Hyperbolic cone-manifold structures with prescribed holonomy

Daniel V. Mathews

Université de Nantes dan.v.mathews@gmail.com

National University of Singapore Geometry, Topology and Dynamics of Character Varieties 22 July 2010

Outline

Background

- Introduction
- $PSL_2\mathbb{R}$
- Euler class of a representation
- Hyperbolic cone surfaces

2 Statements

Ideas in the proofs

- Punctured tori and pentagons
- Representation and character varieties

Holonomy

Recall:

- A hyperbolic structure on a manifold *Mⁿ* is equivalent to an developing map *D* : *Mⁿ* → ℍⁿ.
- A loop C ∈ π₁(M, x₀) lifts to a path in ℍⁿ, giving an isometry ρ(C) relating first and last charts around x₀.
- This gives holonomy homomorhism
 - $\rho: \pi_1(M, x_0) \longrightarrow \operatorname{Isom}^+ \mathbb{H}^n.$

Notation:

- Capitals denote curves in π₁(M), lower case denotes image under ρ, i.e. ρ(G) = g.
- All surfaces orientable connected.

2 papers on arxiv

- 1006.5223: Hyperbolic cone-manifold structures with prescribed holonomy I: punctured tori

Holonomy

Recall:

- A hyperbolic structure on a manifold *Mⁿ* is equivalent to an developing map *D* : *Mⁿ* → ℍⁿ.
- A loop C ∈ π₁(M, x₀) lifts to a path in ℍⁿ, giving an isometry ρ(C) relating first and last charts around x₀.
- This gives holonomy homomorhism

$$\rho: \pi_1(M, x_0) \longrightarrow \operatorname{Isom}^+ \mathbb{H}^n.$$

Notation:

- Capitals denote curves in π₁(M), lower case denotes image under ρ, i.e. ρ(G) = g.
- All surfaces orientable connected.

2 papers on arxiv

- 1006.5223: Hyperbolic cone-manifold structures with prescribed holonomy I: punctured tori

Holonomy

Recall:

- A hyperbolic structure on a manifold *Mⁿ* is equivalent to an developing map *D* : *Mⁿ* → ℍⁿ.
- A loop C ∈ π₁(M, x₀) lifts to a path in ℍⁿ, giving an isometry ρ(C) relating first and last charts around x₀.
- This gives holonomy homomorhism

$$\rho: \pi_1(M, x_0) \longrightarrow \operatorname{Isom}^+ \mathbb{H}^n.$$

Notation:

- Capitals denote curves in π₁(M), lower case denotes image under ρ, i.e. ρ(G) = g.
- All surfaces orientable connected.
- 2 papers on arxiv
 - 1006.5223: Hyperbolic cone-manifold structures with prescribed holonomy I: punctured tori
 - 1006.5384: Hyperbolic cone-manifold structures with prescribed holonomy II: higher genus

Questions

$\left\{\begin{array}{c} \text{Hyperbolic structure} \\ \text{on } M \end{array}\right\} \rightarrow \left\{\begin{array}{c} \text{Algebraic representation} \\ \pi_1(M) \longrightarrow PSL_2\mathbb{R} \end{array}\right\}$

- Which representations π₁(M) → PSL₂ℝ are holonomy maps of hyperbolic structures?
- Do other representations have a geometric interpretation?
- In general, how does algebra determine geometry?

Questions

$\left\{\begin{array}{c} \text{Hyperbolic structure} \\ \text{on } M \end{array}\right\} \xrightarrow{} \left\{\begin{array}{c} \text{Algebraic representation} \\ \pi_1(M) \longrightarrow PSL_2\mathbb{R} \end{array}\right\}$

- Which representations π₁(M) → PSL₂ℝ are holonomy maps of hyperbolic structures?
- Do other representations have a geometric interpretation?
- In general, how does algebra determine geometry?

Questions

$\left\{ \begin{array}{c} \text{Hyperbolic structure} \\ \text{on } M \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} \text{Algebraic representation} \\ \pi_1(M) \longrightarrow PSL_2\mathbb{R} \end{array} \right\}$

- Which representations π₁(M) → PSL₂ℝ are holonomy maps of hyperbolic structures?
- Do other representations have a geometric interpretation?
- In general, how does algebra determine geometry?

