◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Chord diagrams, contact-topological quantum field theory, and contact categories

Daniel Mathews

Stanford University mathews@math.stanford.edu

Thesis defence 29 May 2009

Outline

Background

- Contact geometry
- Sutured Floer homology, contact elements, TQFT
- 2 Contact elements in SFH(T)
 - Solid tori, contact structures, Catalan, Narayana
 - Computation, addition of contact elements
 - Creation operators, basis of contact elements
- 3 Main theorems
 - Statements
 - Properties of contact elements
- 4 Contact geometry applications
 - Stackability
 - Contact categories
- Idea of proof of main theorems
 - Comparable pairs and bypass systems

Outline

Background

Contact geometry

- Sutured Floer homology, contact elements, TQFT
- 2 Contact elements in SFH(T)
 - Solid tori, contact structures, Catalan, Narayana
 - Computation, addition of contact elements
 - Creation operators, basis of contact elements
- 3 Main theorems
 - Statements
 - Properties of contact elements
- Contact geometry applications
 - Stackability
 - Contact categories
- Idea of proof of main theorems
 - Comparable pairs and bypass systems

Idea of proof

The idea of contact geometry

Contact geometry is the study of

non-integrable plane distributions ξ .

(I.e. no surfaces tangent to ξ).

Plane field can be described as the kernel of a 1-form $\xi = \ker \alpha$. In 3 dimensions, non-integrability condition: $\alpha \land d\alpha \neq 0$.

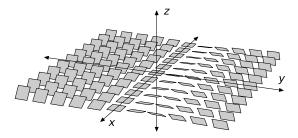
Idea of proof

The idea of contact geometry

Contact geometry is the study of

non-integrable plane distributions ξ .

(I.e. no surfaces tangent to ξ).



Plane field can be described as the kernel of a 1-form $\xi = \ker \alpha$. In 3 dimensions, non-integrability condition: $\alpha \wedge d\alpha \neq 0$.

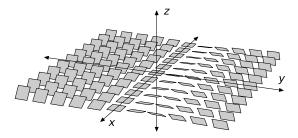
Idea of proof

The idea of contact geometry

Contact geometry is the study of

non-integrable plane distributions ξ .

(I.e. no surfaces tangent to ξ).



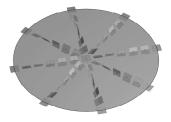
Plane field can be described as the kernel of a 1-form $\xi = \ker \alpha$. In 3 dimensions, non-integrability condition: $\alpha \wedge d\alpha \neq 0$.

Idea of proof

Tight vs. Overtwisted

Eliashberg 1989, Classification of overtwisted contact structures on 3-manifolds

An overtwisted disc is: Image by P. Massot



Theorem (Eliashberg)

Overtwisted contact geometry reduces to homotopy theory.

Tight contact structure

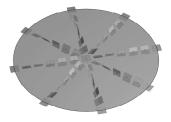
Contains no overtwisted disc.

Idea of proof

Tight vs. Overtwisted

Eliashberg 1989, Classification of overtwisted contact structures on 3-manifolds

An overtwisted disc is: Image by P. Massot



Theorem (Eliashberg)

Overtwisted contact geometry reduces to homotopy theory.

Tight contact structure

Contains no overtwisted disc.

Idea of proof

Convex surfaces Giroux 1991, *Convexité en topologie de contact*

Generic property for embedded surface in contact 3-manifold.

Convex surface S

There exists a contact vector field X transverse to S.

"Invariant vertical direction".

Dividing set

$$\Gamma = \{ x \in S : X(x) \in \xi \}.$$

"Where ξ is perpendicular".

Dividing set divides S into positive/negative regions S_{\pm} . Euler class evaluation:

$$\mathbf{e}(\xi)[\mathbf{S}] = \chi(\mathbf{S}_+) - \chi(\mathbf{S}_-).$$

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Convex surfaces Giroux 1991, *Convexité en topologie de contact*

Generic property for embedded surface in contact 3-manifold.

Convex surface S

There exists a contact vector field X transverse to S.

"Invariant vertical direction".

Dividing set

$$\Gamma = \{ \boldsymbol{x} \in \boldsymbol{S} : \boldsymbol{X}(\boldsymbol{x}) \in \xi \}.$$

"Where ξ is perpendicular".

Dividing set divides S into positive/negative regions S_{\pm} . Euler class evaluation:

$$\mathbf{e}(\xi)[\mathbf{S}] = \chi(\mathbf{S}_+) - \chi(\mathbf{S}_-).$$

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Convex surfaces Giroux 1991, *Convexité en topologie de contact*

Generic property for embedded surface in contact 3-manifold.

Convex surface S

There exists a contact vector field X transverse to S.

"Invariant vertical direction".

Dividing set

$$\mathsf{F} = \{ \boldsymbol{x} \in \mathsf{S} : \boldsymbol{X}(\boldsymbol{x}) \in \xi \}.$$

"Where ξ is perpendicular".

Dividing set divides S into positive/negative regions S_{\pm} . Euler class evaluation:

$$\mathbf{e}(\xi)[\mathbf{S}] = \chi(\mathbf{S}_+) - \chi(\mathbf{S}_-).$$

Contact geometry applications

Idea of proof

Contact structure near a convex surface Giroux 1991, *Convexité en topologie de contact*, Honda 2000, *On the classification of tight contact structures. I*

Theorem (Giroux)

The dividing set essentially determines the contact structure near a convex surface.

Given S, Γ , is the nearby contact structure tight?

For $S \neq S^2$:

Contact structure is tight iff Γ has no contractible components.

For $S = S^2$:

Contact structure is tight iff Γ has one component.

If $S^2 = \partial B^3$, tight contact structure near boundary extends uniquely over ball (Eliashberg).

Contact geometry applications

Idea of proof

Contact structure near a convex surface Giroux 1991, *Convexité en topologie de contact*, Honda 2000, *On the classification of tight contact structures. I*

Theorem (Giroux)

The dividing set essentially determines the contact structure near a convex surface.

Given S, Γ , is the nearby contact structure tight?

For $S \neq S^2$:

Contact structure is tight iff Γ has no contractible components.

For $S = S^2$:

Contact structure is tight iff Γ has one component.

If $S^2 = \partial B^3$, tight contact structure near boundary extends uniquely over ball (Eliashberg).

Contact geometry applications

Idea of proof

Contact structure near a convex surface Giroux 1991, Convexité en topologie de contact; Honda 2000, On the classification of tight contact structures. I

Theorem (Giroux)

The dividing set essentially determines the contact structure near a convex surface.

Given S, Γ , is the nearby contact structure tight?

For $S \neq S^2$:

Contact structure is tight iff Γ has no contractible components.

For $S = S^2$:

Contact structure is tight iff Γ has one component.

If $S^2 = \partial B^3$, tight contact structure near boundary extends uniquely over ball (Eliashberg).

Contact geometry applications

Idea of proof

・ロット (雪) (日) (日) (日)

Corners & rounding

Honda 2000, On the classification of tight contact structures. I

- When convex surfaces meet transversely along a legendrian curve, dividing sets interleave.
- Corners can be rounded in a standard way.

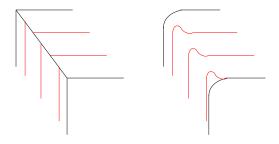


Figure: Rounding corners.

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Bypasses Honda 2000, On the classification of tight contact structures. I

• Fundamental building block in contact topology.

"All topologically trivial contact topology is constructed from bypasses."

• Half an overtwisted disc.

"Every step in contact geometry is half way to oblivion."

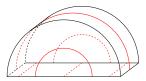


Figure: Bypass with convex boundary

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Bypasses Honda 2000, On the classification of tight contact structures. I

• Fundamental building block in contact topology.

"All topologically trivial contact topology is constructed from bypasses."

• Half an overtwisted disc.

"Every step in contact geometry is half way to oblivion."

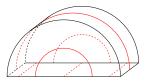
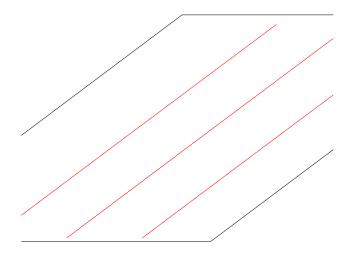


Figure: Bypass with convex boundary.

Contact geometry applications

dea of proof 000000

Adding a bypass

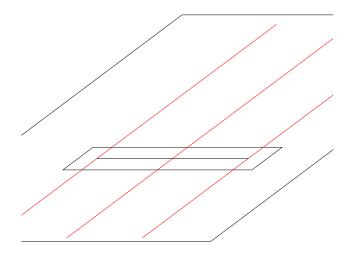


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Contact geometry applications

dea of proof 000000

Adding a bypass

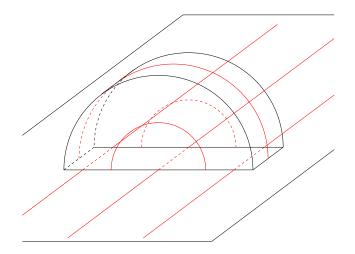


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Contact geometry applications

ldea of proof 000000

Adding a bypass

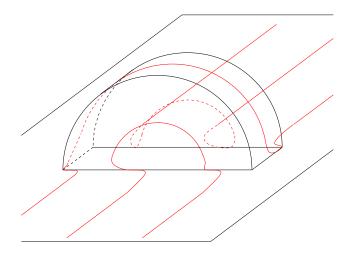


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Contact geometry applications

ldea of proof 000000

Adding a bypass

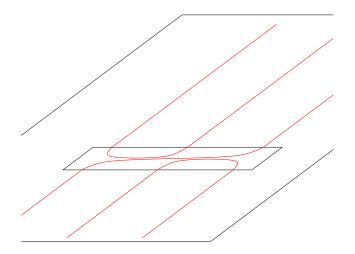


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Contact geometry applications

dea of proof 000000

Adding a bypass



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Outline

Background

- Contact geometry
- Sutured Floer homology, contact elements, TQFT
- Contact elements in SFH(T)
 - Solid tori, contact structures, Catalan, Narayana
 - Computation, addition of contact elements
 - Creation operators, basis of contact elements
- 3 Main theorems
 - Statements
 - Properties of contact elements
- Contact geometry applications
 - Stackability
 - Contact categories
- Idea of proof of main theorems
 - Comparable pairs and bypass systems

Contact geometry applications

Idea of proof

Sutured manifolds & SFH Juhász 2006, Holomorphic discs and sutured manifolds

Sutured manifold (M, Γ)

M 3-manifold with boundary. Γ collection of disjoint simple closed curves on boundary, dividing ∂M into positive/negative regions.

