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Abstract

We define a “sutured topological quantum field theory”, motivated by the study of sutured
Floer homology of product 3-manifolds, and contact elements. We study a rich algebraic structure
of suture elements in sutured TQFT, showing that it corresponds to contact elements in sutured
Floer homology. We use this approach to make computations of contact elements in sutured
Floer homology over Z of sutured manifolds (D2

× S1, F × S1) where F is finite. This generalises
previous results of the author over Z2 coefficients. Our approach elaborates upon the quantum
field theoretic aspects of sutured Floer homology, building a non-commutative Fock space, together
with a bilinear form deriving from a certain combinatorial partial order; we show that the sutured
TQFT of discs is isomorphic to this Fock space.

Contents

1 Introduction 2
1.1 Chord diagrams and signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Stackability resolves signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 A non-commutative Fock space and partial order . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Sutured Topological Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 SFH gives a sutured TQFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 What this paper does . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Structure of this paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Algebraic non-commutative QFT 6
2.1 Fock space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Creation and annihilation operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Bi-simplicial structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Partial order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Adjoints, bilinear form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Differentials, commutation relations, normal form . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Temperley–Lieb representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 A distinguished subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Sutured TQFT 18
3.1 Sutured surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 TQFT axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Nondegeneracy axioms and bypass relations . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Impossibility of coherent signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Creation and annihilation operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Basis, partial order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



1 INTRODUCTION

3.7 Previous results: suture elements mod 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.8 Choosing a coherent basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.9 Coherent creation and annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.10 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.11 Temperley–Lieb algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.12 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.13 Variations of nondegeneracy axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.14 An additional axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Sutured Floer homology and sutured TQFT 39

5 Non-commutative QFT = Sutured TQFT of discs 40
5.1 Main isomorphism and suture elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Duality–Rotation explicitly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Duality–Rotation recursively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

References 48

1 Introduction

1.1 Chord diagrams and signs

This paper, like its prequel [17], is about fun with chord diagrams. A chord diagram Γ is a finite
collection of non-intersecting properly embedded arcs in a 2-dimensional disc D2. Two chord diagrams
are considered equivalent if they are homotopic relative to endpoints. Fixing 2n points on ∂D2, there
are finitely many chord diagrams of n arcs (or chords) connecting them — in fact, Cn of them, the
n’th Catalan number. In [17] we considered the Z2 vector space SFHcomb(T, n) generated by chord
diagrams of n chords, subject to a relation called the bypass relation. The bypass relation says that
whenever 3 chord diagrams coincide, except within a disc on which the chords appear as shown in
figure 1, they sum to zero.

Figure 1: A bypass triple.

In [17], we showed that this vector space describes precisely contact elements in the sutured Floer
homology of manifolds of the form (D2 ×S1, F ×S1), where F is finite, |F | = 2n, with Z2 coefficients.
However sutured Floer homology can be defined over Z, and the structure of contact elements should
be similar. Therefore, our vector space SFHcomb should generalise to Z coefficients.

Over Z, contact elements have a sign ambiguity [12]. So a chord diagram should represent an
element in a Z-module (i.e. abelian group) V , up to sign, as in the lax vectors of [4]. The sum of two
lax vectors ±v,±w is not well-defined: choosing representatives (lifts) v, w, we could have (±v)+(±w)
equal to ±(v + w) or ±(v − w). A three-term relation such as the bypass relation says that three lax
vectors somehow sum to zero; equivalently, it says that 3 lax vectors ±u,±v,±w are related so that
±(u+ v) or ±(u− v) equals ±w.

2



1 INTRODUCTION

We would like to resolve these ambiguities. We shall do so in this paper, and along the way we
shall unearth much extra structure.

1.2 Stackability resolves signs

Central to this resolution will be a bilinear form, which we shall denote 〈·|·〉, on our abelian group
V . The corresponding bilinear form over Z2 was called m(·, ·) in [17]. It can be defined by stacking
chord diagrams, an operation defined in [17] and developed in section 3.1 below. We place two chord
diagrams as the lids of a cylinder with vertical chords running along its sides, then round corners and
chords in a specific way to obtain a sphere with curves on it. The chord diagrams are said to be
stackable if we obtain a single connected curve on the sphere. We will have a map

〈·|·〉 : V ⊗ V −→ Z

which takes stackable chord diagrams to ±1, and non-stackable chord diagrams to 0; and which reduces
to m(·, ·) modulo 2. The key property we shall use to obtain coherent signs for chord diagrams is that
while there is ambiguity in ±1, there is no ambiguity in ±0 = 0. The bypass relation tells us that a
chord diagram should be given by ±(u+ v) or ±(u − v), for some lax vectors ±u,±v. However if we
know, say, that 〈u|w〉 = 〈v|w〉 = 1 for some w, then 〈±(u − v)|w〉 = 0 while 〈±(u + v)|w〉 = ±2; we
can then usefully distinguish between the two.

We shall consider specific basis chord diagrams, as described in [17]; these correspond to basis
elements of V . We shall find a coherent way to choose signs for all these basis elements, using the
above idea, so as to describe contact elements in general.

1.3 A non-commutative Fock space and partial order

In quantum field theory a Fock space F is an algebraic object whose elements can represent states
of several particles. We might say that x ∈ F represents the presence of one particle, y ∈ F the
presence of a second particle, and xy the presence of both. A Fock space has creation and annihilation
operators which add and remove particles, and which are adjoint with respect to an inner product.
In a commutative (bosonic) Fock space, xy = yx. In an anticommutative (fermionic) Fock space,
xy = −yx. We shall consider a noncommutative F , however, in which neither xy = yx nor xy = −yx
holds. Roughly speaking, our F will contain linear combinations of (noncommutative) products of x
and y.

There are natural creation and annihilation operators on F , which insert or delete a specified sym-
bol in a word in a specified place. There are many more creation and annihilation operators in the
noncommutative case than in the commutative or anticommutative cases, and they obey relations sim-
ilar to a simplicial set. In an appropriately noncommutative way, creation and annihilation operators
are adjoint with respect to the bilinear form 〈·|·〉.

In [17] we considered a certain partial order. Consider words on x and y (in [17] we used − and
+). Say that w1 ≤ w2 if w2 can be obtained from w1 by moving some (possibly none) of the x’s to the
right (equivalently, by moving some of the y’s to the left). Thus xxyy ≤ yxyx but xyyx � yxxy.

Now define a bilinear form 〈·|·〉 : F ⊗ F −→ Z as a boolean version of the partial order ≤, as
follows. For two words w1, w2 in x and y, let 〈w1|w2〉 = 1 if w1 ≤ w2 and 0 otherwise; then extend to
F linearly. We imagine 〈·|·〉 as a noncommutative version of an inner product. We can think of F as
a “Fock space of two non-commuting particles”.

We shall prove the following. (A precise version is 3.4; a more detailed statement is theorem 5.1.)

Theorem 1.1 The Fock space and bilinear form defined from ≤ are isomorphic to the abelian group
V generated by chord diagrams, and bilinear form defined by stacking:

(F , 〈·|·〉) ∼= (V, 〈·|·〉).
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That is, chord diagrams give elements of F up to sign; basis chord diagrams give basis elements of
F (i.e. words), up to sign; any three bypass-related chord diagrams give lax elements of F summing
to zero in an appropriate sense; and stackability is described by the boolean version of ≤. This was
shown in [17] mod 2; we will show it still holds over Z.

An element of V ∼= F corresponding to a chord diagram Γ can be expressed in terms of basis
elements of F , i.e. words in x and y. As considered at length in [17], among the words appearing in
such an element, there are well-defined first and last words w− ≤ w+ with respect to ≤. In fact, the
correspondence Γ 7→ (w−, w+) gives a bijection between chord diagrams and pairs of words comparable
with respect to ≤. We will show the same properties as shown in [17] over Z2 also hold over Z; in fact
every chord diagram gives an element in F which is a linear combination of words with all coefficients
±1.

Furthermore, it is not difficult to show that 〈·|·〉 is nondegenerate. Thus there is a duality operator
H on F such that for all u, v, 〈u|v〉 = 〈v|Hu〉. Note that for commutative 〈·|·〉, i.e. 〈u|v〉 = 〈v|u〉,
we have H = 1; and in the anticommutative case, H = −1. We will show that H is periodic, in the
sense that some power of H is the identity; this is, in a sense, a generalisation of commutativity and
anticommutativity. This is a purely algebraic statement, but a direct algebraic proof is not at all clear;
we prove it by showing that H is equivalent to the operation of rotating a chord diagram.

We note that the key feature distinguishing our Fock space from the usual sort is the bilinear form
〈·|·〉, based on the partial order ≤. Partial orders appear prominently in the theory of causal sets (see
e.g. [3, 19]), one approach to quantum gravity. But we have not been able to find anything like the
above structure in the theoretical physics literature.

1.4 Sutured Topological Quantum Field Theory

We have been somewhat vague about what V is above: it is an object built out of chord diagrams and
related objects, but related to sutured Floer homology. We now explain what V is.

All of the above is motivated by sutured Floer homology, contact structures and contact elements;
but it has become quite independent of its starting point. The idea is that we can build an algebraic
structure, with many of the same properties, purely by reference to surfaces (like discs), arcs drawn on
them (like chord diagrams), and various topological operations. To a surface Σ with some markings F
on the boundary, we shall associate an abelian group V (Σ, F ). When arcs Γ are drawn appropriately
on the surface — a set of sutures — we shall associate an element (up to sign) c(Γ) in the abelian group
V (Σ, F ), called a suture element. These associations are natural with respect to certain topological
operations, such as gluing and the stacking operation. Thus we have something similar to a topological
quantum field theory, which we shall call sutured topological quantum field theory. It will be constructed
without reference to any Heegaard decompositions or holomorphic curves.

We shall define sutured TQFT axiomatically. We shall impose more axioms than merely the
associations described above, in order that, at least for discs, sutured TQFT is unique. We regard
these axioms as fairly natural, and explain their rationale as we introduce them. A version of the
bypass relation, resolving the sign ambiguities mentioned above, will appear in sutured TQFT, but we
do not impose it as an axiom. We shall instead define the bilinear form 〈·|·〉 from stackability (which is
nothing but a certain inclusion, or gluing, of surfaces) and impose a certain nondegeneracy condition
on it. From this, the bypass relation shall follow.

The abelian group V discussed above is in fact the sutured TQFT of discs V (D2); the isomorphism
of theorem 1.1 is in fact V (D2) ∼= F . All the structure in sutured TQFT of discs — including
suture elements, various maps arising from various gluings and inclusions, and the stacking map
— corresponds to structure in F . And conversely, all the structure in F — including creation and
annihilation operators, simplicial structure, and duality operator — corresponds to structure appearing
on discs in sutured TQFT.

As discussed by Honda–Kazez–Matić in [12] and at length by the author in [17], the SFH of such
product manifolds (Σ× S1, F × S1), and their contact elements, have properties similar to a (1 + 1)-
dimensional topological quantum field theory. Our sutured TQFT is a “pure” version of this TQFT,
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abstracted from SFH itself. The point of this paper is that, in describing this TQFT axiomatically,
we find surprising properties familiar from (non-topological!) quantum field theory, namely all the
structure of the Fock space F . The sutured TQFT of discs is the QFT of two non-commuting particles,
where the two usages of “QFT” are quite distinct.

We remark that sutured TQFT, as we define it, is very similar in some respects to a planar algebra
[13]. To a surface with boundary is associated an algebraic object; to curves on the surface, dividing
it into positive and negative regions, are associated distinguished elements of the algebraic object;
surfaces may be glued together, giving maps of algebraic objects which are natural with respect to
the distinguished elements; surfaces with many boundary components give operators. However there
are several distinctions: sutured TQFT is not restricted to planar surfaces; sutured TQFT has no
canonical form of multiplication (except on discs, where it does not coincide with planar algebra
multiplication); the element associated to a set of curves in sutured TQFT has a sign ambiguity; and
in the author’s limited knowledge, nothing like a bypass relation or inner product has been studied
in the context of planar algebras. Clearly the two subjects have wildly disparate motivations: planar
algebras being motivated by the study of subfactors and von Neumann algebras; and sutured TQFT
being motivated by contact geometry and sutured Floer homology. We shall leave these connections
for future investigation, but they are striking, and we wonder how deep they are.

1.5 SFH gives a sutured TQFT

Although V is defined from the axioms of sutured TQFT, it is motivated by sutured Floer homology;
indeed it is designed to be isomorphic to the SFH of certain manifolds. We will show that the sutured
Floer homology of product manifolds SFH(Σ× S1, F × S1), where Σ is a surface with boundary and
F ⊂ ∂S is finite, forms a sutured TQFT. Since sutured TQFT on discs is unique, any sutured TQFT
on discs is isomorphic to SFH(D2×S1, F×S1). However sutured TQFT on more complicated surfaces
is not unique, and can be zero at higher genus. But we also consider an additional axiom, also satisfied
by SFH(Σ× S1, F × S1), which ensures nontriviality at higher genus.

The upshot of this paper, then, is that three structures are equivalent, in the case of discs: sutured
Floer homology SFH(D2 ×S1, F ×S1), sutured TQFT V (D2), and the non-commutative Fock space
F .

Moreover, all the structure of SFH of product manifolds (Σ× S1, F × S1) (a very restricted class
of manifolds, to be sure) can be described without considering Heegaard decompositions, holomorphic
curves, or contact structures — all of which are involved subjects and essential to the definition of
contact elements in sutured Floer homology. We obtain proofs about contact elements which are both
“holomorphic curve free” and “contact geometry free”. In a subsequent paper we shall use sutured
TQFT to give a proof that the contact element of a torsion contact structure is zero [6, 16].

1.6 What this paper does

The above remarks give an introduction to the main ideas in this paper, but are not a complete
description. This paper performs several tasks, as follows.

First, it makes computations in sutured Floer homology. Namely, it classifies contact elements
in the sutured Floer homology, with Z coefficients, of sutured manifolds (D2 × S1, F × S1), where
F ⊂ ∂D2 is finite. This generalises the results over Z2 in [17]. Thus we are able to extend our results
from that paper regarding the structure of contact elements to Z coefficients.

Second, it elaborates greatly upon the quantum-field-theoretic aspects of sutured Floer homology
and contact elements for sutured manifolds of the form (Σ × S1, F × S1); in particular, it proves
that when Σ is a disc, SFH is isomorphic to the Fock space F , which is a formal algebraic model
of a certain (extremely simple) non-commutative QFT, with creation and annihilation operators, a
non-commutative “inner product”, and more. In fact, because the formal algebraic structure of F is
easiest to define, we shall describe F precisely and deduce various properties of it — and then show
that SFH is isomorphic to it.
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Third, it abstracts from SFH and describes it axiomatically as sutured TQFT. These axioms
constrain sutured TQFT on discs to be isomorphic to the Fock space F of two non-commuting particles,
although (at least with the axioms as we state them) sutured TQFT is not unique on more complicated
surfaces. We show that the sutured Floer homology of manifolds (Σ×S1, F×S1), together with contact
elements, forms a sutured TQFT.

Moreover, we may eschew sutured Floer homology until the last minute; it is not necessary to the
discussion of sutured TQFT or non-commutative QFT, although we do use it to prove that a sutured
TQFT exists! In a sense, our SFH results are more general than SFH: they are about suture elements
in sutured TQFT, of which contact elements in SFH of product manifolds form an example.

1.7 Structure of this paper

The above considerations determine the structure of this paper. First we first establish the formal
algebraic structure of our non-commutative quantum field theory (section 2). Then we axiomatically
introduce sutured topological quantum field theory (section 3), and deduce many properties of it. We
show that SFH(Σ × S1, F × S1) forms a sutured TQFT (section 4). And then we demonstrate the
isomorphism between sutured TQFT of discs, and non-commutative QFT (section 5), and prove some
more properties of this structure.

Thus, we begin this paper by describing, in great detail, the non-commutative algebra of F (section
2). Much of the detail in this section (especially the bi-simplicial structure 2.3, differentials, commu-
tation relations, normal form 2.7 and Temperley–Lieb representation 2.8) can be skipped on a first
reading: the important details are the Fock space F , the creation and annihilation operations, the
bilinear form 〈·|·〉, and the duality operator H . Similarly, other sections on sutured TQFT (variations
on axioms, the isomorphism between duality and rotation, periodicity) are also quite technical.

1.8 Acknowledgments

This paper was written during the author’s visit to the Mathematical Sciences Research Institute in
March 2010, and during the author’s postdoctoral fellowship at the Université de Nantes, supported
by the ANR grant “Floer power”.

2 Algebraic non-commutative QFT

2.1 Fock space

Let S be a set with two elements, S = {x, y}. Let M be the free monoid on S, M = S∗ = {x, y}∗,
i.e. the set of all finite words (including the empty word, which is the identity) on {x, y}, under the
operation of concatenation.

Let F be the monoid ring of M over Z. That is, F consists of finite Z-linear combinations of
finite words on {x, y}; multiplication is concatenation, now extended linearly. Alternatively, F is the
polynomial ring F = Z[x, y] generated over Z by two non-commuting indeterminates x, y. The empty
word, denoted 1, is a multiplicative identity.

Clearly M and F have several gradings: degree nx in x, degree ny in y, and linear combinations of
these. Clearly multiplication adds these gradings, making F into a bi-graded ring. Let Mn denote the
subset of M consisting of words of length n, i.e. with total degree n, and Fn the additive subgroup
generated by Mn, i.e. linear combinations of words of length n. Thus, as graded abelian group,
F = ⊕n≥0Fn and Fn = (Zx⊕ Zy)⊗n. Denote by Mnx,ny the subset of M consisting of words of
degree nx, ny in x, y respectively. Let Fnx,ny be the additive subgroup of F generated by Mnx,ny , i.e.
linear combinations of words of degree nx, ny in x, y respectively.

As an alternative notation, thinking of x as having degree −1 and y as having degree 1, let Me
n

denote the subset of M consisting of words of length n and degree e, i.e. such that ny −nx = e. Then
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2 ALGEBRAIC NON-COMMUTATIVE QFT

Fe
n is the additive subgroup of F generated by Me

n. So n, e, nx, ny are related by

n = nx + ny, e = −nx + ny, nx =
n− e

2
, ny =

n+ e

2
.

And we have, obviously,

Mnx,ny = M
ny−nx

nx+ny
, Me

n = M (n−e)
2 ,n+e

2

, Fnx,ny = F
ny−nx

nx+ny
, Fe

n = Fn−e
2 ,n+e

2
.

Further, clearly,

M =
⊔

n

Mn =
⊔

n,e

Me
n =

⊔

nx,ny

Mnx,ny , F =
⊕

n

Fn =
⊕

n,e

Fe
n =

⊕

nx,ny

Fnx,ny ,

where n varies over all non-negative integers, and e ∈ Z satisfies |e| ≤ n, and e ≡ n mod 2. As abelian
groups

Fn ∼= Z2n and Fe
n
∼= Z(

n
nx
) = Z(

n
ny
) = Z(

n
(n−e)/2) = Z(

n
(n+e)/2).

2.2 Creation and annihilation operators

On F there we can define many simple operations F −→ F , which are abelian group (Z-module)
homomorphisms. In fact any operation on words (i.e. a function from the free monoid M to itself)
induces a linear operator (abelian group endomorphism) on F . Better, any function M −→ M∪ {0}
induces a linear operator on F , regarding 0 as the zero in F . Let the following operations F −→ F
be induced from functions on words w ∈ M as follows. Here s denotes a letter in {x, y}.

(i) (a) Initial annihilation as,0w: if w begins with an s, delete it; else return 0.

(b) Internal annihilation as,iw, for 1 ≤ i ≤ nsw: delete the i’th s in w.

(c) Final annihilation as,nsw+1w: if w ends with an s, delete it; else return 0.

(ii) (a) Initial creation a∗s,0w: prepend an s to the beginning of w.

(b) Internal creation a∗s,iw, for 1 ≤ i ≤ nsw: replace the i’th s in w with ss.

(c) Final creation a∗s,ns+1w: append an s to the end of w.

The first three of these are collectively called annihilation operators. The names initial, internal,
and final should be clear; initial and final annihilation are collectively called terminal annihilation. The
last three are collectively creation operators; we have final, internal, initial, and terminal creations.
On each Fe

n there are n+4 creation operators and n+4 annihilation operators, each of which map to
some Fe±1

n±1:

ax,i : Fe
n −→ Fe+1

n−1, ay,i : Fe
n −→ Fe−1

n−1,
a∗x,i : Fe

n −→ Fe−1
n+1, a∗y,i : Fe

n −→ Fe+1
n+1.

Here we take Fe
−1 = {0}: on the empty word (identity) there are four annihilation operators, all of

which give 0. The empty word, or identity, we can also call the vacuum.
These operators satisfy various relations which are easily checked. Thinking of x and y as two

different species of particle, we consider separately the relations between annihilation and creation
which are inter- and intra-species:

(i) Between x and y; inter-species.

(a) In almost every case, x-annihilation/creation and y-creation/annihilation commute. That
is, for 0 ≤ i ≤ nx + 1 and 0 ≤ j ≤ ny + 1, except for (i, j) = (0, 0) or (nx + 1, ny + 1):

ax,i ◦ ay,j = ay,j ◦ ax,i, a∗x,i ◦ ay,j = ay,j ◦ a
∗
x,i,

ax,i ◦ a
∗
y,j = a∗y,j ◦ ax,i, a∗x,i ◦ a

∗
y,j = a∗y,j ◦ a

∗
y,j.
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2 ALGEBRAIC NON-COMMUTATIVE QFT

(b) Initial x-annihilation/creation and initial y-annihilation/creation do not commute:

ax,0 ◦ ay,0 6= ay,0 ◦ ax,0, a∗x,0 ◦ ay,0 6= ay,0 ◦ a
∗
x,0,

ax,0 ◦ a
∗
y,0 6= a∗y,0 ◦ ax,0, a∗x,0 ◦ a

∗
y,0 6= a∗y,0 ◦ a

∗
x,0.