Known results

- 3-dimensional hyperbolic/euclidean/spherical geometry, *M* with boundary (but no boundary control): Leleu 2000
- 2-dimensional complex projective geometry, *M* closed: Gallo–Kapovich–Marden 2000
- 2-dimensional hyperbolic geometry, M closed/punctured/geodesic boundary: Goldman 1980

Here:

2-dimensional hyperbolic geometry. Extend (and reprove) Goldman's results.

All the previous results involve lifting representations $\pi_1(M) \longrightarrow \text{Isom}^+ X$ to the universal cover $\widetilde{\text{Isom}^+ X}$. As unit tangent bundle:

$\mathsf{PSL}_2\mathbb{R}\cong \mathsf{UTH}^2\cong \mathbb{H}^2 imes S^1$

"unit tangent bundle but with angles measured in $\mathbb R$ not $\mathbb R/2\pi\mathbb Z$ "

As classes of paths:

 $\widetilde{SL_2\mathbb{R}} = \begin{cases} \text{"Homotopy classes of paths in } PSL_2\mathbb{R} \\ \text{starting at 1, rel endpoints"} \end{cases}$

Projection to $PSL_2\mathbb{R}$: take a path to its endpoint.

 $\widetilde{PSL_2\mathbb{R}}$

All the previous results involve lifting representations $\pi_1(M) \longrightarrow \text{Isom}^+ X$ to the universal cover $\widetilde{\text{Isom}^+ X}$. As unit tangent bundle:

$$\textit{PSL}_2\mathbb{R}\cong\textit{UT}\mathbb{H}^2\cong\mathbb{H}^2\times\textit{S}^1$$

 $\widetilde{\textit{PSL}_2\mathbb{R}} \cong \left\{ \begin{array}{c} \text{``unit tangent bundle but with} \\ \text{angles measured in } \mathbb{R} \text{ not } \mathbb{R}/2\pi\mathbb{Z}" \end{array} \right\} \cong \mathbb{H}^2 \times \mathbb{R}$

As classes of paths:

Projection to $PSL_2\mathbb{R}$: take a path to its endpoint.

Background

All the previous results involve lifting representations $\pi_1(M) \longrightarrow \text{Isom}^+ X$ to the universal cover $\widetilde{\text{Isom}^+ X}$. As unit tangent bundle:

$$\textit{PSL}_2\mathbb{R}\cong\textit{UT}\mathbb{H}^2\cong\mathbb{H}^2\times\textit{S}^1$$

 $\widetilde{\textit{PSL}_2\mathbb{R}} \cong \left\{ \begin{array}{c} \text{``unit tangent bundle but with} \\ \text{angles measured in } \mathbb{R} \text{ not } \mathbb{R}/2\pi\mathbb{Z}" \end{array} \right\} \cong \mathbb{H}^2 \times \mathbb{R}$

As classes of paths:

$$\widetilde{PSL_2\mathbb{R}} = \begin{cases} \text{"Homotopy classes of paths in } PSL_2\mathbb{R} \\ \text{starting at 1, rel endpoints"} \end{cases}$$

Projection to $PSL_2\mathbb{R}$: take a path to its endpoint.

Lifts to $PSL_2\mathbb{R}$

Lifts of:

- $1 \in PSL_2\mathbb{R}$ are $\{\mathbf{z}^n : n \in \mathbb{Z}\}$ = centre = Z. $\mathbf{z} = 2\pi$ rotation.
- $g \in PSL_2\mathbb{R}$ are $\tilde{g}Z$ where \tilde{g} is one particular lift.

_emma

If $g, h \in PSL_2\mathbb{R}$ then [g, h] is well-defined in $PSL_2\mathbb{R}$.

A *parabolic* or *hyperbolic* $\alpha \in PSL_2\mathbb{R}$ has a "simplest" lift to $\widetilde{PSL_2\mathbb{R}}$: "minimal twist to tangent vector".

Lifts to $PSL_2\mathbb{R}$

Lifts of:

- $1 \in PSL_2\mathbb{R}$ are $\{\mathbf{z}^n : n \in \mathbb{Z}\}$ = centre = Z. $\mathbf{z} = 2\pi$ rotation.
- $g \in PSL_2\mathbb{R}$ are $\tilde{g}Z$ where \tilde{g} is one particular lift.