(Balanced.)

$(M,\Gamma) \rightsquigarrow SFH(M,\Gamma)$

- Take sutured Heegaard decomposition, symmetric product of Heegaard surface.
- Chain complex generated by intersection points of α , β tori.
- Differential counts certain holomorphic curves in symmetric product with certain boundary conditions
- Invariant of (balanced) sutured manifold.

Contact geometry applications

Idea of proof

Sutured manifolds & SFH Juhász 2006, Holomorphic discs and sutured manifolds

Sutured manifold (M, Γ)

M 3-manifold with boundary. Γ collection of disjoint simple closed curves on boundary, dividing ∂M into positive/negative regions.

(Balanced.)

$(M, \Gamma) \rightsquigarrow SFH(M, \Gamma)$

- Take sutured Heegaard decomposition, symmetric product of Heegaard surface.
- Chain complex generated by intersection points of α , β tori.
- Differential counts certain holomorphic curves in symmetric product with certain boundary conditions.
- Invariant of (balanced) sutured manifold.

Contact geometry applications

Idea of proof

Contact elements

Closed case Ozsváth–Szabó 2005, Honda–Kazez–Matić 2007; sutured case Honda–Kazez–Matić 2007, *The contact invariant in sutured Floer homology*

Contact structutre on sutured manifold

- ξ contact structure on (M, Γ):
 - ∂M convex
 - Γ dividing set
 - Positive/negative regions.

Theorem (Honda–Kazez–Matić)

A contact structure ξ on (M, Γ) gives a well-defined contact element $c(\xi) \in SFH(-M, -\Gamma)$.

We take \mathbb{Z}_2 coefficients. (Otherwise a sign ambiguity.) ξ overtwisted $\Rightarrow c(\xi) = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Contact geometry applications

Idea of proof

Contact elements

Closed case Ozsváth–Szabó 2005, Honda–Kazez–Matić 2007; sutured case Honda–Kazez–Matić 2007, *The contact invariant in sutured Floer homology*

Contact structutre on sutured manifold

- ξ contact structure on (M, Γ):
 - ∂M convex
 - Γ dividing set
 - Positive/negative regions.

Theorem (Honda–Kazez–Matić)

A contact structure ξ on (M, Γ) gives a well-defined contact element $c(\xi) \in SFH(-M, -\Gamma)$.

We take \mathbb{Z}_2 coefficients. (Otherwise a sign ambiguity.) ξ overtwisted $\Rightarrow c(\xi) = 0$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 - のへの

Contact geometry applications

Idea of proof

Contact elements

Closed case Ozsváth–Szabó 2005, Honda–Kazez–Matić 2007; sutured case Honda–Kazez–Matić 2007, *The contact invariant in sutured Floer homology*

Contact structutre on sutured manifold

- ξ contact structure on (M, Γ):
 - ∂M convex
 - Γ dividing set
 - Positive/negative regions.

Theorem (Honda–Kazez–Matić)

A contact structure ξ on (M, Γ) gives a well-defined contact element $c(\xi) \in SFH(-M, -\Gamma)$.

We take \mathbb{Z}_2 coefficients. (Otherwise a sign ambiguity.) ξ overtwisted $\Rightarrow c(\xi) = 0$

・ロト・日本・日本・日本・日本

Contact geometry applications

Idea of proof

Contact elements

Closed case Ozsváth–Szabó 2005, Honda–Kazez–Matić 2007; sutured case Honda–Kazez–Matić 2007, *The contact invariant in sutured Floer homology*

Contact structutre on sutured manifold

- ξ contact structure on (M, Γ):
 - ∂M convex
 - Γ dividing set
 - Positive/negative regions.

Theorem (Honda–Kazez–Matić)

A contact structure ξ on (M, Γ) gives a well-defined contact element $c(\xi) \in SFH(-M, -\Gamma)$.

We take \mathbb{Z}_2 coefficients. (Otherwise a sign ambiguity.) ξ overtwisted $\Rightarrow c(\xi) = 0$

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

TQFT property Honda–Kazez–Matić 2008, *Contact structures, sutured Floer homology and TQFT*

Theorem

Given

- $(M', \Gamma') \hookrightarrow (M, \Gamma)$ inclusion of sutured manifolds.
- ξ'' contact structure on $(M M', \Gamma \cup \Gamma')$

there is a natural map

 $SFH(M', \Gamma') \longrightarrow SFH(M, \Gamma).$

Further

$$c(\xi')\mapsto c(\xi'\cup\xi'').$$

"TQFT-inclusion". (Actually \longrightarrow *SFH*(*M*, Γ) \otimes *V^m* where *m* is number of "isolated" components).

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

TQFT property Honda–Kazez–Matić 2008, *Contact structures, sutured Floer homology and TQFT*

Theorem

Given

- $(M', \Gamma') \hookrightarrow (M, \Gamma)$ inclusion of sutured manifolds.
- ξ'' contact structure on $(M M', \Gamma \cup \Gamma')$

there is a natural map

$$SFH(M', \Gamma') \longrightarrow SFH(M, \Gamma).$$

Further

$$c(\xi') \mapsto c(\xi' \cup \xi'').$$

"TQFT-inclusion". (Actually $\longrightarrow SFH(M, \Gamma) \otimes V^m$ where *m* is number of "isolated" components). Contact geometry applications

Idea of proof

The question

Motivating question:

How do contact elements lie in SFH?

◆□ > ◆□ > ◆ □ > ◆ □ > ● ● ● ● ● ●

Outline

- Contact geometry
- Sutured Floer homology, contact elements, TQFT
- 2 Contact elements in SFH(T)
 - Solid tori, contact structures, Catalan, Narayana
 - Computation, addition of contact elements
 - Creation operators, basis of contact elements

3 Main theorems

- Statements
- Properties of contact elements
- Contact geometry applications
 - Stackability
 - Contact categories
- Idea of proof of main theorems
 - Comparable pairs and bypass systems

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Solid tori

Only sutured 3-manifolds we consider are solid tori.

Sutured manifold (T, n)

- Solid torus $D^2 \times S^1$
- Longitudinal sutures $F \times S^1$, $F \subset \partial D^2$ finite, |F| = 2n.

(Notational cover-up: $(T, n) = (-(D^2 \times S^1), -(F \times S^1)).)$

- Part of the (1 + 1)-dimensional TQFT discussed in HKM 2008.
- To classify contact structures:
 - consider dividing sets on convex meridian disc and boundary torus

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Solid tori

Only sutured 3-manifolds we consider are solid tori.

Sutured manifold (T, n)

- Solid torus $D^2 \times S^1$
- Longitudinal sutures $F \times S^1$, $F \subset \partial D^2$ finite, |F| = 2n.

(Notational cover-up: $(T, n) = (-(D^2 \times S^1), -(F \times S^1)).)$

- Part of the (1 + 1)-dimensional TQFT discussed in HKM 2008.
- To classify contact structures:
 - consider dividing sets on convex meridian disc and boundary torus

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Solid tori

Only sutured 3-manifolds we consider are solid tori.

Sutured manifold (T, n)

- Solid torus $D^2 \times S^1$
- Longitudinal sutures $F \times S^1$, $F \subset \partial D^2$ finite, |F| = 2n.

(Notational cover-up: $(T, n) = (-(D^2 \times S^1), -(F \times S^1)).)$

- Part of the (1 + 1)-dimensional TQFT discussed in HKM 2008.
- To classify contact structures:
 - consider dividing sets on convex meridian disc and boundary torus

Contact structures on (T, n) and chord diagrams

Dividing set Γ on meridional disc (convex, leg. b'dy)

- Interleaves with sutures $F \times S^1$ on boundary; 2*n* endpoints.
- For tight contact structure, Γ has no closed components.

Chord diagram

Collection of disjoint properly embedded arcs on disc. Up to homotopy rel endpoints.

E.g.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

Contact structures on (T, n) and chord diagrams

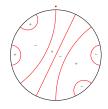
Dividing set Γ on meridional disc (convex, leg. b'dy)

- Interleaves with sutures $F \times S^1$ on boundary; 2*n* endpoints.
- For tight contact structure, Γ has no closed components.

Chord diagram

Collection of disjoint properly embedded arcs on disc. Up to homotopy rel endpoints.

E.g.



Idea of proof

Euler class of chord diagram

Chord diagram has relative euler class e:

 $e = signed sum of regions of D - \Gamma$.

So $|e| \le n - 1$, and *e* opposite parity to *n*.

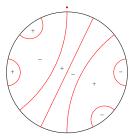


Figure: n = 7, e = 0

Contact structures on (T, n) are chord diagrams Honda 2000, On the classification of tight contact structures. II; Honda 2002, Gluing tight contact structures;

Giroux 2001, Structures de contact sur les variétés fibrées en cercles...

- A chord diagram determines a contact structure on $D^2 \times S^1$:
 - Place it on top and bottom of cylinder, unique tight contact structure on ball, glue ends together.

For solid tori in general:

- A chord diagram may give an overtwisted contact structure on $D^2 \times S^1$
- Distinct chord diagrams may give isotopic contact structures.

However with *longitudinal sutures* of (T, n), neither occurs.

Theorem (Honda, Giroux)

Tight contact structures

Chord diagram

Contact structures on (T, n) are chord diagrams Honda 2000, On the classification of tight contact structures. II; Honda 2002, Gluing tight contact structures;

Giroux 2001, Structures de contact sur les variétés fibrées en cercles...

- A chord diagram determines a contact structure on $D^2 \times S^1$:
 - Place it on top and bottom of cylinder, unique tight contact structure on ball, glue ends together.

For solid tori in general:

- A chord diagram may give an overtwisted contact structure on $D^2 \times S^1$
- Distinct chord diagrams may give isotopic contact structures.

However with *longitudinal sutures* of (T, n), neither occurs.

Theorem (Honda, Giroux)

Tight contact structures

Chord diagram
with n chords

Contact structures on (T, n) are chord diagrams Honda 2000, On the classification of tight contact structures. II; Honda 2002, Gluing tight contact structures;

Giroux 2001, Structures de contact sur les variétés fibrées en cercles...

- A chord diagram determines a contact structure on $D^2 \times S^1$:
 - Place it on top and bottom of cylinder, unique tight contact structure on ball, glue ends together.

For solid tori in general:

- A chord diagram may give an overtwisted contact structure on $D^2 \times S^1$
- Distinct chord diagrams may give isotopic contact structures.

However with *longitudinal sutures* of (T, n), neither occurs.