(c) Final x-annihilation/creation and final y-annihilation/creation do not commute:

ax,nx+1 ◦ ay,ny+1 6= ay,ny+1 ◦ ax,nx+1, a∗x,nx+1 ◦ ay,ny+1 6= ay,ny+1 ◦ a
∗
x,nx+1,

ax,nx+1 ◦ a
∗
y,ny+1 6= a∗y,ny+1 ◦ ax,nx+1, a∗x,nx+1 ◦ a

∗
y,ny+1 6= a∗y,ny+1 ◦ a

∗
x,nx+1.

(ii) Among x or among y; intra-species. Set s to be x or y; we now only consider annihilations and
creations of the same type.

(a) Annihilations commute after a shift. For 0 ≤ i < j ≤ ns + 1 (not i = j):

as,i ◦ as,j = as,j−1 ◦ as,i.

(b) Annihilations and creations usually commute, with a possible shifting, and are sometimes
inverses of each other. For 0 ≤ i, j ≤ ns + 1:

as,i ◦ a
∗
s,j =







a∗s,j−1 ◦ as,i i < j
1 i = j, j + 1

a∗s,j ◦ as,i−1 i > j + 1.

(c) Creations commute, after a shift. For 0 ≤ i ≤ j ≤ ns + 1:

a∗s,i ◦ a
∗
s,j = a∗s,j+1 ◦ a

∗
s,i.

2.3 Bi-simplicial structure

As noted in [17], the intra-species relations are identical to those of a simplicial set. Indeed we have two
simplicial structures on F , one for x and one for y. Under the simplicial structure for x, words with
degree nx in x have nx+2 annihilation operators (nx internal and 2 terminal), regarded as face maps,
and nx + 2 creation operators, regarded as degeneracy maps; thus words with degree nx in x should
be regarded as (nx + 1)-dimensional degenerate simplices. Similarly, under the y-simplicial structure,
words with degree ny in y have ny + 2 annihilation and creation operators, regarded respectively as
face and degeneracy maps, and should be regarded as (ny + 1)-dimensional degenerate simplices.

Thus F has the structure of a (bi-)simplicial object in the category of abelian groups, and there
are natural contravariant functors

Fx,Fy : ∆ −→ Ab

with “image F”, F = ⊕nFx(n) = ⊕nFy(n), which we now describe. Recall the simplicial category
∆ has as objects the (set-theoretic) non-negative integers n = {0, 1, . . . , n − 1} and as morphisms
order-preserving functions m → n between them. Ab is the category of abelian groups.

In fact not just F , the monoid ring on the free monoid M, but the free monoid M itself has two
simplicial structures, arising from functors

Fx,Fy : ∆ −→ Set,

with “image M”, ⊔nFx(n) = ⊔nFy(n) = M ∪ {0}. (We must adjoin 0 since terminal annihilation
operators may return 0. The zero is different from the empty word/vacuum 1.) Since the elements
of the monoid M form a free basis for F as an abelian group, and functions between them extend to
abelian group endomorphisms of the monoid group F , the functors Fx,Fy to Set extend linearly to
the functors to Ab.

The functor Fx can be described by regarding a word w on {x, y} as a function. In fact it will
be useful to describe such words by functions in several different ways, and we now pause to describe
these functions.

8



2 ALGEBRAIC NON-COMMUTATIVE QFT

Definition 2.1 Let w ∈ Mnx,ny , and number the x’s (resp. y’s) in w left to right from 1 to nx (resp.
ny). Define six functions fxw, f

y
w, g

x
w, g

y
w, h

x
w, h

y
w as follows.

(i) fxw : {1, 2, . . . , nx} −→ {0, 1, . . . , ny}, fxw(i) is the number of y’s (strictly) to the left of the i’th x
in w.

(ii) fyw : {1, 2, . . . , ny} −→ {0, 1, . . . , nx}, fyw(i) is the number of x’s (strictly) to the left of the i’th y
in w.

(iii) gxw : {1, 2, . . . , nx + ny} −→ {0, 1, . . . , nx}, gxw(i) is the number of x’s in w up to (and including)
the i’th symbol.

(iv) gyw : {1, 2, . . . , nx + ny} −→ {0, 1, . . . , ny}, gyw(i) is the number of y’s in w up to (and including)
the i’th symbol.

(v) hxw : {1, 2, . . . , nx} −→ {1, 2, . . . , nx + ny}, hxw(i) is the position of the i’th x in w.

(vi) hyw : {1, 2, . . . , ny} −→ {1, 2, . . . , nx + ny}, hyw(i) is the position of the i’th y in w.

For s ∈ {x, y}, clearly fxw, f
y
w are increasing. The gsw are slowly increasing, gsw(i + 1)− gsw(i) ∈ {0, 1},

and gsw(1) ∈ {0, 1}, gsw(nx + ny) = ns. (Note gsw(i) is like a baseball team’s score after i innings, as
described in [17].) The hsw are strictly increasing. It’s clear that any of these functions corresponds to
a unique word w; moreover, there is a bijection between Mnx,ny and functions with these respective
properties. These functions are clearly related in many ways; this is clear since any one determines a
word, and hence determines all the others. For instance, hsw(i) = f sw(i) + i; the images of hxw and hyw
form a partition of {1, . . . , nx + ny}; and hsw(i) = min{(gsw)

−1(i)}; also gxw(i) + gyw(i) = i.
For the moment we only need the f sw. As the f sw are increasing, i.e. order-preserving, they

can be regarded as morphisms in ∆; after shifting elements of sets to obtain set-theoretic integers
n = {0, . . . , n−1}, we have fxw ∈ Mor∆(nx,ny + 1); moreover as noted Mnx,ny and Mor∆(nx,ny + 1)
are bijective.

The idea of Fx is to take each object n in ∆ to the set of all words in M with degree n in x. From
the foregoing such words are in bijection with ⊔ny Mor∆(n,ny + 1), which we can denote Mor∆(n, ·).
And then Fx takes the morphism g : m → n of ∆ to the function

Mor∆ (n, ·)
Fxg
−→ Mor∆ (m, ·)

given by pre-composition with g. Note Fx(g) takes each Mor∆(n,ny + 1) to Mor∆(m,ny + 1), hence
preserves ny (which makes sense as this is the structure of adding and deleting x’s).

However this structure does not allow for terminal creation and annihilation operators a∗x,0, a
∗
x,nx+1.

Hence we modify the basic idea of the above description a little. The idea is to append and prepend
an x to the beginning and end of each word, and then the above gives us the structure we want. Define
the subset MorT∆(m,n) of Mor∆(m,n) to be those order-preserving maps m → n which take 0 7→ 0
and m− 1 7→ n− 1, i.e. “terminals to terminals”. Call them terminal-preserving morphisms. It’s clear
that there is a natural bijection Mor∆(m,n) ∼= MorT∆(m+ 2,n) given by shifting a map by one and
setting its values on 0 and m+1. It’s also clear that the composition of a morphism in MorT∆(m,n) and
a morphism in MorT∆(n,k) is a morphism in MorT∆(m,k): terminal-preserving morphisms are closed
under composition.

Words of degree nx, ny in x, y are in bijective correspondence with words of degree nx + 2, ny in
x, y which begin and end with x. Similarly, non-decreasing functions nx → ny + 1 are in bijective

correspondence with MorT∆(nx + 2,ny + 1). We define Fx to take n ∈ Ob∆ to the set of all words of

9



2 ALGEBRAIC NON-COMMUTATIVE QFT

degree n− 2 in x, along with 0. That is,

Fx (n) = {0} ∪ {words of x-degree n− 2 in M} ∼= {0} ∪

{

words of x-degree n in M
which begin and end with x

}

∼= {0} ∪
⊔

ny

Mor∆(n− 2,ny + 1) ∼= {0} ∪
⊔

ny

MorT∆ (n,ny + 1)

∼= {0} ∪MorT∆ (n, ·)

For n = 0 or n = 1 then, Fx(n) = {0}. We then define Fx to take a morphism g ∈ Mor∆(m,n) to the
function

{0} ∪MorT∆ (n, ·)
Fxg
−→ {0} ∪MorT∆ (m, ·)

which takes 0 7→ 0 and which pre-composes functions by g, if such pre-composition gives a terminal-
preserving morphism; else gives 0. (Note that if g is terminal-preserving then such a composition is
certainly terminal-preserving; if g is not terminal-preserving then the composition may or may not be
terminal-preserving.) This Fxg preserves the degree in y, unless it maps to 0.

This gives the contravariant functor Fx : ∆ −→ Set with image M as described; this functor then
extends to one ∆ −→ Ab with image F as described.

For each nx ≥ 0 and 0 ≤ i ≤ nx+1, we define ax,i to be the unique morphism in Mor∆(nx + 1,nx + 2)
which has image (nx + 2)\{i} = {0, 1, . . . , i−1, i+1, . . . , nx+1}, i.e. which takes 0 7→ 0, 1 7→ 1, . . . , i−
1 7→ i− 1, i 7→ i+1, . . . , nx 7→ nx+1. Such an ax,i, under Fx, gives a map Fx(nx + 2) → Fx(nx + 1),
i.e.

{0} ∪ {words of x-degree nx in M} −→ {0} ∪ {words of x-degree nx − 1 in M} ,

which one easily sees that, extended linearly to F , is our ax,i as originally defined. Note that the
terminal annihilation operators ax,0, ax,nx+1 are not terminal-preserving (a terminal is annihilated
rather than preserved!) but all other ax,i are terminal-preserving; hence ax,0, ax,nx+1 may sometimes
return zero, but the other ax,i do not.

Similarly, for each nx ≥ 0 and 0 ≤ i ≤ nx+1, let a∗x,i be the unique morphism in Mor∆(nx + 3,nx + 2)
which is surjective and takes the value i twice, i.e. 0 7→ 0, 1 7→ 1, . . . , i 7→ i, i + 1 7→ i, . . . , nx + 2 7→
nx + 1. Then Fx(a∗x,i) : Fx(nx + 2) → Fx(nx + 3) is a map

{0} ∪ {words of x-degree nx in M} −→ {0} ∪ {words of x-degree nx + 1 in M}

and again, extended to F , is a∗x,i as originally defined. As each a∗x,i is terminal-preserving, 0 7→ 0 but
nothing else maps to 0.

The functor Fy is defined similarly, but reversing the roles of x and y, and using the increasing
functions fyw. The two functions fxw and fyw give two “dual” ways of looking as a word as an order-
preserving map.

2.4 Partial order

Suppose we have two words w0, w1, and consider the functions f swi
, gswi

, hswi
, for i ∈ {0, 1} and s ∈

{x, y}. Inequalities on all these functions are essentially equivalent.

Lemma 2.2 Let w0, w1 ∈ M have the same x- and y-degree. The following inequalities are all equiv-
alent:

fxw0
≤ fxw1

, fyw0
≥ fyw1

, gxw0
≥ gxw1

, gyw0
≤ fyw1

, hxw0
≤ hxw1

, hyw0
≥ hyw1

.

Proof The inequalities on f swi
and hswi

are clearly equivalent, since hsw(i) = f sw(i)+i. The inequalities
on gswi

and hswi
are equivalent since the gswi

are slowly increasing and hsw(i) = min{(gsw)
−1(i)}. The

inequalities on hxwi
and hywi

are equivalent since their images are complementary. �

10



2 ALGEBRAIC NON-COMMUTATIVE QFT

If any (hence all) of these inequalities hold, we say that w0 ≤ w1. It’s clear this gives a partial order
on M; ≤ only relates words in the same Mnx,ny . It’s clear that ≤ is a sub-order of the lexicographic
(total) ordering on each Mnx,ny (x comes before y).

It’s obvious that if f ≤ g, then for any order-preserving function h, h ◦ f ≤ h ◦ g. Recall that
the creation operators a∗s,i are terminal-preserving morphisms ns + 3 → ns + 2, and under Fs map

MorT∆(ns + 2, ·) → MorT∆(ns + 3, ·) by pre-composition. Hence

w0 ≤ w1 implies a∗s,iw0 ≤ a∗s,iw1

and in fact the converse is also true.
The same is not true for annihilation operators. For one thing, terminal annihilations may map to

zero, so that for instance as,iw0 might be a word but as,iw1 zero, and no comparison possible. Even
in the nonzero case we may have w0 � w1 but as,iw0 ≤ as,iw1; e.g. yxxy � xyyx but, applying
a1,x to both sides, yxy ≤ yyx. It is however true that if w0 ≤ w1 and as,iw0 6= 0, as,iw1 6= 0 then
as,iw0 ≤ as,iw1.

Later on (section 3.13) we shall to examine this partial order in more detail; we will need a notion
of difference between words, and a notion of minimum and maximum of two words.

Definition 2.3 Given two words w0, w1 ∈ Mnx,ny (comparable or not), the difference between w0 and
w1 is

d(w0, w1) =

nx
∑

i=1

hxw1
(i)− hxw0

(i).

Since hxw(i) gives the position of the i’th x in w, hxw1
(i)−hxw0

(i) gives the difference in position between
the i’th x’s in w0 and w1. If we regard x’s as pawns and y as empty squares on a 1 × n chessboard,
pawns moving left to right, then d(w0, w1) is the number of signed pawn moves required to go from
w0 to w1. If w0 ≤ w1, then only left-to-right moves are required (all terms in the sum are positive)
and d(w0, w1) is the number of such moves.

Lemma 2.4 For any w0, w1 ∈ Mnx,ny (comparable or not), there are decompositions

w0 = w0
0w

1
0 · · ·w

2k−1
0 , w1 = w0

1w
1
1 · · ·w

2k−1
1

where each wi0, w
i
1 have the same numbers of each symbol, i.e. wi0, w

i
1 ∈ Mni

x,n
i
y
for some nix, n

i
y, and

such that wi0 ≤ wi1 if i is even and wi1 ≤ wi0 if i is odd. The words w0
0 , w

0
1 , w

2k−1
0 , w2k−1

1 might be
empty, but the other wij are not.

Proof Recall gsw(i) is the number of instances of the symbol s in w up to and including the i’th
position; and gxw(i) + gyw(i) = i. In particular, gxw0

(i) = gxw1
(i) iff gyw0

(i) = gyw1
(i), iff up to the i’th

position, both w0 and w1 have the same number of x’s and y’s. We split the words w0, w1 at such
locations.

The difference gyw0
− gyw1

increments slowly: gyw0
(i + 1) − gyw1

(i + 1) = gyw0
(i) − gyw1

(i) + δ where
δ ∈ {−1, 0, 1}. In the baseball interpretation of [17], the difference in score between two teams changes
by at most 1 each innings. When scores are level, we split the words w0, w1; once on each interval of
the game in which scores remain level.

Thus we split w0, w1 into sub-words such that the difference has a constant sign on each sub-word.
Any baseball game splits into sub-games on which one team has the lead. At the end of each sub-game,
scores are level; so each wi0, w

i
1 lie in the same Mni

x,n
i
y
. �

Having done this, let

w− = w0
0w

1
1w

2
0w

3
1 · · ·w

2k−1
1 , w+ = w0

1w
1
0w

2
1w

3
0 · · ·w

2k−1
0 .

11
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One can easily verify

fxw−
= min(fxw0

, fxw1
), gyw−

= min(gyw0
, gyw1

), hxw−
= min(hxw0

, hxw1
),

fxw+
= max(fxw0

, fxw1
), gyw+

= max(gyw0
, gyw1

), hxw+
= max(hxw0

, hxw1
),

and similar relations. In particular, w− ≤ w+ and, although there might be many ways to split w0, w1

(baseball can remain tied for several innings), the resulting w−, w+ are unique. Thus we define w− to
be the minimum and w+ the maximum of the pair (w0, w1). Note that if w0 ≤ w1 then the minimum
of (w0, w1) is w0 and the maximum is w1.

2.5 Adjoints, bilinear form

The provocative notation as,i and a
∗
s,i for annihilation and creation operators suggests that they should

be adjoint. They are indeed adjoint with respect to the partial order ≤, but only in one direction each.
We have

a∗y,i w0 ≤ w1 iff w0 ≤ ay,i w1

for all i from 0 to ny(w1), the y-degree of w1 (note w1 has y-degree one larger than that of w0). We
also have

ax,i w0 ≤ w1 iff w0 ≤ a∗x,i w1

for 0 ≤ i ≤ nx(w0) (here w0 has x-degree one larger than that of w1).
These inequalities hold even for terminal creations and annihilations: if a terminal annihilation

gives 0 then we count the inequality as false. To see this, note that a∗y,0w0 starts with y; if w1 begins
with x then a∗y,0w0 � w1 and w0 � ay,0w1 = 0. Similar considerations apply for the operators with
(s, i) = (y, ny + 1), (x, 0), (x, nx + 1).

(Note these “adjoint inequalities” are only true in one direction. It is not true that ay,iw0 ≤ w1 iff
w0 ≤ a∗y,iw1: for instance xxy = ay,1yxxy ≤ xyx but yxxy � a∗y,1xyx = xyyx. Similarly, it is not true
that a∗x,iw0 ≤ w1 iff w0 ≤ ax,iw1: for instance a

∗
x,1yxy = yxxy � xyyx but yxy ≤ ax,1xyyx = yyx.)

We therefore introduce the notation 〈·|·〉, which is a boolean version of ≤. We can define 〈·|·〉 :
M×M −→ {0, 1}, so that for two words w0, w1 ∈ M, 〈w0|w1〉 = 1 iff w0 ≤ w1; otherwise 〈w0|w1〉 = 0.
We then extend linearly to a map F ⊗ F −→ Z.

We can easily verify various properties of 〈·|·〉.

• It is bilinear over Z (by definition).

• It is not symmetric, indeed far from it: if 〈w0|w1〉 = 〈w1|w0〉 = 1 then w0 = w1.

• “Words have norm one”: 〈w|w〉 = 1.

• The decomposition F = ⊕nx,nyFnx,ny is orthogonal with respect to 〈·|·〉: if w0, w1 have different
x- or y-degree then they are not related by ≤, hence 〈w0|w1〉 = 0.

• Creation and annihilation operators as,i, a
∗
s,i are partially adjoint as above,

〈ax,iw0|w1〉 = 〈w0|a
∗
x,iw1〉 and 〈w0|ay,iw1〉 = 〈a∗y,iw0|w1〉,

for 0 ≤ i ≤ nx(w0), 0 ≤ i ≤ ny(w1) respectively.

• “Creation operators are isometries” (but annihilation operators are not), as discussed above,

〈w0|w1〉 = 〈a∗s,iw0|a
∗
s,iw1〉.

• It is “multiplicative”: if (a, c) ∈ Mnx,ny and (b, d) ∈ Mn′
x,n

′
y
, then 〈ab|cd〉 = 〈a|c〉 〈b|d〉.

• It is nondegenerate: see below.

12
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To see that the bilinear form 〈·|·〉 is nondegenerate, suppose 〈v|·〉 = 0, for some v 6= 0, v =
∑

i aiwi, a
sum of words wi ∈ M, with coefficients 0 6= ai ∈ Z. By orthogonality of each Fnx,ny we may assume
all wi have the same x- and y-degree. Let w− be the lexicographically first among the wi; then we
have 〈w−|w−〉 = 1 but for every other wi, 〈wi|w−〉 = 0. Thus 0 = 〈v|w−〉 = 〈a−w−|w−〉 = a− 6= 0,
a contradiction. Similarly if 〈·|v〉 = 0 then by taking w+, the lexicographically last among the wi, we
obtain 〈w+|v〉 6= 0, a contradiction. This gives nondegeneracy.

In fact, our bilinear form 〈 | 〉 is essentially unique, in the following sense.

Proposition 2.5 Suppose B : F ⊗ F −→ Z is a bilinear form such that

(i) Distinct summands Fe
n are orthogonal: If w0 ∈ Me0

n0
, w1 ∈ Me1

n1
, with (n0, e0) 6= (n1, e1), then

B(w0, w1) = 0.

(ii) Creations and annihilations are partially adjoint: for 0 ≤ i ≤ nx(w0), B(ax,iw0, w1) = B(w0, a
∗
x,iw1);

and for 0 ≤ i ≤ ny(w1), B(w0, ay,iw1) = B(a∗y,iw0, w1). (When a terminal annihilation gives 0,
we have B(0, ·) = 0 or B(·, 0) = 0.)

(iii) B(1, 1) = 1.

Then B = 〈·|·〉.

Proof First note that condition (ii) implies that creation operators are isometries: B(a∗x,iw0, a
∗
x,iw1) =

B(ax,ia
∗
x,iw0, w1) = B(w0, w1) and B(a∗y,iw0, a

∗
y,iw1) = B(w0, ay,ia

∗
y,iw1) = B(w0, w1). Note that this

works for all creation operators, including both terminal creations.
Given any two words w0, w1 ∈ Me

n, we note that B(w0, w1) can be simplified if w0 has a repeated
y or if w1 has a repeated x, since then w0 = a∗y,iw

′
0 or w1 = a∗x,iw

′
1; so suppose there are no such

repeated symbols. If w0, w1 begin with the same symbol then we may simplify, since then w0 = a∗y,0w
′
0

or w1 = a∗x,0w
′
1; so suppose they do not. If w0 begins with y and w1 begins with x, then let w1 = a∗x,0w

′
1

so that B(w0, w1) = B(w0, a
∗
x,0w

′
1) = B(ax,0w0, w

′
1) = 0. Thus we may simplify to the case where w0

begins with x and has no repeated y; and w1 begins with y and has no repeated x; but w0, w1 lie in
the same Me

n.
It follows from these conditions that w0 has e ≤ 0; and that w1 has e ≥ 0. As w0, w1 lie in the same

Me
n, we must have e = 0, so that w0 is of the form (xy)m and w1 is of the form (yx)m. Moreover, B

is determined from its values on such words. We now compute, for m ≥ 1:

B ((xy)m, (yx)m) = B ((xy)my, (yx)my)

= B
(

a∗y,m(xy)
m, (yx)my

)

= B ((xy)m, ay,m(yx)my) = B
(

(xy)m, (yx)m−1xy
)

= B
(

(xy)m−1, (yx)m−1
)

(In the first line we apply a terminal creation. In the second line we use adjoint relations to reorder
some symbols. In the third line each we remove terminal creations.) Applying this repeatedly we have
B((xy)m, (yx)m) = B(1, 1) = 1, and hence B = 〈·|·〉. �

We remark that, since the “stackability map” of [17], mod 2, easily satisfies the hypotheses of this
proposition, this gives another proof of the result, proved directly in [17], that the stackability map
mod 2 is the boolean version of ≤.