Lemma

If $g, h \in PSL_2\mathbb{R}$ then [g, h] is well-defined in $\widetilde{PSL_2\mathbb{R}}$.

A parabolic or hyperbolic $\alpha \in PSL_2\mathbb{R}$ has a "simplest" lift to $\widetilde{PSL_2\mathbb{R}}$: "minimal twist to tangent vector".

Lifts to $\widetilde{PSL_2}\mathbb{R}$

Lifts of:

- $1 \in PSL_2\mathbb{R}$ are $\{\mathbf{z}^n : n \in \mathbb{Z}\}$ = centre = Z. $\mathbf{z} = 2\pi$ rotation.
- $g \in PSL_2\mathbb{R}$ are $\tilde{g}Z$ where \tilde{g} is one particular lift.

Lemma

If $g, h \in PSL_2\mathbb{R}$ then [g, h] is well-defined in $\widetilde{PSL_2\mathbb{R}}$.

A *parabolic* or *hyperbolic* $\alpha \in PSL_2\mathbb{R}$ has a "simplest" lift to $\widetilde{PSL_2\mathbb{R}}$: "minimal twist to tangent vector".

Background

Statements

Ideas in the proofs

Regions in $\widetilde{PSL_2}\mathbb{R}$

◆□▶◆□▼◆□▼◆□▼ ● ● ●

Euler class of a representation

Algebraic definition:

$$\pi_1(S) = \langle G_1, H_1, \dots, G_k, H_k \mid [G_1, H_1] \cdots [G_k, H_k] = 1 \rangle$$

Consider $\rho([G_1, H_1] \cdots [G_k, H_k]) = \begin{cases} 1 \in PSL_2\mathbb{R} \\ \mathbf{z}^m \in PSL_2\mathbb{R} \end{cases}$

 $m = \text{Euler class of } \rho = e(\rho)$ Also obstruction-theoretic: " $e(\rho)$ is th obstruction to an equivariant developing map with vector field $\mathcal{D} : \tilde{S} \longrightarrow UT \mathbb{H}^{2}$ "

Proposition

S closed, ρ holonomy representation. Then $e(\rho) = \pm \chi(S)$

C

Euler class of a representation

Algebraic definition:

$$\pi_1(S) = \langle G_1, H_1, \dots, G_k, H_k \mid [G_1, H_1] \cdots [G_k, H_k] = 1 \rangle$$

consider $\rho([G_1, H_1] \cdots [G_k, H_k]) = \begin{cases} 1 \in PSL_2\mathbb{R} \\ \mathbf{z}^m \in \widetilde{PSL_2\mathbb{R}} \end{cases}$

 $m = \text{Euler class of } \rho = e(\rho)$ Also obstruction-theoretic: " $e(\rho)$ is the obstruction to an equivariant developing map with vector field $\mathcal{D}: \tilde{S} \longrightarrow UT \mathbb{H}^{2^n}$

Proposition

S closed, ρ holonomy representation. Then $e(\rho) = \pm \chi(S)$

Euler class of a representation

Algebraic definition:

$$\pi_1(S) = \langle G_1, H_1, \dots, G_k, H_k \mid [G_1, H_1] \cdots [G_k, H_k] = 1 \rangle$$

Consider $\rho([G_1, H_1] \cdots [G_k, H_k]) = \begin{cases} 1 \in PSL_2\mathbb{R} \\ \mathbf{z}^m \in \widetilde{PSL_2\mathbb{R}} \end{cases}$

$m = \text{Euler class of } \rho = e(\rho)$

Also obstruction-theoretic: " $e(\rho)$ is the obstruction to an equivariant developing map with vector field $\mathcal{D}: \tilde{S} \longrightarrow UT \mathbb{H}^{2}$ "

Proposition

S closed, ρ holonomy representation. Then $e(\rho) = \pm \chi(S)$

Euler class of a representation

Algebraic definition:

$$\pi_1(S) = \langle G_1, H_1, \dots, G_k, H_k \mid [G_1, H_1] \cdots [G_k, H_k] = 1 \rangle$$

Consider $\rho([G_1, H_1] \cdots [G_k, H_k]) = \begin{cases} 1 \in PSL_2\mathbb{R} \\ \mathbf{z}^m \in \widetilde{PSL_2\mathbb{R}} \end{cases}$