Theorem (Honda, Giroux) $\left\{ \begin{array}{c} Tight \ contact \ structures \\ on (T, n) \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} Chord \ diagrams \\ with \ n \ chords \end{array} \right\}$

Idea of proof

Catalan and Naryana numbers

 $\# \left\{ \begin{array}{c} \text{Tight contact} \\ \text{structures on } (T, n) \end{array} \right\} = \# \left\{ \begin{array}{c} \text{Chord diagrams} \\ n \text{ chords} \end{array} \right\}$ Catalan numbers $C_n = 1, 1, 2, 5, 14, 42, 132, 429, \dots$

 $\# \left\{ \begin{array}{c} \text{Tight contact} \\ \text{structures on } (T, n) \\ \text{euler class } e \end{array} \right\} = \# \left\{ \begin{array}{c} \text{Chord diagrams} \\ n \text{ chords} \\ \text{euler class } e \end{array} \right\}$

Idea of proof

Catalan and Naryana numbers

 $\# \left\{ \begin{array}{c} \text{Tight contact} \\ \text{structures on } (T, n) \end{array} \right\} = \# \left\{ \begin{array}{c} \text{Chord diagrams} \\ n \text{ chords} \end{array} \right\}$ Catalan numbers $C_n = 1, 1, 2, 5, 14, 42, 132, 429, \dots$

 $\# \left\{ \begin{array}{c} \text{Tight contact} \\ \text{structures on } (T, n) \\ \text{euler class } e \end{array} \right\} = \# \left\{ \begin{array}{c} \text{Chord diagrams} \\ n \text{ chords} \\ \text{euler class } e \end{array} \right\}$

Narayana numbers C_n^e :

Idea of proof

The Catalan disease and Narayana symptoms

Catalan:

- tight ct. str's on (*T*, *n*)
- chord diagrams, n chords
- pairings of n brackets
- Dyck paths length 2n
- rooted planar bin. trees
- Recursion

$$C_{n+1} = \sum_{n_1+n_2=n} C_{n_1} C_{n_2}.$$

Narayana:

- # with euler class e
- # with euler class e
- # with k occurrences of "()"
- # with k peaks
- # with k "left" leaves
- Recursion:

$$C_{n+1}^{e} = \sum_{\substack{n_1+n_2=n\\e_1+e_2=e}} C_{n_1}^{e_1} C_{n_2}^{e_2}.$$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

э.

Idea of proof

The Catalan disease and Narayana symptoms

Catalan:

- tight ct. str's on (*T*, *n*)
- chord diagrams, *n* chords
- pairings of n brackets
- Dyck paths length 2n
- rooted planar bin. trees
- Recursion

$$C_{n+1} = \sum_{n_1+n_2=n} C_{n_1} C_{n_2}.$$

Narayana:

- # with euler class e
- # with euler class e
- # with k occurrences of "()"
- # with k peaks
- # with k "left" leaves
- Recursion:

$$C_{n+1}^{e} = \sum_{\substack{n_1+n_2=n\\e_1+e_2=e}} C_{n_1}^{e_1} C_{n_2}^{e_2}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

- Contact geometry
- Sutured Floer homology, contact elements, TQFT
- 2 Contact elements in SFH(T)
 - Solid tori, contact structures, Catalan, Narayana
 - Computation, addition of contact elements
 - Creation operators, basis of contact elements
- 3 Main theorems
 - Statements
 - Properties of contact elements
- Contact geometry applications
 - Stackability
 - Contact categories
- Idea of proof of main theorems
 - Comparable pairs and bypass systems

Background Contact elements in SFH(T) Main theorems

Contact geometry applications

Idea of proof

Computation of SFH(T, n)

Juhász 2008, "Floer homology and surface decompositions" Honda–Kazez–Matić 2008, Contact structures, sutured Floer homology and TQFT

Theorem

$$SFH(T,n+1)=\mathbb{Z}_2^{2^n}.$$

Split over spin-c structures:

$$SFH(T, n+1) = \bigoplus_{k} \mathbb{Z}_{2}^{\binom{n}{k}}.$$

For ξ with euler class e,

$$c(\xi)\in \mathbb{Z}_2^{\binom{n}{k}}$$
 where $k=rac{\mathbf{e}+r_2}{2}$

so let

 $SFH(T, n+1, e) = \mathbb{Z}_{2}^{\binom{n}{k}}.$

Background Contact elements in SFH(T) Main theorems

Contact geometry applications

Idea of proof

Computation of SFH(T, n)

Juhász 2008, "Floer homology and surface decompositions" Honda–Kazez–Matić 2008, Contact structures, sutured Floer homology and TQFT

Theorem

$$SFH(T,n+1)=\mathbb{Z}_2^{2^n}.$$

Split over spin-c structures:

$$SFH(T, n+1) = \bigoplus_{k} \mathbb{Z}_{2}^{\binom{n}{k}}.$$

For ξ with euler class *e*,

$${f c}(\xi)\in \mathbb{Z}_2^{\binom{n}{k}}$$
 where $k=rac{{f e}+n}{2}$

so let

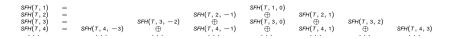
$$SFH(T, n+1, e) = \mathbb{Z}_{2}^{\binom{n}{k}}.$$

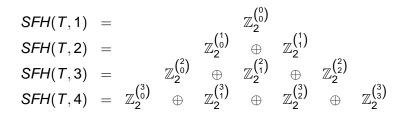
Background Contact elements in SFH(T) Main theorem:

Contact geometry applications

Idea of proof

"Categorified Pascal triangle"





▲ロト▲園ト▲国ト▲国ト 国 のQで

Idea of proof

Catalan and Pascal triangle

Contact elements in each SFH(T, n, e) form a distinguished subset of order C_n^e .

$$\left\{ \begin{array}{ccc} & 1 & & \\ & 1 & 1 & \\ & 1 & 3 & 1 & \\ 1 & 6 & 6 & 1 \end{array} \right\} \subset \left\{ \begin{array}{ccc} & \mathbb{Z}_2^1 & & \\ & \mathbb{Z}_2^1 \oplus \mathbb{Z}_2^1 & \\ & \mathbb{Z}_2^1 \oplus \mathbb{Z}_2^2 \oplus \mathbb{Z}_2^1 \\ & \mathbb{Z}_2^1 \oplus \mathbb{Z}_2^3 \oplus \mathbb{Z}_2^3 \oplus \mathbb{Z}_2^1 \end{array} \right\}$$

Question:

How do the C_n^e contact elements lie in $\mathbb{Z}_2^{\binom{n}{k}}$?

Idea of proof

Catalan and Pascal triangle

Contact elements in each SFH(T, n, e) form a distinguished subset of order C_n^e .

$$\left\{\begin{array}{cccc} & 1 & & \\ & 1 & 1 & \\ & 1 & 3 & 1 & \\ 1 & 6 & 6 & 1 \end{array}\right\} \subset \left\{\begin{array}{cccc} & \mathbb{Z}_2^1 & & \\ & \mathbb{Z}_2^1 \oplus \mathbb{Z}_2^1 \oplus \mathbb{Z}_2^1 & \\ & \mathbb{Z}_2^1 \oplus \mathbb{Z}_2^2 \oplus \mathbb{Z}_2^1 & \\ & \mathbb{Z}_2^1 \oplus \mathbb{Z}_2^3 \oplus \mathbb{Z}_2^3 \oplus \mathbb{Z}_2^1 \end{array}\right\}$$

Question:

How do the C_n^e contact elements lie in $\mathbb{Z}_2^{\binom{n}{k}}$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Idea of proof

Addition and the bypass relation

Are the contact elements a subgroup?

- No.
- Closure under addition described by bypasses.

Bypass-related chord diagrams naturally come in triples.

Proposition

Suppose $a, b \in SFH(T, n, e)$ are contact elements. Then a + b is a contact element if and only if a, b are related by a bypass surgery. In this case, a + b is the third chord diagram in the triple.

Idea of proof

Addition and the bypass relation

Are the contact elements a subgroup?

- No.
- Closure under addition described by bypasses.

Bypass-related chord diagrams naturally come in triples.

Proposition

Suppose $a, b \in SFH(T, n, e)$ are contact elements. Then a + b is a contact element if and only if a, b are related by a bypass surgery. In this case, a + b is the third chord diagram in the triple.

Idea of proof

Addition and the bypass relation

Are the contact elements a subgroup?

- No.
- Closure under addition described by bypasses.

Bypass-related chord diagrams naturally come in triples.

Proposition

Suppose $a, b \in SFH(T, n, e)$ are contact elements. Then a + b is a contact element if and only if a, b are related by a bypass surgery. In this case, a + b is the third chord diagram in the triple.

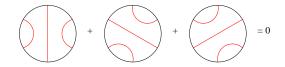
Idea of proof

Addition and the bypass relation

Are the contact elements a subgroup?

- No.
- Closure under addition described by bypasses.

Bypass-related chord diagrams naturally come in triples.



Proposition

Suppose $a, b \in SFH(T, n, e)$ are contact elements. Then a + b is a contact element if and only if a, b are related by a bypass surgery. In this case, a + b is the third chord diagram in the triple. Background Contact elements in SFH(T) Main theorems

Contact geometry applications

Idea of proof

Reduction to kindergarten

In fact one can show:

Proposition (SFH is combinatorial)

$$SFH(T, n, e) = \frac{\mathbb{Z}_2 \langle Chord \text{ diag's, } n \text{ chords, euler class } e \rangle}{Bypass \text{ relation}}$$

・ロト・日本・日本・日本・日本・日本

Outline

- Contact geometry
- Sutured Floer homology, contact elements, TQFT
- 2 Contact elements in SFH(T)
 - Solid tori, contact structures, Catalan, Narayana
 - Computation, addition of contact elements
 - Creation operators, basis of contact elements
- 3 Main theorems
 - Statements
 - Properties of contact elements
- Contact geometry applications
 - Stackability
 - Contact categories
- Idea of proof of main theorems
 - Comparable pairs and bypass systems

Idea of proof

・ロット (雪) (日) (日) (日)

Creation operators

A well-defined way to create chords, enclosing positive/negative regions at the basepoint.

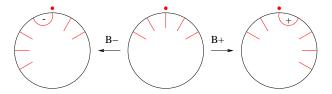


Figure: Creation operators.

We obtain maps

 B_{\pm} : SFH(T, n, e) \longrightarrow SFH(T, n + 1, e \pm 1).

(日)

Idea of proof

Creation operators

A well-defined way to create chords, enclosing positive/negative regions at the basepoint.

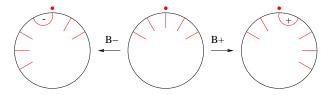


Figure: Creation operators.

We obtain maps

$$B_{\pm}$$
: SFH(T, n, e) \longrightarrow SFH(T, n + 1, e \pm 1).

