produces the word −−−− + + ++.

Since forwards generalised elementary moves move − signs to the right, and back-

wards generalised elementary moves move + signs to the right, the following lemma

is clear.

Lemma 6.1.18 (Forwards moves move forward) If w′ can be obtained from w

by a generalised forwards (resp. backwards) elementary move, then w � w′ (resp.

w′ � w). �

Note that for any word w ∈ W (n−, n+) and for any 1 ≤ i ≤ n−, 1 ≤ j ≤ n+,

precisely one of FE(i, j) or BE(i, j) exists.

We have seen that a (forwards or backwards) elementary move on a word can be

effected on a basis chord diagram by a single upwards bypass move along a (forwards

or backwards) arc of attachment. It is also true that a (forwards or backwards)

generalised elementary move can be effected by upwards bypass moves along (forwards

or backwards) arcs of attachment — but more than one is required. We will now see

how.

6.1.7 Generalised arcs of attachment

Recall that we defined forwards and backwards arcs of attachment FA(i, j), BA(i, j).

The forwards arc FA(i, j) connects the base-i’th − region to the root-j’th + region.

The backwards arc BA(i, j) connects the base-j’th + region to the root-i’th − region.

We will now generalise this notion.

Definition 6.1.19 (Generalised arc of attachment) A generalised arc of attach-

ment in a chord diagram Γ is an arc which intersects Γ in an odd number of points,

including both its endpoints. A generalised arc of attachment is nontrivial if all its

intersection points with Γ lie on different components of Γ. Two generalised arcs of
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attachment are considered equivalent if they are homotopic through generalised arcs

of attachment.

It is clear that for any two chords in a chord diagram Γ, there is at most one

nontrivial generalised arc of attachment between them, up to equivalence. As with

(ungeneralised) arcs of attachment, we will usually implicitly consider generalised

arcs of attachment up to equivalence, and speak of the generalised arc of attachment

between two chords.

We have notions of prior and latter chords, prior and latter outer regions, and

forwards and backwards, as for bona fide arcs of attachment. The two endpoints of

a nontrivial generalised attaching arc c lie on two chords; the chord created first in

the base point algorithm is its prior chord, the chord created later its latter chord.

The complementary region of Γ not intersecting c but adjacent to its prior chord is

its prior outer region; the region not intersecting c but adjacent to its latter chord

is its latter outer region. Given a prior outer region and a latter outer region for c,

it’s clear that there is at most one nontrivial generalised attaching arc between them;

hence we may speak of the generalised arc of attachment between the two regions. A

generalised attaching arc with negative (resp. positive) prior outer region and positive

(resp. negative) latter outer region is called forwards (resp. backwards).

The forwards generalised attaching arc whose prior outer region is the base-i’th −

region and whose latter outer region is the root-j’th + region is called the forwards

(i, j) generalised attaching arc FA(i, j). The backwards generalised attaching arc

whose prior outer region is the base-j’th + region and whose latter outer region is

the root-i’th − region is called the backwards (i, j) generalised attaching arc BA(i, j).

Clearly this notation generalises the notation for attaching arcs, and clearly every

nontrivial generalised attaching arc is of the form FA(i, j) or BA(i, j) for some (i, j).

In fact, for any pair (i, j), 1 ≤ i ≤ n−, 1 ≤ j ≤ n+ precisely one of FA(i, j) or

BA(i, j) exists, as the next lemma makes clear.

Lemma 6.1.20 (Existence of generalised attaching arcs)

(i) There is an FA(i, j) in Γw iff the i’th − sign in w occurs before the j’th + sign,

iff there is an FE(i, j) on w.
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(ii) There is a BA(i, j) in Γw iff the j’th + sign in w occurs before the i’th − sign,

iff there is a BE(i, j) on w.

Proof By definition, FA(i, j) has prior outer region the base-i’th − region, and

latter outer region the root-j’th + region; and by definition of prior and latter, and a

little consideration of the relationship between the base and root algorithms, we see

that if FA(i, j) exists, then the i’th − sign must occur before the j’th + sign.

Conversely, suppose the i’th − sign occurs before the j’th + sign. Then in the

base point construction algorithm, the i’th − sign produces a chord γi, enclosing a

negative region ri. The j’th + sign produces a chord γ′, and the next symbol in w (or

the final chord drawn in the algorithm) produces a chord γj; this chord is produced

in the root point algorithm by the j’th + sign, and encloses a positive region rj in

that algorithm. Since the base point algorithm produces γi before γ′ before γj, it

cannot be that ri and rj are adjacent. Therefore, there is a generalised attaching arc

connecting γi to γj.

The proof is similar for backwards attaching arcs. �

Clearly, a generalised attaching arc is not something that we can perform a bypass

move on. But from it, we can obtain a bypass system, and then perform bypass moves.

6.1.8 Bypass system of a generalised attaching arc

Since a generalised attaching arc intersects the chords of a chord diagram at an odd

number of points, it may be broken into several bona fide attaching arcs which overlap

only at endpoints. We can then perturb these endpoints in a specified way so that

they become disjoint.

To make this precise, let c be a nontrivial generalised attaching arc in a basis

chord diagram Γw. Let p be the intersection point of c with a chord γ of Γw, at an

interior point of c. Then there is a “prior” and a “latter” direction along c from p,

towards the endpoints of c on its prior and latter chords, respectively. Also, since

c intersects distinct chords of Γw other than γ, in both directions from p, γ cannot

be an outermost chord. Thus by our classification of chords in basis chord diagrams
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(lemma 5.1.9), γ runs from the westside to the eastside of Γw. Hence, from p, there

is a well-defined “west” and “east” direction along γ.

Definition 6.1.21 (Bypass system of generalised arc) Suppose c is a nontriv-

ial generalised attaching arc in a basis chord diagram Γw which intersects Γw in 2m+1

points. Then there is a unique way to split c into a series of attaching arcs c1, . . . , cm,

labelled from prior chord to latter chord, which intersect each other only at the end-

points. The bypass system of c is given as follows.

(i) If c is a forwards generalised attaching arc, then c1, . . . , cm are forwards attach-

ing arcs, and we perturb them as follows. At the intersection point p of ci and

ci+1 on a non-outermost chord γ of Γw, we move the endpoint of ci slightly west

of p along γ, and the endpoint of ci+1 slightly east of p along γ.

(ii) If c is a backwards generalised attaching arc, then c1, . . . , cm are backwards at-

taching arcs, and we perturb them as follows. At the intersection point p of ci

and ci+1 on a non-outermost chord γ of Γw, we move the endpoint of ci slightly

east of p along γ, and the endpoint of ci+1 slightly west of p along γ.

It’s clear that this is indeed a bypass system. See figure 6.17 for an example. We

now show that this edifice of definitions (and we have more to come!) is meaningful.

Lemma 6.1.22 (Generalised attaching arcs and elementary moves)

(i) Performing upwards bypass moves on Γw along the bypass system of FA(i, j)

gives Γw′, where w′ = FE(i, j)(w).

(ii) Performing downwards bypass moves on Γw along the bypass system of BA(i, j)

gives Γw′, where w′ = BE(i, j)(w).

w � FE(i,j) //
OO

��
�O
�O
�O
�O
�O
�O
�O

w′
OO

��
�O
�O
�O
�O
�O
�O
�O

w � BE(i,j) //
OO

��
�O
�O
�O
�O
�O
�O
�O

w′
OO

��
�O
�O
�O
�O
�O
�O
�O

Γw
� Up(FA(i,j)) // Γw′ Γw

�Down(BA(i,j))// Γw′



CHAPTER 6. BYPASS SYSTEMS ON BASIS CHORD DIAGRAMS 138

+

−−

+

++

+

+

+

+

−

−

+

+

+

+

+

+

+

+

+

+ −

−

−

−

−

−

−

−

−

−

−

−

−

−

B

A

C
j

i

B

A

D C

Up

bk − 2

b1 − 1

D

b1 − 1

bk − 2

a1 − 1
a1 − 1

ak − 1 ak − 1

Figure 6.17: Effect of upwards bypass moves on a forwards generalised attaching arc.

Proof From lemma 6.1.20, FA(i, j) exists precisely when FE(i, j) does, i.e. when

the i’th − sign occurs before the j’th + sign in w. First suppose that j < n+, so there

is a (j + 1)’th + sign in w. Let the substring of w between the i’th − sign and the

(j + 1)’th + sign be (−)a1(+)b1 · · · (+)bk−1(−)ak(+)bk . Then the situation appears as

shown in figure 6.17. (Note that the chords constructed prior to the base-i’th − chord

lie in regions A or B accordingly as the i’th − sign is following or leading; similarly,

the chords constructed after the root-j’th + chord lie in C or D accordingly as the

j’th + sign is the last in its block, or not.)

Performing upwards bypass moves along the arcs of attachment produces the result

shown in figure 6.17, which corresponds to replacing the substring

(−)a1(+)b1 · · · (+)bk−1(−)ak(+)bk

of w with

(+)b1+···+bk−1(−)a1+···+ak(+).

That is, all the minus signs from the i’th − sign, up to the j’th + sign, have been

moved to the immediate right of the j’th + sign.

If j = n+, the the picture is similar; the generalised arc of attachment has an
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endpoint on the chord created in the root point algorithm as the rightmost + sign in

w is processed. The effect is to move all minus signs, from the i’th onwards, to the

end of the word.

The backwards case is similar. �

Loosely, the effect of performing upwards (resp. downwards) bypass moves along

the bypass system of a forwards (resp. backwards) generalised attaching arc is to

create one “long chord” running all along the generalised attaching arc, and “closing

off” all the chords on either side of it.

6.1.9 Anatomy of multiple generalised arcs of attachment

We now consider taking several disjoint generalised arcs of attachment, and perform-

ing bypass moves along their bypass systems.

Note that for any two given forwards arcs of attachment FA(i1, j1) and FA(i2, j2),

there is not always a unique way to place their bypass systems. For one thing, the

two generalised arcs might intersect. Even if they do not intersect, it might be that

having placed FA(i1, j1), we can place FA(i2, j2) on either side of it; and the results

of performing bypass moves along the resulting bypass systems might be different.

Thus, when dealing with several generalised arcs of attachment, we need to specify

precisely how they are placed. To this end, let us make some definitions. Note that

a forwards generalised arc of attachment FA(i, j), taken together with its prior and

latter chords, splits the disc D into four regions; we now group these into “southwest”

and “northeast” halves.

Definition 6.1.23 (Compass for generalised arc) A forwards generalised arc of

attachment FA(i, j), together with its prior and latter chords, split the disc D into

four pieces, proceeding clockwise around the disc:

(i) The piece containing the prior outer region of FA(i, j).

(ii) The piece which contains the marked points on the eastside immediately anti-

clockwise/right of the latter chord of FA(i, j)
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Figure 6.18: Compass points.

(iii) The piece containing the latter outer region of FA(i, j).

(iv) The piece which contains the marked points on the westside immediately anti-

clockwise/left of the prior chord of FA(i, j).

Pieces (i) and (ii) are called the northeast of FA(i, j). Pieces (iii) and (iv) are called

the southwest of FA(i, j).

See figure 6.18. Note that all chords and regions constructed in the base point

construction algorithm prior to the base-i’th − region lie in the northeast of FA(i, j),

and all chords and regions created after the root-j’th + region lie to the southwest.

Similar definitions of “northwest” and “southeast” exist in the backwards case.

The compass points are chosen with our westside/eastside in mind, thinking of the

base point as the “north pole” and the root point as the “south pole”.

6.1.10 Placing two generalised arcs of attachment

We now use these compass points to place multiple generalised arcs of attachment

disjointly. We will consider the case of FA(i1, j1) and FA(i2, j2), where i1 < i2 and

j1 ≤ j2.

Recall that FA(i2, j2) joins the base-i2’th − region to the root-j2’th + region.

Now from the base point construction algorithm, since i1 < j1, the base-i2’th −

region either lies
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Figure 6.19: Placing two arcs: i1 < i2.

(i) entirely in the southwest of FA(i1, j1); in this case there is no choice for the

prior endpoint of FA(i2, j2), up to equivalence; or

(ii) in both the southwest and northeast regions of FA(i1, j1), and there is a choice:

the prior endpoint of FA(i2, j2) may be southwest or northeast of FA(i1, j1).

If there is a choice, we choose southwest. See figure 6.19 showing case (ii).

Similarly, since j1 ≤ j2, the root-j2’th + region either lies

(i) entirely in the southwest of FA(i1, j1), and identical to the root-j1’th + region

(i.e. j1 = j2); so there is a choice how to place the latter endpoint of FA(i2, j2),

which may be southwest or northeast of FA(i1, j1) along the same latter chord;

(ii) entirely in the southwest of FA(i1, j1) in region (iv) of figure 6.18; so there is

no choice how to place the latter endpoint of FA(i2, j2); or

(iii) entirely in the southwest of FA(i1, j1) in region (iii) of figure 6.18, so FA(i2, j2)

might lie southwest or northeast of FA(i1, j1).

If there is a choice, we always take the southwest choice. See figure 6.20 showing

case (iii). Note that the conditions i1 < i2 and j1 ≤ j2, with our “southwest choices”,

ensure that the arcs can be drawn disjoint from each other: the inequalities ensure

that the prior and latter chords at least partially lie in the southwest of FA(i1, j1).

So, with the above choices if necessary, we have a well-defined way to draw

FA(i2, j2) after FA(i1, j1). It is “southwestmost”.
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Figure 6.20: Placing two arcs: j1 < j2.

Lemma 6.1.24 (Placing two generalised arcs) Let w be a word such that for-

wards generalised elementary moves FE(i1, j1) and FE(i2, j2) exist on w, where

i1 < i2 and j1 ≤ j2. There is one and only one way (up to equivalence) to draw

FA(i1, j1) and FA(i2, j2) on Γw so that

(i) FA(i1, j1) and FA(i2, j2) are disjoint;

(ii) for every chord of Γw which intersects both FA(i1, j1) and FA(i2, j2), the inter-

section point with FA(i2, j2) lies southwest of FA(i1, j1). �

There is a similar result for backwards generalised attaching arcs also.

6.1.11 Placing multiple nicely ordered generalised arcs

We actually wish to consider multiple generalised arcs of attachment, which are

“nicely ordered” in a similar way.

Definition 6.1.25 (Nicely ordered generalised arcs of attachment)

(i) A sequence of forwards generalised arcs of attachment

FA(i1, j1), FA(i2, j2), . . . , FA(im, jm)

on Γw is nicely ordered if

i1 < i2 < · · · < im and j1 ≤ j2 ≤ · · · ≤ jm.
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(ii) A sequence of backwards generalised arcs of attachment

BA(i1, j1), BA(i2, j2), . . . , BA(im, jm)

on Γw is nicely ordered if

jm < jm−1 < · · · < j1 and im ≤ im−1 ≤ · · · ≤ i1.

Given a set of generalised attaching arcs, which are nicely ordered in this way,

we now describe how to place them, giving a bypass system, following the ideas of

section 6.1.10. We keep making the “southwest” choice any time we are faced with

a choice, and then there is only one possibility for placing all the generalised arcs of

attachment. For backwards arcs the result is similar, placing arcs from BA(im, jm)

to BA(i1, j1), always taking the “northwest” choice.

Lemma 6.1.26 (Arrangement of 3 nicely ordered arcs) Let

FA(i1, j1), FA(i2, j2), FA(i3, j3)

be a nicely ordered sequence of forwards generalised attaching arcs. Suppose that both

FA(i1, j1) and FA(i3, j3) intersect a chord of Γw. Then so does FA(i2, j2).