 $m = \text{Euler class of } \rho = e(\rho)$ Also obstruction-theoretic: " $e(\rho)$ is the obstruction to an equivariant developing map with vector field $\mathcal{D}: \tilde{S} \longrightarrow UT \mathbb{H}^{2^n}$

Proposition

S closed, ρ holonomy representation. Then $e(\rho) = \pm \chi(S)$

Co

Euler class of a representation

Algebraic definition:

$$\pi_1(S) = \langle G_1, H_1, \dots, G_k, H_k \mid [G_1, H_1] \cdots [G_k, H_k] = 1 \rangle$$

nsider $\rho([G_1, H_1] \cdots [G_k, H_k]) = \begin{cases} 1 \in PSL_2\mathbb{R} \\ \mathbf{z}^m \in PSL_2\mathbb{R} \end{cases}$

$$\begin{split} m &= \text{Euler class of } \rho = e(\rho) \\ \text{Also obstruction-theoretic: "}e(\rho) \text{ is the obstruction to an equivariant} \\ \text{developing map with vector field} \\ \mathcal{D} : \tilde{S} \longrightarrow UT \mathbb{H}^{2"} \end{split}$$

< A >

Proposition

S closed, ρ holonomy representation. Then $e(\rho) = \pm \chi(S)$.

Milnor-Wood, Goldman

Theorem (Milnor–Wood inequality 1958)

When $\chi(S) < 0$, for $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$

 $\chi(S) \leq e(\rho) \leq -\chi(S).$

e is a continuous map from the *representation variety* to \mathbb{Z} .

 $R(S) = \{$ representations $\pi_1(S) \longrightarrow PSL_2\mathbb{R} \}$

Theorem (Goldman 1988)

Suppose S closed, $\chi(S) < 0$. Then R(S) has $2|\chi(S)| + 1$ components, parametrized by Euler class.

$$\mathbf{e} = \chi(\mathbf{S}), \chi(\mathbf{S}) + 1, \dots, -\chi(\mathbf{S}) - 1, -\chi(\mathbf{S}).$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

Milnor-Wood, Goldman

Theorem (Milnor–Wood inequality 1958)

When $\chi(S) < 0$, for $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$

$$\chi(\mathbf{S}) \leq \mathbf{e}(\rho) \leq -\chi(\mathbf{S}).$$

e is a continuous map from the *representation variety* to \mathbb{Z} .

$$R(S) = \{ \text{representations } \pi_1(S) \longrightarrow PSL_2\mathbb{R} \}$$

Theorem (Goldman 1988)

Suppose S closed, $\chi(S) < 0$. Then R(S) has $2|\chi(S)| + 1$ components, parametrized by Euler class.

$$e = \chi(S), \chi(S) + 1, \dots, -\chi(S) - 1, -\chi(S).$$

▲□▶▲@▶▲≧▶▲≧▶ ≧ の�?

Milnor-Wood, Goldman

Theorem (Milnor–Wood inequality 1958)

When $\chi(S) < 0$, for $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$

$$\chi(\mathbf{S}) \leq \mathbf{e}(\rho) \leq -\chi(\mathbf{S}).$$

e is a continuous map from the *representation variety* to \mathbb{Z} .

$$R(S) = \{$$
representations $\pi_1(S) \longrightarrow PSL_2\mathbb{R} \}$

Theorem (Goldman 1988)

Suppose S closed, $\chi(S) < 0$. Then R(S) has $2|\chi(S)| + 1$ components, parametrized by Euler class.

$$\mathbf{e} = \chi(\mathbf{S}), \chi(\mathbf{S}) + 1, \dots, -\chi(\mathbf{S}) - 1, -\chi(\mathbf{S}).$$

Geometric interpretation of representations

Above: for S closed, ρ holonomy representation $\Rightarrow e(\rho) = \pm \chi(S)$ extremal. The converse is also true.

Theorem (Goldman 1980)

Consider $\chi(S) < 0$, $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$. If S has boundary, then for each boundary component C, assume $\rho(C)$ non-elliptic. TFAE:

ρ holonomy of a complete hyperbolic structure on S with geodesic / cusped boundary components (resp. as ρ is hyperbolic or parabolic)

2 $e(\rho) = \pm \chi(S)$

Geometric interpretation for other components? Holonomy of *cone-manifold structures*.