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Origin of creation operators

B_{\pm} arise from TQFT-inclusion

$$(T, n) \hookrightarrow (T, n+1)$$

with intermediate contact structure

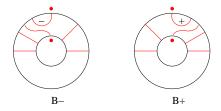


Figure: Creation operator inclusion.

Idea of proof

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Annihilation operators

Similarly

$$\mathsf{A}_{\pm}:\mathsf{SFH}(\mathsf{T},\mathsf{n}+\mathsf{1},\mathsf{e})\longrightarrow\mathsf{SFH}(\mathsf{T},\mathsf{n},\mathsf{e}\pm\mathsf{1})$$

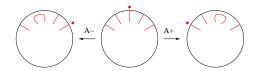


Figure: Annihilation operators.

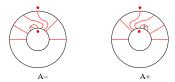


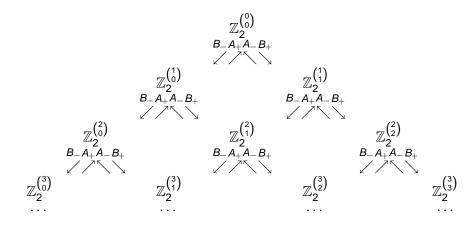
Figure: Annihilation operator inclusion.

Background Contact elements in SFH(T) Main theorems

Contact geometry applications

Idea of proof

Morphisms in Pascal's triangle "Full categorification"



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の��

Idea of proof

Operator relations, Pascal recursion

Proposition (Creation/annihilation relations)

$$\begin{array}{l} A_+ \circ B_- = A_- \circ B_+ = 1 \\ A_+ \circ B_+ = A_- \circ B_- = 0 \end{array}$$

Proposition (Categorification of Pascal recursion)

 $SFH(T, n+1, e) = B_+SFH(T, n, e-1) \oplus B_-SFH(T, n, e+1)$

l.e.:

$$\mathbb{Z}_2^{\binom{n+1}{k}} = B_+ \mathbb{Z}_2^{\binom{n}{k-1}} \oplus B_- \mathbb{Z}_2^{\binom{n}{k}}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Idea of proof

Operator relations, Pascal recursion

Proposition (Creation/annihilation relations)

$$\begin{array}{l} A_+ \circ B_- = A_- \circ B_+ = 1 \\ A_+ \circ B_+ = A_- \circ B_- = 0 \end{array}$$

Proposition (Categorification of Pascal recursion)

 $SFH(T, n + 1, e) = B_+SFH(T, n, e - 1) \oplus B_-SFH(T, n, e + 1)$

l.e.:

$$\mathbb{Z}_2^{\binom{n+1}{k}}=B_+\mathbb{Z}_2^{\binom{n}{k-1}}\oplus B_-\mathbb{Z}_2^{\binom{n}{k}}$$

◆□> ◆□> ◆豆> ◆豆> ・豆・ のへで

QFT analogy

Contact geometry applications

Idea of proof

SFH(T, n+1, e) = "*n*-particle states of charge *e*"

Figure: "The vacuum" $v_{\emptyset} \in SFH(T, 1, 0) = \mathbb{Z}_2$.

"Basis: apply creation operators to the vacuum"

 $W(n_{-}, n_{+}) = \{ \text{Words on } \{-, +\}, n_{-} - \text{signs}, n_{+} + \text{signs} \}$ For $w \in W(n_{-}, n_{+})$, form $v_{w} \in SFH(T, n + 1, e)$.

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Idea of proof

QFT analogy

SFH(T, n+1, e) ="*n*-particle states of charge *e*"

Figure: "The vacuum" $v_{\emptyset} \in SFH(T, 1, 0) = \mathbb{Z}_2$.

"Basis: apply creation operators to the vacuum"

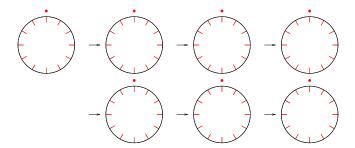
 $W(n_-, n_+) = \{ \text{Words on } \{-, +\}, n_- - \text{signs, } n_+ + \text{signs} \}$ For $w \in W(n_-, n_+)$, form $v_w \in SFH(T, n+1, e)$.

・ロット (四)・(川)・(日)・(日)・(日)・

Idea of proof

E.g.

"QFT basis"

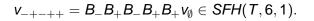


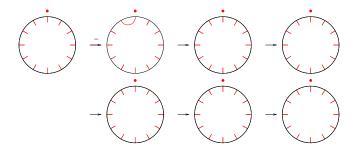
Proposition

Idea of proof

E.g.

"QFT basis"



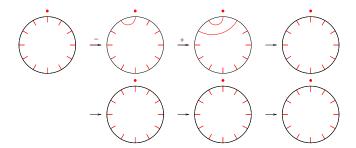


Proposition

Idea of proof

E.g.

"QFT basis"

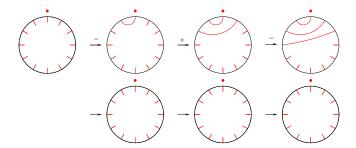


Proposition

Idea of proof

E.g.

"QFT basis"

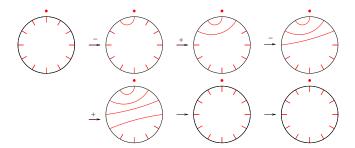


Proposition

Idea of proof

E.g.

"QFT basis"

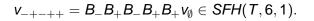


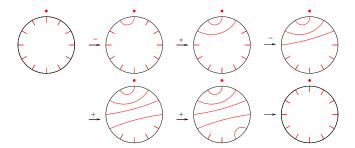
Proposition

Idea of proof

E.g.

"QFT basis"





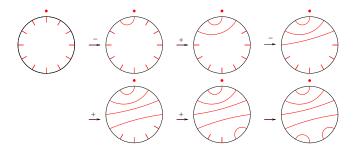
Proposition

The v_w , $w \in W(n_-, n_+)$, form a basis for SFH(T, n + 1, e).

Idea of proof

E.g.

"QFT basis"



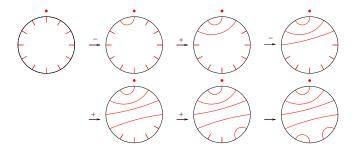
Proposition

The v_w , $w \in W(n_-, n_+)$, form a basis for SFH(T, n + 1, e).

Idea of proof

E.g.

"QFT basis"



Proposition

The v_w , $w \in W(n_-, n_+)$, form a basis for SFH(T, n + 1, e).

Contact geometry application: 000000000000

ヘロト 人間 とくほ とくほ とう

3

dea of proof 000000

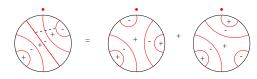
Basis decomposition

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

э

ldea of proof oooooo

Basis decomposition

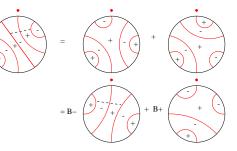


▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

э

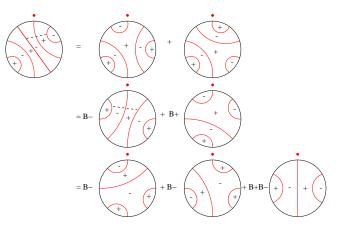
ldea of proof 000000

Basis decomposition



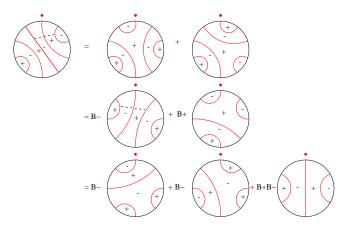
ldea of proof 000000

Basis decomposition



Idea of proof

Basis decomposition



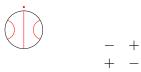
 $= B_{-}B_{-}B_{+}B_{+}v_{\emptyset} + B_{-}B_{+}B_{-}v_{\emptyset} + B_{+}B_{-}(B_{-}B_{+}v_{\emptyset} + B_{+}B_{-}v_{\emptyset})$ = $v_{--++} + v_{-++-} + v_{+--+} + v_{+-+-}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Contact geometry applications

ldea of proof oooooo

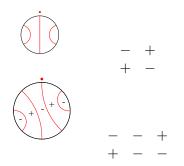
Examples of basis decomposition



Contact geometry applications

ldea of proof 000000

Examples of basis decomposition



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

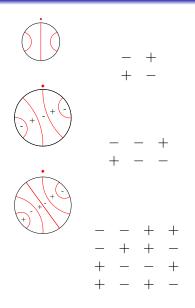
Contact geometry applications

ヘロト 人間 とくほとくほとう

3

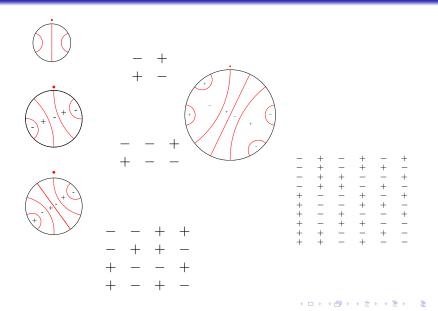
dea of proof

Examples of basis decomposition



dea of proof

Examples of basis decomposition



Outline

- Contact geometry
- Sutured Floer homology, contact elements, TQFT
- 2 Contact elements in SFH(T)
 - Solid tori, contact structures, Catalan, Narayana
 - Computation, addition of contact elements
 - Creation operators, basis of contact elements

3 Main theorems

- Statements
- Properties of contact elements
- Contact geometry applications
 - Stackability
 - Contact categories
- Idea of proof of main theorems
 - Comparable pairs and bypass systems

Contact geometry applications

Idea of proof

Orderings on $W(n_-, n_+)$

• Lexicographic ordering: Total order.

Partial order
 <u>≺</u>: "All minus signs move right (or stay where they are)."

E.g.

but

-++-, +--+ not comparable.

Theorem

Write a contact element v as a sum of basis vectors

$$v = \sum_{w} v_w, \quad w \in W(n_-, n_+).$$

Let w_- , w_+ be (lex.) first and last words occurring. Then for all words w in decomposition, $w_- \leq w \leq w_+$

Contact geometry applications

Idea of proof

Orderings on $W(n_-, n_+)$

- Lexicographic ordering: Total order.

E.g.

 $--++ \preceq +-+-$

but

$$-++-, +--+$$
 not comparable.

Theorem

Write a contact element v as a sum of basis vectors

$$v = \sum_{w} v_w, \quad w \in W(n_-, n_+).$$

Let w_- , w_+ be (lex.) first and last words occurring. Then for all words w in decomposition, $w_- \leq w \leq w_+$

Idea of proof

Orderings on $W(n_-, n_+)$

- Lexicographic ordering: Total order.
- Partial order ≤: "All minus signs move right (or stay where they are)."