2.6 Duality

By nondegeneracy, the bilinear form 〈·|·〉 gives a duality map on each Fnx,ny , which is an isomor-
phism, at least over the rationals. In fact, as 〈·|·〉 is asymmetric, there are two such maps, which are
isomorphisms over the rationals. (We will shortly see that these are also isomorphisms over Z.)

ι− : Fnx,ny

∼=
−→

(

Fnx,ny

)∗
, v 7→ 〈v|·〉

ι+ : Fnx,ny

∼=
−→

(

Fnx,ny

)∗
, v 7→ 〈·|v〉

13
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Composing these two maps in the two possible directions gives two inverse automorphisms of each Fe
n.

H = ι−1
+ ◦ ι− : Fe

n −→ Fe
n,

H−1 = ι−1
− ◦ ι+ : Fe

n −→ Fe
n.

It’s clear from the definition that 〈u|v〉 = 〈v|Hu〉 = 〈H−1v|u〉. Thus H is “unitary” with respect to
〈·|·〉, H∗ = H−1; H is an isometry, 〈u|v〉 = 〈Hu|Hv〉.

As mentioned in the introduction, if 〈·|·〉 were symmetric (resp. antisymmetric), then H = 1 (resp.
−1). We will show that H is periodic, the period depending only on the degrees nx, ny. We will prove
this theorem in section 5.4 using sutured TQFT; we know no direct algebraic proof of this result.

Theorem 2.6 On Fe
n = Fnx,ny , H

n+1 = (−1)nxny . In particular H2n+2 = 1. The period of H is
2n+ 2, if both nx, ny are odd; else the period is n+ 1.

As a free abelian group, F has basis M, i.e. the monomials. There is another bilinear form on
F , which we denote by a dot ·, with respect to which this basis is orthonormal. Let w0 · w1 = 1
if w0 = w1 and w0 · w1 = 0 otherwise. This · is clearly symmetric, Z-bilinear, and nondegenerate.
Creation and annihilation are no longer adjoint operators. Creation operators are still isometries:
w0 · w1 = a∗s,iw0 · a∗s,iw1 for s ∈ {x, y} and 0 ≤ i ≤ ns + 1. Annihilation operators are still not
isometries, e.g. xy · yx = 0 but (ax,1xy) · (ax,1yx) = y · y = 1. It is still the case that if w0 ·w1 = 1 and
as,iw0, as,iw1 6= 0 then w0 ·w1 = as,iw0 ·as,iw1; but this does not say much since in this case w0 = w1.

By nondegeneracy of both bilinear forms 〈·|·〉 and ·, it follows that there are operators Q+, Q− :
Fe
n −→ Fe

n, over Q, which are isomorphisms over Q, intertwining the two forms, i.e. such that for all
u, v ∈ Fe

n

u · v = 〈u|Q+v〉 = 〈Q−u|v〉

But since · is symmetric, we have also

u · v = v · u = 〈v|Q+u〉 = 〈Q−v|u〉 = 〈H−1Q+u|v〉 = 〈u|HQ−v〉.

It follows that
H = Q+Q

−1
− ,

and hence (Q−Q
−1
+ )n+1 = (−1)nxny on Fnx,ny .

Given a word w, it consists of alternating blocks of x and y’s. Read x left to right. An x which
is the last in its block, other than possibly an x at the end of w, is called a exceptional x. So the
exceptional x’s are precisely those followed by a y. Let Exw denote the set of exceptional x’s in w.
For every subset T ⊆ Exw, let ψ

x
T : Mnx,ny −→ Mnx,ny denote the operation of taking each x in

T , and its immediately following y, and replacing this xy with yx, i.e. “moving the x forwards one
position” or “moving the y backwards one position”. For example, if w = x1x2y1y2x3y3y4x4y5x5 (we
use subscripts to distinguish distinct letters x and y), then Exw = {x2, x3, x4}, and if T = {x2, x4}
then ψxTw = x1y1x2y2x3y3y4y5x4x5. Similarly we denote Eyw the set of exceptional y’s in w, i.e. those
which are followed by an x. For every subset T ⊆ Eyw denote by ψyT the operation of taking each y in
T , and its following x, and replacing this yx with xy, “moving the y forwards one position” or “moving
the x backwards one position. If our word is a one-dimensional chessboard, x’s are pawns, and y’s are
empty squares, then ψx advances a pawn to the right, and ψy advances a pawn to the left.

We then have the following explicit formulas for Q± and their inverses, describing them on the
basis Me

n for Fe
n as free abelian group.

Proposition 2.7 For any word w ∈ Me
n,

Q+w =
∑

T⊆Ey
w

(−1)|T |ψyTw, Q−1
+ w =

∑

wi≤w

wi

Q−w =
∑

T⊆Ex
w

(−1)|T |ψxTw, Q−1
− w =

∑

wi≥w

wi

14



2 ALGEBRAIC NON-COMMUTATIVE QFT

(So, for example, if w = xyxy then Q−w = xyxy − xyyx− yxxy + yxyx and Q+w = xyxy − xxyy.)
Note it follows that both Q+, Q− and their inverses have integer coefficients; hence Q+, Q− are

automorphisms of each Fnx,ny with integer coefficients; hence so is H . Clearly the inner product ·
induces isomorphisms between Fnx,ny and the dual (Fnx,ny)

∗; as the two bilinear forms are related by
the automorphisms Q±, it follows that ι± are isomorphisms also. Hence all of the above holds over Z,
not just over Q.

Proof First, consider Q−1
+ . For any words w0, w1 ∈ Me

n ⊂ Fe
n we have

w0 ·Q
−1
+ w1 = 〈w0|w1〉 =

{

1 w0 ≤ w1,
0 otherwise.

As words are all orthogonal with respect to ·, Q−1
+ w1 contains w0 with coefficient 1 whenever w0 ≤ w1,

otherwise with coefficient 0. Thus Q−1
+ w is as claimed. The proof for Q−1

− is similar.
Now consider Q−. We will show that, for all w,w0 ∈ Me

n,

∑

T⊆Ex
w

(−1)|T | 〈ψxTw | w0〉 =

〈

∑

T⊆Ex
w

(−1)|T |ψxTw

∣

∣

∣

∣

∣

w0

〉

= w · w0 =

{

1 w0 = w,
0 otherwise,

which gives the desired expression for Q−. Thus we consider when 〈ψxTw|w0〉 is 0 or 1.
Consider the function fxw : {1, . . . , nx} −→ {0, . . . , ny} defining w i.e. fxw(i) is the number of y’s to

the left of the i’th x in w. We note that ψxT has the following effect on the function fx· :

fxψx
Tw

(i) =

{

fxw(i) if the x numbered i is not in T ,
fxw(i) + 1 if the x numbered i is in T .

Thus, 〈ψxTw|w0〉 = 1 iff fxw(i) ≤ fxw0
(i) for all i numbering x’s of w not in T , and fxw(i) + 1 ≤ fxw0

(i)
for all i numbering x’s of w in T .

So, let {1, . . . , nx}, numbering the x’s in w, be partitioned into three sets S0, S1, S2 as follows:

S0 =
{

i : fxw(i) ≤ fxw0
− 1
}

S1 =
{

i : fxw(i) = fxw0
(i)
}

S2 =
{

i : fxw(i) ≥ fxw0
+ 1
}

If S2 is nonempty, then some x in w lies to the right of the corresponding x in w0. So 〈w|w0〉 = 0, and
any 〈ψxTw|w0〉 = 0; also w0 · w = 0. Thus, we may assume S2 = ∅.

If T contains an element i of S1, then the i’th x in ψxTw lies to the right of the corresponding x in
w0, so 〈ψxTw|w0〉 = 0. We have 〈ψxTw|w0〉 = 1 iff T ⊆ S0 and S2 = ∅. Let T0 = S0 ∩ Exw. Then

∑

T⊆Ex
w

(−1)|T |〈ψxTw|w0〉 =
∑

T⊆T0

(−1)|T |〈ψxTw|w0〉 =
∑

T⊆T0

(−1)|T |.

The first equality follows since for every T containing an element outside S0, 〈ψxTw|w0〉 = 0. The
second equality follows since whenever T ⊆ T0, we have T ⊆ S0 and hence 〈ψxTw|w0〉 = 1. But
the final sum is 0, unless T0 is the empty set. So the expression above is 1 only when S2 = ∅, and
T0 = Exw ∩ S0 = ∅, i.e. Exw ⊆ S1. That is, the expression is 1 iff w ≤ w0 and every block-ending x in
w lies in the same position as the corresponding x in w0. This implies w = w0, so that the expression
for Q− is as claimed.

The case of Q+ is similar. �

As a corollary we have an explicit description for H .

Corollary 2.8

Hw = Q+Q
−1
− w =

∑

wi≥w

∑

T⊆Ey
wi

(−1)|T |ψyTwi

�

We shall discuss H in more detail in sections 5.2, 5.3 and 5.4.
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2 ALGEBRAIC NON-COMMUTATIVE QFT

2.7 Differentials, commutation relations, normal form

In quantum field theory, for a creation operator a∗ and annihilation a, one usually has [a, a∗] = 1 or
{a, a∗} = 1. A term aa∗ creates an particle, and then annihilates every one among that new set of
particles; while a∗a annihilates each among the original set of particles, then a new particle is created.
Thus aa∗ and a∗a count an identical set of situations, except that aa∗ counts the original state once
more. For bosons then [a, a∗] = aa∗ − a∗a = 1, and for fermions {a, a∗} = aa∗ + a∗a = 1.

Our non-commutative setting is a little more symmetric than the commutative case: our creations
create once, and annihilations annihilate once. The standard physical creation and annihilation are
asymmetric: creation creates once, but annihilation annihilates everything in its turn. But in our
situation, we can take a sum (or alternating sum) over i of annihilation operators as,i, which should
behave similarly to the usual annihilation operator. In any case, define operators

as =

ns
∑

i=1

as,i, ds =

ns
∑

i=1

(−1)ias,i on Fnx,ny .

In the first case we obtain [as, a
∗
s,0] = 1; in the second case we have {ds, a

∗
s,0} = 1.

Note that as is nothing more than partial differentiation by the symbol s ∈ {x, y}, if we regard
each word as a monomial in the two non-commuting variables x, y, as = ∂

∂s
. It follows that the two

corresponding operators in x, y commute, axay = ayax. Obviously as is compatible with the ring
structure on F , satisfying a Leibniz rule: as(w0w1) = (asw0)w1 + w0(asw1).

On the other hand, ds is similar to an exterior differential; d2s = 0; ds(w0w1) = (dsw0)w1 +
(−1)kw0(dsw1) where k is the degree of w0 in s; and dxdy = dydx. We may regard dx, dy as
boundary operators arising from the two simplicial structures on F . (For this we could also take

ds =
∑ns+1

i=0 (−1)ias,i, the sum including terminal annihilations; this is also a differential, d2s = 0 and
[dx, dy] = 0. Our choice fits better with the physical analogy.)

The differential dx is a linear operator Fnx,ny −→ Fnx−1,ny , and dy is Fnx,ny −→ Fnx,ny−1. Thus
the abelian groups Fnx,ny become a double chain complex, and the relation {ds, a∗s,0} = 1 says that
a∗s,0 is a chain homotopy from 1 to 0; thus the homology of this complex is trivial. In fact, the relation
dsa

∗
s,0 + a∗s,0ds = 1 explicitly shows that any “closed” element z, dsz = 0, is a “boundary” since

dsa
∗
s,0z + a∗s,0dsz = ds

(

a∗s,0z
)

= z. (See also the argument of proposition 7.5 of [17], following [5].)
The simplicial set relations show us how to commute creation and annihilation operators of the

same species s ∈ {x, y}. It follows immediately from them that any sequence of l s-creation and k
s-annihilation operators can be written uniquely in the form (annihilating then creating)

a∗s,i1a
∗
s,i2

· · ·a∗s,ikas,j1as,j2 · · · as,jl

where i1 > i2 > · · · > ik (note strict inequality), and j1 ≥ j2 ≥ · · · ≥ jl. Alternatively, such a sequence
of creation and annihilation operators can be written in the form (creating then annihilating)

as,j1as,j2 · · ·as,jla
∗
s,i1

a∗s,i2 · · ·a
∗
s,ik

satisfying the same inequalities.

2.8 Temperley–Lieb representation

We can now introduce more operators on M, extended linearly to F :

Ts,i = as,i − as,i+1, T ∗
s,i = a∗s,i − a∗s,i+1,

for s ∈ {x, y} and 0 ≤ i ≤ ns.
These operators Ts,i have various obvious properties. For 1 ≤ i ≤ ns − 1, Ts,iw = 0 iff w has the

i’th and (i + 1)’th s symbols adjacent. And Ts,0w = 0 iff w begins with s; Ts,nsw = 0 iff w ends with
s. We have

as,i+1T
∗
s,i = as,i+1

(

a∗s,i − a∗s,i+1

)

= 1− 1 = 0,
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2 ALGEBRAIC NON-COMMUTATIVE QFT

and so if we define
Us,i = T ∗

s,ias,i+1 =
(

a∗s,i − a∗s,i+1

)

as,i+1

then we have
(

U∗
s,i

)2
= 0. For 1 ≤ i ≤ ns − 1, the effect of Us,i on a word w is to return 0, if the i’th

and (i + 2)’th s symbols are in the same block. Otherwise it gives difference between the two words,
one obtained by moving the (i+1)’th s back to be adjacent to the i’th s, the other obtained by moving

the (i+1)’th s forward to the (i+2)’th s. This makes combinatorially clear why (Us,i)
2 = 0. It’s then

also clear that Us,i and Us,j commute when |i− j| ≥ 2.
We can then consider Us,i, Us,j when |i − j| = 1. We can compute (e.g. putting various products

in normal form) that

Us,iUs,i+1Us,i = −Us,i

Us,i+1Us,iUs,i+1 = −Us,i+1

Thus the Us,i satisfy relations similar to the Temperley-Lieb algebra. This algebra is defined by the
relations U2

i = δUi, UiUi+1Ui = Ui, Ui+1UiUi+1 = Ui+1, and UiUj = UjUi for |i− j| ≥ 2 [20, 1, 2]; we
have δ = 0 and some sign changes, a “twisted” representation.

2.9 A distinguished subset

We will now define some distinguished elements in F .
First, consider the initial creation operators. a∗x,0, a

∗
y,0. From the vacuum 1, applying these oper-

ators gives precisely all of the elements of M, hence a basis for F . This distinguished basis subset
M ⊂ F is preserved under all creation and non-terminal annihilation operators, and of course is pre-
served under multiplication (in M and in F). The set {0} ∪ M is also preserved under all creation
and annihilation operators and closed under multiplication.

Now we consider a larger set of operators, which are in a sense “positive”. Define the set

C1 =
{

a∗s,i, as,i, T
∗
s,i

}

· 1,

i.e. the set of elements which can be obtained by applying these operators to the vacuum 1. That is, C1
is the orbit of 1 under the action of the operators a∗s,i, as,i, T

∗
s,i, over all s ∈ {x, y} and all 0 ≤ i ≤ ns+1

in each Fe
n. Similarly, define

C2 =
{

a∗s,0, as,0, H
}

· 1,
C3 =

{

a∗s,ns+1, as,ns+1, H
}

· 1,

So C2 is the orbit of 1 under the action of the initial creation and annihilation operators and H ; C3 is
the orbit of 1 under the action of final creation and annihilation operators and H . In fact these are all
the same (and hence one can find many other sets of operators which give this set as their orbit).

Proposition 2.9 C1 = C2 = C3.

Thus we may write C for this set. Let Cn = C ∩Fn, and similarly Cnx,ny = C ∩Fnx,ny , C
e
n = C ∩Fe

n.

Theorem 2.10

(i) The set C is not closed under addition or multiplication by Z. However C is closed under negation,
multiplication, and creation and annihilation operators, and the operators Ts,i, T

∗
s,i, Us,i.

(ii) (a) Each element v ∈ C lies in a particular Fe
n (v ∈ Cen) and is of the form v =

∑

i aiwi where
ai = ±1 and the wi are distinct words in Me

n.

(b) Among the words wi there is a lexicographically first w− and last w+. Then for all i,
w− ≤ wi ≤ w+. If a word w0 among the wi is comparable to all these wi with respect to ≤,
then w0 ∈ {w−, w+}. If w− 6= w+ then

∑

ai = 0.
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3 SUTURED TQFT

Figure 2: Edge smoothing and unsmoothing.

(c) For every pair w− ≤ w+ in Me
n there are precisely two v ∈ Cen with w−, w+ being the

lexicographically first and last words occurring in v; one is the negative of the other.

(d) The number of pairs w− ≤ w+ in Me
n is the Narayana number Ne

n, and
∑

eN
e
n = Cn, the

n’th Catalan number. Thus |Cn| = 2Cn and |Cen| = 2Ne
n.

(iii) The operators Q+, Q− do not preserve C; but Q+C = Q−C, and these have the same cardinality
as C in each grading: |Q±Cen| = 2Ne

n.

(iv) For any v ∈ C, 〈v|v〉 = 1 and 〈v|Hv〉 = 1. For any v0, v1 ∈ C, 〈v0|v1〉 ∈ {−1, 0, 1}.

(v) If the sum or difference of two distinct nonzero elements u, v of C is also a nonzero element of
C, then after switching signs of u, v and swapping u, v if necessary, the triple is u, v, u − v, and
〈u|v〉 = 1, 〈v|u〉 = 0. There exists an operator A∗ : F0

2 −→ Fe
n, which is a composition of initial

creation operators and applications of H, such that A(xy) = u and A(yx) = v.

(vi) If u, v ∈ C and 〈u|v〉 = 1, then there exists a sequence u = v0, v1, . . . , vm = v in C such that each
vi − vi+1 ∈ C; and for each i ≤ j, 〈vi|vj〉 = 1.

The proof of this theorem will be given via building up a theory of sutured TQFT and proving iso-
morphisms between it and the above non-commutative QFT, culminating in section 5.1. The Narayana
numbers Ne

n here are as defined in [17].
There are some further tenuous physical analogies and speculations. Elements of C can be regarded

as “pure states”. The operator H can perhaps be considered as a Hamiltonian generating a time
evolution, its periodicity some manifestation of a term eiHt. The operators Q±, which taken together
define H , can be considered as supersymmetry; Q+C can be regarded as super-partner-states. Is there
some interpretation of sutured manifolds with corners having spacelike and timelike boundaries, and
a Hamiltonian giving something like a partition function for contact manifolds?

3 Sutured TQFT

3.1 Sutured surfaces

For our purposes, a sutured 3-manifold (M,Γ) is a 3-manifold with boundary, with Γ ⊂ ∂M a properly
embedded oriented 1-manifold (i.e. a collection of oriented loops on ∂M), such that ∂M\Γ = R+∪R−,
where R± is an oriented surface with boundary ±Γ. (In particular, crossing Γ along ∂M takes us from
R± to R∓.)

A sutured 3-manifold may have corners on its boundary; there may be a curve C on ∂M along
which two smooth surfaces meet. If so, sutures are required not to match along C, but to interleave;
see figure 2. The surface may be smoothed ; in doing so, sutures are rounded and complementary
regions R± joined as shown.

In the following, we take sutures on surfaces, but without any associated 3-manifold. Define
a sutured surface (Σ,Γ) to be a compact oriented surface Σ, possibly disconnected, possibly with
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boundary, with Γ ⊂ Σ a properly embedded oriented 1-submanifold; Γ must have the property that
Σ\Γ = R+ ∪R−, where the R± are oriented as ±Σ, and where ∂R± ∩Γ = ±Γ as oriented 1-manifolds.
Again (Σ,Γ) may have corners, with interleaving sutures; corners may be smoothed as described above.
In this paper, we will only consider sutured surfaces with nonempty boundary.

We define also a sutured background surface (or simply sutured background). Note that the boundary
of an oriented 1-manifold may be regarded as a set of points signed + or −. A sutured background
surface (Σ, F ) is a compact oriented surface Σ (possibly disconnected) with nonempty boundary,
together with a finite set of signed points F ⊂ ∂Σ, such that ∂Σ\F = C+ ∪ C−, where C± are arcs
oriented as ±∂Σ, and ∂C+ = ∂C− = F as sets of signed points. (Hence each boundary component C of
Σ has a positive even number of points of F , which cut it alternately into arcs of C+ and C−.) A set of
sutures Γ on a sutured background surface (Σ, F ) is an an oriented properly embedded 1-submanifold
of Σ such that ∂Γ = ∂Σ∩ Γ = F and such that (Σ,Γ) is a sutured surface, with ∂R± = ±Γ∪C± ∪F .
Again a sutured background surface may have corners.

Given a sutured background surface (Σ, F ) with ∂Σ\F = C+∪C− as above, we define gluings of it.

Consider two disjoint 1-manifolds G0, G1 ⊆ ∂Σ, and a homeomorphism τ : G0

∼=
−→ G1 which identifies

marked points and positive/negative arcs, G0 ∩F
∼=
→ G1 ∩F , G0 ∩C±

∼=
→ G1 ∩C±. Then gluing (Σ, F )

along τ gives a surface #τ (Σ, F ). If there remain marked points on each boundary component then
#τ (Σ, F ) is also a sutured background surface and we call τ a sutured gluing map. If Γ is a set of
sutures on (Σ, F ) then a sutured gluing map gives a glued set of sutures #τΓ on #τ (Σ, F ).

A set of sutures Γ on (Σ, F ) has a (relative) Euler class, defined by e(Γ) = χ(R+) − χ(R−). Let
|F | = 2n. On a disc, it’s clear that, if Γ contains no contractible components, then |e(Γ)| ≤ n − 1
and e(Γ) ≡ n− 1 mod 2. Cutting Σ along a properly embedded arc which intersects Γ in one interior
point has the effect that e is preserved, χ(Σ) increases by 1 and n increases by 1; hence e and n−χ(Σ)
are preserved. In the other direction, a gluing τ which identifies two arcs on ∂Σ, each containing one
point of F , also preserves e and n − χ(Σ). Hence, on a general (Σ, F ), if Γ contains no contractible
components, then |e(Γ)| ≤ n− χ(Σ) and e(Γ) ≡ χ(Σ) mod 2.