Geometric interpretation of representations

Above: for S closed, ρ holonomy representation $\Rightarrow e(\rho) = \pm \chi(S)$ extremal. The converse is also true.

Theorem (Goldman 1980)

Consider $\chi(S) < 0$, $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$. If S has boundary, then for each boundary component C, assume $\rho(C)$ non-elliptic. TFAE:

ρ holonomy of a complete hyperbolic structure on S with geodesic / cusped boundary components (resp. as *ρ* is hyperbolic or parabolic)

2
$$e(\rho) = \pm \chi(S)$$

Geometric interpretation for other components? Holonomy of *cone-manifold structures*.

Geometric interpretation of representations

Above: for S closed, ρ holonomy representation $\Rightarrow e(\rho) = \pm \chi(S)$ extremal. The converse is also true.

Theorem (Goldman 1980)

Consider $\chi(S) < 0$, $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$. If S has boundary, then for each boundary component C, assume $\rho(C)$ non-elliptic. TFAE:

ρ holonomy of a complete hyperbolic structure on S with geodesic / cusped boundary components (resp. as *ρ* is hyperbolic or parabolic)

2
$$e(\rho) = \pm \chi(S)$$

Geometric interpretation for other components? Holonomy of *cone-manifold structures*.

Hyperbolic cone surfaces

Definition

A surface locally isometric to \mathbb{H}^2 except at finitely many singular of cone points. Singular points have neighbourhoods which are:

- a cone on a circle of length θ ; interior cone point.
- a cone on an arc of angle θ; boundary cone point or corner point.

Order of cone point: excess angle in multiples of 2π .

- of *interior* cone point: *s* where $\theta = 2\pi(1 + s)$.
- of *boundary* point: s where $\theta = 2\pi(\frac{1}{2} + s)$.

Hyperbolic cone surfaces

Definition

A surface locally isometric to \mathbb{H}^2 except at finitely many singular of cone points. Singular points have neighbourhoods which are:

- a cone on a circle of length θ ; interior cone point.
- a cone on an arc of angle θ; boundary cone point or corner point.

Order of cone point: excess angle in multiples of 2π .

- of *interior* cone point: *s* where $\theta = 2\pi(1 + s)$.
- of *boundary* point: s where $\theta = 2\pi(\frac{1}{2} + s)$.

Holonomy of hyperbolic cone surfaces

Lemma (from Gauss–Bonnet)

If S is a hyperbolic cone surface, orders of cone points s_i , then $\sum s_i < -\chi(S)$.

A loop *C* around an interior cone point is contractible! So if ρ holonomy, $\rho(C) = 1 \in \text{Isom }^+\mathbb{H}^2$. But ρ is also rotation by θ . So $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$ can be the holonomy of a hyperbolic cone-manifold structure on *S*, but all interior cone angles must be $\in 2\pi\mathbb{N}$.

From obstruction-theoretic definition of Euler class:

Proposition

Holonomy of hyperbolic cone surfaces

Lemma (from Gauss–Bonnet)

If S is a hyperbolic cone surface, orders of cone points s_i , then $\sum s_i < -\chi(S)$.

A loop *C* around an interior cone point is contractible! So if ρ holonomy, $\rho(C) = 1 \in \text{Isom }^+\mathbb{H}^2$. But ρ is also rotation by θ . So $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$ can be the holonomy of a hyperbolic cone-manifold structure on *S*, but all interior cone angles must be $\in 2\pi\mathbb{N}$.

From obstruction-theoretic definition of Euler class:

Proposition

Holonomy of hyperbolic cone surfaces

Lemma (from Gauss–Bonnet)

If S is a hyperbolic cone surface, orders of cone points s_i , then $\sum s_i < -\chi(S)$.

A loop *C* around an interior cone point is contractible! So if ρ holonomy, $\rho(C) = 1 \in \text{Isom }^+\mathbb{H}^2$. But ρ is also rotation by θ . So $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$ can be the holonomy of a hyperbolic cone-manifold structure on *S*, but all interior cone angles must be $\in 2\pi\mathbb{N}$.

From obstruction-theoretic definition of Euler class:

Proposition

Holonomy of hyperbolic cone surfaces

Lemma (from Gauss–Bonnet)

If S is a hyperbolic cone surface, orders of cone points s_i , then $\sum s_i < -\chi(S)$.