E.g.

but

-++-, +--+ not comparable.

Theorem

Write a contact element v as a sum of basis vectors

$$v = \sum_w v_w, \quad w \in W(n_-, n_+).$$

Let w_- , w_+ be (lex.) first and last words occurring. Then for all words w in decomposition, $w_- \leq w \leq w_+$.

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Chord diagram = comparable pair

Now have

 $\Phi : \{\text{Contact elements}\} \longrightarrow \{\text{Comparable pairs of words}\}$ $v = \sum_{w} v_{w} \mapsto (w_{-}, w_{+})$

Proposition

These sets have the same cardinality. I.e. # comparable pairs of words = C_n^e .

Theorem

Φ is a bijection.

I.e. for any $w_{-} \leq w_{+} \exists!$ contact element with $v_{w_{-}}$ first, $v_{w_{+}}$ last.

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Chord diagram = comparable pair

Now have

 $\Phi : \{\text{Contact elements}\} \longrightarrow \{\text{Comparable pairs of words}\}$ $v = \sum_{w} v_{w} \mapsto (w_{-}, w_{+})$

Proposition

These sets have the same cardinality. I.e. # comparable pairs of words = C_n^e .

Theorem

Φ is a bijection.

I.e. for any $w_{-} \leq w_{+} \exists !$ contact element with $v_{w_{-}}$ first, $v_{w_{+}}$ last.

Idea of proof

Chord diagram = comparable pair

Now have

 $\Phi : \{\text{Contact elements}\} \longrightarrow \{\text{Comparable pairs of words}\}$ $v = \sum_{w} v_{w} \mapsto (w_{-}, w_{+})$

Proposition

These sets have the same cardinality. I.e. # comparable pairs of words = C_n^e .

Theorem

Φ is a bijection.

I.e. for any $w_{-} \preceq w_{+} \exists!$ contact element with $v_{w_{-}}$ first, $v_{w_{+}}$ last.

Outline

- Contact geometry
- Sutured Floer homology, contact elements, TQFT
- 2 Contact elements in SFH(T)
 - Solid tori, contact structures, Catalan, Narayana
 - Computation, addition of contact elements
 - Creation operators, basis of contact elements
- 3 Main theorems
 - Statements
 - Properties of contact elements
- 4 Contact geometry applications
 - Stackability
 - Contact categories
- Idea of proof of main theorems
 - Comparable pairs and bypass systems

Idea of proof

Properties of contact elements

Notation $v = [w_-, w_+]$.

Proposition

The number of terms in the basis decomposition of a contact element v is

 $\left\{ \begin{array}{ll} 1 & \text{if } v \text{ is a basis element.} \\ even & \text{otherwise.} \end{array} \right.$

Theorem (Not much comparability)

Suppose v_w occurs in the basis decomposition of the contact element $v = [w_-, w_+]$. Suppose w is comparable with every other element in the decomposition. Then $w = w_-$ or w_+ .

Idea of proof

Properties of contact elements

Notation $v = [w_-, w_+]$.

Proposition

The number of terms in the basis decomposition of a contact element v is

 $\left\{ \begin{array}{ll} 1 & \text{if } v \text{ is a basis element.} \\ even & \text{otherwise.} \end{array} \right.$

Theorem (Not much comparability)

Suppose v_w occurs in the basis decomposition of the contact element $v = [w_-, w_+]$. Suppose *w* is comparable with every other element in the decomposition

Then $w = w_-$ or w_+ .

Idea of proof

Properties of contact elements

Notation $v = [w_-, w_+]$.

Proposition

The number of terms in the basis decomposition of a contact element v is

 $\left\{ \begin{array}{ll} 1 & \text{if } v \text{ is a basis element.} \\ even & \text{otherwise.} \end{array} \right.$

Theorem (Not much comparability)

Suppose v_w occurs in the basis decomposition of the contact element $v = [w_-, w_+]$. Suppose w is comparable with every other element in the decomposition.

Then $w = w_{-}$ or w_{+} .

Idea of proof

Properties of contact elements

Notation $v = [w_-, w_+]$.

Proposition

The number of terms in the basis decomposition of a contact element v is

 $\left\{ \begin{array}{ll} 1 & \text{if } v \text{ is a basis element.} \\ even & \text{otherwise.} \end{array} \right.$

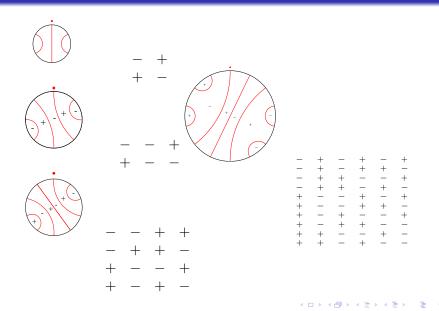
Theorem (Not much comparability)

Suppose v_w occurs in the basis decomposition of the contact element $v = [w_-, w_+]$. Suppose w is comparable with every other element in the decomposition. Then $w = w_-$ or w_+ .

Contact geometry applications

dea of proof

Examples of basis decomposition



Summary of results

- Distinct chord diagrams/contact structures give distinct contact elements.
- Contact elements not a subgroup, but "addition means bypasses".
- Can give a basis for each SFH(T, n, e) consisting of chord diagrams / contact elements.
- There is a partial order \leq on each basis.
- Chord diagrams / contact structures correspond precisely to comparable pairs of basis elements.

Outline

- Contact geometry
- Sutured Floer homology, contact elements, TQFT
- 2 Contact elements in SFH(T)
 - Solid tori, contact structures, Catalan, Narayana
 - Computation, addition of contact elements
 - Creation operators, basis of contact elements
- 3 Main theorems
 - Statements
 - Properties of contact elements
- Contact geometry applications
 - Stackability
 - Contact categories
- 5 Idea of proof of main theorems
 - Comparable pairs and bypass systems

Idea of proof

Stacking construction

Given Γ_0, Γ_1 chord diagrams, consider $\mathcal{M}(\Gamma_0, \Gamma_1)$:

- sutured solid cylinder $D \times I$
- Γ_i sutures along $D \times \{i\}$
- Vertical interleaving sutures along $\partial D \times I$.

Figure: $\mathcal{M}(\Gamma_0, \Gamma_1)$.

 $\mathcal{M}(\Gamma_0, \Gamma_1)$ is tight if it admits a tight contact structure. I.e. after rounding corners, sutures form single component.

Idea of proof

Stacking construction

Given Γ_0, Γ_1 chord diagrams, consider $\mathcal{M}(\Gamma_0, \Gamma_1)$:

- sutured solid cylinder $D \times I$
- Γ_i sutures along $D \times \{i\}$
- Vertical interleaving sutures along $\partial D \times I$.

Figure: $\mathcal{M}(\Gamma_0, \Gamma_1)$.

 $\mathcal{M}(\Gamma_0, \Gamma_1)$ is tight if it admits a tight contact structure. I.e. after rounding corners, sutures form single component.

Idea of proof

Stacking construction

Given Γ_0, Γ_1 chord diagrams, consider $\mathcal{M}(\Gamma_0, \Gamma_1)$:

- sutured solid cylinder $D \times I$
- Γ_i sutures along $D \times \{i\}$
- Vertical interleaving sutures along $\partial D \times I$.

Figure: $\mathcal{M}(\Gamma_0, \Gamma_1)$.

 $\mathcal{M}(\Gamma_0, \Gamma_1)$ is tight if it admits a tight contact structure. I.e. after rounding corners, sutures form single component.

Idea of proof

Properties of stackability

Proposition (Stackability map)

There is a linear map

 $m: SFH(T, n) \otimes SFH(T, n) \longrightarrow \mathbb{Z}_2$

taking (Γ_0, Γ_1) to 1 if $\mathcal{M}(\Gamma_0, \Gamma_1)$ is tight, and 0 if overtwisted.

Proposition (Euler class orthogonality)

If Γ_0 , Γ_1 have distinct Euler class then $m(\Gamma_0, \Gamma_1) = 0$.

So only interesting part of *m* on each summand

 $m: SFH(T, n, e) \otimes SFH(T, n, e) \longrightarrow \mathbb{Z}_2.$

Proposition (Positive definiteness)

 $m(\Gamma,\Gamma)=1.$

Idea of proof

Properties of stackability

Proposition (Stackability map)

There is a linear map

 $m: SFH(T, n) \otimes SFH(T, n) \longrightarrow \mathbb{Z}_2$

taking (Γ_0, Γ_1) to 1 if $\mathcal{M}(\Gamma_0, \Gamma_1)$ is tight, and 0 if overtwisted.

Proposition (Euler class orthogonality)

If Γ_0 , Γ_1 have distinct Euler class then $m(\Gamma_0, \Gamma_1) = 0$.

So only interesting part of m on each summand

 $m: SFH(T, n, e) \otimes SFH(T, n, e) \longrightarrow \mathbb{Z}_2.$

Proposition (Positive definiteness)

 $m(\Gamma,\Gamma)=1.$

Idea of proof

Properties of stackability

Proposition (Stackability map)

There is a linear map

 $m: SFH(T, n) \otimes SFH(T, n) \longrightarrow \mathbb{Z}_2$

taking (Γ_0, Γ_1) to 1 if $\mathcal{M}(\Gamma_0, \Gamma_1)$ is tight, and 0 if overtwisted.

Proposition (Euler class orthogonality)

If Γ_0 , Γ_1 have distinct Euler class then $m(\Gamma_0, \Gamma_1) = 0$.

So only interesting part of m on each summand

 $m: SFH(T, n, e) \otimes SFH(T, n, e) \longrightarrow \mathbb{Z}_2.$

Proposition (Positive definiteness)

 $m(\Gamma,\Gamma) = 1.$

Idea of proof

Other stackability properties

Like a metric? *m* is neither symmetric nor antisymmetric...

Lemma (Independence of irrelevant chords)

Suppose Γ_0, Γ_1 have an outermost chord γ in the same position. Then

$$m(\Gamma_0,\Gamma_1)=m(\Gamma_0-\gamma,\Gamma_1-\gamma).$$

Proof by "finger down the cylinder".

Lemma (Bypass stacking)

Suppose Γ_0 , Γ_1 are related by a bypass move. (In correct order, $\Gamma_1 = Up_c(\Gamma_0)$.) Then $m(\Gamma_0, \Gamma_1) = 1$.

・ロト・「聞・ 《聞・ 《聞・ 《曰・

Idea of proof

Other stackability properties

Like a metric? *m* is neither symmetric nor antisymmetric...