Following [17], we label marked points F on a sutured background surface (Σ, F ) as follows. Choose
a basepoint of F on each component of ∂Σ. Basepoints are chosen so that, with the orientation on
∂Σ induced from the orientation on Σ, passing through the basepoint one travels from a positive to
negative region.

On a disc sutured background (D2, Fn+1) with |Fn+1| = 2(n+1), drawn in the plane and inheriting
its orientation, we number the points of Fn+1 as in [17]. The basepoint is numbered 0. The arc of
∂D2 immediately clockwise (resp. anticlockwise) of 0 is signed positive (resp. negative). The points
of Fn+1 are numbered clockwise, modulo 2(n + 1). Given a chord diagram Γ on (D2, Fn+1), from n
and e we define n− = (n − e)/2, n+ = (n + e)/2, so n−, n+ are non-negative integers, n = n− + n+

and e = n+ − n−. The point of F numbered 2n+ + 1 ≡ −2n− − 1 mod 2(n + 1) is called the root
point. Cutting ∂D2 at base and root points gives two arcs. The arc containing 1, . . . , 2n+ is called the
eastside. The arc containing −1, . . . ,−2n− is called the westside.

3.2 TQFT axioms

As in any TQFT, we would like to be associate algebraic objects to our topological objects. Here the
topological objects are sutured background surfaces, sets of sutures, and gluings. Thus, we define a
sutured TQFT to be the following set of assignments with the following properties.

Axiom 1 To each sutured background surface (Σ, F ), assign an abelian group V (Σ, F ), depending only
on the homeomorphism type of the pair (Σ, F ).

Axiom 2 To a set of sutures Γ on (Σ, F ), assign a subset of suture elements c(Γ) ⊂ V (Σ, F ), de-
pending only on the isotopy class of Γ relative to boundary.

(We would have liked a single suture element, but this will turn out not to be possible, as we discuss
below in section 3.4. Quantum states differing by a unit are physically indistinguishable.)
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Axiom 3 For a sutured gluing map τ of a sutured background surface (Σ, F ), assign a collection of
linear maps Φiτ : V (Σ, F ) −→ V (#τ (Σ, F )).

(We would have liked one canonical map, but this will turn out not to be possible.)

Axiom 4 For a finite disjoint union of sutured background surfaces ⊔i(Σi, Fi),

V (⊔i(Σi, Fi)) = ⊗iV (Σi, Fi).

Axiom 5 If Γ is a set of sutures on (Σ, F ) and τ is a gluing of (Σ, F ) then each Φiτ takes suture
elements to suture elements surjectively, c(Γ) → c(#τΓ).

These conditions are not quite the standard TQFT axioms but are similar to the standard axioms for a
(1+1)-dimensional TQFT. In particular, in a (1+1)-dimensional TQFT we would assign a vector space
to a 1-manifold; instead we assign an abelian group to a decorated 2-manifold with boundary. We
would assign an element of a vector space to a 2-manifold bounded by a 1-manifold; instead we assign
it to a choice of sutures “bounded by“ the sutured background. We would assign a homomorphism
between vector spaces to a 2-dimensional cobordism between 1-manifolds; instead we assign it to a
sutured gluing of 2-manifolds.

It follows from the above that any V (Σ, F ) can be interpreted as a space of operators. Take some
components of ∂Σ and call them incoming; call the rest outgoing. Write ∂Σ = (∂Σ)in ∪ (∂Σ)out and
F = Fin ∪Fout. Suppose we have a sutured background surface (Σin, Fin) which has boundary (∂Σin)
identified with (∂Σ)in by a gluing τ ; and τ identifies Fin and positive/negative boundary arcs on both
surfaces. The gluing gives a sutured background surface (Σout, Fout), where Σout = Σin ∪ Σ, and a
(possibly not unique) map

Φτ : V (Σin, Fin)⊗ V (Σ, F ) −→ V (Σout, Fout),

which is natural with respect to suture elements: if Γ,Γin are respectively sets of sutures on (Σ, F ) and
(Σin, Fin), then Γout = Γin ∪ Γ is a set of sutures on (Σout, Fout), and Φτ maps c(Γin ∪ Γ) → c(Γout)
respectively.

Thus, a choice of sutures Γ on (Σ, F ), together with a choice of representative c ∈ c(Γ) ⊂ V (Σ, F )
gives a specific V (Σin, Fin) −→ V (Σout, Fout) which we denote Φτ,c

Φτ,c : V (Σin, Fin) −→ V (Σout, Fout), x 7→ Φτ (x⊗ c).

(Note the choices involved here: choice of Γ; choice of Φτ ; choice of c ∈ c(Γ).) In a tenuous sense,
sutured TQFT can regarded as something like a functor from a cobordism category to an algebraic
category, even though we really have no cobordisms, and we think of “incoming” and “outgoing” in the
above tenuous way. With this formulation, we are viewing the situation as an inclusion of background
surfaces (Σin, Fin) →֒ (Σout, Fout), together with a set of sutures Γ on (Σout\Σin, Fin ∪ Fout). Note
that the inclusion must be strict in the sense that Σin lies in the interior of Σout. In this way we can
regard our “TQFT” is a “2 + 1 = 2 dimensional TQFT”.

In fact, we can reformulate gluing axioms 3 and 5 in terms of inclusions. This is the way maps are
described in [12].

Axiom (3’) To an inclusion (Σin, Fin)
ι
→֒ (Σout, Fout) of sutured background surfaces, with Σin lying

in the interior of Σout, together with Γ a set of sutures on (Σout\Σin, Fin ∪ Fout), assign a collection
of linear maps Φiι,Γ : V (Σin, Fin) −→ V (Σout, Fout).

Axiom (5’) If Γin is a set of sutures on (Σin, Fin), let Γout = Γin ∪ Γ be the corresponding set of
sutures on (Σout, Fout). Then each Φiι,Γ maps takes suture elements to suture elements surjectively,
c(Γin) → c(Γout).

Lemma 3.1 Axioms 3 and 5 are equivalent to axioms 3’ and 5’.
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Proof From axioms 3 and 5, for any gluing τ we have gluing maps Φiτ . As discussed above, given

an inclusion (Σin, Fin)
ι
→֒ (Σout, Fout) and sutures Γ on (Σ, F ) = (Σout\Σin, Fin ∪ Fout), consider the

gluing τ of (Σin, Fin)⊔(Σ, F ) achieved by the inclusion, the gluing maps Φiτ : V (Σin, Fin)⊗V (Σ, F ) −→
V (Σout, Fout), and take a representative c ∈ c(Γ) ⊂ V (Σ, F ); then define

Φiι,Γ = Φiτ,c : V (Σin, Fin) −→ V (Σout, Fout), x 7→ Φiτ (x⊗ c).

In the other direction, assume axioms 3’ and 5’, so an inclusion ι and sutures Γ as above give inclusion
maps Φiι,Γ. Now given a gluing τ of (Σ, F ), removing a neighbourhood of the boundary of (Σ, F ), after

gluing, gives an inclusion (Σ, F )
ι
→֒ #τ (Σ, F ), and lying in its interior. Moreover, there is a natural

set of sutures Γ on a neighbourhood of the boundary of (Σ, F ), taking a product neighbourhood of the
boundary. After choosing c ∈ c(Γ), we obtain inclusion maps Φiι,Γ : V (Σ, F ) −→ V (#τ (Σ, F )), which

we define to be Φiτ . (See figure 13 of [12].) �

We now impose another condition, rather similar to what occurs in knot theory invariants; alter-
natively, saying that overtwisted contact elements are zero.

Axiom 6 If Γ contains a closed contractible loop then c(Γ) = {0}.

(Perhaps more generally we could set c(Γ) to be some power of an indeterminate δ in this case; this
would be closer to the sort of situation arising from skein relations in knot theory; perhaps this can be
regarded as δ = 0 in a semiclassical limit. But the analogy from contact geometry and sutured Floer
homology suggests that one closed loop is equivalent to many.)

For a disc D2, let (D2, Fn) denote the sutured background surface which is a disc with 2n points
chosen on the boundary. One of these will be fixed to be a basepoint. Consider (D2, F1). There is
only one set of sutures Γ on this (D2, F1) with no contractible loops, namely a single arc. We will call
this Γ the vacuum Γ∅, and (D2, F1) the vacuum background. We will impose the condition, usual in
quantum field theory, that the vacuum is nonzero, and normalise the vacuum and its background.

Axiom 7 V (D2, F1) = Z and c(Γ∅) ⊆ {−1, 1}.

In more generality, we could set V (D2, F1) to be a ground ring R and then say that sutured TQFT is
over R coefficients. In [17] we essentially considered the simpler sutured TQFT with Z2 coefficients;
here we focus on Z coefficients, though we will need to make reference to Z2 coefficients and previous
work at times.

Note that for any sutured background surface (Σ, F ) and sutures Γ on it, there is an inclusion
(D2, F1) →֒ (Σ, F ), and sutures Γ′ on (Σ\D2, F ∪ F1), taking Γ∅ 7→ Γ∅ ∪ Γ′ = Γ. Then axiom 3’ gives
a map Z ∼= V (D2, F1) −→ V (Σ, F ) taking c(Γ∅) ⊆ {−1, 1} → c(Γ) surjectively and we immediately
have the following.

Lemma 3.2 For any sutures Γ on any sutured background (Σ, F ), c(Γ) is either a singleton or is of
the form {c,−c}. �

Over Z2 coefficients rather than Z, these two possibilities are the same, and so c(Γ) is always a well-
defined single element.

A set of sutures Γ on (D2, Fn) with no closed curves is just a chord diagram. Any disc with a chord
diagram may be included into a larger sutured disc in which the sutures simplify to the vacuum. The
corresponding inclusion, after making appropriate choices, gives a map V (D2, Fn) −→ V (D2, F1) = Z
which takes c(Γ) → c(Γ∅) ⊆ {−1, 1} surjectively.

Lemma 3.3 If Γ is a chord diagram then 0 /∈ c(Γ) and every element of c(Γ) is primitive and non-
torsion. �

The “interesting” elements in each V (Σ, F ) are the suture elements. We will require our sutured
TQFT to be “minimal” in the following sense. One can easily imagine relaxing or abandoning this
axiom; we impose it largely for convenience, and to avoid technical details which, at least for now, we
would rather not consider.
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Axiom 8 Every V (Σ, F ) is spanned by suture elements.

There clearly exists a non-trivial theory with the axioms so far. For example, take V (Σ, F ) =
⊕ΓZcΓ, with one Z summand for each isotopy class of sutures Γ on (Σ, F ) without contractible loops,
and free basis cΓ. Given a set of sutures Γ without contractible loops, take c(Γ) = {cΓ}; if Γ has a
contractible loop then c(Γ) = {0}. Clearly axioms 1, 2, 4, 6, 7 and 8 are satisfied. From a sutured
gluing map τ on (Σ, F ) we get a natural map on sets of sutures, Γ 7→ #τΓ; take Φτ to map cΓ 7→ c#τΓ,
if #τΓ has no contractible components, else cΓ 7→ 0. As the cΓ form a free basis of V (Σ, F ), this
defines Φτ uniquely. This clearly satisfies axioms 3 and 5. We will consider this “free pre-sutured
TQFT” later in section 3.13.

We will impose a final axiom which essentially gives all the structure in the TQFT. We will de-
fine the bilinear form 〈·|·〉 : V (D2, Fn) ⊗ V (D2, Fn) −→ Z as mentioned in the introduction, the
“non-commutative inner product” arising from stacking sutured discs. Our axiom will be a kind of
nondegeneracy up to sign.

Let (Σ,Γ) be the sutured surface which is a cylinder S1 × [0, 1], with Γ consisting of 2n parallel
arcs of the form {·} × [0, 1]; and then with a small neighbourhood of a point on one of those sutures
removed (a “leak”). Thus topologically Σ is a pair of pants. Regard the two ends of the cylinder as
incoming and the boundary of the “leak” as outgoing. Consider two incoming sutured background
surfaces which are discs (D2, Fn). When we glue in incoming surfaces we glue them as ends of the
original cylinder, so that there are corners; after gluing and rounding, we have the vacuum background
(D2, F1). Choosing a map Φτ for gluing in incoming surfaces, and a c ∈ c(Γ) ⊂ V (Σ,Γ), we obtain a
map

〈·|·〉 = Φτ,c : V (D2, Fn)⊗ V (D2, Fn) −→ V (D2, F1) = Z.

(In particular, there may be several choices for 〈·|·〉; for now, make an arbitrary choice; we may adjust
it later.) Thus 〈·|·〉 describes “inclusion into a leaky cylinder”. If we have two sets of sutures Γ0,Γ1

on (D2, Fn) and c0 ∈ c(Γ0), c1 ∈ c(Γ1), we glue them to S1 × {0}, S1 × {1} respectively. We then
have 〈c0|c1〉 ∈ {−1, 0, 1}. To see why, note that after inclusion into the leaky cylinder and rounding
corners, the resulting set of sutures on (D2, F1) is either the vacuum, and 〈c0|c1〉 = ±1, or there is a
contractible suture, and 〈c0|c1〉 = 0. That is, taking the “non-leaky” cylinder with 2n parallel sutures
(without a small disc removed) and inserting the sutured discs, 〈c0|c1〉 = ±1 (resp. 0) iff after rounding
corners, we have a sutured sphere with connected (resp. disconnected) sutures.

We can now state our axiom precisely.

Axiom 9 Suppose two elements x, y ∈ V (D2, Fn) have the following property: for any set of sutures
Γ on (D2, Fn), there exists c ∈ c(Γ) such that 〈x|c〉 = ±〈y|c〉. Then x = ±y.

Despite appearances, as mentioned in the introduction, we shall see that this axiom is essentially
equivalent to the bypass relation. The formulation of nondegeneracy is somewhat unorthodox; in
section 3.3 we consider several different alternatives and state their and state their equivalence or
non-equivalence; these statements are proved in section 3.13.

Note that the statement of this axiom is limited to discs; there is no requirement at all for other
surfaces. If one tries to define something similar for more complicated surfaces, there is a question of
how to define it canonically; and the result of gluing two surfaces into a similar cylinder and removing
a disc will no longer have genus 0, so that there is no longer a clear answer of ±1 or 0. In this sense
(and maybe this sense alone), sutured TQFT is “inherently planar”.

We can now give a precise version of theorem 1.1. A much more general statement is given in
theorem 5.1.

Theorem 3.4 In any sutured TQFT, there is an isomorphism

(

V (D2, Fn+1), 〈·|·〉
)

∼=
(

Fn, 〈·|·〉
)

.

(Note: this theorem does not assert that any sutured TQFT actually exists!)
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Γ1 Γ2Γ0

Figure 3: Sutures in the bypass relation.

3.3 Nondegeneracy axioms and bypass relations

The nondegeneracy axiom 9 implies certain relations between suture elements. Consider (D2, F3), and
the three sets of sutures Γ0,Γ1,Γ2 shown in figure 3. Let ci ∈ c(Γi) ⊂ V (D2, F3) be suture elements.

We easily obtain:

〈c0|c0〉 = ±1, 〈c0|c1〉 = ±1, 〈c0|c2〉 = 0
〈c1|c0〉 = 0, 〈c1|c1〉 = ±1, 〈c1|c2〉 = ±1
〈c2|c0〉 = ±1, 〈c2|c1〉 = 0, 〈c2|c2〉 = ±1

Take α = c0 ± c1, with the plus or minus chosen so that 〈α|c1〉 = 0. Then we have

〈α|c0〉 = ±1, 〈α|c1〉 = 0, 〈α|c2〉 = ±1

Thus, by axiom 9, α = ±c2. In particular, c0, c1, c2 are linearly dependent, and c2 = ±c0± c1 for some
choice of sign.

On a sutured surface (Σ,Γ), we may consider the operation of removing an embedded disc D in the
interior of Σ on which the sutures are isotopic (rel boundary of the smaller disc) to a set shown in figure
3 above; and then replacing the sutures on this smaller disc with a different set shown in figure 3. Such
an operation is called bypass surgery and comes in two versions: up, which takes Γ0 7→ Γ1 7→ Γ2 7→ Γ0;
and down, which takes Γ0 7→ Γ2 7→ Γ1 7→ Γ0. Bypass surgery preserves Euler class; bypass-related
sutured surfaces naturally come in triples. If Γ′

0,Γ
′
1,Γ

′
2 are a bypass-related triple of sutures on (Σ, F ),

consider including the smaller disc (considered as a sutured background surface) into a larger surface
(with fixed sutures) to give (Σ, F ); choose a gluing map and a suture element for the annulus to obtain
a map V (D2, F3) −→ V (Σ, F ) taking each c(Γi) → c(Γ′

i); thus the linear dependency persists.

Lemma 3.5 Let Γ0,Γ1,Γ2 be a bypass related triple of sets of sutures on a sutured background (Σ, F ).
Choose any ci ∈ c(Γi). Then there exists a choice of signs such that c0 = ±c1 ± c2. �

If we only consider the groups V (Σ, F ) mod 2, then of course c0, c1, c2 are single elements and
c0 + c1 + c2 = 0. In [17] we defined groups SFHcomb(T, n), which were generated by chord diagrams
of n chords, subject to the relation that bypass related triples sum to zero. As such, over Z2 a sutured
TQFT has each V (D2, Fn) a quotient of SFHcomb(T, n). In fact more is true.

Proposition 3.6 In any sutured TQFT over Z2, V (D2, Fn+1) ∼= SFHcomb(T, n + 1) ∼= Z2n

2 . This
isomorphism takes a chord diagram Γ in SFHcomb(T, n+1) to the suture element c(Γ) ∈ V (D2, Fn+1).

The proof is almost immediate from the definition of sutured TQFT, given our previous work; it is
given in section 3.6. In sections 3.6 and 3.7 we recall our previous work and consider sutured TQFT
of discs mod 2.

As mentioned above, the formulation of nondegeneracy in axiom 9 is a little unorthodox. Various
other formulations are equivalent; along with various formulations of the bypass relation.

Proposition 3.7 In the presence of axioms 1–8 of sutured TQFT, the following axioms are equivalent.
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(i) Suppose two elements x, y ∈ V (D2, Fn) have the following property: for any set of sutures Γ on
(D2, Fn) and for all c ∈ c(Γ), 〈x|c〉 = ±〈y|c〉. Then x = ±y.

(ii) (Original axiom 9.) Suppose two elements x, y ∈ V (D2, Fn) have the following property: for any
set of sutures Γ on (D2, Fn), there exists c ∈ c(Γ) such that 〈x|c〉 = ±〈y|c〉. Then x = ±y.

(iii) Suppose two elements x, y ∈ V (D2, F3) have the following property: for any set of sutures Γ on
(D2, F3) and for all c ∈ c(Γ), 〈x|c〉 = ±〈y|c〉. Then x = ±y.

(iv) Suppose two elements x, y ∈ V (D2, F3) have the following property: for any set of sutures Γ on
(D2, F3), there exists c ∈ c(Γ) such that 〈x|c〉 = ±〈y|c〉. Then x = ±y.

(v) Suppose Γ0,Γ1,Γ2 are a bypass triple of sutures on (D2, Fn). For any c0, c1, c2 suture elements
in c(Γ0), c(Γ1), c(Γ2) respectively, there exist ǫ1, ǫ2 ∈ {−1, 1} such that c0 = ǫ1c1 + ǫ2c2.

(vi) Suppose Γ0,Γ1,Γ2 are a bypass triple of sutures on (D2, Fn). Then there exist c0, c1, c2 suture
elements in c(Γ0), c(Γ1), c(Γ2) respectively, and ǫ1, ǫ2 ∈ {−1, 1} such that c0 = ǫ1c1 + ǫ2c2.

(vii) Suppose Γ0,Γ1,Γ2 are a bypass triple of sutures on (D2, F3). For any c0, c1, c2 suture elements
in c(Γ0), c(Γ1), c(Γ2) respectively, there exist ǫ1, ǫ2 ∈ {−1, 1} such that c0 = ǫ1c1 + ǫ2c2.

(viii) Suppose Γ0,Γ1,Γ2 are a bypass triple of sutures on (D2, F3). Then there exist c0, c1, c2 suture
elements in c(Γ0), c(Γ1), c(Γ2) respectively, and ǫ1, ǫ2 ∈ {−1, 1} such that c0 = ǫ1c1 + ǫ2c2.

Given the foregoing, it’s not difficult to see that (i) ⇔ (ii) ⇒ (iii) ⇔ (iv) ⇒ (v) ⇔ (vi) ⇔ (vii) ⇔
(viii). The difficult part is to show [(v)–(viii)] ⇒ [(i)–(ii)]; we do this in section 3.13.

Still, none of the versions of nondegeneracy imposed upon 〈·|·〉 so far appear orthodox. A more
orthodox form of nondegeneracy in fact is not equivalent.

Proposition 3.8 In the presence of sutured TQFT axioms 1–8, the following two axioms are equiva-
lent.

(i) Suppose x ∈ V (D2, Fn) has the following property: for any set of sutures Γ on (D2, Fn) and for
any suture element c ∈ c(Γ), 〈x|c〉 = 0. Then x = 0.

(ii) Suppose x ∈ V (D2, Fn) has the following property: for any y ∈ V (D2, Fn), 〈x|y〉 = 0. Then
x = 0.

There exists a sutured TQFT obeying axioms 1–8 and these two alternative axioms 9, such that
V (D2, Fn) ∼= ZCn . Here Cn is the n’th Catalan number; denoting the Cn chord diagrams on (D2, Fn)
by {Γi}

Cn

i=1, each c(Γi) = {±ci} and the the ci form a basis for each V (D2, Fn).

The proof is given in section 3.13. We will construct the example explicitly; there will be no linear
relation between suture elements for distinct chord diagrams, let alone a bypass relation.

3.4 Impossibility of coherent signs

We would like to have each c(Γ) a single element. This is possible if we are working modulo 2, as then
signs do not matter. However, as long as c(Γ∅) is non-torsion this is impossible; it remains impossible
even if we relax several of the axioms. Everything in this section is a more pedantic version of material
appearing in [12].