Proof In general, FA(i, j) intersects precisely the following chords:

(i) The chord created by processing the i’th − in w in the base point construction

algorithm (or the symbol immediately preceding it, in the root point construc-

tion algorithm). This is the prior chord.

(ii) The chord created by processing the j’th + in w in the root point construction

algorithm (or the symbol immediately following it, in the base point construc-

tion algorithm). This is the latter chord.

(iii) The non-outermost chords created by processing “changes of sign” in w in be-

tween: more precisely, processing the leading − and + signs strictly after the
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j’th + sign and up to and including the i’th − sign in the base point construction

algorithm;

If both FA(i1, j1) and FA(i3, j3) intersect a chord γ, then in the base point con-

struction algorithm, it is created by processing some symbol, which is one of:

(i) (from FE(i1, j1)) either the i1’th − sign, or a leading − or + sign after the i1’th

minus sign, up to and including the j1’th + sign, or the symbol immediately

after the j1’th + sign;

(ii) (from FE(i3, j3)) either the i3’th − sign, or a leading − or + sign after the i3’th

minus sign, up to and including the j3’th + sign, or the symbol immediately

after the j3’th + sign.

Combining these, since i1 < i3, and j1 ≤ j3, γ must be created by a symbol which is

either:

(i) the i3’th − sign, which is leading;

(ii) a leading − or + sign after the i3’th − sign, up to and including the j1’th +

sign; or

(iii) the symbol immediately after the the j3’th + sign, and j1 = j3.

In every case, since i1 < i2 < i3 and j1 ≤ j2 ≤ j3, this chord γ also intersects

FA(i2, j2). �

So now, suppose we have a nicely ordered sequence of forwards generalised arcs

of attachment

FA(i1, j1), FA(i2, j2), . . . , FA(im, jm).

We know that we can place FA(i1, j1), and then place FA(i2, j2) “southwest” of it,

as described in lemma 6.1.24. Then, we wish to place FA(i3, j3). Let γ be a chord of

Γw that intersects FA(i3, j3). The previous lemma (6.1.26) governs how the forwards

generalised arcs of attachment can intersect it. In particular, if either of FA(i1, j1) or

FA(i2, j2) intersects γ, then FA(i2, j2) certainly does. So if we require the intersection
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point of FA(i3, j3) with γ to be southwest of FA(i2, j2), then it is also southwest of

FA(i1, j1).

Proceeding inductively, we obtain the following lemma.

Lemma 6.1.27 (Placing multiple nicely ordered generalised arcs) Let

FA(i1, j1), FA(i2, j2), . . . , FA(im, jm)

be a nicely ordered sequence of forwards generalised arcs of attachment. They can be

placed on Γw, so that:

(i) they are disjoint;

(ii) for any chord γ of Γw which nontrivially intersects at least one of these arcs,

the set of FA(ik, jk) intersecting γ is a discrete interval of k, of the form

FA(is, js), FA(is+1, js+1), . . . , FA(it, jt)

and moreover, for u < v, the intersection of γ with FA(iv, jv) lies southwest of

FA(iu, ju);

(iii) none of the FA(ik, jk), k < m, intersect the southwest region of FA(im, jm).

Moreover, there is only one way to place the arcs satisfying these conditions, up to

equivalence (i.e. homotopy through generalised attaching arcs).

There is also a backwards version of this result.

Proof For small m, we have proved the lemma. We show that we can inductively

add a further FA(im, jm) to previously placed FA(i1, j1), . . . , FA(im−1, jm−1). We

place FA(im, jm) to lie southwest of FA(im−1, jm−1) as described in lemma 6.1.24.

We note that, by inductive assumption (iii), there are no other arcs southwest of

FA(im−1, jm−1), and hence this specifies a unique way to place FA(im, jm); and dis-

jointly, so (i) is true. Moreover, there are now no arcs southwest of FA(im, jm); so

(iii) is true.
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For every chord γ nontrivially intersecting one of these arcs, if it does not inter-

sect FA(im, jm), then (ii) is true by inductive assumption. Otherwise, it intersects

FA(im, jm), and the intersection point FA(im, jm) is southwest of all others; so by

lemma 6.1.26 and inductive assumption, (ii) is again true. �

We give a name to this construction.

Definition 6.1.28 (Bypass system of nicely ordered sequence) Let

FA(i1, j1), FA(i2, j2), . . . , FA(im, jm)

be a nicely ordered sequence of forwards generalised arcs of attachment. The by-

pass system of this sequence is the bypass system obtained from placing these arcs as

described in lemma 6.1.27.

6.1.12 Nicely ordered sequences of generalised moves

We first extend the notion of “nicely ordered” to generalised elementary moves.

Definition 6.1.29 (Nicely ordered generalised elementary moves)

(i) A sequence of forwards generalised elementary moves

FE(i1, j1), FE(i2, j2), . . . , FE(im, jm)

on w is nicely ordered if

i1 < i2 < · · · < im and j1 ≤ j2 ≤ · · · ≤ jm.

(ii) A sequence of backwards generalised elementary moves

BE(i1, j1), BE(i2, j2), . . . , BE(im, jm)

on w is nicely ordered if

jm < jm1 < · · · < j1 and im ≤ im−1 ≤ · · · ≤ i1.
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Nice ordering of generalised elementary moves is nice in the sense that it guaran-

tees commutativity, as we shall now see. First, we have the following obvious lemma

about redundancy.

Lemma 6.1.30 (Redundancy of generalised moves) Suppose we have two well-

defined forwards generalised elementary moves FE(i1, j) and FE(i2, j) on a word w,

with i1 < i2. Then:

(i) After applying FE(i1, j), then FE(i2, j) is no longer well-defined.

(ii) After applying FE(i2, j), then FE(i1, j) is still well-defined, and after applying

it, the result is the same as simply applying FE(i1, j) alone:

FE(i1, j) (w) = FE(i1, j) ◦ FE(i2, j) (w)
�

In the case where FE(i2, j) is no longer well-defined, we may regard it as “the

null move” and having trivial effect. Thus, we can extend the definition of FE(i2, j),

to be the identity, where otherwise it is not defined. With this definition, we see that

FE(i1, j) and FE(i2, j) commute, and their composition in either order is equal to

FE(i1, j).

Lemma 6.1.31 Let FE(i1, j1) and FE(i2, j2) be well-defined nontrivial forwards

generalised elementary moves on a word w, with i1 < i2 and j1 < j2. Then:

(i) After applying either of FE(i1, j1) or FE(i2, j2) to w, the other is still well-

defined and nontrivial.

(ii) The effect of applying both FE(i1, j1) and FE(i2, j2) to w, in either order, is

identical:

FE(i1, j1) ◦ FE(i2, j2) (w) = FE(i2, j2) ◦ FE(i1, j1) (w).
�

With the extended definition of FE(i, j) and BE(i, j) to be trivial when not

otherwise defined, we obtain a general commutativity result:
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Lemma 6.1.32 (General commutativity of generalised moves) If i1 ≤ i2 and

j1 ≤ j2, then FE(i1, j1) and FE(i2, j2) commute. �

Thus, for any nicely ordered set of generalised forwards elementary moves, they

all commute; and hence we may speak of applying them to a word, without regard

to their order. There are forwards and backwards versions.

6.1.13 Generalised elementary moves of a comparable pair

Suppose we have two comparable words w1, w2 ∈ W (n−, n+) with w1 � w2. Then,

for every 1 ≤ i ≤ n−, the i’th − sign in w1 lies to the left of the i’th − sign in w2.

That is, the i’th − sign in w1 has fewer + signs to its left, than does the i’th − sign

in w2. Suppose that the i’th − sign has αi + signs to its left in w1, and βi + signs to

its left in w2; so αi ≤ βi. So we have

α1 ≤ α2 ≤ · · · ≤ αn−

≥ ≥ ≥

β1 ≤ β2 ≤ · · · ≤ βn−

describing w1 � w2.

Definition 6.1.33 (Elementary moves of comparable pair) The generalised

forwards elementary moves of the pair w1 � w2 are

FE(1, β1), FE(2, β2), . . . , FE(n−, βn−
).

where βi denotes the number of + signs to the left of the i’th − sign in w2.

Recall that while w1 � w2 means “all − signs move right”, some may not move at

all; and if the i’th − sign does not move, then the forwards generalised elementary

move FE(i, βi) is trivial. Above we defined generalised elementary moves to be trivial

when they are not otherwise defined. We could delete such moves from the sequence;

but it is easier to “take individual care” of each symbol in this way.

Note this is a nicely ordered sequence, hence by lemma 6.1.32 the moves commute.

The first move FE(1, β1) moves the first − sign, and all − signs between it and the
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β1’th + sign, to the immediate right of the β1’th + sign. If β1 = β2, then FE(2, β2)

is redundant; otherwise β1 < β2 and FE(2, β2) moves the second − sign, and all the

− signs between it and the β2’th + sign, to the immediate right of the β2’th + sign.

Continuing in this way, we see the result is

(+)β1 (−) (+)β2−β1 (−) · · · (+)βn−
−βn−−1 (−) (+)n+−βn−

which is w2, by definition. We record this result.

Lemma 6.1.34 (Elementary moves between comparable words) The result

of applying the generalised forwards elementary moves of the pair w1 � w2, to w1, is

w2. �

There is also a backwards version. If we denote by δj the number of − signs to

the left of the j’th + sign in w1. Then the generalised backwards elementary moves

of the pair w1 � w2 are

BE(δ1, 1), BE(δ2, 2), . . . , BE(δn+ , n+).

and the result of applying them to w2 is w1.

Thus we can go from w1 to w2 (and vice versa) by a well-defined nicely ordered

sequence of generalised elementary moves. It now remains to show that this can be

paralleled by bypass moves along the bypass system of a well-defined nicely ordered

sequence of generalised arcs of attachment.

6.1.14 Bypass systems of nicely ordered sequences

We now consider in more detail the effect of performing bypass moves along the bypass

system of a nicely ordered sequence of generalised attaching arcs. As we know from

lemma 6.1.22, if we restrict to a single generalised attaching arc, then we obtain the

basis chord diagram for the word obtained by performing a corresponding generalised

elementary move.

We now see, in this subsection, that if we perform bypass moves along the bypass

system of multiple generalised attaching arcs, when they are nicely ordered (as in
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definition 6.1.25) and then placed appropriately (as in definition 6.1.28), then we

obtain the basis chord diagram for the word obtained by performing the corresponding

composition of generalised elementary moves on the original word. More generally,

all the lemmata of the previous section are paralleled by bypass systems of nicely

ordered sequences of generalised attaching arcs.

In particular, in the previous section we proved (lemma 6.1.32) that generalised

elementary moves in nicely ordered sequences commute — once we expand the defi-

nition a little to say that “when a generalised elementary move does not exist, it has

trivial effect”. A corresponding result is obvious for bypass moves on bypass systems:

in a bypass system, the arcs of attachment are all disjoint, so the bypass moves on

them obviously commute.

First, we consider redundancy.

Lemma 6.1.35 (Redundancy of generalised attaching arcs) Let Γw be a ba-

sis chord diagram on which forwards generalised arcs of attachment FA(i1, j) and

FA(i2, j) exist, with i1 < i2. Then:

(i) After performing upwards bypass moves along the bypass system of FA(i1, j),

then the bypass system of FA(i2, j) consists entirely of trivial bypasses. That is,

performing upwards bypass moves along the bypass system FA(i2, j) has trivial

effect.

(ii) After performing upwards bypass moves along the bypass system of FA(i2, j),

then FA(i1, j) is still well-defined, and after applying it, the result is the same

as simply applying FE(i1, j) alone:

Up(FA(i1, j)) (Γw) = Up(FA(i1, j)) ◦ Up(FA(i2, j)) (Γw)

Proof This is a proof by picture; see figure 6.21. �

We now consider this redundancy in more detail, so that it can be extended to

the case of multiple attaching arcs.
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Figure 6.21: Redundancy with two generalised arcs.

Lemma 6.1.36 (Redundancy in two generalised arcs) Suppose that FA(i1, j1)

and FA(i2, j2) form a nicely ordered sequence of two forwards generalised attaching

arcs on a basis chord diagram Γw. We write FAw(i1, j1), FAw(i2, j2) to denote that

they refer to Γw. After performing upwards bypass moves along FAw(i1, j1), we obtain

a basis chord diagram Γw′, where w′ = FE(i1, j1)(w), by lemma 6.1.22.

On Γw′, FAw(i2, j2) may no longer be a nontrivial generalised attaching arc; but

it is equivalent to the generalised attaching arc FAw′(i2, j2) on Γw′, in the following

sense. If on Γw′ there is no forwards generalised arc FAw′(i2, j2), then j1 = j2 and the

bypass system of FAw(i2, j2) consists entirely of trivial arcs of attachment. Otherwise:

(i) The generalised attaching arc FAw(i2, j2) can be homotoped, rel endpoints, to

FAw′(i2, j2).

(ii) This homotopy consists of a homotopy through generalised arcs, combined with

finitely many (possibly none) local “pushing off” moves, of the sort depicted in

figure 6.22.

(iii) Performing upwards bypass moves along the bypass system of FAw(i2, j2) or of

FAw′(i2, j2) gives the same chord diagram.

Proof This is largely a proof by picture. Note that the chord created by processing

the i2’th − sign in w or w′ (or any word for that matter), in the base point algorithm,
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Figure 6.22: Pushing off trivial parts of a generalised attaching arc.

is the chord emanating from the marked point 1 − 2i2, by lemma 5.1.9. Thus, even

after performing bypass moves along the bypass system of FAw(i1, j1), FAw(i2, j2)

still has an endpoint on the chord created by processing the i2’th − sign in w in the

base point construction algorithm; and similarly, it still has an endpoint on the chord

created by processing the j2’th + sign in the root point construction algorithm. In

particular, FAw(i2, j2) remains adjacent to the same marked points: it has the same

“west end” for its prior chord and the same “east end” for its latter chord.

Recall (from lemma 6.1.20) that FA(i, j) exists nontrivially iff FE(i, j) does. If

FE(i2, j2) does not exist in w′, but did exist in w, then we must have j1 = j2; otherwise

the move FE(i1, j1) would not move the i2’th − sign far enough, and FE(i2, j2)

would still have nontrivial effect. This is precisely the case when FA(i2, j2) becomes

redundant, as described above in lemma 6.1.35 and figure 6.21.

As we have seen, the effect of performing upwards bypass moves along the bypass

system of a forwards generalised attaching arc is to create a “long chord”, to close

off outermost negative regions to the southwest, and to close off outermost positive

regions to the northeast. Some of these outermost negative regions now have parts

of FAw(i2, j2) inside them, and they are pushed off. After performing this homotopy,

we certainly have FAw′(i2, j2).

As for the final claim, the effect of upwards bypass moves along the bypass systems

before and after the homotopy are also best conveyed by picture; as in figure 6.21,

there are many trivial bypasses, and by the principle expressed in figure 6.23, the

effect is the same, after the “pushing off” homotopy of figure 6.22. �

We now consider a general nicely ordered sequence of forwards generalised attach-

ing arcs.
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Figure 6.23: Pushing off makes no difference to effect of bypass moves.

Lemma 6.1.37 Consider the bypass system of the nicely ordered sequence of forwards

generalised attaching arcs on the basis chord diagram Γw

FAw(i1, j1), FAw(i2, j2), . . . , FAw(im, jm).