A loop *C* around an interior cone point is contractible! So if ρ holonomy, $\rho(C) = 1 \in \text{Isom}^+\mathbb{H}^2$. But ρ is also rotation by θ . So $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$ can be the holonomy of a hyperbolic cone-manifold structure on *S*, but all interior cone angles must be $\in 2\pi\mathbb{N}$.

From obstruction-theoretic definition of Euler class:

Proposition

Holonomy of hyperbolic cone surfaces

Lemma (from Gauss-Bonnet)

If S is a hyperbolic cone surface, orders of cone points s_i , then $\sum s_i < -\chi(S)$.

A loop *C* around an interior cone point is contractible! So if ρ holonomy, $\rho(C) = 1 \in \text{Isom}^+\mathbb{H}^2$. But ρ is also rotation by θ . So $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$ can be the holonomy of a hyperbolic cone-manifold structure on *S*, but all interior cone angles must be $\in 2\pi\mathbb{N}$.

From obstruction-theoretic definition of Euler class:

Proposition

Statements

When S is a punctured torus...

Theorem (M.)

S punctured torus, $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$ homomorphism. TFAE:

• holonomy for a hyperbolic cone-manifold structure on S with geodesic boundary except at most one corner point, and no interior cone points;

2 ρ is not virtually abelian.

Statements

When S is a punctured torus...

Theorem (M.)

S punctured torus, $\rho : \pi_1(S) \longrightarrow \mathsf{PSL}_2\mathbb{R}$ homomorphism. TFAE:

• holonomy for a hyperbolic cone-manifold structure on S with geodesic boundary except at most one corner point, and no interior cone points;

ρ is not virtually abelian.

Two punctured tori make a closed surface!

Theorem (M.)

S closed genus 2, $\rho: \pi_1(S) \longrightarrow PSL_2\mathbb{R}$, $e(\rho) = \pm 1$. Suppose ρ takes a separating curve to a non-hyperbolic. Then ρ is the holonomy of a hyperbolic cone surface with one 4π cone point.

Results

Theorem (M.)

S closed, genus ≥ 2 . Consider representations $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$ with $e(\rho) = \pm(\chi(S) + 1)$, sending some non-separating simple closed curve to an elliptic. Almost every such representation is the holonomy of a hyperbolic cone-manifold structure on S with a single cone point, angle 4π .

Almost? Thre's a *measure* on the character variety of representations. Arising from its *symplectic structure* (Goldman 1984).

It's *not* true that every component of R(S) contains only cone-manifold holonomy representations.

Counterexample (Ser Peow Tan 1994): S closed genus 3, $e(\rho) = \pm 2$.

Results

Theorem (M.)

S closed, genus \geq 2. Consider representations $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$ with $e(\rho) = \pm(\chi(S) + 1)$, sending some non-separating simple closed curve to an elliptic. Almost every such representation is the holonomy of a hyperbolic cone-manifold structure on S with a single cone point, angle 4π .

Almost? Thre's a *measure* on the character variety of representations. Arising from its *symplectic structure* (Goldman 1984).

It's *not* true that every component of R(S) contains only cone-manifold holonomy representations. Counterexample (Ser Peow Tan 1994): S closed genus 3, $e(\rho) = \pm 2$.

Results

Theorem (M.)

S closed, genus \geq 2. Consider representations $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$ with $e(\rho) = \pm(\chi(S) + 1)$, sending some non-separating simple closed curve to an elliptic. Almost every such representation is the holonomy of a hyperbolic cone-manifold structure on S with a single cone point, angle 4π .

Almost? Thre's a *measure* on the character variety of representations. Arising from its *symplectic structure* (Goldman 1984).

It's *not* true that every component of R(S) contains only cone-manifold holonomy representations.

Counterexample (Ser Peow Tan 1994): S closed genus 3, $e(\rho) = \pm 2$.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Punctured tori and pentagons

Let S be a hyperbolic punctured torus, with no interior cone points, one corner point q, corner angle $\theta \in (0, 3\pi)$.

Can find two geodesic loops G, H, intersecting only at q, cutting S into a pentagon; interior angle sum θ .