Proposition 3.9 Consider making assignments:

1’. to each (homeomorphism class of) (D2, Fn), an abelian group V (D2, Fn);

2’. to each (isotopy class of) set of sutures Γ on (D2, Fn), a suture element c(Γ) ∈ V (D2, Fn);
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Figure 4: Gluing annuli Φa,Φb,Φc.

3’. to an inclusion (D2, Fn) →֒ (D2, Fm) with a set of sutures Γ on the intermediate (S1×I, Fn∪Fm),
a collection of linear maps Φi : V (D2, Fn) −→ V (D2, Fm).

Suppose such assignments satisfy:

5’. Each Φi is natural with respect to suture elements, i.e. for a set of sutures Γ′ on (D2, Fn),
c(Γ′) 7→ c(Γ′ ∪ Γ).

6. If Γ contains a closed contractible loop then c(Γ) = 0.

7’. c(Γ∅) is torsion-free.

9’. Let Γ0,Γ1,Γ2 be the three sets of sutures on (D2, F3) in figure 3. Then the three suture elements
c(Γ0), c(Γ1), c(Γ2) ∈ V (D2, F3) are linearly dependent over Z.

Then all suture elements are 0.

Here axioms 1’, 2’, 3’ are simply the original axioms 1,2,3, restricted to discs, a particular class of
gluings, and suture elements being singletons. Axiom 5’ is the original axiom 5 restricted to discs, our
particular class of gluings, and singleton suture elements, and axioms 7’, 9’ are consequences of the
original axioms 7, 9 but are weaker. Axioms 4 and 8 are omitted altogether.

Proof Consider the three chord diagrams Γ0,Γ1,Γ2, sets of sutures on (D2, F3) of figure 3. Consider
the inclusion (D2, F3) →֒ (D2, F2) together with the sets of sutures Γa,Γb,Γc on the intermediate
annulus as shown in figure 4. From axiom 3’ then we can choose maps Φa,Φb,Φc : V (D2, F3) −→
V (D2, F2).

From the inclusion maps, and contractible loops giving zero, we immediately obtain

Φa : c(Γ0) 7→ c(Γ+) c(Γ1) 7→ c(Γ+) c(Γ2) 7→ 0
Φb : c(Γ0) 7→ 0 c(Γ1) 7→ c(Γ−) c(Γ2) 7→ c(Γ−)
Φc : c(Γ0) 7→ c(Γ+) c(Γ1) 7→ 0 c(Γ2) 7→ c(Γ+)

where Γ−,Γ+ are as shown in figure 5.
As c(Γ0), c(Γ1), c(Γ2) are linearly dependent, let αc(Γ0)+βc(Γ1)+γc(Γ2) = 0 for some α, β, γ ∈ Z,

not all zero. From Φa,Φb,Φc we then obtain (α+β)c(Γ+) = 0, (β+γ)c(Γ−) = 0, and (γ+α)c(Γ+) = 0
respectively. We may then include (D2, F2) →֒ (D2, F1) in various ways so that Γ+ or Γ− becomes the
vacuum Γ∅. Thus (α + β)c(Γ∅) = (β + γ)c(Γ∅) = (γ + α)c(Γ∅) = 0. As c(Γ∅) is non-torsion, we have
either α+β = β+ γ = γ+α = 0 or c(Γ∅) = 0. In the first case α = β = γ = 0, a contradiction. In the
second case c(Γ∅) = 0; now an inclusion into any other set of sutures gives that every suture element
is 0. �
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Figure 5: Sutures Γ−,Γ+.

Return now to our original axioms. It follows that, at least on a disc, all chord diagrams have sign
ambiguity.

Proposition 3.10 Let Γ be a set of sutures on (D2, Fn). If Γ contains a closed loop then c(Γ) = {0}.
Otherwise, Γ is a chord diagram, and c(Γ) has two distinct elements and is of the form {x,−x}.

Proof When Γ contains a closed loop, it contains a contractible closed loop, so c(Γ) = {0}. Otherwise
Γ is a chord diagram, and can be included into a larger disc, gluing an annulus to the outside, to obtain
the vacuum Γ∅. Choosing a gluing map and a suture element for the annulus, we obtain a linear map
V (D2, Fn) −→ V (D2, F1) which takes c(Γ) 7→ c(Γ∅) surjectively. Conversely, Γ∅ includes into a larger
disc, gluing an annulus to the outside, which gives a linear map V (D2, F1) −→ V (D2, Fn) taking
c(Γ∅) 7→ c(Γ) surjectively. The composition of these two maps is a surjection from a finite set to
itself; hence a bijection. Thus for any chord diagram Γ, |c(Γ)| = |c(Γ∅)|. If |c(Γ∅)| = 1 then we have
|c(Γ)| = 1 for all chord diagrams Γ, contradicting the previous proposition. Thus every |c(Γ)| = 2; so
c(Γ∅) = {−1, 1}, and every c(Γ) is of the form {x,−x}. �

Note that proposition 3.10 does not rely on axiom 9; it relies upon the argument of proposition
3.9, which in turn relies upon a weaker form of axiom 9. In particular, axiom 9’ of proposition 3.9 is
implied by any of the formulations in proposition 3.7; to see it is implied by any of axioms (i)–(iv) we
use the argument of lemma 3.5. Thus, we have the following, which we shall need later.

Lemma 3.11 Assume axioms 1–8 of sutured TQFT and any of the 8 alternative formulations of
axiom 9 in proposition 3.7. Let Γ be any chord diagram. Then c(Γ) contains precisely two elements
and is of the form {x,−x}. �

Consider now the ambiguity in gluing maps; let τ be a gluing on a sutured background surface
(Σ, F ). Axiom 3 gives at least one map Φτ : V (Σ, F ) −→ V (#τ (Σ, F )); axiom 7 requires that Φτ takes
c(Γ) → c(#τΓ) surjectively. By the above, at least on discs, and under the torsion-free assumption,
−Φτ will have the same properties. Thus there is no canonical such Φτ , and any gluing/inclusion
necessarily has ambiguity.

3.5 Creation and annihilation operators

We will use gluing/inclusion to define various operators in sutured TQFT. We generally follow [17],
though with some notational differences; see there for further description.

Creation operators are maps V (D2, Fn) −→ V (D2, Fn+1); a creation operator includes a disc into
a larger disc (or glues a disc to an annulus to give a larger disc) and has the effect of inserting
a new outermost chord into a chord diagram in a specific place. Annihilation operators are maps
V (D2, Fn) −→ V (D2, Fn−1); an annihilation operator also includes a disc into a larger disc, but has
the effect of joining two specific adjacent endpoints of a a chord diagram, closing off the region between
two marked points i, i+ 1. Formally, each operator is defined by giving a specific sutured annulus. In
properly defining each operator, we must choose a gluing map Φiτ , and a suture element for the sutures
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Figure 7: Creation maps a∗±,0.

on the annulus. This requires careful choices of signs, which we defer to section 3.8 below; for now we
simply consider the effect on sutures.

Recall from section 3.1 our notation for sets of sutures on (D2, Fn+1), including numbering of
Fn+1 and the notation n = n− + n+, e = n+ − n−, base and root, eastside and westside. We define
annihilation operators a±,i : V (D2, Fn+1) −→ V (D2, Fn), for 0 ≤ i ≤ n± + 1.

(i) (−)-annihilations : For 0 ≤ i ≤ n− + 1, a−,i closes off the region between (−2i,−2i+ 1).

(ii) (+)-annihilations : For 0 ≤ i ≤ n+ + 1, a+,i closes off the region between (2i− 1, 2i)

Note that every (−)-annihilation closes off a + region. Every (+)-annihilation closes off a − re-
gion. The initial annihilations a−,0, a+,0 close off regions at the basepoint. The final annihilations
a−,n−+1, a+,n++1 close off regions at the root point. The internal (−)-annihilations a−,i, 1 ≤ i ≤ n−

close off regions on the westside; the internal (+)-annihilations a+,i, 1 ≤ i ≤ n+ close off regions on
the eastside. (Note this numbering of annihilations is different from [17].) See figure 6, which also
shows how the basepoint behaves.

Similarly we define creation operators V (D2, Fn+1) → V (D2, Fn+2) as follows.

(i) (−)-creations : For 0 ≤ i ≤ n− + 1, a∗−,i creates a new chord joining (−2i− 1,−2i), between the
points previously labelled (−2i,−2i+ 1).

(ii) (+)-creations : For 0 ≤ i ≤ n+ + 1, a∗+,i creates a new chord joining (2i, 2i + 1), between the
points previously labelled (2i− 1, 2i).

Every (−)-creation creates a new chord enclosing an outermost − region; every (+)-creation creates
a new chord enclosing an outermost + region; initial creations create new chords at the basepoint;
final creations create new chords at the root point; (−)-creations create new chords on the westside of
the resulting diagram; (+)-creations create new chords on the eastside of the resulting diagram. All
internal (−)-creations a∗−,i, 1 ≤ i ≤ n−, create new chords in locations on the westside of the original
diagram; all internal (+)-creations a∗+,i, 1 ≤ i ≤ n+, create new chords in locations on the eastside of
the original diagram. See figure 7.

It’s easy to check that these creation and annihilation operators obey similar relations to those pre-
viously defined in section 2.2, substituting (−,+) for (x, y), including simplicial relations, as discussed
in [17]. Any compositions of creations or annihilations which are asserted to be equal in section 2.2
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are true for these operators, but (so far!) only up to sign. In sections 3.8–3.9 we will consider signs
carefully and show the same relations hold.

3.6 Basis, partial order

Let W denote the set of words on {−,+}. Given a word, let n± denote the number of ± signs, n
the total length, and let e = n+ − n−. Thus (n, e, n−.n+) obey the same relations as (n, e, nx, ny) in
section 2; we write Wn for words of length n, and We

n = Wn−,n+ for words with n± ± signs. Note
W ∼= M (the free monoid) as graded monoids, identifying − with x and + with y. In particular, the
partial order ≤ carries naturally over to W .

In [17], we defined a distinguished subset of chord diagrams Γw on (D2, Fn+1), one for each word
w ∈ We

n. Starting from the vacuum Γ∅, we obtained Γw by applying the sequence of initial creation
operators a∗±,0 corresponding to w; it has Euler class e = n+ − n−. We showed [17, section 6.3.2] that
creation and annihilation operators act on basis diagrams Γw in perfect analogy to the corresponding
creation and annihilation operators on words w in {x, y} in Me

n. That is, defining a±,i and a±,i to act
on words in {−,+} in We

n, analogously as on words in {x, y} in Me
n, then for a basis diagram Γw, we

have a∗±,iΓw = Γa∗
±,iw

and a±,iΓw = Γa±,iw (provided a±,iw 6= 0; if a±,iw = 0 then a±,iΓw contains a

closed loop).
We showed [17, proposition 1.16] that over Z2 coefficients (where the c(Γw) are single elements),

the c(Γw) form a basis for SFHcomb(T, n + 1): “there is a basis of states given by applying creation
operators to the vacuum”. These arguments immediately carry over to sutured TQFT, with either Z2

or Z coefficients, showing that representatives of the c(Γw) form a basis for V (D2, Fn+1). Over Z2,
this proves proposition 3.6 on the isomorphism V (D2, Fn) ∼= SFHcomb(T, n) mod 2; we briefly rerun
these arguments here.

For every word w ∈ Wn, form Γw (which has n+1 chords) and choose a representative cw ∈ c(Γw),
arbitrarily for now. The argument that the cw are independent applies verbatim: a suture element of
the vacuum is axiomatically nonzero; a suture element of any set of sutures on V (D2, Fn) containing a
closed curve is 0; if some linear combination of cwi is zero,

∑

kicwi = 0, then we can apply annihilation
operators to reduce Γw1 to Γ∅ but every other Γwi to a set of sutures containing a closed curve; we
obtain k1c(Γ∅) = 0, a contradiction.

The argument that the cw span V (D2, Fn+1) is based on the observation that a chord diagram Γ
either has an outermost chord at the basepoint, or is part of a bypass triple in which the other two
chord diagrams have outermost chords at the basepoint. In either case, each element of c(Γ) is a linear
combination of suture elements for chord diagrams which have outermost chords at the basepoint.
But if a chord diagram Γ has an outermost chord at the basepoint, then c(Γ) = a∗s,0c(Γ

′), where
s ∈ {−,+}, for some chord diagram Γ′ with fewer chords. Applying this observation repeatedly gives
an algorithm (the base point decomposition algorithm, [17, section 4.2]) which expresses any suture
element of a chord diagram as a linear combination of suture elements, each of which is obtained by
applying creation operators to the vacuum, hence as a linear combination of the cw. Axiomatically,
suture elements span V (D2, Fn+1); so the cw span as desired.

We may refine this argument by Euler class; recall e is preserved under bypass surgery. If Γ has n+1
chords and Euler class e, then so do all the Γw obtained in its decomposition; thus a suture element
of Γ is a linear combination of cw, where w ∈ We

n. Write V (D2)en for the submodule of V (D2, Fn+1)
spanned by suture elements of chord diagrams with Euler class e, following the algebraic notation of
section 2; also write V (D2)n = V (D2, Fn+1), V (D2)en = V (D2)n−,n+ , and V (D2) = ⊕nV (D2)n. The
argument above shows that cw, over w ∈ We

n, form a basis for V (D2)en; so as an abelian group it
is free of dimension

(

n
n−

)

=
(

n
n+

)

; moreover V (D2)n = ⊕eV (D2)en. Thus, as graded abelian groups,

V (D2) ∼= F .

Proposition 3.12 The cw, for w ∈ We
n, form a basis for V (D2)en. �

In [17] we considered stacking basis chord diagrams Γw0 ,Γw1 , i.e. including into a cylinder and
rounding corners. We showed [17, proposition 1.28, section 4.3] that the set of sutures so obtained on
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the sphere is connected iff w0 ≤ w1. In particular, if w0, w1 have distinct Euler class then w0 � w1 and
the sutures are disconnected; so the summands V (D2)en are orthogonal with respect to 〈·|·〉. Choosing
representatives cw0 ∈ c(Γw0), cw1 ∈ c(Γw1), we have 〈cw0 |cw1〉 = ±1 if w0 ≤ w1, and 0 otherwise. Thus
up to sign, the algebraic (in F) and topological (in V (D2)) versions of 〈·|·〉 agree; so theorem 3.4 is
true up to sign. In the next several sections we consider signs carefully; having done this, we will be
able to prove a much more general isomorphism in theorem 5.1.

3.7 Previous results: suture elements mod 2

In [17] we effectively considered in detail the structure of chord diagrams and suture elements in
V (D2, Fn) over Z2 coefficients. All those arguments carry over here, except with sign ambiguities. We
briefly recall these arguments and definitions as they are needed here.

We proved several properties of stacking; these give us information about 〈·|·〉. We have already
discussed how, applied to suture elements, this map gives ±1 or 0, accordingly as inclusion into a
cylinder and rounding gives a sphere with connected or disconnected sutures. Using these facts, we
obtain the following.

• [17, lemma 3.7] For any chord diagram Γ, including Γ to both ends of the cylinder gives a sphere
with connected sutures; so 〈c(Γ)|c(Γ)〉 = ±1.

• [17, lemma 3.9] If Γ′ is obtained from Γ by an upwards bypass surgery (so that Γ is obtained
from Γ′ by downwards bypass surgery) then 〈c(Γ)|c(Γ′)〉 = ±1 and 〈c(Γ′)|c(Γ)〉 = 0.

• [17, lemma 3.8] If two chord diagrams Γ,Γ′ share a common outermost chord γ, then by rounding
and re-sharpening corners we have 〈c(Γ)|c(Γ′)〉 = ±〈c(Γ− γ)|c(Γ′ − γ)〉.

• A similar argument of rounding and re-sharpening corners shows that annihilation and creation
operators satisfy the adjoint properties described in section 2.5, up to sign, on any given chord
diagrams: 〈a−,ic(Γ0)|c(Γ1)〉 = ±〈c(Γ0)|a∗−,ic(Γ1)〉 and 〈c(Γ0)|a+,ic(Γ1)〉 = ±〈a∗+,ic(Γ0)|c(Γ1)〉.

We considered words and [17, section 5.1] defined the notion of elementary move, generalised el-
ementary move and nicely ordered sequence of generalised elementary moves. All these moves come
in forwards and backwards versions; forwards/backwards moves move forwards/backwards with re-
spect to ≤. A forwards elementary move on a word takes a substring of the form (−)a(+)b and
replaces it with (+)b(−)a. A generalised forwards elementary move takes a substring of the form
(−)a1(+)b1 · · · (−)ak(+)bk and replaces it with (+)b1+···+bk(−)a1+···+ak ; for some i and j, it moves the
i’th − sign (from the left) in w and moves it past the j’th (from the left) + sign, together with all
− signs in between, and is denoted FE(i, j). A sequence of forwards generalised elementary moves
FE(i1, j1), . . . , FE(ik, jk) is nicely ordered if i1 < i2 < · · · < ik and j1 ≤ j2 ≤ · · · ≤ jk. The backwards
version of all these are obtained by reversing the roles of − and +.

We showed [17, lemmas 5.7–8] that two basis chord diagrams Γw0 ,Γw1 are bypass related iff w0, w1

are related by an elementary move; then the third diagram in their bypass triple, mod 2, has suture
element c(Γw0) + c(Γw1); from lemma 3.5, it has a suture element ±c(Γw0) ± c(Γw1) over Z. We also
showed that from a basis chord diagram Γw0 , a single bypass surgery either gives a chord diagram of the
form Γw1 , where w0, w1 are related by an elementary move; or gives a diagram obtained by performing
one of these bypass surgeries in the opposite direction, giving a suture element c(Γw0) + c(Γw1) mod
2 or ±c(Γw0)± c(Γw1) over Z.

For any words w0 ≤ w1, there is a nicely ordered sequence of forwards generalised elementary moves
taking w0 to w1. Corresponding to these, there is a set FBS(w0, w1) of upwards bypass surgeries on
Γw0 which effect the moves, eventually giving w1. We showed, if we performed all these bypass surgeries
downwards instead, we obtained a chord diagram Γ whose suture element, expressed in terms of the
basis, was a sum (mod 2)

∑

c(Γwi), where w0, w1 occur in the sum, and for every other wi occurring
in the sum, w0 ≤ wi ≤ w1. In fact the Γwi in this sum can be obtained by performing upwards bypass
surgeries along subsets of FBS(w0, w1). Since [17, proposition 1.19] the number of comparable pairs
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w0 ≤ w1 in We
n, and the number of chord diagrams with n+ 1 chords and Euler class e, are both the

Narayana number Ne
n, all suture elements of chord diagrams are of this form [17, theorem 1.20].

The same argument applies immediately in sutured TQFT with Z coefficients: for Γ a chord
diagram and c ∈ c(Γ) a suture element, we have c =

∑

aicwi , where cwi ∈ c(Γwi), the wi all satisfy
w0 ≤ wi ≤ w1. Following the notation of [17], we denote Γ = [Γw0 ,Γw1 ], and write ±[w0, w1] for the
corresponding suture elements. All the coefficients ai ∈ {−1, 1}, as when we decompose Γ in terms
of the basis, using the decomposition algorithm, any basis diagram can occur at most once. We also
showed [17, proposition 1.23] that if Γ is not a basis diagram, then an even number of basis diagrams
appear in this decomposition; the same diagrams appear over Z as over Z2, and so we also see an even
number of basis diagrams in the Z case. There is still a bijection between comparable pairs w0 ≤ w1

and chord diagrams Γ = [Γw0 ,Γw1 ] with minimum and maximum words w0, w1 occurring in their
suture elements.

3.8 Choosing a coherent basis

All suture elements suffer irreparably from sign ambiguity. We cannot hope to find canonical represen-
tatives for suture elements. But we will choose representatives for our basis suture elements, so that
we can write other suture elements with respect to them, up to sign. We do this using the creation
operators a∗s,i and the bilinear form 〈·|·〉 : V (D2)n ⊗ V (D2)n −→ Z. As the creation operators and
inner product themselves have ambiguities, being gluing maps, we first make some choices to fix signs.

Choose a vacuum representative c∅ ∈ c(Γ∅) arbitrarily. For each pair (n−, n+), choose an arbitrary
representative for the creation map a∗+,0 : V (D2)n−,n+ −→ V (D2)n−,n++1, which is defined up
to sign. For each pair (n−, n+) = (n−, 0), choose an arbitrary representative for the creation map
a∗−,0 : V (D2)n−,0 −→ V (D2)n−+1,0. For each pair (n−, n+) there is then a unique sequence of
these chosen a∗−,0 and a∗+,0 operators which lead from V (D2)0,0 to V (D2)n−,n+ ; and this sequence of
operators takes the suture element c(Γ∅) to c(Γwmax), where wmax is the maximum word in Wn−,n+ ,
i.e. wmax = (+)n+(−)n− . For each (n−, n+), we choose a representative cwmax = c(+)n+(−)n− ∈
c(Γwmax) ⊂ V (D2)n−,n+ to be the image of our chosen vacuum c∅ under this sequence of creations.

Recall that with respect to 〈·|·〉n : V (D2)n⊗V (D2)n −→ Z, the summands V (D2)en are orthogonal:

〈·|·〉n =
⊕

e

〈·|·〉en

where each 〈·|·〉en is a linear map V (D2)en ⊗ V (D2)en −→ Z. We note that we may adjust each 〈·|·〉en by
a sign, and the inner product map is still a gluing map of the desired type, taking suture elements to
suture elements.

In each We
n, we have chosen the maximum word wmax = (+)n+(−)n− . We have 〈cwmax |cwmax〉 =

±1. Now adjust each 〈·|·〉en by a sign if necessary so that

〈cwmax | cwmax〉
e
n = 1.

We now fix once and for all our “inner product” 〈·|·〉 to be the direct sum of these 〈·|·〉en.
For each w ∈ We

n and cw ∈ c(Γw), we have 〈cw|cwmax〉 = ±1; we choose, once and for all, the
representative cw such that

〈cw|cwmax〉 = 1.

We next show this basis is coherent.