We use the subscript w to denote that they refer to Γw. After performing upwards

bypass moves along the bypass system of FAw(i1, j1), we obtain a basis chord diagram

Γw′, where w′ = FE(i1, j1)(w), by lemma 6.1.22.

On w′, each of FAw(i2, j2), . . . , FAw(im, jm) may no longer be a nontrivial gener-

alised attaching arc. If the forwards generalised elementary move FE(ik, jk) does not

exist on w′ then the bypass system of FAw(ik, jk) consists entirely of trivial arcs of

attachment. But the other arcs are equivalent to the nontrivial generalised attaching

arcs among FAw′(i2, j2), . . . , FAw′(im, jm) on Γw′, in the following sense.

(i) The nontrivial arcs among FAw(i2, j2), . . . , FAw(im, jm) can be simultaneously

homotoped, rel endpoints, to FAw′(i2, j2), . . . , FAw′(im, jm), placed “northeast

to southwest” as described in definition 6.1.28.

(ii) This homotopy consists of a homotopy through disjoint generalised attaching

arcs, combined with finitely many (possibly none) local “pushing off” moves,

possibly “pushing several arcs off several chords”, of the sort depicted in figure

6.24.

(iii) Performing upwards bypass moves on Γw′ along either bypass system has the

same effect: FAw(i2, j2), . . . , FAw(im, jm) or FAw′(i2, j2), . . ., FAw′(im, jm).
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Figure 6.24: Pushing off trivial parts of multiple generalised attaching arcs.

Up Up

Figure 6.25: Pushing off several generalised attaching arcs makes no difference to
effect of bypass moves.

Proof This is again a proof by picture, except the pictures are a little more compli-

cated than in the previous lemma. Again, the chords created by the processing the

i2’th − sign in w or w′ (or any word for that matter), in the base point algorithm,

emanate from the same marked point 1−2i2, by lemma 5.1.9, so even after performing

bypass moves along the bypass system of FAw(i1, j1), all the other FAw(ik, jk) have

endpoints on the appropriate chords.

The statement about triviality of arcs follows as in the previous lemma.

The picture of the local homotopy is similar, as now the outermost regions closed

off in performing bypass moves along the bypass system of FAw(i1, j1) may now have

parts of several FAw(ik, jk) inside them, but they can all be pushed off simultaneously;

and after performing this homotopy, we have all the FAw′(ik, jk).

As for the final claim, it is again best conveyed by picture. The general arrange-

ment is shown in figure 6.25. �

We now obtain a complete analogy between multiple generalised elementary moves

and multiple generalised attaching arcs.
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Lemma 6.1.38 (Multiple moves & bypass systems) Suppose there is a nicely

ordered sequence of forwards generalised elementary moves

FE(i1, j1), FE(i2, j2), . . . , FE(im, jm)

on w, and equivalently, a nicely ordered sequence of forwards generalised attaching

arcs

FA(i1, j1), FA(i2, j2), . . . , FA(im, jm)

on Γw. If we perform upwards bypass moves along the bypass system of this nicely

ordered sequence of forwards generalised attaching arcs, then we obtain Γw′, where w′

is obtained from w by performing the above forwards generalised elementary moves.

w � FE(i1,j1)◦···◦FE(im,jm) //
OO

��
�O
�O
�O
�O
�O
�O
�O

w′
OO

��
�O
�O
�O
�O
�O
�O
�O

Γw
� Up(FA(i1,j1),...,FA(im,jm)) // Γw′

Proof Proof by induction on m. For m = 1 it is true by lemma 6.1.22; now consider

the case for general m. We know again from lemma 6.1.22 that performing the bypass

moves of FA(i1, j1), we obtain Γw′′, where w′′ = FE(i1, j1)(w). Then, by the previous

lemma, on Γw′′, some of the arcs FAw(i2, j2), . . ., FAw(im, jm) are trivial (namely

those with jk = j1), resulting in only trivial bypass moves; and the rest can be

simultaneously homotoped to FAw′′(i2, j2), . . . , FAw′′(im, jm), again placed properly

“northeast to southwest”, and in such a way that the effect of bypass moves along

their bypass systems is unchanged. Then we are done by induction. �

The same all applies in a backwards version.

6.1.15 Bypass system of a comparable pair

We have now built so much superstructure that we can almost use it. Consider

two comparable words w1 � w2. We have a nicely ordered sequence of generalised
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elementary moves of the pair; now we define some generalised arcs and then a bypass

system.

Definition 6.1.39 (Generalised arcs of comparable pair) Consider two words

w1, w2 ∈ W (n−, n+) which are comparable, w1 � w2. Let βi denote the number of +

signs to the left of the i’th − sign in w2. Then the nicely ordered sequence of forwards

generalised attaching arcs of the pair w1 � w2 is

FA(1, β1), FA(2, β2), . . . , FA(n−, βn−
).

Similarly, we have a nicely ordered sequence of backwards generalised attaching

arcs of the pair w1 � w2, given by

BA(δ1, 1), BA(δ2, 2), . . . , BA(δn+ , n+)

where δj denotes the number of − signs to the left of the j’th + sign in w1.

As in definition 6.1.33, it’s clear that these are nicely ordered sequences.

As noted for elementary moves, while “all − signs move right”, some may not

move at all. If the i’th − sign does not move, then we consider FA(i, βi) to be a null

arc, with a null bypass system. For such − signs at the start of the words, we might

have βi = 0. From all these generalised attaching arcs, we obtain a bypass system.

Definition 6.1.40 (Coarse bypass systems of comparable pair) Let w1 � w2

be comparable words.

(i) The coarse forwards bypass system CFBS(w1, w2) of the pair w1 � w2 is the

bypass system of the nicely ordered sequence of forwards generalised attaching

arcs of w1 � w2.

(ii) The coarse backwards bypass system CBBS(w1, w2) of the pair w1 � w2 is the

bypass system of the nicely ordered sequence of backwards generalised attaching

arcs of w1 � w2.

We have called these bypass systems “coarse”, because they may contain massive

redundancy. We have taken our “individual care” approach, as discussed in our
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menagerie of examples.

Lemma 6.1.41 (Effect of coarse bypass systems)

(i) Performing upwards bypass moves on Γw1 along CFBS(w1, w2) gives Γw2.

(ii) Performing downwards bypass moves on Γw2 along CBBS(w1, w2) gives Γw1.

Proof By lemma 6.1.34, the corresponding sequences of generalised elementary

moves take w1 to w2 and vice versa. The corresponding effect on basis chord di-

agrams is now immediate from lemma 6.1.38. �

In fact, we can say a little more. Performing upwards bypass moves along the

various attaching arcs of CFBS(w1, w2) takes Γw1 to various basis chord diagrams,

corresponding to words in W (n−, n+), always moving forwards in the partial order

�. In categorical language, we have a covariant functor

UpCFBS(w1,w2) : P (CFBS(w1, w2)) → W (n−, n+)

c′ 7→ word of basis diagram Upc′(Γ1)

and a contravariant functor

DownCBBS(w1,w2) : P (CBBS(w1, w2)) → W (n−, n+)

c′ 7→ word of basis diagram Downc′(Γw).

Here we think of the power set as partially ordered by ⊆, and W (n−, n+) partially

ordered by �; recall section 4.2.9. (In section 4.2.9 we considered a functor Upc to

a bounded contact category. Here W (n−, n+) is also a bounded contact category, as

we will see in section 6.2.1, proving proposition 1.3.9.)

Now CFBS (resp. CBBS) is “coarse” in the sense that some proper subset may

map to w2 (resp. w1) under this functor. We may take a minimal subsystem of the

bypass system CFBS(w1, w2) (resp. CBBS(w1, w2) ). By this we mean a subset of

these attaching arcs, such that

(i) this bypass system contains no trivial attaching arcs,
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(ii) performing upwards bypass moves (resp. downwards bypass moves) along these

attaching arcs gives Γw2 (resp. Γw1), and

(iii) performing upwards bypass moves (resp. downwards bypass moves) along any

proper subset of them does not give Γw2 (resp. Γw1).

Note that condition (i) appears redundant, especially given condition (iii). It

is in this case, since by definition CFBS(w1, w2) contains no trivial attaching arcs.

However, in general, performing the reverse of a “pushing off move” might well result

in a bypass system satisfying (ii) and (iii) but not (i). Moreover, not every bypass

system has a minimal sub-system; however, a bypass system with no trivial attaching

arcs does have a minimal sub-system.

We say nothing about the uniqueness of this minimal bypass system, only that at

least one exists. Hence, we use an indefinite article in the following definition.

Definition 6.1.42 (Bypass systems of a comparable pair) Suppose w1 � w2

are comparable words.

(i) A forwards bypass system FBS(w1, w2) of the pair (w1, w2) is a minimal sub-

system of the coarse forwards bypass system CFBS(w1, w2).

(ii) A backwards bypass system BBS(w1, w2) of the pair (w1, w2) is a minimal

sub-system of the coarse backwards bypass system CBBS(w1, w2).

Now, at last, we prove propositions 1.2.18 and 1.2.19. Proposition 1.2.18 is now

obvious from lemma 6.1.41 and the definition of a minimal bypass system.

And, we can now prove proposition 1.2.19; that performing bypass moves on these

systems in the other direction gives a chord diagram whose basis decomposition has

minimum Γw1 and maximum Γw2, with respect to �.

Proof (of proposition 1.2.19) We take a forwards bypass system FBS(w1, w2);

the case of BBS(w1, w2) is similar. From proposition 1.2.18, we know that performing

upwards bypass moves along this system on Γw1 gives Γw2.

Now let Γ be the chord diagram obtained by performing downwards bypass moves

on FBS(w1, w2) = {c1, . . . , cm} where the ci are attaching arcs. We “expand down
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over ups” (lemma 4.2.13). Thus Γ is a sum of 2m chord diagrams: for each of the 2m

subsets of {c1, . . . , cm}, we have a sub-bypass system of FBS(w1, w2), upon which

we perform upwards bypass moves. Each of these 2m chord diagrams is a basis chord

diagram, by proposition 6.1.16. They are not necessarily distinct. But by minimality,

each of the arcs of attachment is nontrivial, so the chord diagram Γw1 appears exactly

once; and also by definition of minimality, Γw2 appears only after performing bypass

attachments on the whole bypass system. For every other basis chord diagram Γw

which appears, it is obtained from Γw1 by some sequence of upwards bypass moves

along forwards attaching arcs; and then by attaching some more upwards bypass

moves along forwards attaching arcs, we can obtain Γw2 ; thus w1 � w � w2. �

Corollary 6.1.43 For every pair w1 � w2, there is a chord diagram such that, if we

write it as a sum of basis chord diagrams, then Γw1 is lexicographically the first and

Γw2 is lexicographically the last. �

6.2 Contact categorical computations

In this section, we will compute the bounded contact category Cb(Γw0, Γw1) for basis

chord diagrams, and for bypass cobordisms.

6.2.1 Bounded contact category of the universal cobordism

We will now prove proposition 1.3.9, computing the bounded contact category of the

universal cobordism, and then proposition 1.3.7, computing the bounded category of

a general cobordism between basis elements. First, some lemmata.

Recall definition 4.2.8, what it means for a chord diagram to exist in a cobordism;

and recall definition 1.3.8 of “universal cobordism”.

Lemma 6.2.1 If the chord diagram Γ exists in U(n−, n+), then Γ = Γw for some

word w ∈ W (n−, n+).

Proof (# 1, by combinatorial skiing) Such an object Γ must satisfy

m(Γ(−)n− (+)n+ , Γ) = 1 and m(Γ, Γ(+)n+ (−)n− ) = 1.
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Γ

Figure 6.26: Chord diagram ski slope.

After edge rounding, either condition is equivalent to the condition that, when the

chord diagram Γ is placed in figure 6.26, there must be one connected component of

the closed curve so obtained. The disc is drawn as a rectangle, with the base point

at the top and the root point at the bottom, and other points on the right or left.

We see that there can be no nesting of arcs on either side; thus

• the arcs from the base and root points must be outermost;

• every other arc must either be outermost on the left side, or outermost on the

right side, or run from the left to right side.

Such a set of arcs joins together to form a “slalom course” (think of the top of the

diagram as the top of a ski slope), successively rounding obstacles on left or right

sides. The sequence in which the skier rounds obstacles on the left (−) or right (+)

precisely gives the word for which the chord diagram is a basis element. �

Proof (#2, by bypasses) If Γ exists in U(n−, n+), then by lemma 4.2.9 there must be

a sequence of upwards bypasses from Γ(−)n− (+)n+ = G0, through a sequence of chord

diagrams G1, . . . , Gk to Gk = Γ, where each Gi satisfies m(Gi, Γ(+)n+ (−)n− ) = 1. This

last condition, after expanding out over the basis elements of Gi, simply counts the

number of basis elements in the decomposition of Gk (every word is � (+)n+(−)n−).

By the work of section 6.1.4 above, we know all possible upwards bypass moves

on basis chord diagrams. An upwards bypass move along a forwards attaching arc

gives another basis diagram, with word obtained by moving a string of − signs past
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a string of + signs. An upwards bypass move along a backwards attaching arc gives

a chord diagram which is a sum of two basis diagrams, namely the original basis

diagram and one preceding it in the partial order. The former has one basis element

in its decomposition (being a basis element!), while the latter has two. Hence the

former satisfies the condition m(·, Γ(+)n+ (−)n− ) = 1, and the latter does not.

Therefore, any bypass attachment upwards must move from a basis chord diagram

to another basis chord diagram. Hence every chord diagram existing in U(n−, n+) is

a basis diagram. �

Out of this, we have a serendipitous corollary: proposition 1.2.20. We will also

prove this proposition directly in section 7.3.1.

Proposition (Size of basis decomposition) Every chord diagram which is not a

basis element has an even number of basis elements in its decomposition.

Proof For a non-basis chord diagram Γ, from proof #1 by skiing above, we must

have m(Γ, Γ(+)n+ (−)n− ) = 0. We see this is equal to the number of words in the

decomposition of Γ which precede (+)n+(−)n−. But every word in W (n−, n+) precedes

(+)n+(−)n− , so m = 0 says that Γ has an even number of basis elements in its

decomposition. �

Conversely, if we take the direct proof of this proposition in section 7.3.1, then we

can obtain a third proof of lemma 6.2.1. For then we know a non-basis element Γ has

an even number of basis elements in its decomposition, hence m(Γ, Γ(+)n+ (−)n− ) = 0,

hence Γ cannot occur in U(n−, n+).

Lemma 6.2.2 Every basis chord diagram Γw, w ∈ W (n−, n+), exists in U(n−, n+).

Proof Section 6.1 above shows how to construct a bypass system

FBS((−)n−(+)n+, w) on Γ(−)n− (+)n+

such that performing upwards bypass attachments gives Γw. Each successive bypass

attachment gives a basis diagram Γw′, where w′ � w, so m(Γw′, Γ(+)n+ (−)n− ) = 1,

hence the attaching arc is inner, hence Γw′ exists in U(n−, n+). �
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Lemma 6.2.3 For any two words w, w′ in W (n−, n+) with w � w′, the cobordism

M(Γw, Γw′) exists in U(n−, n+).

Proof We have seen that Γw exists in U(n−, n+). We now take the forwards by-

pass system FBS(w, w′) on Γw such that performing upwards bypass attachments

gives Γw′. Again, each successive bypass attachment gives a basis chord diagram,

which when paired with Γ(+)n+ (−)n− via m gives 1, hence is inner, hence Γw′ exists in

U(n−, n+) above Γw; and so M(Γw, Γw′) exists in U(n−, n+). �

Now we have proposition 1.3.9:

Proposition (Bounded contact category of universal cobordism) For

any n−, n+, there is an isomorphism of categories

Cb (U(n−, n+)) ∼= W (n−, n+).