Lemma (Independence of irrelevant chords)

Suppose Γ_0, Γ_1 have an outermost chord γ in the same position. Then

$$m(\Gamma_0,\Gamma_1)=m(\Gamma_0-\gamma,\Gamma_1-\gamma).$$

Proof by "finger down the cylinder".

Lemma (Bypass stacking)

Suppose Γ_0 , Γ_1 are related by a bypass move. (In correct order, $\Gamma_1 = Up_c(\Gamma_0)$.) Then $m(\Gamma_0, \Gamma_1) = 1$.

・ロト・日本・日本・日本・日本・日本

Idea of proof

Other stackability properties

Like a metric? *m* is neither symmetric nor antisymmetric...

Lemma (Independence of irrelevant chords)

Suppose Γ_0, Γ_1 have an outermost chord γ in the same position. Then

$$m(\Gamma_0,\Gamma_1)=m(\Gamma_0-\gamma,\Gamma_1-\gamma).$$

Proof by "finger down the cylinder".

Lemma (Bypass stacking)

Suppose Γ_0 , Γ_1 are related by a bypass move. (In correct order, $\Gamma_1 = Up_c(\Gamma_0)$.) Then $m(\Gamma_0, \Gamma_1) = 1$.

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Idea of proof

Other stackability properties

Like a metric? *m* is neither symmetric nor antisymmetric...

Lemma (Independence of irrelevant chords)

Suppose Γ_0, Γ_1 have an outermost chord γ in the same position. Then

$$m(\Gamma_0,\Gamma_1)=m(\Gamma_0-\gamma,\Gamma_1-\gamma).$$

Proof by "finger down the cylinder".

Lemma (Bypass stacking)

Suppose Γ_0, Γ_1 are related by a bypass move. (In correct order, $\Gamma_1 = Up_c(\Gamma_0)$.) Then $m(\Gamma_0, \Gamma_1) = 1$.

Idea of proof

Other stackability properties

Like a metric? *m* is neither symmetric nor antisymmetric...

Lemma (Independence of irrelevant chords)

Suppose Γ_0, Γ_1 have an outermost chord γ in the same position. Then

$$m(\Gamma_0,\Gamma_1)=m(\Gamma_0-\gamma,\Gamma_1-\gamma).$$

Proof by "finger down the cylinder".

Lemma (Bypass stacking)

Suppose Γ_0, Γ_1 are related by a bypass move. (In correct order, $\Gamma_1 = Up_c(\Gamma_0)$.) Then $m(\Gamma_0, \Gamma_1) = 1$.

Contact geometry applications

Idea of proof

Contact interpretation of partial order

Proposition (Contact interpretation of \leq)

 $\mathcal{M}(\Gamma_{w_0},\Gamma_{w_1})$ is tight iff $w_0 \leq w_1$.

Proposition (General stackability)

 Γ_0, Γ_1 chord diagrams, n chords, euler class e.

$$\mathcal{M}(\Gamma_0,\Gamma_1) \text{ is tight} \Leftrightarrow \# \left\{ (w_0,w_1): \begin{array}{c} w_0 \leq w_1 \\ \Gamma_{w_i} \text{ occurs in } \Gamma_i \end{array} \right\} \text{ is odd.}$$

▲ロ → ▲園 → ▲目 → ▲目 → ▲回 → ▲回 →

Contact geometry applications

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Contact interpretation of partial order

Proposition (Contact interpretation of \leq)

 $\mathcal{M}(\Gamma_{w_0}, \Gamma_{w_1})$ is tight iff $w_0 \leq w_1$.

Proposition (General stackability)

 Γ_0, Γ_1 chord diagrams, n chords, euler class e.

 $\mathcal{M}(\Gamma_0,\Gamma_1) \text{ is tight} \Leftrightarrow \# \left\{ (w_0,w_1): \begin{array}{c} w_0 \leq w_1 \\ \Gamma_{w_i} \text{ occurs in } \Gamma_i \end{array} \right\} \text{ is odd.}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

- Contact geometry
- Sutured Floer homology, contact elements, TQFT
- 2 Contact elements in SFH(T)
 - Solid tori, contact structures, Catalan, Narayana
 - Computation, addition of contact elements
 - Creation operators, basis of contact elements
- 3 Main theorems
 - Statements
 - Properties of contact elements
- 4 Contact geometry applications
 - Stackability
 - Contact categories
 - Idea of proof of main theorems
 - Comparable pairs and bypass systems

Idea of proof

Contact category Honda (unpublished...)

Σ surface.

Contact category $C(\Sigma)$

Objects:

- Dividing sets Γ on Σ
- Morphisms $\Gamma_0 \longrightarrow \Gamma_1$: "Contact cobordisms"
 - Contact structures on $\Sigma \times I$ with $\Gamma_{\Sigma \times \{i\}} = \Gamma_i$.

Composition of morphisms $\Gamma_0 \longrightarrow \Gamma_1 \longrightarrow \Gamma_2$:

- Glue contact structures.
- For surface Σ with boundary: fix marked points on ∂Σ, vertical sutures on "cobordisms".
- One "zero" morphism for all overtwisted structures.

Idea of proof

Contact category Honda (unpublished...)

Σ surface.

Contact category $C(\Sigma)$ Objects: • Dividing sets Γ on Σ

Morphisms $\Gamma_0 \longrightarrow \Gamma_1$: "Contact cobordisms"

• Contact structures on $\Sigma \times I$ with $\Gamma_{\Sigma \times \{i\}} = \Gamma_i$.

Composition of morphisms $\Gamma_0 \longrightarrow \Gamma_1 \longrightarrow \Gamma_2$:

- Glue contact structures.
- For surface Σ with boundary: fix marked points on ∂Σ, vertical sutures on "cobordisms".
- One "zero" morphism for all overtwisted structures.

◆□ → ◆□ → ◆三 → ◆三 → ● ◆○ ◆

Idea of proof

Contact category Honda (unpublished...)

Σ surface.

Contact category	$\mathcal{C}(\Sigma)$
------------------	-----------------------

Objects:

- Dividing sets Γ on Σ
- Morphisms $\Gamma_0 \longrightarrow \Gamma_1$: "Contact cobordisms"
 - Contact structures on $\Sigma \times I$ with $\Gamma_{\Sigma \times \{i\}} = \Gamma_i$.

Composition of morphisms $\Gamma_0 \longrightarrow \Gamma_1 \longrightarrow \Gamma_2$:

• Glue contact structures.

- For surface Σ with boundary: fix marked points on ∂Σ, vertical sutures on "cobordisms".
- One "zero" morphism for all overtwisted structures.

・ロト・日本・山下・ 山下・ 日本

Idea of proof

Contact category Honda (unpublished...)

Σ surface.

Contact category $\mathcal{C}(\Sigma)$

Objects:

- Dividing sets Γ on Σ
- Morphisms $\Gamma_0 \longrightarrow \Gamma_1$: "Contact cobordisms"
 - Contact structures on $\Sigma \times I$ with $\Gamma_{\Sigma \times \{i\}} = \Gamma_i$.

Composition of morphisms $\Gamma_0 \longrightarrow \Gamma_1 \longrightarrow \Gamma_2$:

- Glue contact structures.
- For surface Σ with boundary: fix marked points on ∂Σ, vertical sutures on "cobordisms".
- One "zero" morphism for all overtwisted structures.

Idea of proof

Contact category Honda (unpublished...)

Σ surface.

Contact category $\mathcal{C}(\Sigma)$

Objects:

- Dividing sets Γ on Σ
- Morphisms $\Gamma_0 \longrightarrow \Gamma_1$: "Contact cobordisms"
 - Contact structures on $\Sigma \times I$ with $\Gamma_{\Sigma \times \{i\}} = \Gamma_i$.

Composition of morphisms $\Gamma_0 \longrightarrow \Gamma_1 \longrightarrow \Gamma_2$:

- Glue contact structures.
- For surface Σ with boundary: fix marked points on ∂Σ, vertical sutures on "cobordisms".
- One "zero" morphism for all overtwisted structures.

Idea of proof

Properties of the contact category

• Behaves functorially w.r.t. SFH.

- Has something like exact triangles:
 - Bypass triples?
 - "Generalised bypass triples" multiple bypass attachments?
- Has something like cones.
 - "Cone of up bypass is down bypass".
- Has something like octahedral axiom:
 - ~ 6 contact elements in $SFH(T, 4, 1) \cong \mathbb{Z}_2^3$.

Our work computes $C(D^2, n)$.

- Objects = chord diagrams.
- Morphisms = stackability *m*.
- Composition of tight morphisms $\Gamma_0 \longrightarrow \Gamma_1 \longrightarrow \Gamma_2$:

 $\begin{cases} \text{tight} \quad m(\Gamma_0, \Gamma_2) = 1 \text{ and } \Gamma_1 \text{ exists in } \mathcal{M}(\Gamma_0, \Gamma_2) \\ * \quad \text{otherwise} \end{cases}$

Idea of proof

Properties of the contact category

- Behaves functorially w.r.t. SFH.
- Has something like exact triangles:
 - Bypass triples?
 - "Generalised bypass triples" multiple bypass attachments?
- Has something like cones.
 - "Cone of up bypass is down bypass".
- Has something like octahedral axiom:
 - ~ 6 contact elements in $SFH(T, 4, 1) \cong \mathbb{Z}_2^3$.

Our work computes $C(D^2, n)$.

- Objects = chord diagrams.
- Morphisms = stackability *m*.
- Composition of tight morphisms $\Gamma_0 \longrightarrow \Gamma_1 \longrightarrow \Gamma_2$:

 $\begin{cases} \text{tight} \quad m(\Gamma_0, \Gamma_2) = 1 \text{ and } \Gamma_1 \text{ exists in } \mathcal{M}(\Gamma_0, \Gamma_2) \\ * \quad \text{otherwise} \end{cases}$

Idea of proof

Properties of the contact category

- Behaves functorially w.r.t. SFH.
- Has something like exact triangles:
 - Bypass triples?
 - "Generalised bypass triples" multiple bypass attachments?
- Has something like cones.
 - "Cone of up bypass is down bypass".
- Has something like octahedral axiom:
 - ~ 6 contact elements in $SFH(T, 4, 1) \cong \mathbb{Z}_2^3$.

Our work computes $C(D^2, n)$.