3.9 Coherent creation and annihilation

We have already chosen signs on some initial creation operators (arbitrarily) in defining a coherent
basis. We now choose representatives for all creation and annihilation operators, so that they are
coherent with respect to this basis. Recall we defined a±,i and a

∗
±,i to act on words in We

n, analogously

30



3 SUTURED TQFT

as on words in Me
n; this corresponds to the action on basis diagrams Γw. So we have a∗±,icw = ±ca∗

±,iw

and a±,icw = ±ca±,iw (where we set c0 = 0).
In We

n we have the maximal word wmax = (+)n+(−)n− ∈ We
n and minimal word wmin =

(−)n−(+)n+ . We choose each creation operator a∗±,i to take cwmax 7→ ca∗
±,iwmax ; and we choose

each annihilation operator a±,i to take cwmax 7→ ca±,iwmax , unless this is 0; else we define it to take
cwmin 7→ ca±,iwmin . Clearly this agrees with our previous choices of some initial creation operators.

We now show, in several steps, that the creation and annihilation operators, and our choice of
basis, are coherent.

Lemma 3.13 If w0 ≤ w1 are words related by an elementary move, then cw0−cw1 is a suture element.

Proof There is a suture element of the form cw0±cw1 , from the chord diagram obtained by performing
downwards bypass surgery on Γw0 , where upwards bypass surgery would give Γw1 . Then mod 2 we
have 〈cw0 +cw1 |cwmax〉 = 0, so rounding corners on the cylinder with the corresponding chord diagrams
gives disconnected sutures; hence 〈cw0 ± cw1 |cwmax〉 = 0; but by our choice of basis, 〈cw0 |cwmax〉 =
〈cw1 |cwmax〉 = 1; thus the sign is minus, and cw0 − cw1 is a suture element. �

Lemma 3.14 For any word w ∈ We
n, 〈cw|cw〉 = 1. For any two words w0 ≤ w1 in We

n related by an
elementary move, 〈cw0 |cw1〉 = 1.

Proof We use the following fact:

• If w0 ≤ w1 are words related by an elementary move, and 〈cw1 |cw1〉 = 1, then cw0 − cw1 is a
suture element and 〈cw0 |cw0〉 = 〈cw0 |cw1〉 = 1.

To see why the fact is true, note that from the previous lemma cw0 − cw1 is a suture element. We
have, mod 2, and hence over Z, 〈cw0 − cw1 |cw1〉 = 0, so that 〈cw0 |cw1〉 = 〈cw1 |cw1〉 = 1. Then
〈cw0 |cw0 − cw1〉 = 0 so 〈cw0 |cw0〉 = 〈cw0 |cw1〉 = 1.

By our choice of 〈·|·〉, 〈cwmax |cwmax〉 = 1. Using the fact repeatedly, we obtain the desired result.�

We now show that creation and annihilation on V (D2) behave entirely analogously to creation and
annihilation on F . In particular, creation operators are isometries, and creation and annihilation are
partial adjoints.

Proposition 3.15 (Coherence of creation and annihilation) For all w ∈ We
n, all s ∈ {−,+}

and all 0 ≤ i ≤ ns + 1:
a∗s,icw = ca∗s,iw and as,icw = cas,iw.

Proof Consider an annihilation operator as,i. Let A ⊂ We
n consist of those words w for which

as,icw = cas,iw. By definition of as,i, A contains at least one word (wmax or wmin). The result for
annihilation operators now follows obviously from repeated application of the following fact.

• If w ∈ A and w′ is obtained from w by an elementary move, then w′ ∈ A.

To see why it is true, note that from lemma 3.13 above, cw′ − cw is a suture element, hence is taken by
as,i to a suture element, possibly 0. We have as,i(cw′ − cw) = ±cas,iw′ − cas,iw. But as,iw

′ and as,iw
are related by an elementary move, or are identical; hence cas,iw′ − cas,iw is a suture element (possibly
0) and the other alternative is not. Thus w′ ∈ A.

The argument for creation operators is similar, and simpler, since the 0 case does not arise. �

Proposition 3.16 (Coherence of basis)

(i) For words w0, w1 ∈ We
n with w0 ≤ w1, 〈cw0 |cw1〉 = 1.
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(ii) For any chord diagram Γ and suture element c ∈ c(Γ), decomposing c in terms of the basis,

c =
∑

w

awcw where aw ∈ {−1, 1}.

If Γ is not a basis chord diagram then
∑

aw = 0.

(iii) For each chord diagram Γ and suture element c ∈ c(Γ) ⊂ V (D2)en, 〈c|c〉 = 1.

Proof We first prove (ii). We already showed in section 3.7 that all aw = ±1, considering the
decomposition algorithm; we only need show

∑

aw = 0 when Γ is a non-basis diagram. So if Γ is
a basis diagram there is nothing to prove. If Γ is a non-basis diagram obtained by a single bypass
surgery on a basis diagram, then as discussed in 3.7 we have c = cw0 + cw1 mod 2, where w0 ≤ w1 are
related by an elementary move; then lemma 3.13 says c = ±(cw0 − cw1), so coefficients sum to 0.

Proof by induction on the number of chords in Γ. All chord diagrams with 1 chord are basis chord
diagrams! If Γ has an outermost chord at the basepoint, then c(Γ) = a∗±,0c(Γ

′) for some Γ′; since a∗±,0
acts naturally on each basis element as a∗±,0cw = ca∗

±,0w
, applying a∗±,0 preserves the property that the

sum of coefficients is 0, giving the desired result. Otherwise, we may assume Γ has no outermost chord
at the basepoint. In this case, apply one stage of the base point algorithm to Γ; then c is expressed as
±c− ± c+, where each c± ∈ c(Γ±), and Γ± has an outermost chord enclosing a ± region at the base
point. As we found when discussing the decomposition algorithm, either 0 or 2 of Γ−,Γ+ are basis
chord diagrams; as we assume Γ is not obtained by a single bypass surgery on a basis chord diagram,
both Γ± are non-basis chord diagrams; and c± = a∗±,0c

′
± for some suture elements c′± for non-basis

chord diagrams with fewer chords. By induction, when decomposed, the coefficients of c′± both sum
to 0; hence the coefficients of c also sum to 0.

Next we prove (iii). We will repeatedly apply this fact:

• Let x ∈ c(Γx), y ∈ c(Γy) be suture elements, where Γx,Γy are chord diagrams related by bypass
surgery. Suppose 〈x|x〉 = 〈y|y〉 = 1. Reorder x, y if necessary so that 〈x|y〉 = ±1 and 〈y|x〉 = 0
(i.e. so Γy is obtained from Γx by an upwards bypass surgery), and replace y with its negative
if necessary, so that 〈x|y〉 = 1. Then x− y is a suture element, 〈x|y〉 = 1, and 〈x− y|x− y〉 = 1.

To see why, note that there is a suture element of the form x± y. We have 〈x± y|x± y〉 = 2± 〈x|y〉;
hence 2± 1 = ±1; of course we must have 2− 1 = 1, and the conclusions follow.

Consider the set A of suture elements c such that 〈c|c〉 = 1. We know from lemma 3.14 above that
A contains all cw, and (by the above fact) if it contains two suture elements for chord diagrams related
by a bypass surgery, then it contains the suture element for the third chord diagram in their bypass
triple. Repeated application of the above fact (e.g. considering a decomposition of a chord diagram
into basis diagrams, using the base point decomposition algorithm) gives that 〈c|c〉 = 1 for all suture
elements of chord diagrams, proving (iii).

We now prove (i). Take w0 ∈ We
n; suppose there is some w1 such thatw0 ≤ w1 but 〈cw0 |cw1〉 6= 1, i.e.

〈cw0 |cw1〉 = −1. Among such w1 we may take the one which is least with respect to the lexicographic
ordering on We

n; hence such w1 is also minimal with respect to the partial order ≤. We have shown
(lemma 3.14) that 〈cw0 |cw0〉 = 1; hence w0 6= w1. Now take the chord diagram Γ = [Γw0 ,Γw1 ] and
take c ∈ c(Γ). As w0 6= w1, Γ is not a basis diagram. In mod 2 we have 〈cw0 |c〉 = 0; the same is true
over Z. Writing c =

∑

w awcw, where all aw 6= 0, we now have that each aw = ±1 and
∑

w aw = 0.
Thus

∑

w

aw〈cw0 |cw〉 = 0.

Now every aw = ±1 and for each w occurring in the sum, w0 ≤ w ≤ w1. By minimality of w1 then,
we have 〈cw0 |cw〉 = 1 for all w, except possibly w = w1. Thus

∑

w

aw = 0 and aw1〈cw0 |cw1〉+
∑

w 6=w1

aw = 0.
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These two sums are identical, except that aw1 in the first is replaced with aw1〈cw0 |cw1〉 in the second.
Thus 〈cw0 |cw1〉 = 1, a contradiction, and we are done. �

3.10 Multiplication

Given two chord diagrams Γ0,Γ1 on (D2, Fn0+1), (D
2, Fn1+1) respectively, we now give the operation

of multiplying them, or rather, their suture elements. Consider a gluing τ which identifies a neigh-
bourhood of the root point on the boundary of (D2, Fn0), with a neighbourhood of the basepoint on
the boundary of (D2, Fn1). Choosing a gluing map Φτ , we have a linear operator

×n0,n1 : V (D2)n0 ⊗ V (D2)n1 −→ V (D2)n0+n1 .

If Γ0,Γ1 have Euler classes e0, e1 then the gluing gives a chord diagram on (D2, Fn0+n1+1) with Euler
class e0 + e1. Restricting to the e0, e1 summands, we obtain an operator

×(n0,e0),(n1,e1) : V (D2)e0n0
⊗ V (D2)e1n1

−→ V (D2)e0+e1n0+n1

where ×n0,n1 = ⊕e0,e1×(n0,e0),(n1,e1). Thus this operator respects all gradings. Moreover it is easily
checked that it takes basis suture elements to basis suture elements: taking two words w0, w1, we have

c(Γw0)⊗ c(Γw1) 7→ c(Γw0w1),

where w0w1 is the concatenation, or multiplication, of the two words w0w1.
This operator can therefore be regarded as a Z-bilinear multiplication, making V (D2) into a bi-

graded ring. There are sign ambiguities arising from the ambiguities in suture elements; we now resolve
them. As ×n0,n1 = ⊕e0,e1×(n0,e0),(n1,e1), we may adjust each separate ×(n0,e0),(n1,e1) individually. We
choose ×(n0,e0),(n1,e1) to send maximal basis elements, coherently oriented as chosen above, to basis
elements, i.e.

c(+)n+,0(−)n−,0 ⊗ c(+)n+,1(−)n−,1 7→ c(+)n+,0(−)n−,0(+)n+,1(−)n−,1

where n+,i, n−,i is the pair n+, n− corresponding to (n, e) = (ni, ei). Then we can show that all
multiplication is coherently oriented with respect to our basis. The method of proof is by now familiar.

Proposition 3.17 For any words w0 ∈ We0
n0

and w1 ∈ We1
n1
, under ×(n0,e0),(n1,e1):

cw0 ⊗ cw1 7→ cw0w1 .

Proof Consider the set A of words for which this multiplication is coherent: A = {(w0, w1) :
cw0 ⊗ cw1 7→ cw0w1}. By our sign choice of ×(n0,e0),(n1,e1), the pair of maximum words

((+)n+,0(−)n−,0 , (+)n+,1(−)n−,1) ∈ A.

The result now follows obviously from the following two facts.

• If (w0, w1) ∈ A and w′
0 is related to w0 by an elementary move, then (w′

0, w1) ∈ A.

• If (w0, w1) ∈ A and w′
1 is related to w1 by an elementary move, then (w0, w

′
1) ∈ A.

To see why the first fact is true, note that cw′
0
− cw0 is a suture element, and multiplication must take

(cw′
0
− cw0)⊗ w1 to a suture element. The result of this multiplication must be ±cw′

0w1
− cw0w1 . But

the concatenations w′
0w1 and w0w1 are clearly related by an elementary move, hence cw′

0w1
− cw0w1 is

a suture element and −cw′
0w1

− cw0w1 is not. So cw′
0
⊗ cw1 7→ cw′

0w1
and (w′

0, w1) ∈ A. The second fact
is identical but reversing first and second entries. �
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Figure 8: Operators a∗+,i, a
∗
+,i+1 and T ∗

+,i.

3.11 Temperley–Lieb algebra

Consider the two creation operators a∗+,i and a
∗
+,i+1, acting V (D2)en −→ V (D2)e+1

n+1, for 0 ≤ i ≤ n+.
Both are obtained by gluing an annulus with specific sutures to the exterior of a disc. We notice that
the two sets of sutures are bypass related. Consider a third set of sutures on the annulus, forming a
bypass triple. This can also be glued to the exterior of a disc, and we obtain a gluing map

T ∗
+,i : V (D2)en −→ V (D2)e+1

n+1.

See figure 8. Similarly on the westside, we can consider a∗−,i and a
∗
−,i+1, for 0 ≤ i ≤ n−, which give

annuli with bypass-related sutures, and obtain T ∗
−,i : V (D2)en −→ V (D2)e−1

n+1.2
Similarly for annihilation operators, a±,i, a±,i+1, for 0 ≤ i ≤ n±, give annuli with bypass-related

sutures, and taking a sutured annulus forming a bypass triple with them, we obtain a gluing map

T±,i : V (D2)en −→ V (D2)e±1
n−1.

These gluing maps are ambiguous up to sign; we now choose coherent signs. We note that T ∗
+,i

takes each basis element cw to ±ca∗+,iw
± ca∗+,i+1w

. Note that a∗+,iw and a∗+,i+1w are words related by

an elementary move, or are identical; hence ±
(

ca∗+,iw
− ca∗+,i+1w

)

are suture elements, and the other

two possibilities are not. Similar considerations apply to T ∗
−,i. We can therefore choose a sign for T ∗

±,i

by setting
T ∗
±,i = a∗±,i − a∗±,i+1

Similarly, T+,i takes cw to ±ca+,iw ± ca+,i+1w, and the two words a+,iw, a+,i+1w are either identical
or related by an elementary move. Either way it is ±

(

ca+,iw − ca+,i+1w

)

that are suture elements; the
same applies to T−,i. We choose a sign for T±,i:

T±,i = a±,i − a±,i+1.

Thus T±,i, T
∗
±,i are algebraically identical to the operators of the same name in F ; and we may

define
U±,i = T ∗

±,i a±,i+1.

so that U±,i are operators V (D2)en −→ V (D2)en which glue annuli to the exterior of discs, having the
effect shown in figure 9. We see then (figure 10) that the U±,i have sutures which are very similar to
the usual generators given for the Temperley–Lieb algebra.

It follows immediately that the U±,i obey the relations of the Temperley–Lieb algebra (with δ = 0),
up to sign. In fact, since the U±,i are identical algebraically to the operators of the same name in
section 2.8, we have the “twisted” representation of the Temperley–Lieb algebra described there.
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Figure 9: Operators U+,i, U−,i.
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Figure 10: Usual generators Ui in Temperley–Lieb algebra.

3.12 Rotation

The operation of rotating a chord diagram gives an operation in sutured TQFT. As discussed in [17,
section 7.1], gluing a sutured annulus to the exterior of a disc, with sutures as in figure 11, has the effect
of rotating a sutured disc, or equivalently rotating the basepoint two places. (Moving the basepoint
two places preserves the signs on either side of the basepoint.)

Consider computing an “inner product” 〈·|·〉, placing two chord diagrams into the ends of a cylinder.
In particular, consider how sutures are rounded and which endpoints of the two sutured discs connect.
We see that the set of sutures on the sphere obtained by inserting two chord diagrams (Γ0,Γ1) is
connected, if and only if the same is true for inserting the two chord diagrams (Γ1, RΓ0); the rotation
R compensates precisely for the difference in rounding corners when the ends of the cylinder are
swapped.

Thus we obtain an operator
R : V (D2)en −→ V (D2)en

for each n, e, and for any chord diagrams Γ0,Γ1 of n chords, 〈c(Γ0)|c(Γ1)〉 = 〈c(Γ1)|Rc(Γ0)〉. In
particular, for any suture elements c0 ∈ c(Γ0), c1 ∈ c(Γ1) we obtain 〈c0|c1〉 = ±〈c1|Rc0〉. Recall the

Figure 11: The rotation operator.
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operator H defined on F ; it follows that for suture elements c0, c1, 〈c0|Rc1〉 = ±〈c0|Hc1〉.
We now choose a sign for R. For any n, e, we observe that rotation takes the basis chord diagram

Γwmin to Γwmax , and hence R takes cwmin to ±cwmax ; we choose a sign on R so that Rcwmin = cwmax .

Proposition 3.18 With this choice of sign, R = H.

Proof We first claim that for all w ∈ We
n, 〈cw|Rcw〉 = 1. Let A = {w ∈ We

n : 〈cw|Rcw〉 = 1}. Since
Rcwmin = cwmax , wmin ∈ A. The claim then follows obviously from the following fact:

• If w0 ∈ A, w0 ≤ w1 and w0, w1 are related by an elementary move, then w1 ∈ A.

To see why the fact is true, note that cw0 − cw1 is a suture element and 〈cw0 |cw0 − cw1〉 = 0. Thus
〈cw0 − cw1 |Rcw0〉 = 0 (maybe ±0, but nevertheless 0!). Hence 〈cw0 |Rcw0〉 = 〈cw1 |Rcw0〉 and as w0 ∈ A
we have 〈cw1 |Rcw0〉 = 1. Then we note that 〈cw0 − cw1 |cw1〉 = 0, so that 〈cw1 |R(cw0 − cw1)〉 = 0 also.
This gives 〈cw1 |Rcw1〉 = 〈cw1 |Rcw0〉 = 1, hence w1 ∈ A.

Next we claim that for any wordsw0, w1, 〈cw0 |cw1〉 = 〈cw1 |Rcw0〉. This is clearly true when w0 � w1,
so that both are 0. So take a word w ∈ We

n given and let Aw = {w′ ∈ We
n : 〈cw|cw′〉 = 〈cw′ |Rcw〉};

we will show Aw = We
n. From the previous claim, w ∈ Aw; and any w′ with w � w′ lies in Aw. Thus

we only need consider w′ with w ≤ w′. Such a w′ can be reached from w by a sequence of forwards
elementary moves, and hence the claim follows from the following fact:

• If w ≤ w0 ≤ w1, and w0 ∈ Aw, and w0, w1 are related by an elementary move, then w1 ∈ Aw.

To see that the fact is true, note that cw0 − cw1 is a suture element, and 〈cw|cw0 − cw1〉 = 0, hence
〈cw0 − cw1 |Rcw〉 = 0. Thus 〈cw0 |Rcw〉 = 〈cw1 |Rcw〉. But as w0 ∈ Aw then we have 〈cw0 |Rcw〉 =
〈cw|cw0〉 = 1. Hence 〈cw1 |Rcw〉 = 1, which is equal to 〈cw|cw1〉.

Thus for any words, 〈cw0 |cw1〉 = 〈cw1 |Rcw0〉. As the cw form a basis for V (D2)en, it follows that for
any u, v ∈ V (D2)en, 〈u|v〉 = 〈v|Ru〉. Thus R = H . �

Note it follows immediately that Hn+1cw = ±cw for every word w ∈ We
n; and hence H2n+2 = 1.

To obtain the precise sign Hn+1 = (−1)n−n+ , and precise period, proving theorem 2.6, will take a
little more work, which we delay to section 5.4.

It also follows that R is an isometry: for any u, v ∈ V (D2)en, 〈u|v〉 = 〈Ru|Rv〉. Of course this is
obvious up to sign from the definition of R; the full equality is obvious now from the definition of H .

We have defined certain creation operators a∗±,i, which have the effect on chord diagrams of inserting
an outermost chord in a given position. These operators covered several locations for inserting chords,
but not all. We showed in section 3.9 that creation operators are isometries; it’s also clear they are
injective. We now note that the operation of inserting an outermost chord anywhere gives a linear
operator which is an injective isometry: for it is a composition of some rotations and some a∗±,0, which
are all injective and isometries.

3.13 Variations of nondegeneracy axioms

We can now prove propositions 3.7 and 3.8, regarding variations of axiom 9. Recall from section
3.7 that given two words w0 ≤ w1, ±[w0, w1] denotes the two suture elements of the chord diagram
[Γw0 ,Γw1 ]; these have minimal and maximal basis elements cw0 , cw1 . And from section 2.4, recall the
notion of difference d(w0, w1), minimum and maximum of words.

We will need the fact that any two words appear together in a suture element.

Lemma 3.19 For any w0, w1 ∈ Mn−,n+, both cw0 , cw1 appear in the basis decomposition of the suture
elements ±[min(w0, w1),max(w0, w1)]. Moreover, in the decomposition of lemma 2.4,

±[min(w0, w1),max(w0, w1)] = ±[w0
0 , w

0
1 ] [w

1
1 , w

1
0 ] [w

2
0 , w

2
1 ] [w

3
1 , w

3
0 ] · · · [w

2k−1
1 , w2k−1

0 ].

(The multiplication of suture elements is multiplication in V (D2).)
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Proof Suture elements are closed under multiplication, and there is a unique suture element (up to
sign) with prescribed maximum and minimum. Now we know that in each [wi0, w

i
1] or [w

i
1, w

i
0], the basis

elements cwi
0
, cwi

1
each appear and are minimal/maximal. Hence, after multiplying, the basis elements

cw0 , cw1 , cmin(w0,w1), cmax(w0,w1) all appear with cmin(w0,w1) minimal and cmax(w0,w1) maximal. �

Proof (of proposition 3.7) The pairs of axioms (i)–(ii), (iii)–(iv), (v)–(vi), (vii)–(viii) are clearly
equivalent for sets of sutures on D2 with closed components, since axiom 6 then gives c(Γ) = {0}; for
chord diagrams Γ, lemma 3.11 (which explicitly works for any of the 8 variations on axiom 9) shows
that c(Γ) is of the form {x,−x}, immediately giving equivalence of the four pairs of axioms.

The implications (ii) ⇒ (iv), and (vi) ⇒ (viii) are obvious. Inclusion axiom (5 or 5’) immediately
gives (viii) ⇒ (vi). Lemma 3.5 is precisely (ii) ⇒ (v); in fact the argument shows (iv) ⇒ (v). Thus
we have the following, and it suffices to show (v) ⇒ {(i), (ii)}.

{(i) ⇔ (ii)} ⇒ {(iii) ⇔ (iv)} ⇒ {(v) ⇔ (vi) ⇔ (vii) ⇔ (viii)}.

Assume (v). Then we have a bypass relation. In fact, in developing the structure of V (D2) we have
only used axiom 9 first to prove (v) in lemma 3.5, and then used (v) repeatedly; we have not used (i)
or (ii) independently. Thus, we obtain all the structure described in sections 3.5–3.12 above, including
a coherent basis, creation and annihilation operators, and 〈·|·〉; all in isomorphism with the algebraic
structure of F . In particular V (D2) ∼= F as bigraded rings, and the bilinear forms 〈·|·〉 agree.

Now take two elements α, β ∈ V (D2, Fn) with the property that for every chord diagram Γ and one
(hence any) c ∈ c(Γ), 〈α|c〉 = ±〈β|c〉. We will show α = ±β, giving (v) ⇒ {(i), (ii)} and the desired
equivalence of axioms. Using the isomorphism V (D2) ∼= F , and the map Q− from section 2.6, we have

〈α|c〉 =
(

Q−1
− α

)

· c, 〈β|c〉 =
(

Q−1
− β

)

· c.

Hence, replacing Q−1
− α,Q−1

− β with α, β, we have two elements α, β ∈ V (D2, Fn) such that α ·c = ±β ·c
for all suture elements c; it is sufficient to show α = ±β. Consider now c to run through basis elements
cw, for w ∈ We

n. Writing the decompositions of α and β as

α =
∑

w∈We
n

αwcw, β =
∑

w∈We
n

βwcw,

we then have, for every w ∈ We
n, αw = ±βw.

Partition We
n into three subsets:

S = {w ∈ We
n : αw = βw = 0},

T = {w ∈ We
n : 0 6= αw = βw},

U = {w ∈ We
n : 0 6= αw = −βw}.

We will show one of T or U is empty. Suppose not. Consider the set A of suture elements c ∈ V (D2, Fn)
whose basis decomposition contains words from both T and U . By assumption, T and U are nonempty;
then by lemma 3.19 above, A is nonempty. For c ∈ A, letting ±c = ±[w0, w1], define l(c) = d(w0, w1)
(a difference as in definition 2.3). By definition A contains no basis elements, so l(c) > 0.

Take c ∈ A with l(c) minimal; let ±c = ±[w0, w1], so w0 ≤ w1, w0 6= w1. We claim that in the
basis decomposition of c there is only one word from T and one from U . (There may be many from
S.) Suppose not, so without loss of generality c contains distinct words t0, t1 ∈ T and u ∈ U .

Let w− = min(t0, u) and let w+ = max(t0, u). By definition of w0 we have w0 ≤ t0, u hence
w0 ≤ w−; indeed w0 ≤ w− ≤ w+ ≤ w1. Thus d(w−, w+) ≤ d(w0, w1). By lemma 3.19 above,
±[w−, w+] contains t0, u as monomials with nonzero coefficients; so ±[w−, w+] ∈ A and l(±[w−, w+]) ≤
l(±[w0, w1]) = l(c). By minimality of c then equality must hold; so w0 = w− and w+ = w1. In
particular, w− ≤ t1 ≤ w+. As w− = min(t0, u) and w+ = max(t0, u), then, for every i ∈ {1, . . . , nx},
the i’th x in t1 lies in a position between the respective positions of the i’th x in t0 and u:

either hxt0(i) ≤ hxt1(i) ≤ hxu(i) or hxu(i) ≤ hxt1(i) ≤ hxt0(i).
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The same argument applies, reversing the roles of t0 and t1. We obtain that for every i ∈
{1, . . . , nx},

either hxt1(i) ≤ hxt0(i) ≤ hxu(i) or hxu(i) ≤ hxt0(i) ≤ hxt1(i).

Putting these together, we have that for all i, hxt0(i) = hxt1(i), i.e. t0 = t1, a contradiction.
Thus the suture element c ∈ V (D2, Fn) contains precisely one word t from T and one u from U ,

with coefficients ǫt, ǫu ∈ {−1, 1}; the rest must be in S. Then α ·c = αtǫt+αuǫu and β ·c = βtǫt+βuǫu.
By definition of T and U , αt = βt and αu = −βu, and recall α · c = ±β · c. Hence

αtǫt + αuǫu =

{

αtǫt − αuǫu
−αtǫt + αuǫu

In the first case we have 2αuǫu = 0 so αu = 0 (these all lie in Z, so there is no torsion); in the second
2αtǫt = 0 so αt = 0. These are both contradictions to the definitions of T and U . Thus one of T or U
is empty, and α = ±β. �

Next, we prove proposition 3.8, showing the equivalence of two variations on axiom 9, and giving an
example of a sutured TQFT satisfying this version of nondegeneracy. Recall from section 3.2 that the
“free pre-sutured TQFT” satisfies axioms 1–8, taking: V (Σ, F ) = ⊕ΓZcΓ, a direct sum over isotopy
classes of sutures Γ on (Σ, F ) without contractible loops; c(Γ) = cΓ or 0 as appropriate; and gluing
maps defined in the most natural way. Our example will be a variation of this free pre-sutured TQFT,
with a certain choice of bilinear form 〈·|·〉.

Proof (of proposition 3.8) The equivalence of the two alternative axioms is immediate from axiom
8, that each V (Σ, F ) is spanned by suture elements.

Define the sutured TQFT as follows: V (Σ, F ) = ⊕ΓZcΓ as for the free pre-sutured TQFT; so, for
example, V (D2, Fn) ∼= ZCn . For any set of sutures Γ with contractible components, c(Γ) = {0}; for Γ
without contractible components, c(Γ) = {cΓ,−cΓ}. For a gluing τ on a sutured background surface
(Σ, F ), gluing maps Φiτ must satisfy cΓ 7→ ±c#τΓ or 0 as appropriate; we define many gluing maps,
covering all possibilities. More precisely, each Φiτ : V (Σ, F ) −→ V (#τ (Σ, F )) takes cΓ 7→ 0, if #τΓ has
a contractible component; else takes cΓ 7→ ±c#τΓ, where the sign can be chosen freely. As the cΓ form
a free basis for V (Σ, F ), any choice of signs defines Φiτ completely and uniquely. We allow all choices
of signs, and these form our collection Φiτ . It is clear that axioms 1–8 are satisfied.

Now, as described in section 3.2, the bilinear map 〈·|·〉 : V (D2, Fn)⊗ V (D2, Fn) −→ Z is a gluing
map obtained from stacking. But we have many sign choices when we define 〈·|·〉; we will show that
these sign choices can be made to satisfy alternative axiom (i), proving the result. For two sets of
sutures Γ0,Γ1 on (D2, Fn), 〈cΓ0 |cΓ1〉 must be 0, if Γ0,Γ1 are not stackable; otherwise 〈cΓ0 |cΓ1〉 = ±1,
and moreover, as the cΓ form a free basis, either sign is available to define 〈·|·〉; signs may be chosen
independently for different chord diagrams.

Ordering arbitrarily, write Γ1,Γ2, . . .ΓCn for the chord diagrams on (D2, Fn). Let gij = 〈cΓi |cΓj 〉.
For each pair (i, j), either gij is forced to be zero, or we are free to choose gij = −1 or 1. Let g be the
matrix with entries gij . Clearly g is the matrix for a bilinear map ZCn ⊗ ZCn −→ Z; but equally it is
the matrix for a bilinear map QCn ⊗ QCn −→ Q. As V (D2, Fn) has a basis of suture elements, and
these taken together with their negatives and 0 form the complete set of suture elements in V (D2, Fn),
(i) holds if the matrix g over Q has full rank.

Thus we only need to choose signs for the gij so that g has full rank over Q. This can be done
as follows. For i 6= j, choose gij arbitrarily (if there is a choice!) Now for any chord diagram Γ,
〈cΓ|cΓ〉 = ±1, as we have seen above; thus each diagonal element gii = ±1. Consider row-reducing g.
We successively choose the gii so that, as row reduction proceeds to the i’th line, the (i, i) element
remains nonzero. For the first line this is obvious. Now suppose it is true up to the i’th row; the
row-reducing ensures that at the i’th row, all (i, j) elements with j < i are zero. However, the (i, i)
element began as gij = ±1; in row reducing to ensure (i, j) elements are zero for j < i, amounts are
added to this ±1. For at least one of the two possible sign choices, the result will be nonzero; choose
this sign. Then the (i, i) element remains nonzero. After row reduction, we have an upper triangular
matrix with nonzero entries on the diagonal; hence it has full rank, and (i) is satisfied. �
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3.14 An additional axiom

We consider a tenth axiom for sutured TQFT. Note that a gluing τ of a sutured background surface
can only increase genus; thus we could simply set V (Σ, F ) = 0 whenever Σ has genus at least 1, set all
gluing maps to higher genus surfaces to be 0, and we would obtain a consistent theory. Our additional
axiom will require that certain gluing maps be isomorphisms. Recall that a sutured gluing map arises
from an identification τ of arcs on the boundary of a sutured background surface (Σ, F ), which respects
marked points F and signs of complementary arcs.

Axiom 10 Let τ be a sutured gluing map on (Σ, F ), identifying two disjoint arcs γ, γ′ on ∂Σ. Suppose
that |γ ∩ F | = |γ′ ∩ F | = 1. Then any gluing map Φτ associated to τ is an isomorphism.

Any connected sutured background (Σ, F ) can be constructed from a sutured background disc
(D2, Fn) by gluing maps of this type; in fact, any sutured background (Σ, F ) (possibly disconnected)
can be constructed from a disjoint union of sutured background discs ⊔(D2, F2) by gluing maps of
this type. So this final axiom strong enough to construct isomorphisms V (Σ, F ) ∼= V (⊔i(D2, F2)) ∼=
⊗iV (D2, F2) for any (Σ, F ). As we now see, it makes axiom 9 redundant, and almost does the same
to axiom 8.

Lemma 3.20 In the presence of axioms 1–8, axiom 10 implies axiom 9.

Proof On (D2, F2) there are only two chord diagrams; as mentioned in section 3.6 inclusions (D2, F2) →֒
(D2, F1) with intermediate sutures can easily be found to show that they have suture elements which
are linearly independent; by axiom 8 two such suture elements span V (D2, F1); thus they form a basis
which we denote x, y and in fact V (D2, F2) = V (D2)1 ∼= F1 as graded abelian groups.

Gluing two such discs, we obtain an isomorphism V (D2, F3) = V (D2)2 ∼= F2 as graded abelian
groups, and the summand V (D2)02 has basis {x⊗y, y⊗x}, which are suture elements (exactly like xy, yx
in the foregoing) for two bypass-related chord diagrams of 3 chords. Including (D2, F3) →֒ (D2, F1)
in various ways, we obtain maps Z2 ∼= V (D2)02 −→ V (D2, F1) ∼= Z which are coordinate projections;
from these we see that the third chord diagram in their bypass triple is ±x ⊗ y ± y ⊗ x (exactly like
±xy ± yx in the foregoing). By proposition 3.7, this is equivalent to axiom 9. �

Lemma 3.21 Assume axioms 1–7. Suppose on (D2, F2) the two chord diagrams, one each in Euler
class −1 and 1, have suture elements ±x, ±y respectively where {x, y} is a basis for V (D2, F2). Then
axiom 10 implies axiom 8. (And hence, by lemma 3.20, also axiom 9.)

Proof Gluing several discs (D2, F2) together, base-to-root, gives isomorphisms by axiom 10. Since
x, y form a basis for V (D2, F2), we obtain a basis of suture elements {x, y}⊗n for each V (D2, Fn+1)
(exactly like words in x, y in the foregoing). Thus each V (D2, Fn) is spanned by suture elements, and
hence by gluing we obtain a basis of any V (Σ, F ) of suture elements; in particular a spanning set. �

4 Sutured Floer homology and sutured TQFT

We now show that the sutured Floer homology, defined by Juhász in [14], of certain balanced sutured
manifolds forms a sutured TQFT. As noted in [12], the SFH of manifolds of the type (Σ×S1, F ×S1),
where Σ is a surface with nonempty boundary and F ⊂ ∂Σ is finite, has TQFT-like properties. In
fact it is a sutured TQFT; for which sutured TQFT was designed to be an axiomatic model. Make
the following assignments.

• To a sutured background surface (Σ, F ), assign the abelian group V (Σ, F ) = SFH(−Σ×S1,−F×
S1) with Z coefficients. It is known that SFH splits as a direct sum over spin-c structures.

• A set of sutures Γ on (Σ, F ) corresponds precisely to an isotopy class of contact structures ξ on
Σ×S1, such that the boundary ∂Σ×S1 is convex with dividing set F ×S1 and positive/negative
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regions determined by the decomposition of ∂Σ\F into positive and negative arcs C+ ∪ C−

[7, 8, 9]. Let c(Γ) be the contact invariant c(ξ) ⊂ V (Σ, F ) [18, 11, 10]. This c(ξ) is a subset of
the form {±x}. The possible relative Euler classes of ξ correspond to the spin-c structures on
(Σ, F ); and c(ξ) lies in the corresponding spin-c summand of SFH .

• For a gluing τ of the sutured background surface (Σ, F ), let Φτ : SFH(−Σ× S1,−F × S1) −→
SFH(−(#τΣ)×S1,−(#τF )×S1) be the map defined in [12] by the obvious inclusion of Σ×S1 →֒
#τΣ × S1, together with the canonical contact structure on #τΣ × S1 − Σ × S1 as convex
neighbourhood of the boundary. In fact we can choose a sign on each Φτ on each Euler class
summand; let Φiτ be the collection of all maps obtained from Φτ by all possible choices of signs.

Proposition 4.1 These assignments satisfy all axioms of sutured TQFT (including axiom 10).

Proof The assignments above clearly satisfy axioms 1–3. Axiom 4, that V (⊔i(Σi, Fi)) = ⊗iV (Σi, Fi)
is clear from the definition of SFH . Axiom 5, that a gluing map takes contact elements to contact
elements in a natural way, is proved in [12]; as the contact invariant is of the form {±x}, each Φiτ
is surjective on contact elements. If Γ contains a contractible loop then the corresponding contact
structure is overtwisted; by [10] then c(Γ) = {0}, so axiom 6 holds. That V (D2, F1) ∼= Z is proved in
[12] and follows from [15] or [10]; that c(Γ∅) = {±1} is proved in [12] and follows from [10]; so axiom
7 holds.

Axiom 10, that a gluing map identifying precisely one pair of marked points is an isomorphism,
is proved in [12]. Moreover, it’s shown in [12], following [10], that V (D2, F2) ∼= Z2, which splits as
a direct sum Z ⊕ Z corresponding to chord diagrams of Euler class −1 and 1; and contact elements
for the two chord diagrams form a basis. By lemma 3.21, this implies axiom 8; by lemma 3.20; this
implies axiom 9. �

It follows immediately that any result about sutured TQFT immediately gives a result about SFH .
In particular, contact elements in the SFH of sutured solid tori with longitudinal sutures have all the
structure of the Fock space of section 2, and all the structure of the sutured TQFT of discs.

Corollary 4.2 A sutured TQFT exists. �

Corollary 4.2 could of course also be proved by formally constructing a sutured TQFT from scratch.
For instance, one could define V (D2, Fn) to be a direct sum of Z summands, one for each basis chord
diagram; and then specify suture elements using the bypass relation and decomposition into a basis;
and then go through the procedure of section 3 to iron out signs. Defining the sutured TQFT on more
complicated surfaces would however take more work.

5 Non-commutative QFT = Sutured TQFT of discs

5.1 Main isomorphism and suture elements

After section 3, it is clear that much of the algebraic non-commutative QFT structure developed in
section 2 is equivalent to structure in the sutured TQFT of discs. To summarise, we make a detailed
statement that “the sutured TQFT of discs is the QFT of two non-commuting particles”, proving
remaining details. This includes earlier theorems 1.1 and 3.4.

Theorem 5.1 Every sutured TQFT obeying axioms 1–9 above satisfies

V (D2) ∼= F ,

an isomorphism of graded rings. In particular

V (D2)n+1
∼= Fn ∼= Z2n , V (D2)n−,n+

∼= Fnx,ny
∼= Z(

n
nx
) ∼= Z(

n
ny
),

isomorphisms of abelian groups. Each cw ∈ V (D2)en, for w ∈ We
n, corresponds to w ∈ Me

n ⊂ Fe
n,

replacing (−,+) with (x, y). Moreover, under this isomorphism:
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(i) The action of annihilation and creation operators ax,i, ay,i, a
∗
x,i, a

∗
y,i on words w ∈ Me

n ⊂ Fe
n is

identical to the action of annihilation and creation operators a−,i, a+,i, a
∗
−,i, a

∗
+,i on basis suture

elements cw, for w ∈ We
n.

(ii) The 〈·|·〉 defined on F via the partial order ≤, and the 〈·|·〉 defined on V (D2) by stacking, agree.

(iii) The operators Tx,i, Ty,i, T
∗
x,i, T

∗
y,i, Ux,i, Uy,i act on each Fe

n identically to the operators T−,i,

T+,i, T
∗
−,i, T

∗
+,i, U−,i, U+,i on V (D2)en.

(iv) The duality operator H acts on Fe
n identically to the rotation operator R on V (D2)en.

(v) The set of suture elements in V (D2)en maps to the distinguished subset Cen.

Most of this theorem has already been proved. The isomorphism of rings is clear; we chose signs
on basis elements cw ∈ V (D2), on 〈·|·〉, on multiplication, and on annihilation and creation and other
operators, so that the isomorphism might apply to them; and then we proved that the isomorphism
does indeed apply. We chose signs and proved H = R. It only remains to prove the last statement (v).
But to do this we need to establish that Cen exists, in particular proposition 2.9 that the three definitions
C1, C2, C3 all agree. We will prove proposition 2.9 and theorem 5.1 together by showing that all of
C1, C2, C3 map to the set of sutures elements under this isomorphism. (Recall C1 =

{

a∗s,i, as,i, T
∗
s,i

}

· 1,

C2 =
{

a∗s,0, as,0, H
}

· 1 and C3 =
{

a∗s,ns+1, as,ns+1, H
}

· 1.)
It’s interesting to note that our proof of proposition 2.9 relies upon an isomorphism to sutured

TQFT, and hence upon the existence of a sutured TQFT; thus, at least in our presentation, there is
a dependence upon the constructions of sutured Floer homology, holomorphic curves and all.

Proof (Of proposition 2.9 and theorem 5.1(v)) We first show that under our isomorphism, C1

corresponds to suture elements. Clearly the class of suture elements is preserved under the action of
creations, annihilations, and the operators T ∗

±,i, since we explained their action on suture elements
in sections 3.5 and 3.11 above. We must show that every suture element can be created from the
vacuum by the action of these operators. Clearly the 0 suture element can be obtained: annihilating
the vacuum, for instance; we first show that we can obtain a suture element for any chord diagram.

Proof by induction on the number of chords. Clearly we can obtain the vacuum. Now suppose we
have a chord diagram Γ of n + 1 chords and Euler class e. If Γ contains an outermost chord at the
base point, or an outermost chord at the root point, or has an outermost chord enclosing a positive
region on the eastside, or has an outermost chord enclosing a negative region on the westside, then Γ
is obtained from a smaller chord diagram by applying a creation operator, and we reduce to a smaller
diagram. So we may assume all outermost regions are negative and on the eastside, or positive and
on the westside.

Suppose there is an outermost negative region on the eastside; the case of an outermost positive
region on the westside is similar. Then there is one closest to the base point, so is enclosed by a chord
running from the point 2i + 1 to 2i + 2; and this i is minimal. (The points of Fn+1 on (D2, Fn+1)
are numbered as mentioned in section 3.1 above.) Then, as shown in figure 12, the chord diagram Γ
is obtained from a chord diagram Γ′ by applying the operator a+,i+2T

∗
+,i, where Γ′ is identical to Γ,

except that the outermost chord between (2i+ 1, 2i+ 2) is moved to (2i− 1, 2i). Thus the outermost
negative region in Γ′ is closer to the base point; applying this procedure finitely many times, we obtain
a chord diagram with an outermost chord at the base point, and can reduce to a smaller one.

Thus, for any chord diagram Γ, we can obtain a suture element in c(Γ) by applying creation,
annihilation and T ∗

±,i operators; but we have not yet shown we can obtain both elements in c(Γ). For
this it suffices to show we can obtain −1. We can obtain −1 from 1, for instance, by operating

1
a∗x,0
7→ x

T∗
y,0
7→ yx− xy

ax,0
7→ −y

ay,0
7→ −1.

Thus, C1 coincides with the set of suture elements.
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5 NON-COMMUTATIVE QFT = SUTURED TQFT OF DISCS

2i − 1

2i

2i + 1

2i + 2

2i + 3

=

2i
2i + 1

2i + 3

2i + 2

2i − 1

Figure 12: A chord diagram with outermost region at (2i + 1, 2i + 2) is a+,i+2T
∗
+,i of an otherwise

identical chord diagram with outermost region at (2i− 1, 2i).

We now turn to C2. A similar but easier argument applies. Again, the class of suture elements is
clearly preserved by creations and by H ; we must show that we can obtain any suture element from
the vacuum by applying initial creation and rotation operators. We can clearly obtain 0. Again, proof
by induction on the number of chords. One chord is clear. Let Γ be a chord diagram. Then Γ has an
outermost chord; applying H this may be rotated to the base point; so Γ is obtained from a smaller
chord diagram by an initial creation followed by some applications of H .

This shows that for any Γ we can obtain an element in c(Γ). We now show we can obtain −1.
For this we need to use the fact that Hn+1 = −1 sometimes; we have not proved this yet, but for
our purposes it is sufficient to note that on F1,1, H

3 = −1; this can be computed by hand from the
formula in corollary 2.8. Thus we can obtain −1, for instance, by

1
a∗y,0
7→ y

a∗x,0
7→ xy

H3

7→ −xy
ax,0
7→ −y

ay,0
7→ −1.

Thus C2 coincides with the set of suture elements. The proof that C3 coincides with suture elements
is identical, replacing base point with root point. �

We can now also prove the algebraic statements about suture elements in theorem 2.10. (Again,
this proof relies on sutured TQFT existence.)