The word w ∈ W (n−, n+) corresponds to the basis chord diagram Γw.

Proof Lemma 6.2.1 above shows ObCb(U(n−, n+)) ⊆ W (n−, n+). Lemma 6.2.2

above shows ObCb(U(n−, n+)) ⊇ W (n−, n+). Lemma 6.2.3 above shows that the set

of morphisms Mor Cb(U(n−, n+)) contains every pair related by the partial order �

on W (n−, n+). For any pair of words w, w′ with w � w′, M(Γw, Γw′) is not tight,

hence cannot exist in the tight U(n−, n+). Composition of morphisms in the bounded

contact category is simply transitivity of the partial order �. �

And now proposition 1.3.7:

Proposition (Bounded contact category of basis cobordism) For words

w0 � w1 in W (n−, n+) corresponding to basis chord diagrams Γw0 , Γw1,

Cb (Γw0 , Γw1)
∼= W (w0, w1).

The word w ∈ W (w0, w1) corresponds to the basis chord diagram Γw.

Proof The cobordism M(Γw0, Γw1) with tight contact structure exists in the uni-

versal cobordism U(n−, n+), as part of the preceding proposition. Hence its bounded

contact category is the full sub-category on those objects Γw with w0 � w � w1. �
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6.2.2 Bounded contact category of a bypass cobordism

We now compute the bounded contact category of a bypass cobordism; that is, we

compute Cb(Γ0, Γ1) for any chord diagrams Γ0, Γ1 such that Γ1 is obtained from an up-

wards bypass move on Γ0. We prove that Cb(Γ0, Γ1) ∼= W (n−, n+) for some n−, n+ that

we will now describe; these n−, n+ are essentially largest possible so that U(n−, n+)

embeds into the bypass attachment.

A general bypass attachment in a general chord diagram Γ can be considered as

shown in figure 6.27. Let c be an attaching arc: as described in section 6.1.3, c has

inner and outer + and − regions. The boundary of the inner + region consists of:

several arcs on the boundary of the disc; two chords of the dividing set which intersect

c; and several other chords of Γ. Of these other chords of Γ bounding the inner +

region, let the number of those which lie anticlockwise of the outer − region and

clockwise of the inner − region be n− − 1. Similarly, the boundary of the inner −

region consists of: several arcs on the boundary of the disc; two chords of Γ which

intersect c; and several other chords of Γ. Of these other chords, let the number which

lie anticlockwise of the outer + region and clockwise of the inner + region be n+ − 1.

Theorem 6.2.4 (Bounded contact category of bypass cobordism) Let Γ1 be

obtained from Γ0 by a single upwards bypass attachment, so that M(Γ0, Γ1) is tight.

Let n−, n+ be defined as described above, and depicted in figure 6.27. Then

Cb(Γ0, Γ1) ∼= W (n−, n+).

In figure 6.27, with chord diagram Γ0 and attaching arc c, we have a region R

which contains sub-arcs of n−+n++1 chords from Γ0: arcs of three chords intersecting

c; and arcs of the (n− − 1) + (n+ − 1) other chords described above bounding the

inner regions of c. Note that, with base point as shown, R encloses precisely the chord

diagram Γ(−)n− (+)n+ . Furthermore, the same region R on Γ1 encloses a region which

contains precisely the chord diagram Γ(+)n+ (−)n− . Thus we may think of R × I as an

“embedded universal cobordism” U(n−, n+) in M(Γ0, Γ1) (however, we do not know

that the vertical sutures also embed).

The point of the theorem is that the bounded contact category of M(Γ0, Γ1) is
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Figure 6.27: A general bypass attachment. Possible locations of other chords are
denoted by black dots (. . .). The region R is enclosed by the black curve. Its base
point is denoted by the solid red dot.
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precisely that of U(n−, n+); all nontrivial bypasses attached in M(Γ0, Γ1) upwards

from Γ0 can be attached within R; and even as more bypasses are attached, they can

be attached along R. Since chord diagrams exist in M(Γ0, Γ1) if and only if they can

be reached by bypasses (lemma 4.2.9), the theorem is the consequence of the following

two lemmas.

For a word w ∈ W (n−, n+), let Gw denote the chord diagram which consists of

taking Γ0, and within the region R, replacing the chord diagram Γ(−)n− (+)n+ with the

chord diagram Γw.

Lemma 6.2.5 Let M(Γ0, Γ1) be a bypass cobordism as above. For any word w in

W (n−, n+), the chord diagram Gw exists in M(Γ0, Γ1).

Proof The work of section 6.1 gives a bypass system

FBS ((−)n−(+)n+, w) on Γ(−)n− (+)n+

upon which upwards bypass attachments give Γw. Moreover, by section 6.2.1, such

bypasses also exist in the universal cobordism U(n−, n+).

With extra chords adjoined outside R, this gives a bypass system on Γ0, which we

denote {c0, . . . , ck−1}, upon which upwards bypass moves give Gw.

As we successively perform these upwards bypass moves, let the diagrams ob-

tained be G1, . . . , Gk = Gw; restricting to the region R, these give basis diagrams

D1, . . . , Dk = Γw. We use lemma 4.2.5, that the tightness (or overtwistedness) of a

cobordism is preserved upon removing common outermost chords on the upper and

lower chord diagrams.

We have that bypasses exist along each ci within M(Di, Γ(+)n+ (−)n− ), so

m
(
Di+1, Γ(+)n+ (−)n−

)
= 1.

Adding some extraneous arcs we have

m (Gi+1, Γ1) = 1;
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and hence these attaching arcs are inner at each stage; so bypasses exist along each

ci within M(Gi, Γ1). Thus each chord diagram Gi exists in M(Γ0, Γ1); and hence so

does Gk = Gw. �

Lemma 6.2.6 Consider the chord diagram Gw for w ∈ W (n−, n+), and the cobor-

dism M(Gw, Γ1) within M(Γ0, Γ1) as described above. Let c be a nontrivial attaching

arc in Gw, such that a bypass exists upwards along c in the tight M(Gw, Γ1). Then

c is isotopic to an attaching arc lying entirely in the region R, and Upc Gw is of the

form Gw′ for some word w′ ∈ W (n−, n+).

Proof We consider all the possible locations of the nontrivial attaching arc c.

First suppose c is isotopic (through attaching arcs on Gw) to an attaching arc

lying entirely in R. Then c can be taken as an attaching arc in Γw. If it is a forwards

attaching arc, then it leads to a basis chord diagram Γw′ within R, or the chord

diagram Gw′ in M(Γ0, Γ1), and by the previous lemma exists. If it is a backwards

attaching arc, its existence is determined by m(Upc Gw, Γ1), which by lemma 4.2.5

(cancelling corresponding outermost chords) is equivalent to m(Upc Γw, Γ(+)n+ (−)n− ),

which is 0 since Upc Γw will be a sum of two basis elements. Hence the bypass does

not exist.

We may therefore assume that c is not isotopic (in Gw) to an attaching arc in

R; hence it intersects chords of Gw not entering R. Since c is nontrivial, c intersects

three distinct chords of Gw. Moreover, c must have at least one endpoint on a chord

which does not enter R (if both endpoints can be isotoped into R then so can the

middle intersection point).

We now consider the arrangement of dividing curves on the whole boundary S2 of

M(Gw, Γ1). We can regard this S2 as consisting of four regions: two discs arising from

the region R (containing Γw and Γ(+)n+ (−)n− as dividing sets respectively) separated

by two annuli containing identical dividing sets; although in rounding corners, the two

identical dividing sets on the annuli meet each other relatively shifted by one marked

point. Taking the general picture of a bypass attachment on Γ0 depicted in figure

6.27, we can draw the dividing set on this S2 by drawing Γ1 “on the outside” of that

diagram. We obtain figure 6.28, in which the four concentric regions are respectively
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(from inside to out): the disc with dividing set Γw; the two annuli with identical

(but relatively shifted) dividing sets; and then the disc with Γ(+)n+ (−)n− (although in

“flipping” this disc to draw it in our diagram, the signs of regions are reversed).

Suppose now that the middle intersection point of c with Gw lies on a chord not

entering R; hence half of c can be isotoped to lie entirely outside R. We now observe

from the arrangement of 6.28, arising from the clockwise rotation (as depicted in the

diagram) of Γ1 relative to Gw, that we may slide an endpoint of c along the dividing

set on the sphere S2, until it approaches the middle intersection point of c, and the

result is as depicted in figure 6.29. Hence performing an upwards bypass move along

c would create a dividing set with multiple components; so it cannot exist inside the

tight M(Gw, Γ1) ⊂ M(Γ0, Γ1). Thus no such bypass exists.

We may now assume that the middle intersection point of c with Gw lies on a

chord entering R, hence which can be considered a chord of Γw. The two endpoints

of c may:

(i) both lie on chords outside R, or

(ii) only one endpoint may lie on a chord which enters R.

These two cases are depicted in figure 6.30.

Consider again figure 6.28, which shows the arrangement of chords on Gw, includ-

ing the base and root points of Γw. We see that if c exits R and then intersects a

chord of Gw outside R, then c exits R either through a positive region on the eastside

of Γw, or through a negative region on the westside of Γw.

In case (i), therefore, c exits R at one end through a positive region p on the

eastside; and at the other end through a negative region n on the westside. Now, we

again slide the endpoints of c along the dividing set on the sphere S2, until they lie in

R; the result is depicted in figure 6.31(a). If either p or n is enclosed by an outermost

chord in Γw, then it is clear that performing an upwards bypass move along c will

create a dividing set with multiple components. Thus we may assume neither p nor

n is enclosed by an outermost chord. Hence the middle intersection point of c lies

on a non-outermost chord γ of Γw. Since Γw is a basis diagram, γ runs from the

eastside to the westside and its endpoints are adjacent to where c exits R. There are
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Figure 6.28: General dividing set on M(Gw, Γ1) within a general bypass cobordism.
Each set of black dots (. . .) represents extra chords; corresponding sets of black dots
contain copies of the same arrangements of chords.
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Figure 6.29: Middle intersection point of c lies outside R.
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c c

Figure 6.30: Middle intersection point of c lies inside R: cases (i) and (ii).
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Figure 6.32: Arrangements in case (ii).

two possibilities, depicted in 6.31(b) and (c). In the situation of figure 6.31(b), again

clearly an upwards bypass move along c disconnects the dividing set. In the situation

of figure 6.31(c), we see that c has become a backwards attaching arc on Γw; and

hence no bypass exists above it in M(Γw, Γ(+)n+ (−)n− ); and hence not in M(Gw, Γ1)

either.

In case (ii), without loss of generality we may assume c exits R through a positive

region p on the eastside; the case of exiting through a negative westside region is

similar. Again we slide the endpoint of c outside R along the dividing set on the

sphere S2 until it lies in R; the result is depicted in figure 6.32(a). If p is enclosed

by an outermost chord in Γw, then performing an upwards bypass move along c
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disconnects the dividing set. So the two chords γ1, γ2 of Γw adjacent to the exit point

of c are non-outermost chords, hence proceed to the westside. The region p may

have several components of Γw on its boundary; since Γw is a basis chord diagram,

in addition to γ1, γ2 on the boundary of p, there may also be chords of Γw enclosing

negative outermost regions on the westside. However if c intersects any of these then

its final intersection point must also lie on the same chord, contradicting nontriviality

of c. Thus the middle intersection point of c lies on γ1 or γ2, and lies in one of the two

situations depicted in figure 6.32(b). Thus c has become either trivial or backwards;

in neither case can a bypass exist above it. �



Chapter 7

Main results and consequences

We now prove our main theorems 1.2.16 and 1.2.15, and then consider some conse-

quences and further properties of contact elements.

7.1 Proof of main results

We now prove theorem 1.2.16, that there is a bijection between chord diagrams and

pairs of comparable words w1 � w2. This map takes a chord diagram to the lexico-

graphically first and last elements occurring in its basis decomposition.

Corollary 6.1.43 above shows that there is a map

{
Comparable pairs of

words w1 � w2

}
−→

{
Chord

Diagrams

}

taking (w1, w2) to a chord diagram in which Γw1 is lexicographically the first in its

basis decomposition, and Γw2 the last. Since basis decompositions are unique, this

map is clearly injective. Moreover, by proposition 1.2.14, proved in section 3.2, these

two sets have the same cardinality. Thus we have the desired bijection.

This proves the main theorem 1.2.16. Moreover, the proof of the main theorem

shows that every chord diagram can be constructed by the methods of section 6.1. In

particular, if we take any contact element and write it as a sum of basis vectors vw,

and take the lexicographically first and last basis elements vw−
, vw+ among them, we

172
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have w− � w � w+. This proves theorem 1.2.15.

We may therefore formalise the notation described in section 1.2.5.

Definition 7.1.1 (Notation for contact elements) Given two words w− � w+,

we write [w−, w+] or [vw−
, vw+ ] to denote the unique contact element which has vw−

and vw+ respectively as first and last basis element. We write [Γw−
, Γw+ ] to denote

the corresponding chord diagram.

In practice, as in the foregoing, we will abuse this notation, identifying contact ele-

ments with chord diagrams and basis contact elements with words.

Note that in this definition, “first and last” could be according to the lexicographic

order or the partial order �; it makes no difference.

7.2 Consequences of main results

7.2.1 Up and Down

The main theorem, along with the idea of proposition 1.2.19, gives the following

corollary, which will be needed subsequently.

Corollary 7.2.1 (Upwards vs. downwards bypass moves)

(i) Suppose there is a minimal bypass system B on Γw1 such that attaching bypasses

above Γw1 along B gives a tight M(Γw1, Γw2). (Minimality here means: B has

no trivial attaching arcs; no proper subset B′ ⊂ B satisfies UpB′(Γw1) = Γw2).

Then DownB(Γw1) = [Γw1, Γw2].

(ii) Suppose there is a minimal bypass system B on Γw2 such that attaching bypasses

below Γw2 along B gives a tight M(Γw1, Γw2). (Minimality here means: B has no

trivial attaching arcs; no proper subset B′ ⊂ B satisfies DownB′(Γw2) = Γw1).

Then UpB(Γw2) = [Γw1, Γw2 ].

Proof We use minimality of B as in the proof of proposition 1.2.19. From tightness

we have immediately w1 � w2. Moreover by the bounded contact category compu-

tation (proposition 1.3.7), we have that all chord diagrams occurring inside are basis
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diagrams; so every attaching arc of B is forwards. Expanding the downwards by-

pass system as a sum over all subsets of upwards bypasses (lemma 4.2.13) and using

proposition 6.1.16, we have a sum of basis chord diagrams, where w1 is the minimal

element occurring in this sum and w2 the maximum; and w1 and w2 occur only once

by minimality, hence do not cancel. �

7.2.2 Generalised bypass triple Γ−, Γ+, [Γ−, Γ+]

We now consider in more detail the relationship between the chord diagrams Γ−, Γ+

and Γ = [Γ−, Γ+]. By the construction of the main theorem, we see that these three

chord diagrams form a generalised bypass triple, which we may regard as a type of

“exact triangle” in the contact category, as described in sections 4.2.5 and 4.2.10.

We have a bypass system c− = FBS(w−, w+) on Γ− such that Upc−
(Γ−) = Γ+ and

Downc−(Γ−) = Γ (and which is minimal); moreover there are corresponding bypass

systems c+ on Γ+ and c on [Γ−, Γ+] obtained by regarding the bypass moves as local

60◦ rotations. In addition, we have a minimal bypass system d+ = BBS(w−, w+) on

Γ+ such that Downd+(Γ+) = Γ− and Upd+
(Γ+) = Γ; along with a corresponding d−

on Γ− and d on Γ. These various bypass systems take the three chord diagrams to

each other:

Γ

Down(c)

��
Up(c)

zz

Γ

Down(d)

��
Up(d)

zz
Γ−

Down(c−)

99

Up(c−)
-- Γ+

Up(c+)

ZZ

Down(c+)

mm Γ−

Down(d−)

99

Up(d−)
-- Γ+

Up(d+)

ZZ

Down(d+)

mm

(Note: although c− is minimal, c and c+ need not be. Similarly, d+ is minimal, but

d and d− need not be.)

The morphisms in these triples correspond to cobordisms (sutured cylinders)

M(Γ−, Γ+), M(Γ+, Γ) and M(Γ, Γ−).
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Moreover, performing bypass attachments along c, c−, c+ or along d, d−, d+, up or

down, give contact structures on these sutured solid cylinders.

Proposition 7.2.2 (Contact generalised bypass triple)

(i) The contact structure on M(Γ, Γ−) obtained from performing upwards bypass

attachments on c or downwards bypass attachments on c− is tight.

(ii) The contact structure on M(Γ−, Γ+) obtained from performing upwards bypass

attachments on c− or d− or downwards bypass attachments on c+ or d+ is tight.

(iii) The contact structure on M(Γ+, Γ) obtained from performing upwards bypass

attachments on d+ or downwards bypass attachments on d is tight.

Note that our computation of the bounded contact category of a basis cobordism

implies that the contact structure on M(Γ−, Γ+) by attaching bypasses above c− or

below d+ is tight; but our proof will be independent of this result, and instead use

pinwheels.

Proof We show that c− = FBS(w−, w+) has no pinwheels (see section 4.1.5 above

or [29]), upwards or downwards. Suppose there were an upwards pinwheel P ; the

downwards case is similar. Recall (definition 4.1.2) the boundary of P consists of

arcs αi and γi, where the γi run along the dividing set Γ−, and the αi run along the

attaching arcs of the bypass system c−. Since Γ− is a basis chord diagram, its chords

are ordered by the stage of the base point construction algorithm at which they are

constructed; let si denote the stage at which γi is constructed.

Now, FBS(w−, w+) consists of nontrivial forwards attaching arcs, and hence each

attaching arc has a negative prior outer region. Moreover, proceeding along each

attaching arc from prior endpoint to latter endpoint, the numberings of the chords

of Γ− which it intersects strictly increase. If P is a negative region, this implies that

sk < sk−1 < · · · < s1 < sk, a contradiction. Similarly, if P is a positive region, we

have s1 < s2 < · · · < sk < s1, also a contradiction.

So there are no pinwheels in c−, upwards or downwards. This implies that per-

forming upwards (resp. downwards) bypass attachments along c− gives a tight contact
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structure on M(Γ−, Γ+) (resp. M(Γ, Γ−)). Since c+ is the corresponding bypass sys-

tem on Γ+, c− and c+ give two sets of bypasses lying in the same location, which

“undo each other”; so performing downwards bypass attachments along c+ gives a

tight contact structure on M(Γ−, Γ+). Similarly, performing upwards bypass attach-

ments along c gives a tight contact structure on M(Γ, Γ−).

Similar arguments for d+ = BBS(w−, w+) give the remaining desired tight contact

structures. �

The weaker result that

m(Γ, Γ−) = m(Γ+, Γ) = m(Γ−, Γ+) = 1

can be proved by other means. For instance, it can be proved simply by expanding

out over basis elements: the only Γw in the decomposition of Γ satisfying Γw � Γ− is

Γw = Γ− itself, and similarly for Γ+.

This weaker result can also be seen directly, by considering the decomposition

algorithms of section 5.2, which decompose Γ into its basis elements by performing

bypass moves. In the algorithms, these bypass moves were considered purely combi-

natorially; but of course we can consider the contact manifolds obtained by attaching

bypasses. Every basis element is obtained by attaching some bypasses to Γ. Most

basis elements are obtained by attaching some bypasses above and some below. But

Γ− is obtained by attaching only upwards bypasses, and is the only such basis element

in Γ. Similarly, Γ+ is the one and only basis element in Γ obtained by attaching only

downwards bypasses. Thus the basis decomposition algorithm (either one) naturally

constructs contact structures on M(Γ, Γ−) and M(Γ+, Γ). However it does this by

attaching bypasses along arcs that may in general intersect; it will not always give a

nice bypass system.

Nonetheless, consider M(Γ, Γ−). We may perform rounding and un-rounding of

corners and isotopies, and each chord created in the base point construction algorithm

for Γ− can be successively isotoped off the top of the cylinder, and pushed down the

cylinder into the bottom disc, where it simplifies Γ to the chord diagram on the unused

disc of an appropriate Γw·. In this way we see m(Γ, Γ−) = 1 directly; and similarly
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we may see m(Γ+, Γ) = 1.

7.2.3 Categorical meaning of main theorems

Interpreting the main theorems and the above remarks in the language of the contact

category, we now easily obtain the categorical results announced in the introductory

section 1.3.4.

First, we have proposition 1.3.10.

Proposition (Tight basis cobordisms elementary) Let Γ0 and Γ1 be basis chord

diagrams, and suppose M(Γ0, Γ1) is tight. Then M(Γ0, Γ1) is elementary. �

Indeed, this follows immediately from proposition 7.2.2(ii).

We can now regard

−→ Γ1 −→ [Γ0, Γ1] −→ Γ0 −→

as an exact triangle in C(D2, n). Taking the (somewhat unsatisfactory) notion of

“cone” described in section 4.2.10, we can regard [Γ0, Γ1] as the “cone” of the mor-

phism Γ0 −→ Γ1 arising from the bypass system FBS(Γ0, Γ1).

Our main theorems show that the bypass system FBS(Γ0, Γ1) is in some sense

canonical, or rather, has canonical effect: although FBS(Γ0, Γ1) can be any minimal

subsystem of CFBS(Γ0, Γ1), any choice gives DownFBS(Γ0,Γ1) Γ0 = [Γ0, Γ1]. So we

will describe [Γ0, Γ1] as the cone of the tight morphism Γ0 −→ Γ1. We then obtain a

well-defined cone of any tight morphism between basis chord diagrams.

Thus, chord diagrams, or objects of C(D2, n + 1), correspond precisely, via this

cone construction, to morphisms Γ0 −→ Γ1 of basis elements with Γ0 � Γ1, which

are precisely the morphisms of the bounded contact category Cb(U(n−, n+)) of the

universal cobordism. Once we phrase this categorically, we immediately obtain the

following proposition.

Proposition 7.2.3 (Chord diagrams as cones) Chord diagrams with n+1 chords

and euler class e are in bijective correspondence with the morphisms of the bounded
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contact category Cb(U(n−, n+)) of the universal cylinder:

Mor
(
Cb (U(n−, n+))

)
∼= Ob

(
C(D2, n + 1, e)

)
.

Moreover, under the inclusion

ι : Cb (U(n−, n+)) →֒ C(D2, n + 1, e),

every morphism of Cb(U(n−, n+)) has a well-defined cone in C(D2, n+1, e); the map-

ping

Cone ◦ ι : Mor
(
Cb (U(n−, n+))

) ∼=
−→ Ob

(
C(D2, n + 1, e)

)

(Γw0 → Γw1) 7→ Cone (ι(Γw0 → Γw1)) = [Γw0, Γw1]

gives the bijection explicitly. �

We also have the following “snake lemma”, which is not particularly profound in

terms of contact geometry, but might nonetheless be of interest from the categorical

perspective.

Lemma 7.2.4 (“Snake lemma”) Consider a tight cobordism M(Γ1, Γ2), where

Γ1 = [Γ−
1 , Γ+

1 ] and Γ2 = [Γ−
2 , Γ+

2 ].

Then there is a tight morphism between basis chord diagrams Γ−
1 −→ Γ+

2 .

The reason for the name “snake lemma” is from the following diagram, regarding

cobordism as a map of “exact triangles”. All the arrows represent tight cobordisms.

// Γ+
2

// [Γ−
2 , Γ+

2 ] // Γ−
2

//

// Γ+
1

// [Γ−
1 , Γ+

1 ] //

KS

Γ−
1

//

ii

Proof Since m([Γ−
1 , Γ+

1 ], [Γ−
2 , Γ+

2 ]) = 1, by proposition 1.3.4, the number of pairs

(w1, w2) with Γw1 ∈ [Γ−
1 , Γ+

1 ], Γw2 ∈ [Γ−
2 , Γ+

2 ] and w1 � w2 is odd. Hence there is at
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least one such pair of comparable words in these decompositions. But by theorem

1.2.15, Γ−
1 is an absolute minimum for [Γ−

1 , Γ+
1 ] with respect to �, and Γ+

2 is an

absolute maximum for [Γ−
2 , Γ+

2 ] with respect to �. Hence Γ−
1 � Γ+

2 , and so there is a

morphism Γ−
1 −→ Γ+

2 which represents a tight cobordism. �

7.3 Properties of contact elements

We can now give some further properties of contact elements; in particular, about

which basis elements occur in the decomposition of a contact element.

7.3.1 How many basis elements in a decomposition?

A natural first question to ask about contact elements is how many basis elements

they contain in their decomposition. The answer is given by proposition 1.2.20:

Proposition (Size of basis decomposition) Every chord diagram which is not a

basis element has an even number of basis elements in its decomposition.

We found a proof of this result in section 6.2.1, by “skiing”; we can now give a

more direct proof.

Proof Consider a non-basis chord diagram Γ. Then as we perform a decomposition

algorithm (either one from section 5.2) on Γ, we obtain chord diagrams Γw· (or Γ·w)

in sets Υk associated to words of length k. For each basis chord diagram in the

decomposition of Γ, it first appears at some stage of this algorithm (possibly not the

last). But when it does appear, it comes from a non-basis chord diagram which is

related to it by a bypass move. However, by lemma 6.1.14, the only non-basis chord

diagrams related by a bypass move to a given basis chord diagram are sums of two

basis chord diagrams. It must be this pair of basis chord diagrams which appears;

and so the basis elements come in pairs. �

Actually we essentially already gave this proof in our remark after lemma 5.2.3,

that the base point decomposition algorithm gives a binary tree of chord diagrams.
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In fact, we have proved a little more: if we write out the basis elements of Γ in

lexicographic order, then the (2j−1)’th and 2j’th are bypass-related (and as we group

and sum according to the binary tree, we obtain more bypass-related diagrams). A

similar result also holds if we use a right-to-left lexicographic order.

This proposition also immediately gives a criterion for whether an element is a

basis element or not; unsurprisingly, it is identical to a criterion for existing in a

universal cobordism (see section 6.2.1), and can alternatively be proved by skiing as

in first proof of lemma 6.2.1.

Lemma 7.3.1 (Test for basis element) For any chord diagram Γ with n chords

and euler class e = n+ − n−,

m
(
Γ(−)n− (+)n+ , Γ

)
= m

(
Γ, Γ(+)n+ (−)n−

)

=

{
1 if Γ is a basis chord diagram

0 otherwise

�

7.3.2 Symbolic interpretation of outermost regions

As it turns out, the appearance of certain symbols in both words w−, w+ implies the

appearance of certain symbols in all the basis elements of Γ = [w−, w+], and means

that Γ has an outermost chord in a specific place.

Lemma 7.3.2 (Outermost regions at base point) Let Γ = [Γ−, Γ+] = [w−, w+].

The following are equivalent.

(i) Γ has an outermost chord enclosing a negative region (resp. positive region) at

the base point.

(ii) For every Γw in the basis decomposition of Γ, w begins with a − (resp. +).

(iii) Γ− and Γ+ both have outermost chords enclosing a negative region (resp. positive

region) at the base point, i.e. w−, w+ both begin with a − (resp. begin with a

+).
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Proof That (i) implies (ii) follows immediately from considering the decomposition

algorithm. That (ii) implies (iii) is obvious. That (iii) implies (i) follows immediately

from

B−[Γw1, Γw2] = [B−Γw1, B−Γw2] = [Γ−w1 , Γ−w2]. �

There is a similar result at the root point.

Lemma 7.3.3 (Outermost regions at root point) Let Γ = [Γ−, Γ+] = [w−, w+].

The following are equivalent.

(i) Γ has an outermost chord enclosing a negative region (resp. positive region) at

the root point.

(ii) For every Γw in the basis decomposition of Γ, w ends with a − (resp. +).

(iii) Γ− and Γ+ both have outermost chords enclosing a negative region (resp. positive

region) at the root point, i.e. w−, w+ both end with a − (resp. end with a +).�

We can detect other outermost chords in a similar way; in particular, outermost

chords enclosing negative regions on the westside, and outermost chords enclosing

positive regions on the eastside. First, we note from lemma 5.1.9 that a basis chord

diagram Γw has a negative outermost chord on the westside, at (−2j−1,−2j), if and

only if the (j + 1)’th − sign in w is following. Similarly, Γw has a positive outermost

chord on the eastside, at (2j, 2j + 1), if and only if the (j + 1)’th + sign in w is

following.

As mentioned in section 3.1.2, creation and annihilation operators can be defined,

not just at the base point, but elsewhere. One may define linear operators on SFH

which have the effect of adding or removing an outermost chord at any given site.

Definition 7.3.4 (Eastside/westside creation operators)

(i) For each i = 0, . . . , n−, the operator

Bwest,i
− : SFH(T, n + 1, e) → SFH(T, n + 2, e − 1)
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takes a chord diagram with n+1 chords and relative euler class e, and produces

a chord diagram with n + 2 chords and relative euler class e − 1, adding an

outermost chord enclosing a negative region on the westside, between points

(−2i − 3,−2i − 2) (as labelled on the chord diagram with n + 2 chords).

(ii) For each j = 0, . . . , n+, the operator

Beast,j
+ : SFH(T, n + 1, e) → SFH(n + 2, e + 1)

takes a chord diagram with n+1 chords and relative euler class e, and produces

a chord diagram with n + 2 chords and relative euler class e + 1, adding an

outermost chord enclosing a positive region on the eastside, between marked

points (2j + 2, 2j + 3).

Note that Bwest,0
− adds an outermost negative region not at the base point, but just

west of it (“B− = Bwest,−1
− ”); and then the various Bwest,i

− add outermost regions fur-

ther anticlockwise, until B
west,n−

− adds an outermost region “east” of the original root

point, to create a new root point further anticlockwise of the original one. Similarly

for the Beast,j
+ .

Definition 7.3.5 (Eastside/westside annihilation operators)

(i) For each i = 0, . . . , n−, the operator,

Awest,i
+ : SFH(T, n + 1, e) −→ SFH(T, n, e + 1)

takes a chord diagram with n+1 chords and relative euler class e, and produces

a chord diagram with n chords and relative euler class e + 1, by joining the

chords at positions (−2i − 2,−2i − 1).

(ii) For each j = 0, . . . , n+, the operator

Aeast,j
− : SFH(T, n + 1, e) −→ SFH(T, n, e − 1)

takes a chord diagram with n+1 chords and relative euler class e, and produces



CHAPTER 7. MAIN RESULTS AND CONSEQUENCES 183

a chord diagram with n chords and relative euler class e − 1, by joining the

chords at positions (2j + 1, 2j + 2).

So Awest,0
+ joins chords not at the base point, but just west of it (“A− = Awest,−1

− ”);

and the various Awest,i
+ join chords further anticlockwise, until A

west,n−

+ actually joins

chords on the “east” of the original chord diagram, namely those at the root point

and immediately east of it.

We see that, as with our original annihilation and creation operators at the base

point, we have

Awest,j
+ ◦ Bwest,j

− = 1, Aeast,j
− ◦ Beast,j

+ = 1,

and we will investigate further relations in section 8.2. The numbering of these

operators may seem a little strange, but the reasons for it will become apparent in

section 8.2.

It’s easy from lemma 5.1.9 to see that Bwest,j
− has the effect on Γw of producing

Γw′, where w′ is obtained from w as follows. If 0 ≤ j ≤ n− − 1, then we insert a −

sign in w immediately before or after the (j + 1)’th − sign; we can also regard this

as “splitting the (j + 1)’th − sign into two − signs”. If j = n−, then we add a −

sign at the end of w. Similarly, Beast,j
+ adds a + sign immediately before or after the

(j +1)’th + sign, “splitting the (j +1)’th + sign in two”, if 0 ≤ j ≤ n+ −1; and adds

a + sign at the end, if j = n+.

We also observe the effect of annihilation operators. The operator Awest,j
+ has the

effect of deleting the (j + 1)’th − sign, for 0 ≤ j ≤ n− − 1; and for j = n−, it

deletes the − sign at the end of the word, if there is one, or returns 0 if the word

ends in a +. The operator Aeast,j
− has the effect of deleting the (j + 1)’th + sign, for

0 ≤ j ≤ n+ − 1; and for j = n+, it deletes the + sign at the end of the word, if there

is one, else returns 0.

Lemma 7.3.6 (Outermost negative regions on westside) Let Γ = [Γ−, Γ+] be

a chord diagram with n+1 chords. Let j be an integer from 1 to n−−1. The following

are equivalent.

(i) Γ has an outermost chord enclosing a negative region on the westside, between

the points (−2j − 1,−2j).



CHAPTER 7. MAIN RESULTS AND CONSEQUENCES 184

(ii) For every Γw in the basis decomposition of Γ, Γw has an outermost chord en-

closing a negative region between (−2j − 1,−2j). Equivalently, every such w

has the (j + 1)’th − sign following (i.e. not the first in its block).

(iii) Both Γ− and Γ+ have an outermost chord enclosing a negative region between

(−2j − 1,−2j), i.e. w−, w+ both have (j + 1)’th − sign following.

Proof The proof is similar to the previous two lemmas, after noting

Bwest,j−1
− Γ = Bwest,j−1

− [Γ−, Γ+] = [Bwest,j−1
− Γ−, Bwest,j−1

− Γ+],

adding a − sign immediately after the j’th − sign in every word occurring in the

decomposition of Γ, so that the (j + 1)’th − sign is following. �

There is a similar lemma on the eastside.

Lemma 7.3.7 (Outermost positive regions on eastside) Let Γ = [Γ−, Γ+] be a

chord diagram with n+1 chords. Let j be an integer from 1 to n+ − 1. The following

are equivalent.

(i) Γ has an outermost chord enclosing a positive region on the eastside, between

the points (2j, 2j + 1).

(ii) For every Γw in the basis decomposition of Γ, Γw has an outermost chord en-

closing a positive region between (2j, 2j +1). Equivalently, every such w has the

(j + 1)’th + sign following (i.e. not the first in its block).

(iii) Both Γ− and Γ+ have an outermost chord enclosing a positive region between

(2j, 2j + 1), i.e. w−, w+ both have (j + 1)’th + sign following. �

All the lemmas in this section say that, if a chord diagram has an outermost region

in a specific place, then so do all the basis chord diagrams in its decomposition. In

particular, as we proceed through the decomposition algorithm, there is no decom-

position at that chord. It is not difficult to see this explicitly from the decomposition

algorithm.
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7.3.3 Relations from bypass systems

We now examine the various basis elements within the decomposition of a chord

diagram Γ = [Γ−, Γ+] = [w−, w+], using the bypass systems constructed in chapter 6.

Definition 7.3.8 (Basis chord diagram in Γ) If Γw appears in the decomposition

of Γ, we write Γw ∈ Γ.

After all, Z2 addition can be regarded as boolean addition of sets.

First, we observe that in addition to the tight contact cylinders of proposition

7.2.2, we have many more tight cylinders within them.

Lemma 7.3.9 (More tight cylinders) Let Γ = [Γ−, Γ+] = [w−, w+], and take by-

pass systems c− = FBS(w−, w+) on Γ− and d+ = FBS(w−, w+) on Γ+.

(i) For every Γw obtained by performing upwards bypass moves on Γ− along some

subset a− of c−,

m(Γ−, Γw) = m(Γw, Γ+) = m(Γ, [Γ−, Γw]) = m([Γ−, Γw], Γ−) = 1,

and tight contact structures on these cylinders can be obtained by bypass attach-

ments related to c−.

(ii) For every Γw obtained by performing downwards bypass moves on Γ+ along some

subset b+ of d+,

m(Γ−, Γw) = m(Γw, Γ+) = m(Γ+, [Γw, Γ+]) = m([Γw, Γ+], Γ) = 1,

and tight contact structures on these cylinders can be obtained by bypass attach-

ments related to d+.

Note in particular that any Γw ∈ Γ satisfies the hypotheses of both halves of this

lemma; the lemma is more general, because the Γw = Upa−
Γ− may come in an even

number of copies and hence cancel.

The meaning of “bypass attachments related to” c− and d+ will be clear from the

proof.
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Proof We prove part (i); part (ii) is similar. We use proposition 7.2.2, and con-

struct contact manifolds which can be embedded inside the tight contact manifolds

constructed in that proposition. For instance, we saw in proposition 7.2.2 that the

contact structure on M(Γ−, Γ+) obtained by attaching bypasses above Γ− along c−

is tight. Attaching only bypasses along the subset a− then gives the contact manifold

M(Γ−, Γw) as a contact submanifold of this tight M(Γ−, Γ+); hence it is also tight.

Now take the corresponding bypass systems a+ ⊆ c+ on Γ+ (which need not

be minimal) corresponding to a− ⊆ c−. We know from proposition 7.2.2 that per-

forming downwards bypass attachments along c+ gives a tight contact structure on

M(Γ−, Γ+), and moreover that the downwards bypasses of c+ “undo” the upwards by-

passes of c−; hence performing downwards bypass attachments along the complement

of a+ gives a tight contact structure on M(Γw, Γ+).

To construct a tight contact structure on M([Γ−, Γw], Γ−), we first take a minimal

sub-system a0
− of a− (as in section 6.1.15). That is, a0

− still satisfies Up(a0
−)Γ− = Γw,

and still contains no trivial attaching arcs, but upwards bypass moves on any proper

subset of a0
− does not give Γw. As noted in section 6.1.15, not every bypass system

has a minimal sub-system; but a bypass system with no trivial attaching arcs, such

as a−, does.

Then we may apply corollary 7.2.1: performing downwards bypass moves on Γ−

along a0
− gives [Γ−, Γw]. Moreover, we know from proposition 7.2.2 that performing

downwards bypass moves on Γ− along all of c− gives a tight contact structure on

M(Γ, Γ−). Thus attaching bypasses below Γ− along a0
− gives a tight contact structure

on M([Γ−, Γw], Γ−).

Finally, we construct a contact M(Γ, [Γ−, Γw]). Corresponding to a0
− ⊂ c− on Γ−

there is a ⊂ c on Γ; upwards bypasses along c “undo” downwards bypasses along c−.

Since performing downwards bypass moves on Γ− along a0
− gives [Γ−, Γw], performing

upwards bypass moves on Γ along the complement ac = c−a also gives [Γ−, Γw]. And

these bypass attachments all lie inside the tight M(Γ, Γ−); hence attaching bypasses

above Γ along ac gives a tight contact structure on M(Γ, [Γ−, Γw]). �

Now we can take these bypass system shenanigans a little further.
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Proposition 7.3.10 Let Γ = [Γ−, Γ+] and consider the bypass systems

c− = FBS(w−, w+) on Γ−, d+ = BBS(w−, w+) on Γ+.

Let Γw be a basis chord diagram obtained by either performing upwards bypass moves

on Γ− along a subset a− of c−, or by performing downwards bypass moves on Γ+

along a subset b+ of d+. Then

m(Γ, Γw) =

{
1 Γw = Γ−,

0 otherwise;

m(Γw, Γ) =

{
1 Γw = Γ+,

0 otherwise.

In particular, the above proposition applies to any Γw ∈ Γ = [Γ−, Γ+].

Proof We consider m(Γ, Γw) and a− ⊂ c−; the other cases are similar. Without

loss of generality assume a− is minimal; we may take a minimal sub-system since

a− ⊂ c− contains no trivial attaching arcs. Thus a− is empty in the case Γw = Γ−

and nonempty otherwise. Expanding “up as a sum over down” (lemma 4.2.13), we

have

Γw = Upa−
Γ− =

∑

b−⊆a−

Downb− Γ−.

For each b− ⊆ a−, we have

Downb− Γ− =
∑

e−⊆b−

Upe−
Γ−.

By proposition 6.1.16, this last sum is a sum of basis elements; the least term is

Γ−, which appears precisely once, when e− is the empty set. (This is because a− is

minimal, hence contains no trivial arcs, hence neither does b− or e−). Moreover, if b−

is not the empty set, then Downb− Γ− 6= Γ−; hence

Downb− Γ− = [Γ−, Γx] for some word x, Γ− ≺ Γx � Γ+.
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Moreover, Γx is obtained from upwards bypass moves from Γ− along some subset of

c−. (Note that the maximum term need not be Upb−
Γ−, which may appear several

times and cancel; minimality of a− does not imply minimality of each b−.)

Now taking m(Γ, ·) we obtain

m(Γ, Γw) =
∑

b−⊆a−

m
(
Γ, Downb− Γ−

)
.

For b− empty, the term is m(Γ, Γ−) = 1 as part of a generalised bypass triple. For b−

nonempty, each term is of the form m(Γ, [Γ−, Γx]), where Γx is obtained from upwards

bypass moves from Γ− along some subset of c−. Hence by lemma 7.3.9 above, this

term is 1. So the sum is

m(Γ, Γw) =
∑

b−⊆a−

1 = 2|a−|

which (mod 2) is 0 when a− is nonempty, and 1 when a− is empty. �

Proposition 7.3.11 For every Γw occurring in the basis decomposition of Γ, other

than Γ±, the number of basis elements of Γ which precede Γw (with respect to �) is

even, and the number of basis elements which follow it (with respect to �) is also

even.

Proof Expand out m(Γ, Γw) = 0 and m(Γw, Γ) = 0 over the basis elements of Γ. �

We can now prove theorem 1.2.21:

Theorem Suppose vw occurs in the basis decomposition of v = [vw−
, vw+ ] and is

comparable, with respect to �, with every other basis element occurring in the decom-

position. Then w = w− or w+.

Proof Let Γ and Γw denote the chord diagrams corresponding to v and vw. If v is

a basis element, it is clear. Otherwise, the number of elements comparable to vw is

m(Γ, Γw) + m(Γw, Γ) + 1. (We overcount Γw in the sum, so correct by adding 1.) If

vw is comparable to every basis element in v then this number must be even, since Γ

contains an even number of basis elements (proposition 1.2.20). But by proposition

7.3.10 it is odd. �
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7.3.4 Complete(ly unwieldy) descriptions

Perhaps the most complete question we could ask about contact elements, given

theorem 1.2.16, is:

Given basis chord diagrams Γ− � Γ+ or words w− � w+, what is the basis

decomposition of [Γ−, Γ+]?

It is worth noting that, although we have given partial answers in the previous sec-

tions, we do have an answer to this question; it is just an unwieldy answer. We know

that if we construct a bypass system FBS(Γ−, Γ+) on Γ−, then performing down-

wards bypass moves along it gives [Γ−, Γ+]. Expanding “down as a sum of ups”, we

obtain that

[Γ−, Γ+] =
∑

c⊆FBS(Γ−,Γ+)

Upc Γ−.

We can therefore compute [Γ−, Γ+] algorithmically by analysing all the bypass sub-

systems of FBS(Γ−, Γ+). The computation need not be done on chord diagrams; it

can be made into an algorithm concerning only words in W (n−, n+). However, we

have found that writing the algorithm solely in terms of words amounts to little more

than codifying the algorithm on chord diagrams, and so we do not include it here.

Another important question we could ask about contact elements is:

Given two contact elements v1, v2 ∈ SFH(T, n, e), are they related by a bypass

move?

Obviously, if we have the corresponding chord diagrams Γ1, Γ2, it is easy to tell if they

are bypass-related, by inspecting the positions of chords. Our question is whether we

can tell bypass-relatedness from other data. For example, if we are given the contact

elements in the form v1 = [Γ−
1 , Γ+

1 ], v2 = [Γ−
2 , Γ+

2 ], are they bypass related?

Again, there is a complete answer, which is also completely unwieldy. We saw

earlier (proposition 1.2.4) that contact elements are bypass-related if and only if their

sum is also a contact element. So the question reduces to being able to compute

contact elements. Namely, we compute the decompositions of [Γ−
1 , Γ+

1 ] and [Γ−
2 , Γ+

2 ];

then we sum them; and we determine whether the sum is a contact element.
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We can also give much weaker, simpler conditions, such as the following. We note

that if we have three contact elements which sum to zero, then every basis element

which occurs in them, must occur in precisely two of them. Thus, in any nontrivial

bypass triple [Γ−
1 , Γ+

1 ], [Γ−
2 , Γ+

2 ], [Γ−
3 , Γ+

3 ], the set {Γ−
1 , Γ−

2 , Γ−
3 } contains precisely two

distinct elements; and similarly for {Γ+
1 , Γ+

2 , Γ+
3 }.

In a categorical direction, we could ask the question:

Which chord diagrams / contact elements occur in Cb(Γ0, Γ1)?

We have given an answer to this question in lemma 4.2.9; for the existence of a

chord diagram Γ, we require the existence of successive bypasses attached above Γ0,

obtaining successive chord diagrams Gi such that m(Gi, Γ1) = 1. We know how to

compute m, so the question reduces to which chord diagrams are obtained from a

given one by bypass attachments; hence to the previous question. In any case, using

this method, it is possible, in principle, algorithmically, to give a complete description

of any Cb(Γ0, Γ1).



Chapter 8

Further considerations

8.1 The rotation operator

We now consider the operation of rotating chord diagrams, or equivalently, moving

the base point.

This will give rise to a linear operator R on SFH . Since it simply corresponds

to shifting the base point, it is clear that m(Γ0, Γ1) = m(RΓ0, RΓ1). While we have

yet to find interesting applications of this fact, the operator R itself seems to contain

interesting structure.

If we are to keep a negative region anticlockwise from the base point, and a positive

region clockwise, then we must move the base point by two marked points.

Such a rotation corresponds to the inclusion of sutured manifolds (T, n) →֒ (T, n)

given by thickening the solid torus along its boundary. On the intermediate manifold,

which is an annulus ×S1, we specify an S1-invariant contact structure by giving a

dividing set on the annulus, as shown in figure 8.1.

By TQFT-inclusion, we obtain a linear operator

R : SFH(T, n + 1, e) −→ SFH(T, n + 1, e)

Z
(n

k)
2 −→ Z

(n

k)
2

Obviously Rn+1 is the identity, R takes contact elements to contact elements, and R

191
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Figure 8.1: The rotation operator.

rotates chord diagrams anticlockwise (or, equivalently, moves the base point 2 marked

points clockwise). As with other operators, there is actually a separate R for each n

and e; when we wish to refer to a particular n, k we write Rn,k for the above map on

Z
(n

k)
2

8.1.1 Small cases

For SFH(T, 1, 0) = Z2, there is only one nonzero element, corresponding to the

vacuum v∅, and it is fixed by rotation. Thus R is the identity in this case.

Similarly, for an extremal euler class,

SFH(T, n + 1, e = ±n) =





Z
(n

0)
2

Z
(n

n)
2



 = Z2.

Hence there is only one nonzero element, corresponding to Γ(±)n , consisting only of

outermost chords. Again R is the identity.

The smallest non-identity case is SFH(T, 3, 0) = Z
(2
1)

2 = Z2
2. And C0

3 = 3, with

the three chord diagrams being a bypass triple. We easily obtain

v−+ 7→ v+− 7→ v−+ + v+− 7→ v−+
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under R, and hence R is given as follows.

R2,1 =

[
0 1

1 1

]

=

−+︸︷︷︸ +−︸︷︷︸
−+} 0 1

+−} 1 1

Here we write matrices using the lexicographically ordered basis, as shown in the final

expression above.

In a similar way we obtain

R3,1 = R3,2 =




0 1 0

0 0 1

1 1 1


 ,

R4,1 = R4,3 =




0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 1




.

Note it appears from these examples that perhaps Rn,k = Rn,n−k; but that is not the

case in general, as the following examples show.

R5,2 =

−−− + ·︸ ︷︷ ︸ −− +·︸ ︷︷ ︸ − + ·︸ ︷︷ ︸ +·︸︷︷︸
−−− + ·} 0 1 0 0 0 0 0 0 0 0

−− +·
}

0
0

0 0
0 0

0 1 0
1 1 0

0 0 0 0
0 0 0 0

− + ·
} 0

0
0

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

0 1 0 0
0 0 1 0
1 1 1 0

+·
} 0

0
0
1

0 1
0 0
0 0
1 1

0 1 0
0 0 1
0 0 0
1 1 1

0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1



CHAPTER 8. FURTHER CONSIDERATIONS 194

R5,3 =

−− +·︸ ︷︷ ︸ − + ·︸ ︷︷ ︸ +·︸︷︷︸
−− +·} 0 1 0 0 0 0 0 0 0 0

− + ·
} 0

0
0

0 0 0
0 0 0
0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
1 1 1 0 0 0

+·
}

0
0
0
0
0
1

0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
1 1 1

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 0 0 0 1
1 1 1 1 1 1

We have blocked these matrices in a way that will shortly become meaningful.

8.1.2 Computation of R

We now compute R. The computation is recursive: we define Rn,k in terms of smaller

R matrices. We will need to choose basis elements with certain properties: if x is a

word in + and −, we will say x-basis elements to mean those vw where the string w

begins with the string x (and possibly w = x). We will also say x-rows or x-columns

to mean the columns correspond to all x-basis elements. For two strings x and y, the

x × y minor of R is the submatrix consisting of the intersection of the x-rows with

the y-columns.

For example, we have written R5,2 and R5,3 above to suggest the following decom-

positions in terms of such minors.

R5,2 =

−−− + ·︸ ︷︷ ︸ −− +·︸ ︷︷ ︸ − + ·︸ ︷︷ ︸ +·︸︷︷︸
−−− + ·} 0 R1,1 0 0 0

−− +·} 0 0 R2,1 0 0

− + ·} 0 0 0 R3,1 0

+·
} (−−−·)-cols

of R4,1

(−− ·)-cols

of R4,1

(−·)-cols

of R4,1

R4,1
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R5,3 =

−− +·︸ ︷︷ ︸ − + ·︸ ︷︷ ︸ +·︸︷︷︸
−− +·} 0 R2,2 0 0

− + ·} 0 0 R3,2 0

+·
} (−− ·)-cols

of R4,2

(−·)-cols

of R4,2

R4,2

We will now prove that something similar occurs for all Rn,k.

Proposition 8.1.1 (Recursive computation of R) Rn,k is described as follows.

(i) The (+) × (+) minor of Rn,k consists of Rn−1,k−1.

(ii) The (+)×(−+) minor of Rn,k contains the (−)-columns of Rn−1,k−1. More gen-

erally, the (+)×((−)j+) minor of Rn,k contains the ((−)j)-columns of Rn−1,k−1,

for any j = 1, . . . , n − k.

(iii) The (−+) × (+−) minor of Rn,k consists of Rn−2,k−1. More generally, for any

j = 0, . . . , n − k − 1, the ((−)j − +) × ((−)j + −) minor of Rn,k consists of

Rn−j−2,k−1.

(iv) All other entries are zero. To write these remaining entries out exhaustively

(with some overlap):

(a) (“Below and on the diagonal, in the (−) rows.”) The (−+)×(−) minor of

Rn,k is zero. More generally, the ((−)j+) × ((−)j) minor of Rn,k is zero,

for any j = 1, . . . , n − k.

(b) (“Above the diagonal and the submatrices Rn−j−2,k−1.”) The (−−) × (+)

minor of Rn,k is zero. More generally, the ((−)j −−) × ((−)j+) minor of

Rn,k is zero, for any j = 0, . . . , n − k − 2.

(c) (The pieces in the (−) rows just to the right of the submatrices Rn−j−2,k−1.)

The (−)×(++) minor of Rn,k is zero. More generally, the (−)×((−)j ++)

minor of Rn,k is zero, for any j = 0, . . . , n − k.
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Proof We simply verify all these conditions. The conditions given are equivalent to

the following equations on operators:

(i) A−RB+ = R.

(ii) A−R(B−)jB+ = R(B−)j, for j = 1, . . . , n − k.

(iii) A−A+(A+)jR(B−)jB+B− = R, for j = 0, . . . , n − k − 1.

(iv) (a) A−(A+)jR(B−)j = 0, for j = 1, . . . , n − k.

(b) A+A+(A+)jR(B−)jB+ = 0, for j = 0, . . . , n − k − 2.

(c) A+R(B−)jB+B+ = 0, for j = 0, . . . , n − k.

These are now easily proved by examining the corresponding chord diagrams. �

These matrices have interesting combinatorial properties: for instance, for every

row, there is precisely one column which has its highest nonzero element in that row.

8.1.3 An explicit description

From the above recursive form of the matrix for R, we can write down a recursive

formula.

R =
∞∑

n=0

B+RBn
−A−An

+ + Bn+1
− B+RA+A−An

+

=
∞∑

n=0

(
B+RBn

− + Bn+1
− B+RA+

)
A−An

+

=

∞∑

n=0

[
B+RA+, Bn+1

−

]
A−An

+

We can also describe explicitly R(vw) for each basis vector vw. Write w in the

form

w = (−)a1(+)b1 · · · (−)ak(+)bk

where possibly a1 = 0 or bk = 0, but all other ai, bi are nonzero. Interpreting the

formula for R above as a set of instructions for operating on w, removing or adding

+ and − signs, and proceeding by induction, we obtain the following.



CHAPTER 8. FURTHER CONSIDERATIONS 197

Proposition 8.1.2 (Explicit computation of R) If k ≥ 2 then R(vw) is given by

taking

(+)b1−1(−)a1+1(+)b2(−)a2 · · · (+)bk−1(−)ak−1(+)bk+1(−)ak−1

= (+)b1−1(−)a1+1
(∏k−1

j=2(+)bj (−)aj

)
(+)bk+1(−)ak−1

and then, for each possible way of grouping (1, 2, . . . , k) into the form

((1, 2, . . . , l1), (l1 + 1, l1 + 2, . . . , l2), . . . , (lT−1 + 1, lT−1 + 1, . . . , lT = k)),

(including the trivial grouping ((1), (2), . . . , (k)), taking the term

(+)b1+···+bl1
−1(−)a1+···+al1

+1(+)bl1+1+···+bl2 (−)al1+1+···+al2 · · ·

· · · (+)blT−2+1+···+blT−1 (−)blT−2+1+···+blT−1 (+)blT−1+1+···+blT
+1(−)alT−1+1+···+alT

−1

= (+)b1+···+bl1
−1(−)a1+···+al1

+1
(∏T−1

m=2(+)blm−1+1+···+blm (−)alm−1+1+···+alm

)

(+)blT−1+1+···+blT
+1(−)alT−1+1+···+alT

−1

obtained by grouping factors of the first expression accordingly, and summing all the

corresponding basis elements.

If k = 1, so that w is of the form (−)a or (+)b or (−)a(+)b, then R(vw) is given

by a single term vw′ where w′ is given by:

(i) for w = (−)a, w′ = (−)a also;

(ii) for w = (+)a, w′ = (+)a also;

(iii) for w = (−)a(+)b, w′ = (+)b(−)a; �

Note that every chord diagram has an outermost region: after some rotation, every

chord diagram has an outermost region at the base point. And a chord diagram with

an outermost region at the base point is of the form B±Γ, for some smaller Γ. Thus,

these rotation matrices give a quick way to compute all the contact elements in

SFH(T, n+1, e) recursively. If we know all the contact elements of SFH(T, n, e±1),

then we apply B− to all contact elements in SFH(T, n, e + 1) and B+ to all contact

elements in SFH(T, n, e− 1). Applying B− (resp. B+) to a contact element (or any
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element) simply prepends a − (resp. +) to all of the words in its basis decomposition.

And then, applying R will generate all contact elements in SFH(T, n+1, e). In fact,

when the euler class is not extremal, there are outermost regions of both signs; so it

is sufficient to look at only one of B±.

8.2 Simplicial structures

Recall that in section 7.3.2, we defined eastside and westside creation and annihilation

operators

Bwest,i
− , Awest,i

+ , Beast,j
+ , Aeast,j

−

for 0 ≤ i ≤ n− and 0 ≤ j ≤ n+, where:

(i) Bwest,i
− inserts a chord (−2i − 3,−2i − 2).

(ii) Awest,i
+ joins the chords at positions (−2i − 2,−2i − 1)

(iii) Beast,j
+ inserts a chord (2i + 2, 2i + 3).

(iv) Aeast,j
− joins the chords at positions (2j + 1, 2j + 2)

Note that it is perfectly compatible with these conditions to take i or j = −1 and

obtain our original operators,

B− = Bwest,−1
− , A+ = Awest,−1

+ , B+ = Beast,−1
+ , A− = Aeast,−1

− .

We have seen that

Bwest,j
− ◦ Awest,j

+ = 1, Beast,j
+ ◦ Aeast,j

− = 1,

but there are other relations as well.
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Lemma 8.2.1 (Westside simplicial structure) For all 0 ≤ i, j ≤ n−, we have

Awest,i
+ ◦ Awest,j

+ = Awest,j−1
+ ◦ Awest,i

+ i < j

Awest,i
+ ◦ Bwest,j

− =





Bwest,j−1
− ◦ Awest,i

+ i < j

1 i = j, j + 1

Bwest,j
− ◦ Awest,i−1

+ i > j + 1

Bwest,i
− ◦ Bwest,j

− = Bwest,j+1
− ◦ Bwest,i

− i ≤ j

Proof Clear, either from considering the effect on words, or the effect on chord

diagrams. Perhaps only the cases involving the extremal A
west,n−

+ require some ex-

planation, since the operator A
west,n−

+ joins the points (−2n− − 2,−2n− − 1), where

−2n− − 1 is the root point (and becomes part of the east side), and −2n− − 2 is on

the eastside (and remains so), so that this is not a very western operator. If n+ > 0,

then the relations clearly follow, but if n+ = 0, then A
west,n−

+ actually connects the

root point to the base point. However in the case n+ = 0 we have e = −n, and there

is only one possible chord diagram, i.e. the one with n+1 outermost negative regions.

With only one chord diagram to check, the relations are easily verified. �

It follows that there is a simplicial structure on our vector spaces SFH(T, n+1, e),

with face maps d+
i = Awest,i

+ and degeneracy maps s+
j = Bwest,j

− for 0 ≤ i, j ≤ n−.

Hence the map

d+ =

n−∑

i=0

d+
i =

n−∑

i=0

Awest,i
+

satisfies (d+)2 = 0 (recall we have Z2 coefficients), and we obtain chain complexes

SFH(T, n + 1, e)
d+

−→ SFH(T, n, e + 1)
d+

−→ · · ·
d+

−→ SFH

(
T,

n + e

2
+ 1,

n + e

2

)

along which the pairs (n−, n+) proceed

(n−, n+) 7→ (n− − 1, n+) 7→ (n− − 2, n+) 7→ · · · 7→ (0, n+),
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and hence n− can be regarded as the “dimension”. This is a “northeast–southwest” di-

agonal of Pascal’s triangle. We can call the chain complex C
+,n+
∗ , so the i-dimensional

part (dimension is i = n−) is

C
+,n+

i = C+,n+
n−

= SFH

(
T,

n + e

2
+ 1 + i,

n + e

2
− i

)

= SFH (T, n+ + 1 + i, n+ − i) .

Recall from section 7.3.2 the effect of d+
i = Awest,i

+ on words (more precisely, on

the corresponding basis vectors, but to simplify notation we simply write the words

themselves):

(i) For 0 ≤ i ≤ n− − 1, the effect of Awest,i
+ is to delete the (i + 1)’th − sign in a

word.

(ii) For i = n−, the effect of A
west,n−

+ is to delete the final − sign, if the word ends

in a − sign; else return 0.

Hence the effect of d+ on a word w is to give a sum over all of the above, and we

easily obtain the following. Let a word w be written

w = (−)a1(+)b1 · · · (−)ak(+)bk

where possibly a1 = 0 or bk = 0, but all other ai, bi are nonzero.

Lemma 8.2.2 (Effect of d+) If bk > 0, i.e. w ends in a +, then

d+w = a1(−)a1−1(+)b1 · · · (−)ak(+)bk + · · ·+ ak(−)a1(+)b1 · · · (−)ak−1(+)bk .

If bk = 0, so that w ends in a −, then

d+w = a1(−)a1−1(+)b1 · · · (−)ak + · · · + ak−1(−)a1 · · · (−)ak−1−1(+)bk−1(−)ak

+(ak + 1)(−)a1(+)b1 · · · (−)ak−1(+)bk−1(−)ak−1.

�
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That is, when w ends in a +, d+ behaves just like a (non-commutative) “partial

differentiation by −”, “d+ = ∂
∂−

”. When w ends in a −, there is an extra term. From

this it is easy to see that (d+)2 = 0 directly.

All this applies analogously on the eastside. We have a simplicial structure with

face maps d−
i = Aeast,i

− , degeneracy maps s−j = Beast,j
+ , and boundary operator

d− =

n+∑

i=0

d−
i =

n+∑

i=0

Aeast,i
− .

We then have (d−)2 = 0, giving a chain complex

SFH(T, n + 1, e)
d−

−→ SFH(T, n, e − 1)
d−

−→ · · ·
d−

−→ SFH

(
T,

n − e

2
+ 1,

−n + e

2

)
.

In this complex the pairs (n−, n+) proceed

(n−, n+) 7→ (n−, n+ − 1) 7→ · · · 7→ (n−, 0)

and hence n+ can be regarded as the “dimension”. This is a “northwest–southeast”

diagonal of Pascal’s triangle. The chain complex can be denoted C
−,n−

∗ , so that the

i-dimensional part (i = n+) is

C
−,n−

i = C−,n−

n+
= SFH

(
T,

n − e

2
+ 1 + i,

−n + e

2
+ i

)

= SFH (T, n− + 1 + i, −n− + i) .

Thus the chain complex groups C+,n+
n−

and C−,n−

n+
are both equal to the SFH vector

space corresponding to (n−, n+). The effect of Aeast,i
− is similar to Awest,i

+ , except that

+ signs are deleted. The effect of d− is therefore identical to that of d+, except that

the role of + and − signs is reversed. In particular, “d− = ∂
∂+

” on words w which

end in a −; if w ends in a + then we have an analogous extra term.

It is not difficult to see that the two boundary operators d−, d+ commute; they

are essentially partial differentiation by different variables, though some consideration

must be paid to the final term. Thus we obtain a double complex structure on the
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categorified Pascal’s triangle:

Z
(0
0)

2

Z
(1
0)

2

d+
>>~~~~~~~

Z
(1
1)

2

d−
``@@@@@@@

Z
(2
0)

2

d+
>>~~~~~~~

Z
(2
1)

2

d−
``@@@@@@@

d+
>>~~~~~~~

Z
(2
2)

2

d−
``@@@@@@@

Z
(3
0)

2

d+
>>~~~~~~~

Z
(3
1)

2

d−
``@@@@@@@

d+
>>~~~~~~~

Z
(3
2)

2

d−
``@@@@@@@

d+
>>~~~~~~~

Z
(3
3)

2

d−
``@@@@@@@

It is also not too difficult to see that the homology of the chain complexes is rather

uninteresting.

Proposition 8.2.3 (Westside/eastside homology)

(i) For all i, the homology of the complex
(
C

+,n+
∗ , d+

)
is zero:

Hi

(
C+,n+

∗ , d+
)

= 0.

(ii) For all i, the homology of the complex
(
C

−,n−

∗ , d−
)

is zero:

Hi

(
C−,n−

∗ , d−
)

= 0.

Here we use a similar argument to Frabetti in [12], in the context of planar binary

trees. (Planar binary trees have a nice bijective correspondence with chord diagrams.)

Proof We prove (i); (ii) is similar. We note that our original creation operator

B− = Bwest,−1
− : C

+,n+
∗ −→ C

+,n+

∗+1 satisfies

Awest,0
+ B− = 1 and Awest,i

+ B− = B−Awest,i−1
+ for i > 0.
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Hence for a word w ∈ W (n−, n+),

(
B−d+ + d+B−

)
w = B−

n−∑

i=0

Awest,i
+ w +

n−+1∑

i=0

Awest,i
+ B−w

= Awest,0
+ B−w +

n−+1∑

i=1

(
Awest,i

+ B− + B−Awest,i−1
+

)
w

= w

so B−d+ + d+B− = 1. So B− is a chain homotopy from the chain maps 1 to 0 on

C
−,n−

∗ , and the homology is zero. Even more directly, if we have a cycle, d+w = 0,

then we have B−d+w + d+B−w = d+B−w = w, so w = d+(B−w) is a boundary. �

We have now proved proposition 1.2.22.

8.3 QFT and higher categorical considerations

8.3.1 Dimensionally-reduced TQFT

We have seen that sutured Floer homology obeys some of the properties of a topo-

logical quantum field theory. Moreover, in the case of sutured manifolds of the type

(Σ × S1, F × S1),

where Σ is a surface with boundary, and F is a finite collection of points on ∂Σ,

sutured Floer homology can be regarded as a (1 + 1)-dimensional TQFT via dimen-

sional reduction (see [33]). Clearly, in the case that Σ = D2, these sutured manifolds

are precisely our (T, n).

In [33], it is noted that

SFH(Σ× S1, F × S1) = Z2n−χ(Σ)

2 ,

where |F | = 2n is the number of boundary sutures. As in the case Σ = D2, contact

structures on such sutured manifolds correspond bijectively to dividing sets K drawn
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on Σ without any contractible components: see [23, 19]. Note, however, that in higher

genus surfaces, K may have closed components.

The dimensionally-reduced TQFT has the following properties:

(i) To every pair (Σ, F ), where F divides ∂Σ into positive and negative arcs, we

associate the vector space V (Σ, F ) = Z2n−χ(Σ)

2 .

(ii) To every properly embedded 1-manifold K ⊂ Σ with boundary F , dividing Σ

into positive and negative regions, consistent with the signs on ∂Σ − F , we

associate an element c(K) of this vector space V (Σ, F ).

See [33] for further details.

We have given a fairly explicit description of the mechanics of this topological

quantum field theory, in the case where Σ is a disc.

In their paper [33], Honda–Kazez–Matić prove some properties of this TQFT; we

have seen these properties for discs.

(i) V (Σ, F ) is generated by contact elements;

(ii) c(K) = 0 if and only if K is separating in the sense that Σ−K has components

which do not intersect ∂Σ.

8.3.2 A contact 2-category

We have seen the notion of contact category, and some generalisations. We have noted

that in our case Σ = D2, the various K corresponding to nontrivial contact structures

are just chord diagrams Γ. And we have shown that such Γ are naturally described

by pairs (Γ−, Γ+) of basis chord diagrams, corresponding to words w− � w+; we

have seen that the objects can be considered as morphisms in a universal category,

or as cones of morphisms (proposition 7.2.3). That is, “objects are morphisms”;

so morphisms become “morphisms between morphisms”. This leads us towards 2-

categories, where the idea of “morphisms between morphisms” is formalised. See [2]

for a general introduction to higher category theory.
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In this spirit, we define a contact 2-category, which is a generalisation of the

contact category, in the sense that the objects of Honda’s category become our 1-

morphisms; and its 1-morphisms become our 2-morphisms. It is a specialisation of

Honda’s contact category, in the sense that it only applies to Σ = D2. (There are

isomorphisms between any V (Σ, F ) and some V (D2, F ′), but there is no canonical

isomorphism; and such an isomorphism is not bijective on contact elements. See

section 8.3.4 below. Hence, for the time being at least, we restrict ourselves to discs.)

Definition 8.3.1 (Contact 2-category) The contact 2-category C(n + 1, e) is de-

fined as follows.

(i) The objects are words on {−, +} with n− − signs and n+ + signs.

(ii) The 1-morphisms w0 → w1 are those arising from the partial order �. There is

one 1-morphism w0 → w1 if w0 � w1, and none otherwise.

• The composition of two morphisms w0 → w1 → w2 is the unique morphism

w0 → w2.

• Thus 1-morphisms correspond precisely to chord diagrams Γ = [Γw0 , Γw1]

on the disc with n + 1 chords; the composition of the two chord diagrams

Γ = [Γw0 , Γw1] and Γ′ = [Γw1, Γw2] is

Γ′ ◦ Γ = [Γw0 , Γw2].

(iii) The 2-morphisms Γ0 → Γ1 are the tight contact structures on M(Γ0, Γ1), along

with one extra 2-morphism {∗} for overtwisted contact structures. There are

two types of composition of 2-morphisms.

• Given two 2-morphisms

Γ0
ξ0
→ Γ1

ξ1
→ Γ2,

their vertical composition ξ0 · ξ1 is the 2-morphism Γ0 → Γ2 which is

the contact structure on M(Γ0, Γ2) obtained by stacking M(Γ0, Γ1) and

M(Γ1, Γ2) with contact structures ξ0, ξ1 respectively.



CHAPTER 8. FURTHER CONSIDERATIONS 206

• Given three objects w0, w1, w2, two pairs of 1-morphisms between them

w0
Γ0,Γ′

0−→ w1, w1
Γ1,Γ′

1−→ w2,

and two 2-morphisms

Γ0
ξ0
−→ Γ′

0, Γ1
ξ1
−→ Γ′

1,

i.e. the situation

w0

Γ0

FF

Γ′
0

��
w1

Γ1

FF

Γ′
1

��
w2,ξ0

KS

ξ1

KS

the horizontal composition ξ0ξ1 is a morphism (Γ1◦Γ0) → (Γ′
1◦Γ′

0) defined

as follows. Since the 1-morphisms arise from a partial order, Γ0 = Γ′
0 and

Γ1 = Γ′
1. Thus ξ0 is a contact structure on M(Γ0, Γ0) and ξ1 on M(Γ1, Γ1).

If these are both the unique tight contact structures, then we define ξ0ξ1

to be the unique tight contact structure on M(Γ1 ◦ Γ0, Γ1 ◦ Γ0). Otherwise

ξ0ξ1 = {∗}.

Note that, considered as a 1-category, C(n + 1, e) ∼= W (n−, n+) ∼= Cb(U(n−, n+)).

We can therefore regard this category as a 2-category structure on the bounded

contact category of a universal cobordism.

Lemma 8.3.2 (Existence of contact 2-category) C(n + 1, e) is a 2-category.

Proof We verify the axioms of a 2-category as stated in [2]. That the objects and 1-

morphisms form a category is clear. That vertical composition is associative is clear,

since it just corresponds to a union of contact structures. Note that {∗} acts as a

zero for this composition; any composition involving {∗} is again {∗}.

That horizontal composition is associative is also clear: if any of the ξi being

composed is overtwisted {∗}, then the horizontal composition is {∗}; else associativity
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follows immediately since 1-morphisms arise from a partial order. Again {∗} acts as

a zero.

There is an identity 2-morphism for each 1-morphism Γ: the identity 2-morphism

Γ
1Γ−→ Γ is the tight contact structure on M(Γ, Γ). This is just a thickened neigh-

bourhood of a convex surface, so its vertical composition is indeed the identity; and

since it is not {∗}, its horizontal composition is also the identity.

The “interchange law”

(ξ1 · ξ2)(ξ3 · ξ4) = (ξ1ξ3) · (ξ2ξ4),

perhaps best understood from the diagram,

w0

Γ

��

Γ
//

Γ

FFw1

Γ′

��

Γ′

//

Γ′

FF
w2,

ξ1

KS

ξ2

KS

ξ3
KS

ξ4

KS

is only defined when the 2-morphisms ξ1, ξ2 are contact structures on some M(Γ, Γ),

where Γ = [Γw0, Γw1]; and similarly the 2-morphisms ξ3, ξ4 are contact structures on

some M(Γ′, Γ′), where Γ′ = [Γw1 , Γw2]. If any of these is {∗}, we have {∗} on both

sides. If not, then ξ1 = ξ2 = 1Γ and ξ3 = ξ4 = 1Γ′, being standard neighbourhoods of

chord diagrams; thus both sides are equal to 1Γ′◦Γ, the unique tight contact structure

on M(Γ′′, Γ′′), where Γ′′ = Γ′ ◦ Γ = [Γw0, Γw2]. �

We have now proved proposition 1.3.11.

8.3.3 Improving the 2-category structure

As we have discussed previously in sections 4.2.10, 7.2.2 and 7.2.3, contact categories

possess some of the properties of triangulated categories. We now consider these

issues for our 2-category, and raise some questions for further investigation.

Since the 1-morphisms in our contact 2-category come from a partial order, there

are no triangles among 1-morphisms, let alone distinguished triangles. Hence, if
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our 2-category is to satisfy anything like the axioms of a triangulated category in a

non-vacuous way, it is only meaningful to look at the 2-morphisms. But as we have

discussed in section 4.2.10, since not every cobordism is elementary (lemma 4.2.14),

potential notions of exact triangles like generalised bypass triples are unsatisfactory.

We can ask: Is there a more general definition of distinguished triangle, or im-

provement of the category structure, for which every 2-morphism (or non-trivial 2-

morphism) extends to an exact triangle?

Honda shows that SFH gives a functor from his contact category to the category of

vector spaces. Here, of course, our 1- and 2-morphisms are the objects and morphisms

of that category. In this functor, our objects map to basis elements of those vector

spaces.

Note also that our contact 2-category C(n+1, e) is specific to an n and e; in fact, all

its objects and morphisms relate to SFH(T, n, e). If we consider these SFH(T, n, e)

over all n and e, we obtain a family of 2-categories. Moreover, the 0-cells of this

2-category are words on {−, +}. But these can themselves be regarded as paths on

Pascal’s triangle.

This suggests the construction of a 3-category where:

(0) objects are points of Pascal’s triangle, pairs (n+1, e), or perhaps more generally

the integer lattice, or perhaps just a point;

(i) 1-morphisms are finite paths on Pascal’s triangle, or the lattice, generated by

unit southeast and southwest moves on the triangle;

(ii) 2-morphisms are generated by the partial order �; equivalently, pairs of paths

on Pascal’s triangle from the origin to the same endpoint, one always lying left

of the other; equivalently, chord diagrams Γ or contact elements;

(iii) 3-morphisms are contact structures on M(Γ0, Γ1);

This is a question for further investigation.
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8.3.4 QFT remarks

The dimensionally-reduced TQFT described above in section 8.3.1 has certain gluing

isomorphisms, proved in [33].

Proposition 8.3.3 (Honda–Kazez–Matić [33] lemma 7.9) Let γ, γ′ be disjoint

arcs of ∂Σ, with endpoints not in F , each intersecting F precisely once. Let the gluing

τ of γ to γ′ produce (Σ′, F ′). Then the gluing τ gives an isomorphism

Φτ : V (Σ, F ) −→ V (Σ′, F ′).

Moreover this isomorphism takes contact elements c(K) 7→ c(K̄), where K̄ is obtained

by performing the gluing τ on K.

Such a gluing decreases |F | = 2n by 2 and decreases χ by 1, so the dimension

2n−χ(σ) of the vector spaces is preserved.

By repeated application of such gluing, or the reverse procedure of cutting, we

can obtain many isomorphisms between different V (Σ, F ). In particular, if we have

any (Σ, F ) and K, and we can cut Σ into a disc along properly embedded arcs or

closed curves, each of which intersects K precisely once, then we have an isomorphism

V (D2, F ′) ∼= V (Σ, F ).

In [33] it is proved that contact elements c(K) generate V (Σ, F ). In fact, it’s easy

to see that under a gluing isomorphism V (D2, F ′) ∼= V (Σ, F ), a generating set (or

basis) of contact elements is obtained by gluing contact elements in V (D2, F ′).

However, in general, although there may be an isomorphism between any V (Σ, F )

and some V (D2, F ′), this need not not give a bijection between contact elements;

or between nonzero contact elements. Every contact element in V (D2, F ′) gives a

corresponding contact element in V (Σ, F ); but not all contact elements in V (Σ, F )

arise in this way; only those arising from dividing sets which intersect every gluing arc

precisely once. That is, the isomorphism V (D2, F ′) → V (Σ, F ) induces an injective

but not surjective map on contact elements.

A simple case of such an isomorphism is when ∂Σ has components with two points

of F . We may simply glue up such a boundary component of Σ and obtain a surface

with one fewer boundary component. In a standard topological quantum field theory
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picture, this is a good reason why a chord diagram with 1 chord can be regarded as

“the vacuum”. It may be glued up, or “filled in”, or “capped off”, without any effect.

It is, effectively, not there. A cobordism from vacua is equivalent to a cobordism from

the empty set, in this TQFT.

We also remark that our chord diagrams are bijective, in an explicit fashion,

with planar binary trees, and the vector space generated by such objects has been

considered previously; they have also been considered in physical contexts. See, e.g.,

[5, 12, 13, 20, 39, 40]. The bypass relation translates into a similar linear relation

on trees, which appears not to have been considered previously, so far as the author

could find.

The upshot is that this story is not finished yet.
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