- Objects = chord diagrams.
- Morphisms = stackability *m*.
- Composition of tight morphisms $\Gamma_0 \longrightarrow \Gamma_1 \longrightarrow \Gamma_2$:

 $\begin{cases} \text{ tight } m(\Gamma_0, \Gamma_2) = 1 \text{ and } \Gamma_1 \text{ exists in } \mathcal{M}(\Gamma_0, \Gamma_2) \\ * \text{ otherwise} \end{cases}$

Idea of proof

Properties of the contact category

- Behaves functorially w.r.t. SFH.
- Has something like exact triangles:
 - Bypass triples?
 - "Generalised bypass triples" multiple bypass attachments?
- Has something like cones.
 - "Cone of up bypass is down bypass".
- Has something like octahedral axiom:
 - ~ 6 contact elements in $SFH(T, 4, 1) \cong \mathbb{Z}_2^3$.

Our work computes $C(D^2, n)$.

- Objects = chord diagrams.
- Morphisms = stackability *m*.
- Composition of tight morphisms $\Gamma_0 \longrightarrow \Gamma_1 \longrightarrow \Gamma_2$:

 $\begin{cases} \text{tight} \quad m(\Gamma_0, \Gamma_2) = 1 \text{ and } \Gamma_1 \text{ exists in } \mathcal{M}(\Gamma_0, \Gamma_2) \\ * \quad \text{otherwise} \end{cases}$

Idea of proof

Properties of the contact category

- Behaves functorially w.r.t. SFH.
- Has something like exact triangles:
 - Bypass triples?
 - "Generalised bypass triples" multiple bypass attachments?
- Has something like cones.
 - "Cone of up bypass is down bypass".
- Has something like octahedral axiom:
 - ~ 6 contact elements in $SFH(T, 4, 1) \cong \mathbb{Z}_2^3$.

Our work computes $C(D^2, n)$.

- Objects = chord diagrams.
- Morphisms = stackability *m*.
- Composition of tight morphisms $\Gamma_0 \longrightarrow \Gamma_1 \longrightarrow \Gamma_2$:

Idea of proof

The bounded contact category

Idea of chord diagrams "existing in" $\mathcal{M}(\Gamma_0,\Gamma_1)$ leads to:

Bounded contact category

 $\mathcal{C}^{b}(\Gamma_{0},\Gamma_{1}) = \begin{array}{c} \text{"Sub-category of chord diagrams and cobordisms} \\ \text{which occur in tight contact } \mathcal{M}(\Gamma_{0},\Gamma_{1})." \end{array}$

Proposition

$$\mathcal{C}^{b}(\Gamma,\Gamma) = \{\Gamma\}$$

I.e. no chord diagrams exist in $\mathcal{M}(\Gamma, \Gamma)$ other than Γ .

Proposition

 $\mathcal{C}^{b}(\Gamma_{0},\Gamma_{1})$ is partially ordered.

I.e. if morphisms $A \longrightarrow B \longrightarrow A$ then $A = B_{\Box \to \Box } = A$

Idea of proof

The bounded contact category

Idea of chord diagrams "existing in" $\mathcal{M}(\Gamma_0,\Gamma_1)$ leads to:

Bounded contact category

 $\mathcal{C}^{b}(\Gamma_{0},\Gamma_{1}) = \begin{array}{c} \text{"Sub-category of chord diagrams and cobordisms} \\ \text{which occur in tight contact } \mathcal{M}(\Gamma_{0},\Gamma_{1})." \end{array}$

Proposition

$$\mathcal{C}^{b}(\Gamma,\Gamma) = \{\Gamma\}$$

I.e. no chord diagrams exist in $\mathcal{M}(\Gamma, \Gamma)$ other than Γ .

Proposition

 $\mathcal{C}^{b}(\Gamma_{0},\Gamma_{1})$ is partially ordered.

I.e. if morphisms $A \longrightarrow B \longrightarrow A$ then $A = B_{A}$

Idea of proof

= nor

The bounded contact category

Idea of chord diagrams "existing in" $\mathcal{M}(\Gamma_0,\Gamma_1)$ leads to:

Bounded contact category

 $\mathcal{C}^{b}(\Gamma_{0},\Gamma_{1}) = \begin{array}{c} \text{"Sub-category of chord diagrams and cobordisms} \\ \text{which occur in tight contact } \mathcal{M}(\Gamma_{0},\Gamma_{1})." \end{array}$

Proposition

$$\mathcal{C}^{b}(\Gamma,\Gamma) = \{\Gamma\}$$

I.e. no chord diagrams exist in $\mathcal{M}(\Gamma, \Gamma)$ other than Γ .

Proposition

 $\mathcal{C}^{b}(\Gamma_{0},\Gamma_{1})$ is partially ordered.

I.e. if morphisms $A \longrightarrow B \longrightarrow A$ then A = B.

Bounded contact category computations: on basis

We can compute $C^{b}(\Gamma_{0},\Gamma_{1})$ in some cases.

Proposition (Bounded contact category of basis cobordism)

For basis chord diagrams $\Gamma_{w_0}, \Gamma_{w_1}$ for words $w_0, w_1 \in W(n_-, n_+)$,

$$\mathcal{C}^{b}(\Gamma_{w_{0}},\Gamma_{w_{1}})\cong\{w\in W(n_{-},n_{+}): w_{0}\preceq w\preceq w_{1}\}$$

If we take w_0 minimal and w_1 maximal...

Call this $\mathcal{M}(\Gamma_{w_0}, \Gamma_{w_1})$ the universal cobordism $\mathcal{U}(n_-, n_+)$.

Bounded contact category computations: on basis

We can compute $C^{b}(\Gamma_{0},\Gamma_{1})$ in some cases.

Proposition (Bounded contact category of basis cobordism)

For basis chord diagrams $\Gamma_{w_0}, \Gamma_{w_1}$ for words $w_0, w_1 \in W(n_-, n_+)$,

$$\mathcal{C}^{b}(\Gamma_{w_{0}},\Gamma_{w_{1}})\cong\{w\in W(n_{-},n_{+}): w_{0}\preceq w\preceq w_{1}\}$$

If we take w_0 minimal and w_1 maximal...

$$w_0 = \underbrace{n_-}_{--\cdots-} \underbrace{n_+}_{++\cdots+}, w_1 = \underbrace{n_+}_{++\cdots+} \underbrace{n_-}_{--\cdots-}$$

Call this $\mathcal{M}(\Gamma_{w_0}, \Gamma_{w_1})$ the universal cobordism $\mathcal{U}(n_-, n_+)$.

Bounded contact category computations: universal

Proposition (Bounded contact category of universal cobordism)

$$\mathcal{C}^{b}(\mathcal{U}(n_{-},n_{+}))\cong W(n_{-},n_{+})$$

This means:

- Chord diagrams in $\mathcal{U}(n_-, n_+)$ are precisely basis diagrams.
- "Universal cobordism" "geometrically realises" $W(n_-, n_+)$.

Note tight $\mathcal{U}(n_-, n_+)$ obtained by a single bypass attachment.

Figure: Bypass move - - - + + + + to + + + - - - -.

・ロト・祠 ト・画 ト・画 ・ つへで

Bounded contact category computations: universal

Proposition (Bounded contact category of universal cobordism)

$$\mathcal{C}^{b}\left(\mathcal{U}(n_{-},n_{+})\right)\cong W\left(n_{-},n_{+}\right)$$

This means:

- Chord diagrams in $U(n_-, n_+)$ are precisely basis diagrams.
- "Universal cobordism" "geometrically realises" $W(n_-, n_+)$.

Note tight $\mathcal{U}(n_{-}, n_{+})$ obtained by a single bypass attachment.

Figure: Bypass move - - - + + + + to + + + - - - -.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Bounded contact category computations: universal

Proposition (Bounded contact category of universal cobordism)

$$\mathcal{C}^{b}\left(\mathcal{U}(n_{-},n_{+})\right)\cong W\left(n_{-},n_{+}\right)$$

This means:

- Chord diagrams in $U(n_-, n_+)$ are precisely basis diagrams.
- "Universal cobordism" "geometrically realises" $W(n_-, n_+)$.

Note tight $\mathcal{U}(n_-, n_+)$ obtained by a single bypass attachment.

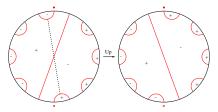


Figure: Bypass move - - - + + + + to + + + + - - --

Idea of proof

Bypasses within a bypass

 $C^{b}(\mathcal{U}) =$ "all bypasses within this bypass". In fact:

Theorem (Bypasses within any bypass)

Let Γ_1 be obtained from a single upwards bypass move on Γ_0 . Then

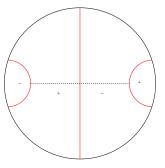
Idea of proof

Bypasses within a bypass

 $C^{b}(\mathcal{U}) =$ "all bypasses within this bypass". In fact:

Theorem (Bypasses within any bypass)

Let Γ_1 be obtained from a single upwards bypass move on Γ_0 . Then



Idea of proof

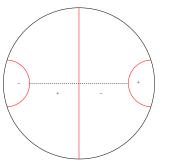
Bypasses within a bypass

 $C^{b}(\mathcal{U}) =$ "all bypasses within this bypass". In fact:

Theorem (Bypasses within any bypass)

Let Γ_1 be obtained from a single upwards bypass move on Γ_0 . Then

 $\mathcal{C}^{b}(\Gamma_{0},\Gamma_{1})=W(n_{-},n_{+}).$



<□▶ <圖▶ < 差▶ < 差▶ = 差 の < @

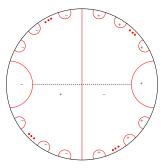
Idea of proof

Bypasses within a bypass

 $C^{b}(\mathcal{U}) =$ "all bypasses within this bypass". In fact:

Theorem (Bypasses within any bypass)

Let Γ_1 be obtained from a single upwards bypass move on Γ_0 . Then



Idea of proof

Bypasses within a bypass

 $C^{b}(\mathcal{U}) =$ "all bypasses within this bypass". In fact:

Theorem (Bypasses within any bypass)

Let Γ_1 be obtained from a single upwards bypass move on Γ_0 . Then



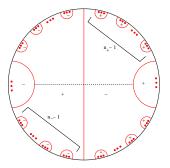
Idea of proof

Bypasses within a bypass

 $C^{b}(\mathcal{U}) =$ "all bypasses within this bypass". In fact:

Theorem (Bypasses within any bypass)

Let Γ_1 be obtained from a single upwards bypass move on Γ_0 . Then



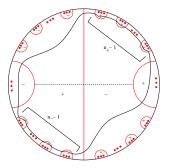
Idea of proof

Bypasses within a bypass

 $C^{b}(\mathcal{U}) =$ "all bypasses within this bypass". In fact:

Theorem (Bypasses within any bypass)

Let Γ_1 be obtained from a single upwards bypass move on Γ_0 . Then



Idea of proof

A 2-category

Categorical interpretation of main theorem:

• Inclusion
$$\iota : C^{b}(\mathcal{U}(n_{-}, n_{+})) \longrightarrow C(D^{2}, n, e).$$

Theorem (Main theorem, abstract nonsense version)

$$Ob\left(\mathcal{C}(D^2, n, e)\right) \cong Cone \circ \iota\left(Mor\left(\mathcal{C}^b(\mathcal{U}(n_-, n_+))\right)\right)$$

"Chord diagrams are precisely the cones of morphisms in the universal cobordism".