Statements

Punctured tori and pentagons

Pentagon need not be embedded in \mathbb{H}^2 ...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Definition

Given $g, h \in \mathsf{PSL}_2\mathbb{R}$, $p \in \mathbb{H}^2$, the pentagon $\mathcal{P}(g, h; p)$ is

$$p
ightarrow h^{-1}ghp
ightarrow ghp
ightarrow hp
ightarrow g^{-1}h^{-1}ghp
ightarrow p$$

_emma (Construction lemma)

 ρ is the holonomy of a punctured torus with a corner if and only if \exists a free basis G, H of $\pi_1(S, q)$ and $p \in \mathbb{H}^2$ such that $\mathcal{P}(g, h; p)$ is nondegenerate bounding an immersed disc.

To construct punctured tori: just find a good pentagon.

Statements

Punctured tori and pentagons

Pentagon need not be embedded in \mathbb{H}^2 ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

Given $g, h \in \mathsf{PSL}_2\mathbb{R}$, $p \in \mathbb{H}^2$, the pentagon $\mathcal{P}(g, h; p)$ is

$$p
ightarrow h^{-1}ghp
ightarrow ghp
ightarrow hp
ightarrow g^{-1}h^{-1}ghp
ightarrow p$$

Lemma (Construction lemma)

 ρ is the holonomy of a punctured torus with a corner if and only if \exists a free basis G, H of $\pi_1(S,q)$ and $p \in \mathbb{H}^2$ such that $\mathcal{P}(g,h;p)$ is nondegenerate bounding an immersed disc.

To construct punctured tori: just find a good pentagon.

Non-rigidity

If $\mathcal{P}(g, h; p)$ works, can vary p and it still works! Obtain many punctured tori with different hyperbolic cone-manifold structures, but same holonomy ρ . Cone angle is determined by g, h, p as "twist of commutator".

Constructing pentagons

Use 2 results.

Theorem (Nielsen 1918)

Any automorphism of $\langle G, H \rangle$ takes [G, H] to a conjugate of itself or its inverse.

Proposition (Goldman)

Tr[g,h] < 2 iff g, h are both hyperbolic and their axes cross.

- By Nielsen, Tr (ρ([G, H])) = t is invariant of choice of basis G, H. Go case-by-case on t.
- By Goldman, obtain geometric information from *g*, *h*.

Various cases

Case *t* < −2:

g, h hyperbolic, axes cross, [g, h] hyperbolic also. In fact ρ discrete, complete hyp structure with geodesic ∂.

Case $t \in (-2, 2)$:

ρ holonomy of a (non-punctured!) torus with a cone point.
 Pentagon degenerate — perturb to nondegenerate.

Various cases

Case *t* > 2:

Need to choose a good basis. Consider action of MCG(S) on character variety.

- Use *Markoff triples* to get basis with good character.
- Use good character, Goldman & more for explicit construction.

・ロト・日本・日本・日本・日本・日本

Representation and character varieties

Character of a (*PSL*₂ \mathbb{R})-representation ρ :

$$X: \pi_1(S) \longrightarrow \mathbb{R}, \quad X(G) = \operatorname{Tr}(\rho(G)).$$

Trace relations $\Rightarrow X$ determined by values on a finite subset. *Character variety* $X(S) = \{$ characters of all representations $\}$. When S is a punctured torus:

•
$$(x, y, z) = (\operatorname{Tr} g, \operatorname{Tr} h, \operatorname{Tr} gh)$$
 enough: $X(S) \subset \mathbb{R}^3$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

4 = + 4 = + 4 = + 4 0 0 0

Punctured torus case

 $\begin{array}{l} MCG(S) \cong \text{Out}\, \pi_1(S) \cong GL_2\mathbb{Z} \\ \text{Action of } GL_2\mathbb{Z} \text{ on } X(S) \Rightarrow \textit{Markoff triples.} \\ (x,y,z) \sim (x',y',z'): \end{array}$

 corresponding representations ρ, ρ' are conjugate in PSL₂ℝ after applying an automorphism of π₁(S).

Proposition

For irreducible representations, $(x, y, z) \sim (x', y', z')$ iff they can be related by the moves

$$(x, y, z) \mapsto \left\{ egin{array}{l} (x, y, xy - z), (-x, -y, z), \ coordinate permutations \end{array}
ight\}$$

Dynamics of this $GL_2\mathbb{Z}$ -action are *ergodic* in certain regions (Goldman 2003). This is the key to structures "almost everywhere".