Proof (of theorem 2.10) Part (i) is clear: we have defined ×, as,i, a
∗
s,i, Ts,i, T

∗
s,i, Us,i to preserve

suture elements; and we have considered signs of suture elements at length. Part (ii) is a statement of
the properties of suture elements, as discussed in sections 3.7 and 3.9 above; including (ii) of proposition
3.16. Part (iii) is clear: it’s easy to check Q± does not preserve C; we have computed an inverse for Q±,
so that it is a bijection, and |Q±Cen| = |Cen| = 2Ne

n; and since Q± ◦Q−1
∓ = H±1 preserves C, we must

have Q+C = Q−C. Part (iv) follows from the above: 〈v|v〉 = 1 is (iii) of proposition 3.16; 〈v|Hv〉 = 1
then follows from the duality definition of H ; and 〈v0|v1〉 ∈ {−1, 0, 1} follows from the sutured-TQFT
definition of 〈·|·〉.

For part (v), note that if the sum/difference of two suture elements u, v is also a suture element,
then the same is true mod 2, hence by proposition 1.10 of [17], they correspond to bypass-related
chord diagrams Γu,Γv. Reorder u, v if necessary so that 〈u|v〉 = ±1 and 〈v|u〉 = 0, and switch signs
if necessary so 〈u|v〉 = 1; then u − v is a suture element for the third diagram. Since u, v are bypass-
related, Γu,Γv may be isotoped to be identical, except in a disc D′ ⊂ D; and we may choose a base
point on D′ such that Γu ∩D′ is the basis chord diagram Γxy, and Γv ∩D′ is the basis chord diagram
Γyx; these have suture elements xy, yx respectively, and 〈xy|yx〉 = 1. Now the chord diagrams Γu,Γv
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r

q

p

Γv

r

q

p

Γu
δ

γ

Figure 13: Chord diagrams Γu,Γv.

can be obtained by applying initial creation operators and rotations to these two diagrams, so we
obtain an operator A∗ taking xy 7→ ±u and yx 7→ ±v. Since creations and rotations are isometries,
we have 1 = 〈xy|yx〉 = 〈A∗(xy)|A∗(yx)〉 = 〈u|v〉; thus under A∗, (xy, yx) 7→ ±(u, v). If we get −(u, v),
then precompose A∗ with H3 = −1 on F1,1, and we have the desired A∗.

Part (vi) is essentially lemma 3.1 of [17] without the contact geometry and with signs; we repeat
the argument here with modifications necessary in this context. Given two chord diagrams Γu,Γv and
u ∈ c(Γu), v ∈ c(Γv) with 〈u|v〉 = 1, we must find chord diagrams Γu = Γ0,Γ1, . . . ,Γm = Γv, and
u = c0, c1, . . . , cm = v where ci ∈ c(Γi), such that each ci − ci+1 is a suture element — in particular,
each pair Γi,Γi+1 is bypass-related — and for all i ≤ j, 〈ci|cj〉 = 1. We prove this by induction on the
number of chords in Γu,Γv. The assumption 〈u|v〉 = 1 implies that Γu,Γv have the same Euler class.
With less than three chords there is nothing to prove; with three chords Γu,Γv are either identical or
bypass-related, and the result is clear.

Now consider general Γu,Γv and u, v with 〈u|v〉 = 1. If Γu,Γv share an outermost chord γ then we
simply consider Γu− γ and Γu− γ; by induction we have a sequence of bypass-related chord diagrams
with the desired properties; adding γ to all these is an operation which gives an isometry, as noted
at the end of section 3.12. Hence we obtain chord diagrams and suture elements with the desired
properties.

Thus we may assume Γu,Γv have no outermost chords in common. Let γ be an outermost chord
of Γv, let its endpoints be p, q where q is clockwise of p. Let the next marked point of Γv clockwise of
q be r. By assumption, there is no outermost chord connecting p, q on Γu; there is also no outermost
chord connecting q, r on Γu, since then rounding would give 〈u|v〉 = 0. Thus Γu,Γv appear as shown
in figure 13, and we may perform upwards bypass surgery on Γu = Γ0 near p, q, r, along the attaching
arc δ shown, to obtain Γ1.

Now, Γ1,Γv share the common outermost chord γ. Removing it, by induction we obtain a sequence
of chord diagrams Γ1 − γ = Γ′

1,Γ
′
2, . . . ,Γ

′
m = Γv − γ, and c′i ∈ c(Γ′

i), with each c′i − c′i+1 a suture
element — hence each pair Γ′

i,Γ
′
i+1 bypass-related — and 〈c′i|c

′
j〉 = 1 for 1 ≤ i ≤ j ≤ m. Reinserting γ

we obtain a sequence of chord diagrams Γ1,Γ1, . . . ,Γm, where each Γi,Γi+1 are bypass-related. This
inserting of Γ gives a linear operator L which is an isometry, and we may adjust L by sign if necessary
so that L(c′m) = v. Then for 1 ≤ i ≤ m, let ci = L(c′i). As L is an isometry, we have 〈ci|cj〉 = 1 for
1 ≤ i ≤ j ≤ m. We set c0 = u. As L preserves suture elements, each ci − ci+1 = L(c′i − c′i+1) for
1 ≤ i ≤ m− 1 is a suture element.

We claim that the Γi and ci are sequence of chord diagrams and suture elements with the desired
properties. It only remains to verify that c0−c1 is a suture element and that 〈c0|ci〉 = 1 for 0 ≤ i ≤ m.
Clearly 〈c0|c0〉 = 1. To see c0 − c1 is a suture element, note that since Γ0,Γ1 are bypass-related,
either c0 − c1 or c0 + c1 is a suture element. Since 〈c0|cm〉 = 〈u|v〉 = 1 and 〈c1|cm〉 = 1, we have
〈c0 ± c1|cm〉 = 2 or 0; clearly 2 is impossible, so it must be c0 − c1 that is a suture element.

For any 1 ≤ i ≤ m, we next show that 〈c0|ci〉 = ±1. Since Γ1 is obtained from Γ0 by an upwards
bypass surgery, 〈c0|c1〉 = ±1. Now for 2 ≤ i ≤ m, consider the sutured cylinders which are rounded
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in computing 〈c0|ci〉 and 〈c1|ci〉. Note Γi contains the outermost chord γ, which can be pushed down
by a “finger move” to Γ0 or Γ1 to give identical sets of sutures. Thus if one of these sutured cylinders
has connected sutures, so does the other. Since 〈c1|ci〉 = 1 then 〈c0|ci〉 = ±1.

Finally we verify that for each 1 ≤ i ≤ m, 〈c0|ci〉 = 1. We know c0 − c1 is a suture element and
〈c0|ci〉 = ±1, 〈c1|ci〉 = 1. Thus 〈c0 − c1|ci〉 = ±1 − 1 = 0 or −2. Clearly −2 is impossible; hence
〈c0|ci〉 = 1. �

In fact the proof of part (vi) of theorem 2.10 above effectively gives another proof of lemma 3.1
of [17]. If Γu,Γv give a tight contact structure on the solid cylinder then the proof constructs it as a
thickened Γu with a finite set of bypass attachments.

5.2 Duality–Rotation explicitly

We now prove some more detailed results about the H = R duality/rotation operator, in addition to
the results of section 2.6, including the formula of corollary 2.8. In [17] we obtained, mod 2, a recursive
formula for H , an explicit description for H . We reprove these here over Z.

Recall the formula of corollary 2.8, and recall that Esw, for s ∈ {x, y}, is the set of those i numbering
the s’s which are followed (to the right) by a different symbol; and for T ⊆ Exw, we form ψxTw by taking
each x in w corresponding to T , and the y immediately following it, and replacing each xy with yx;
similarly for ψyTw where T ⊆ Eyw.

Hw = Q+Q
−1
− w =

∑

wi≥w

∑

T⊆Ey
wi

(−1)|T |ψyTwi

Think of x’s as pawns on a 1-dimensional chessboard, and y’s as empty squares. Then an operation
ψxTw moves takes a subset of the pawns and moves them each forward one square each; as they have
all moved ahead we have w ≤ ψxTw. Call any ψxTw pawn-ahead of w. Similarly, any ψyTw ≤ w; call
any ψyTw pawn-behind w. Further recall that fxw(i) is the number of y’s (strictly) to the left of the i’th
x in w.

Proposition 5.2 Let w ∈ Me
n. The words v occurring in Hw are precisely those such that:

(i) If i ∈ Exv then fxv (i) = fxw(i)− 1.

(ii) If i /∈ Exv then fxv (i) ≥ fxw.

The coefficient of v in Hw is (−1)|E
x
v |.

Proof From the formula for H , we have immediately that any v occurring in Hw is pawn-behind
some u with w ≤ u. In fact, v appears once for every u ≥ w pawn-ahead of v. So for v occurring
in Hw, fxv (i) ≥ fxw(i) for i /∈ Exv , and fxv (i) ≥ fxw(i) − 1 for i ∈ Exv . Partition the set {1, 2, . . . , nx}
numbering the x’s in the words into three sets S0, S1, S2:

S0 = {1, 2, . . . , nx} − Exv

S1 = {i ∈ Exv : fxv (i) = fxw(i)− 1}

S2 = {i ∈ Exv : fxv (i) ≥ fxw(i)}

Thus, v occurs in Hw once for every word u ≥ w pawn-ahead of v; such u exist if and only if for each
i ∈ S0 (i.e. those i /∈ Exv ), f

x
v (i) ≥ fxw(i). In this case, the u occurring are precisely those obtained by

moving up all the x-pawns in S1, and any subset of the x-pawns in S2. Thus, the complete set of all
terms in the sum for Hw involving v is precisely

∑

A⊆S2

(−1)|A∪S1|v = (−1)|S1|v
∑

A⊆S2

(−1)|A|.
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This sum is clearly 0 if S2 is nonempty; and if S2 is empty then v appears in the final expression for
Hw with coefficient (−1)|S1|.

So, the v occurring in Hw are precisely those with fxv (i) ≥ fxw(i) for i /∈ Exv , and such that S2 = ∅,
i.e. fxv (i) = fxw(i)− 1 for all i ∈ Exv . The coefficient of this v is (−1)|S1|, and S1 = Exv . �

We immediately obtain, for instance,

H(xa) = xa, H(yb) = yb, H(xayb) = ybxa, H(ybxa) = ybxa − yb−1xyxa.

In general, take a word
w = xa1yb1xa2yb2 · · ·xakybk

where k ≥ 2, possibly a1 = 0, possibly bk = 0, but all other ai, bi 6= 0. Now consider a v satisfying the
conditions of the above proposition

v = yβ1xα1 · · · yβlxαl

for some positive integer l, where possibly β1 = 0, possibly αl = 0 but all other αi, βi 6= 0. The
values of fxv are given by the cumulative sums β1 + · · ·+ βi, and the values of fxw by cumulative sums
b1 + · · ·+ bj . Considering each x counted in Exv , by condition (i) of proposition 5.2 we must have

β1 + · · ·+ βi = b1 + · · ·+ bP (i) − 1

for 1 ≤ i ≤ l − 1, for some increasing sequence of integers 1 ≤ P (1) < P (2) < · · · < P (l − 1) ≤ k.
And of course β1 + · · · + βl = b1 + · · · + bk, so set P (l) = k. To maintain the two conditions of the
proposition, we must also have the x’s ending each block in v corresponding to the x beginning the
next block in w; thus

α1 + · · ·+ αi = a1 + · · ·+ aP (i) + 1.

And this term appears with sign (−1)l−1. So Hw is the sum of the terms

(−1)l−1yb1+···+bP (1)−1xa1+···+aP (1)+1ybP (1)+1+···+bP (2)xaP (1)+1+···+aP(2) · · ·
· · · ybP(l−2)+1+···+bP(l−1)xaP (l−2)+1+···+aP (l−1)ybP(l−1)+1+···+bP(l)+1xaP (l−1)+1+···+aP (l)−1

over all l ≤ k and all increasing sequences 1 ≤ P (1) < P (2) < · · · < P (l) = k. There are 2k−1 terms
in the sum. This reproves proposition 7.2 of [17], with signs now included.

5.3 Duality–Rotation recursively

We can also reprove the recursive properties of R from [17], now with signs. That is, we prove
proposition 7.1 of that paper. Note the change of notation from that paper: A−, B−, A+, B+ are now
respectively ay,0, a

∗
x,0, ax,0, a

∗
y,0.

Lemma 5.3

(i) ay,0Ha
∗
y,0 = H.

(ii) ay,0H
(

a∗x,0
)j
a∗y,0 = H

(

a∗x,0
)j
.

(iii) ay,0 (ax,0)
j+1

H
(

a∗x,0
)j
a∗y,0a

∗
x,0 = −H.

(iv) (a) ay,0 (ax,0)
j H (ax,0)

j = 0 for j = 1, . . . , nx.

(b) (ax,0)
j+2

H
(

a∗x,0
)j
a∗y,0 = 0.

(c) ax,0H
(

a∗x,0
)j (

a∗y,0
)2

= 0.

45



5 NON-COMMUTATIVE QFT = SUTURED TQFT OF DISCS

Proof Since all creations and annihilations here are initial, we drop the 0 from the notation for the
duration of this proof. For (i), we have

〈v|ayHa
∗
yw〉 = 〈a∗yv|Ha

∗
yw〉 = 〈a∗yw|a

∗
yv〉 = 〈w|v〉 = 〈v|Hw〉.

In the first equality we use the adjoint property; then the definition of H ; then creation operators are
isometries; then definition of H again. For (ii), we have

〈v|ayH (a∗x)
j
a∗yw〉 = 〈a∗yv|H (a∗x)

j
a∗yw〉 = 〈(a∗x)

j
a∗yw|a

∗
yv〉 = 〈(a∗x)

j
w|v〉 = 〈v|H (a∗x)

j
w〉.

First we use the adjoint property; second the definition of H ; and fourth the definition of H again.
The third equality follows from the observation that the inequality xjyw ≤ yv is true iff xjw ≤ v.

Identity (iii) is the most difficult; we begin by observing that in

〈v|ay (ax)
j+1

H (a∗x)
j
a∗ya

∗
xw〉,

any term of H (a∗x)
j
a∗ya

∗
xw which does not begin with xj+1y is annihilated (to 0!) by the operators

ay (ax)
j+1; and then for each term xj+1yu occurring, the above inner product outputs 〈v|u〉.

Now we note that if v ≤ u then xj+1yv ≤ xj+1yu, and xjyxv � xj+1yu. But, for any word z whose
first j + 2 symbols are not xj+1y, we have xj+1yv ≤ z iff xjyxv ≤ z. Thus

〈xj+1yv − xjyxv|z〉 =

{

〈v|u〉 if z = xj+1yu,
0 otherwise.

}

= 〈v|ay (ax)
j+1 z〉

Hence

〈v|ay (ax)
j+1

H (a∗x)
j
a∗ya

∗
xw〉 = 〈(a∗x)

j+1
a∗yv|H (a∗x)

j
a∗ya

∗
xw〉 − 〈(a∗x)

j
a∗ya

∗
xv|H (a∗x)

j
a∗ya

∗
xw〉

= 〈(a∗x)
j a∗ya

∗
xw| (a

∗
x)
j+1 a∗yv〉 − 〈(a∗x)

j a∗ya
∗
xw| (a

∗
x)
j a∗ya

∗
xv〉

= −〈w|v〉 = −〈v|Hw〉,

where we first use the previous observation, then definition of H , then notice xjyx � xj+1y and that
creations are isometries, and finally definition of H again. This proves (iii).

We do not need to prove (iv) algebraically. As in [17], it is sufficient to observe that the operators
on chord diagrams produce closed loops, so are 0. �

As in [17], this lemma describes the matrix for each Hnx,ny recursively. Following notation there,
for any two words w0, w1 (with ≤ nx x’s and ≤ ny y’s), we define the w0 × w1 minor of this matrix
to be the intersection of the rows corresponding to all words beginning with w0 with the columns
corresponding to all words beginning with w1. The above lemma then gives the following description
of Hnx,ny :

(i) The y × y minor consists of Hnx,ny−1.

(ii) The y×xy minor contains the x-columns of Hnx,ny−1. More generally, the y×xjy minor contains
the xj -columns of Hnx,ny−1, for any j = 1, . . . , nx.

(iii) The xy × yx minor consists of −Hnx−1,ny−1. More generally, for any j = 0, . . . , nx − 1, the
xj+1y × xjyx minor consists of −Hnx−j−1,ny−1.

(iv) All other entries are zero.

We may write this recursive structure as a formula, as in [17]: the “fake” commutator (commutators
do not mean much mod 2!) there becomes a real commutator here.
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Theorem 5.4

H =

∞
∑

i=0

a∗y,0H
(

a∗x,0
)i
ay,0 (ax,0)

i −
(

a∗x,0
)i+1

a∗y,0Hax,0ay,0 (ax,0)
i

=

∞
∑

i=0

[

a∗y,0 H ax,0,
(

a∗x,0
)i+1

]

ay,0 (ax,0)
i
.

�

5.4 Periodicity

We now prove theorem 2.6, that H is periodic, Hn+1 = (−1)nxny . In fact we show that not only does
H rotate through chord diagrams, it also in a certain sense rotates through basis elements.

Consider a word w ∈ Mnx,ny as an n × 1 chessboard, where x’s are pawns and y’s are empty
squares. Form a sequence of words / chessboard configurations, which begins at w1 with all pawns /
x’s at the extreme right, i.e. w1 = ynyxnx . Pawns can move one square left, if the square to their left
is empty. Starting from w1, we form a sequence wi: on each move we move all possible pawns one
square left, until we arrive at wn with all pawns at the extreme left, wn = xnxyny . Thus, for example,
with nx = 2 and ny = 3 we have

w1 = yyyxx,w2 = yyxyx, w3 = yxyxy, w4 = xyxyy, w5 = xxyyy

Set w0 = wn = xnxyny and number the wi mod n+ 1. (So xnxyny appears twice in a cycle.) We have
obviously w1 > w2 > · · · > wn = w0.

As above, denote by ±[u, v] denotes the two suture elements with first word u and last word v
(u ≤ v). For now adopt the notation that [u, v] is the one of this pair of suture elements in which u
has coefficient 1. Consider the suture elements [wi, wi−1]: it must take one of the following four forms

[wi, wi−1] = xα(xy − yx)βxγ , xα(xy − yx)βyγ , yα(xy − yx)βxγ , or yα(xy − yx)βyγ .

To see why, note that all the above expressions are products of suture elements, hence suture elements;
expanding them out we obtain a sum where the lexicographically first is some wi, and the last is some
wi−1, for some i and some nx, ny; for every nx, ny and i, we can obtain such an expression with wi
and wi−1 occurring first and last; and we have proved there is a unique pair of suture elements ±[u, v]
beginning and ending with each possible pair u ≤ v.

Examining the explicit formula forR = H , we see that in any wordw beginning w = xα(xy)k(yx) · · ·
or yα(xy)k(yx) · · · , where k ≥ 0, the minimum word occurring in Hw begins:

minH
(

xα(xy)k(yx) · · ·
)

=







xα+1(xy)kyx · · · k ≥ 2
yxα+2 · · · k = 1
xα+1y · · · k = 0

minH
(

yα(xy)k(yx) · · ·
)

=

{

yα−1(xy)kyx · · · k ≥ 1
yαx · · · k = 0

On the other hand, inHwi, the (lexicographically) first word occurring is wi+1; it occurs with coefficient

(−1)
|Ex

wi+1
|
. Thus, for any word w 6= wi occurring in [wi, wi−1], the first word occurring in Hw is

lexicographically after wi+1. Thus H([wi, wi−1]) = (−1)
|Ex

wi+1
|
[wi+1, v] for some word v.

We can see what this v is directly by examining chord diagrams. The basis chord diagrams Γwi

are easily constructed, and so are forwards bypass systems taking each Γwi to Γwi−1 , as described
in section 5 of [17]. Then perform downwards bypass surgeries along this bypass, following notation
of [17], we obtain a chord diagram [Γwi ,Γwi−1 ] such that, when its suture element is expanded in
terms of basis elements, the first word occurring is wi and the last is wi−1. We then note that
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H [Γwi ,Γwi−1 ] = [Γwi+1 ,Γwi ], i.e. rotating the chord diagram by H takes us from one to the next.
Hence

H ([wi, wi−1]) = (−1)
|Ex

wi+1
|
[wi+1, wi] .

It follows immediately that

Hn+1 (xnxyny ) = Hn+1 ([xnxyny , xnxyny ]) = Hn+1 ([wn, w0])

=

(

n
∏

i=0

(−1)|E
x
wi

|

)

[wn, w0] = (−1)
∑n

i=0 |Ex
wi

|xnxyny .

Recall that Exw is the set of all block-ending x’s in w (except possibly for the final x, i.e. all x’s which
are followed by y’s. Now as we run through the set wi, and pawns move from right to left, we see that
for every x and every y, they are adjacent to each other as xy precisely once. Thus

∑

|Exwi
| counts

every pair of an x and a y exactly once, and is equal to nxny. So H
n+1xnxyny = (−1)nxnyxnxyny .

Proof (of theorem 2.6) We have shown above that for w = wmin = xnxyny , Hn+1w = (−1)nxnyw.
Let now A = {w ∈ Mnx,ny : Hn+1w = (−1)nxny}, so wmin ∈ A. That Hn+1 = (−1)nxny follows
immediately from the following fact:

• If w ∈ A and w,w′ are related by an elementary move, then w′ ∈ A.

To see this, let Hn+1w′ = ǫw′ where ǫ = ±1. As w,w′ are related by an elementary move, w − w′ is
a suture element, and Hn+1(w − w′) = ±(w − w′). But we have Hn+1(w − w′) = (−1)nxnyw − ǫw′ =
(−1)nxny (w − (−1)nxnyǫw′). Hence we must have (−1)nxny ǫ = 1, so ǫ = (−1)nxny and w′ ∈ A.

Finally, it’s clear from the discussion above that the least positive j for which Hj(xnxyny ) =
±xnxyny is j = n+ 1; and we now have Hn+1 = (−1)nxny . Thus H has period n+ 1 if nxny is even,
and period 2n+ 2 otherwise. �
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