I.e. "objects are morphisms". Hence...

Contact 2-category C(n+1, e)

- Objects = words in W(n_, n_) = basis chord diagrams
- 1-morphisms = {partial order ≤} = chord diagrams
- 2-morphisms = contact structures on $\mathcal{M}(\Gamma_0, \Gamma_1)$.

Idea of proof

A 2-category

Categorical interpretation of main theorem:

• Inclusion $\iota : C^{b}(\mathcal{U}(n_{-}, n_{+})) \longrightarrow C(D^{2}, n, e).$

Theorem (Main theorem, abstract nonsense version)

$$\mathsf{Ob}\left(\mathcal{C}(\mathsf{D}^2,\mathsf{n},\mathsf{e})
ight)\cong\mathsf{Cone}\circ\iota\left(\mathsf{Mor}\left(\mathcal{C}^{\mathsf{b}}(\mathcal{U}(\mathsf{n}_-,\mathsf{n}_+))
ight)
ight)$$

"Chord diagrams are precisely the cones of morphisms in the universal cobordism".

I.e. "objects are morphisms". Hence...

Contact 2-category C(n + 1, e)

- Objects = words in W(n_, n_) = basis chord diagrams
- 1-morphisms = {partial order \leq } = chord diagrams
- 2-morphisms = contact structures on $\mathcal{M}(\Gamma_0, \Gamma_1)$.

Idea of proof

A 2-category

Categorical interpretation of main theorem:

• Inclusion $\iota : C^{b}(\mathcal{U}(n_{-}, n_{+})) \longrightarrow C(D^{2}, n, e).$

Theorem (Main theorem, abstract nonsense version)

$$\mathsf{Ob}\left(\mathcal{C}(\mathsf{D}^2,\mathsf{n},\mathsf{e})
ight)\cong\mathsf{Cone}\circ\iota\left(\mathsf{Mor}\left(\mathcal{C}^{\mathsf{b}}(\mathcal{U}(\mathsf{n}_-,\mathsf{n}_+))
ight)
ight)$$

"Chord diagrams are precisely the cones of morphisms in the universal cobordism".

I.e. "objects are morphisms". Hence...

Contact 2-category C(n + 1, e)

- Objects = words in $W(n_-, n_+)$ = basis chord diagrams
- 1-morphisms = {partial order \leq } = chord diagrams
- 2-morphisms = contact structures on $\mathcal{M}(\Gamma_0, \Gamma_1)$.

Outline

- Contact geometry
- Sutured Floer homology, contact elements, TQFT
- 2 Contact elements in SFH(T)
 - Solid tori, contact structures, Catalan, Narayana
 - Computation, addition of contact elements
 - Creation operators, basis of contact elements
- 3 Main theorems
 - Statements
 - Properties of contact elements
- Contact geometry applications
 - Stackability
 - Contact categories
- Idea of proof of main theorems
 - Comparable pairs and bypass systems

Contact geometry applications

Idea of proof

An explicit construction

Prove correspondence

$$\left\{ \begin{array}{c} \text{Chord diagrams} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \text{Comparable pairs} \\ \text{of words} \end{array} \right\}$$

Essential idea:

Given $w_1 \preceq w_2$, construct a chord diagram Γ whose decomposition has w_1 first and w_2 last.

- Along the way, show that every other word w in the decomposition has w₁ ≤ w ≤ w₂.
- Elementary combinatorics gives $\# \{ \text{pairs } (w_1 \preceq w_2) \} = C_n^e.$
- Done.

Contact geometry applications

Idea of proof

An explicit construction

Prove correspondence

$$\left\{ \begin{array}{c} \mathsf{Chord\ diagrams\ } \\ \mathsf{of\ words\ } \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \mathsf{Comparable\ pairs\ } \\ \mathsf{of\ words\ } \end{array} \right\}$$

Essential idea:

Given $w_1 \preceq w_2$, construct a chord diagram Γ whose decomposition has w_1 first and w_2 last.

- Along the way, show that every other word *w* in the decomposition has w₁ ≤ w ≤ w₂.
- Elementary combinatorics gives $\# \{ \text{pairs } (w_1 \preceq w_2) \} = C_n^e.$
- Done.

Contact geometry applications

Idea of proof

An explicit construction

Prove correspondence

$$\left\{ \begin{array}{c} \mathsf{Chord\ diagrams\ } \\ \mathsf{of\ words\ } \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \mathsf{Comparable\ pairs\ } \\ \mathsf{of\ words\ } \end{array} \right\}$$

Essential idea:

Given $w_1 \preceq w_2$, construct a chord diagram Γ whose decomposition has w_1 first and w_2 last.

- Along the way, show that every other word *w* in the decomposition has w₁ ≤ w ≤ w₂.
- Elementary combinatorics gives $\# \{ \text{pairs } (w_1 \preceq w_2) \} = C_n^e.$
- Done.

Idea of proof

Bypass systems

Take $\Gamma_{w_1}, \Gamma_{w_2}$ basis chord diagrams, $w_1 \leq w_2$.

Proposition

- On Γ_{w1} there exists a bypass system FBS(Γ_{w1}, Γ_{w2}) such that performing upwards bypass moves along it gives Γ_{w2}.
- On Γ_{w_2} there exists a bypass system BBS($\Gamma_{w_1}, \Gamma_{w_2}$) such that performing downwards bypass moves gives Γ_{w_1} .

Proposition

Performing either:

downwards bypass moves on Γ_{w1} along FBS(Γ_{w1}, Γ_{w2}), or
 upwards bypass moves on Γ_{w2} along BBS(Γ_{w1}, Γ_{w2})
 gives a chord diagram containing w1, w2 in decomposition and:
 for all words w in the decomposition, w1 ≤ w ≤ w2.

-

Idea of proof

Bypass systems

Take $\Gamma_{w_1}, \Gamma_{w_2}$ basis chord diagrams, $w_1 \preceq w_2$.

Proposition

- On Γ_{w1} there exists a bypass system FBS(Γ_{w1}, Γ_{w2}) such that performing upwards bypass moves along it gives Γ_{w2}.
- On Γ_{w_2} there exists a bypass system BBS($\Gamma_{w_1}, \Gamma_{w_2}$) such that performing downwards bypass moves gives Γ_{w_1} .

Proposition

Performing either:

• downwards bypass moves on Γ_{w_1} along $FBS(\Gamma_{w_1}, \Gamma_{w_2})$, or • upwards bypass moves on Γ_{w_2} along $BBS(\Gamma_{w_1}, \Gamma_{w_2})$ gives a chord diagram containing w_1, w_2 in decomposition and: • for all words w in the decomposition $w_1 \neq w_2 \neq w_3$

• for all words w in the decomposition, $w_1 \preceq w \preceq w_2$.

Contact geometry applications

Idea of proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Proof by increasingly difficult example Easy level

"Elementary move" on word = Bypass move on "attaching arc".

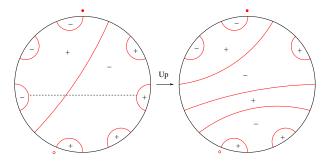


Figure: Upwards move from Γ_{--++++} to $\Gamma_{--++-++}$.

Contact geometry applications

Idea of proof

Proof by incresingly difficult example

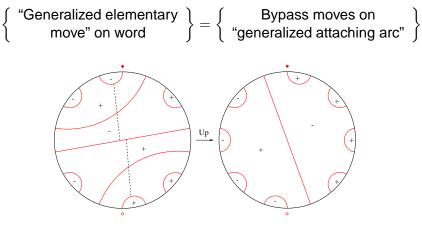


Figure: Upwards moves from $\Gamma_{--++--++}$ to $\Gamma_{+++++----}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

Contact geometry applications

Idea of proof

(日) (日) (日) (日) (日) (日) (日) (日)

Proof by increasingly difficult example Hard level

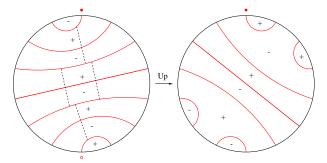


Figure: Upwards moves from Γ_{-+-+-} to Γ_{++-+--}

Idea of proof

Ω

Questions and directions

From perspective of *Floer homology* and *TQFT*:

- Solid tori with sutures of different slope?
- General surfaces $\Sigma \times S^1$ dimensionally-reduced TQFT.
- Z coefficients? Twisted coefficients?
- Relation to bordered Heegaard Floer theory?
- More physics analogies/interpretations?

From the perspective of *category theory*:

- Contact 1-category ~> 2-category ~> 3-category?
- Better triangulated structure? Triangles, cones, kernels?

From the perspective of *contact topology*:

- More computations of bounded contact categories?
- Higher genus surfaces?
- More general cobordisms?
- Better bypass analysis? "Contact Reidemeister moves"?

Idea of proof

Ω

Questions and directions

From perspective of Floer homology and TQFT:

- Solid tori with sutures of different slope?
- General surfaces $\Sigma \times S^1$ dimensionally-reduced TQFT.
- Z coefficients? Twisted coefficients?
- Relation to bordered Heegaard Floer theory?
- More physics analogies/interpretations?
- From the perspective of *category theory*:
 - Contact 1-category ~> 2-category ~> 3-category?
 - Better triangulated structure? Triangles, cones, kernels?

From the perspective of *contact topology*:

- More computations of bounded contact categories?
- Higher genus surfaces?
- More general cobordisms?
- Better bypass analysis? "Contact Reidemeister moves"?

Ω

Questions and directions

From perspective of Floer homology and TQFT:

- Solid tori with sutures of different slope?
- General surfaces $\Sigma \times S^1$ dimensionally-reduced TQFT.
- Z coefficients? Twisted coefficients?
- Relation to bordered Heegaard Floer theory?
- More physics analogies/interpretations?

From the perspective of category theory:

- Contact 1-category ~> 2-category ~> 3-category?
- Better triangulated structure? Triangles, cones, kernels?

From the perspective of *contact topology*:

- More computations of bounded contact categories?
- Higher genus surfaces?
- More general cobordisms?
- Better bypass analysis? "Contact Reidemeister moves"?

Contact geometry applications

Idea of proof

Ω

Thanks!

Thanks for coming!

▲ロ ▶ ▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ●