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Background Statements Ideas in the proofs

Holonomy

Recall:

A hyperbolic structure on a manifold Mn is equivalent to an
developing map D : M̃n −→ Hn.
A loop C ∈ π1(M, x0) lifts to a path in Hn, giving an
isometry ρ(C) relating first and last charts around x0.
This gives holonomy homomorhism
ρ : π1(M, x0) −→ Isom +Hn.

Notation:
Capitals denote curves in π1(M), lower case denotes
image under ρ, i.e. ρ(G) = g.
All surfaces orientable connected.

2 papers on arxiv
1006.5223: Hyperbolic cone-manifold structures with
prescribed holonomy I: punctured tori
1006.5384: Hyperbolic cone-manifold structures with
prescribed holonomy II: higher genus
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Questions

{
Hyperbolic structure

on M

}
→

{
Algebraic representation

π1(M) −→ PSL2R

}

Which representations π1(M) −→ PSL2R are holonomy
maps of hyperbolic structures?

Do other representations have a geometric interpretation?

In general, how does algebra determine geometry?
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Known results

3-dimensional hyperbolic/euclidean/spherical geometry, M
with boundary (but no boundary control): Leleu 2000

2-dimensional complex projective geometry, M closed:
Gallo–Kapovich–Marden 2000

2-dimensional hyperbolic geometry, M
closed/punctured/geodesic boundary: Goldman 1980

Here:

2-dimensional hyperbolic geometry.
Extend (and reprove) Goldman’s results.
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P̃SL2R

All the previous results involve lifting representations

π1(M) −→ Isom +X to the universal cover ˜Isom +X .
As unit tangent bundle:

PSL2R ∼= UTH2 ∼= H2 × S1

P̃SL2R ∼=

{
“unit tangent bundle but with

angles measured in R not R/2πZ"

}
∼= H2 × R

As classes of paths:

P̃SL2R =

{
“Homotopy classes of paths in PSL2R

starting at 1, rel endpoints”

}

Projection to PSL2R: take a path to its endpoint.
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Lifts to P̃SL2R

Lifts of:
1 ∈ PSL2R are {zn : n ∈ Z} = centre = Z . z = 2π rotation.
g ∈ PSL2R are g̃Z where g̃ is one particular lift.

Lemma

If g,h ∈ PSL2R then [g,h] is well-defined in P̃SL2R.

A parabolic or hyperbolic α ∈ PSL2R has a “simplest” lift to

P̃SL2R: ‘minimal twist to tangent vector".

α
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Regions in P̃SL2R

Hyp 0 = {“simplest lifts of hyperbolics"}
Par 0 = {“simplest lifts of parabolics"} = Par +0 ∪ Par −0
Ell 1 = {“rotations by θ ∈ (0,2π)"}

Ell −1 = {“rotations by θ ∈ (−2π,0)"}
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Euler class of a representation

Algebraic definition:

π1(S) = 〈G1,H1, . . . ,Gk ,Hk | [G1,H1] · · · [Gk ,Hk ] = 1〉

Consider ρ([G1,H1] · · · [Gk ,Hk ]) =

{
1 ∈ PSL2R

zm ∈ P̃SL2R

m = Euler class of ρ = e(ρ)
Also obstruction-theoretic: “e(ρ) is the
obstruction to an equivariant
developing map with vector field
D : S̃ −→ UTH2”

1+s

1

−1
1

−1

1+s

−1

Proposition

S closed, ρ holonomy representation. Then e(ρ) = ±χ(S).

For surfaces with boundary, need to trivialize.



Background Statements Ideas in the proofs

Euler class of a representation

Algebraic definition:

π1(S) = 〈G1,H1, . . . ,Gk ,Hk | [G1,H1] · · · [Gk ,Hk ] = 1〉

Consider ρ([G1,H1] · · · [Gk ,Hk ]) =

{
1 ∈ PSL2R

zm ∈ P̃SL2R

m = Euler class of ρ = e(ρ)
Also obstruction-theoretic: “e(ρ) is the
obstruction to an equivariant
developing map with vector field
D : S̃ −→ UTH2”

1+s

1

−1
1

−1

1+s

−1

Proposition

S closed, ρ holonomy representation. Then e(ρ) = ±χ(S).

For surfaces with boundary, need to trivialize.



Background Statements Ideas in the proofs

Euler class of a representation

Algebraic definition:

π1(S) = 〈G1,H1, . . . ,Gk ,Hk | [G1,H1] · · · [Gk ,Hk ] = 1〉

Consider ρ([G1,H1] · · · [Gk ,Hk ]) =

{
1 ∈ PSL2R

zm ∈ P̃SL2R

m = Euler class of ρ = e(ρ)
Also obstruction-theoretic: “e(ρ) is the
obstruction to an equivariant
developing map with vector field
D : S̃ −→ UTH2”

1+s

1

−1
1

−1

1+s

−1

Proposition

S closed, ρ holonomy representation. Then e(ρ) = ±χ(S).

For surfaces with boundary, need to trivialize.



Background Statements Ideas in the proofs

Euler class of a representation

Algebraic definition:

π1(S) = 〈G1,H1, . . . ,Gk ,Hk | [G1,H1] · · · [Gk ,Hk ] = 1〉

Consider ρ([G1,H1] · · · [Gk ,Hk ]) =

{
1 ∈ PSL2R

zm ∈ P̃SL2R

m = Euler class of ρ = e(ρ)
Also obstruction-theoretic: “e(ρ) is the
obstruction to an equivariant
developing map with vector field
D : S̃ −→ UTH2”

1+s

1

−1
1

−1

1+s

−1

Proposition

S closed, ρ holonomy representation. Then e(ρ) = ±χ(S).

For surfaces with boundary, need to trivialize.



Background Statements Ideas in the proofs

Euler class of a representation

Algebraic definition:

π1(S) = 〈G1,H1, . . . ,Gk ,Hk | [G1,H1] · · · [Gk ,Hk ] = 1〉

Consider ρ([G1,H1] · · · [Gk ,Hk ]) =

{
1 ∈ PSL2R

zm ∈ P̃SL2R

m = Euler class of ρ = e(ρ)
Also obstruction-theoretic: “e(ρ) is the
obstruction to an equivariant
developing map with vector field
D : S̃ −→ UTH2”

1+s

1

−1
1

−1

1+s

−1

Proposition

S closed, ρ holonomy representation. Then e(ρ) = ±χ(S).

For surfaces with boundary, need to trivialize.



Background Statements Ideas in the proofs

Milnor–Wood, Goldman

Theorem (Milnor–Wood inequality 1958)

When χ(S) < 0, for ρ : π1(S) −→ PSL2R

χ(S) ≤ e(ρ) ≤ −χ(S).

e is a continuous map from the representation variety to Z.

R(S) = {representations π1(S) −→ PSL2R}

Theorem (Goldman 1988)

Suppose S closed, χ(S) < 0. Then R(S) has 2|χ(S)|+ 1
components, parametrized by Euler class.

e = χ(S), χ(S) + 1, . . . ,−χ(S)− 1,−χ(S).
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Geometric interpretation of representations

Above: for S closed, ρ holonomy representation⇒
e(ρ) = ±χ(S) extremal. The converse is also true.

Theorem (Goldman 1980)

Consider χ(S) < 0, ρ : π1(S) −→ PSL2R. If S has boundary,
then for each boundary component C, assume ρ(C)
non-elliptic. TFAE:

1 ρ holonomy of a complete hyperbolic structure on S with
geodesic / cusped boundary components (resp. as ρ is
hyperbolic or parabolic)

2 e(ρ) = ±χ(S)

Geometric interpretation for other components? Holonomy of
cone-manifold structures.
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Hyperbolic cone surfaces

Definition

A surface locally isometric to H2 except at finitely many singular
of cone points. Singular points have neighbourhoods which are:

a cone on a circle of length θ; interior cone point.

a cone on an arc of angle θ; boundary cone point or corner
point.

Order of cone point: excess angle in multiples of 2π.
of interior cone point: s where θ = 2π(1 + s).
of boundary point: s where θ = 2π(1

2 + s).

πC

π
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Holonomy of hyperbolic cone surfaces

Lemma (from Gauss–Bonnet)

If S is a hyperbolic cone surface, orders of cone points si , then∑
si < −χ(S).

A loop C around an interior cone point is contractible! So if ρ
holonomy, ρ(C) = 1 ∈ Isom +H2. But ρ is also rotation by θ.
So ρ : π1(S) −→ PSL2R can be the holonomy of a hyperbolic
cone-manifold structure on S, but all interior cone angles must
be ∈ 2πN.
From obstruction-theoretic definition of Euler class:

Proposition

Suppose ρ holonomy of hyperbolic cone-manifold structure on
closed S, interior cone point orders si . Then
e(ρ) = ±(χ(S) +

∑
si).
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Statements

When S is a punctured torus...

Theorem (M.)

S punctured torus, ρ : π1(S) −→ PSL2R homomorphism.
TFAE:

1 ρ holonomy for a hyperbolic cone-manifold structure on S
with geodesic boundary except at most one corner point,
and no interior cone points;

2 ρ is not virtually abelian.

Two punctured tori make a closed surface!

Theorem (M.)

S closed genus 2, ρ : π1(S) −→ PSL2R, e(ρ) = ±1. Suppose ρ
takes a separating curve to a non-hyperbolic. Then ρ is the
holonomy of a hyperbolic cone surface with one 4π cone point.
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Results

Theorem (M.)

S closed, genus ≥ 2. Consider representations
ρ : π1(S) −→ PSL2R with e(ρ) = ±(χ(S) + 1), sending some
non-separating simple closed curve to an elliptic. Almost every
such representation is the holonomy of a hyperbolic
cone-manifold structure on S with a single cone point, angle 4π.

Almost? Thre’s a measure on the character variety of
representations. Arising from its symplectic structure (Goldman
1984).
It’s not true that every component of R(S) contains only
cone-manifold holonomy representations.
Counterexample (Ser Peow Tan 1994): S closed genus 3,
e(ρ) = ±2.
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Punctured tori and pentagons

Let S be a hyperbolic punctured torus, with no interior cone
points, one corner point q, corner angle θ ∈ (0,3π).

G

θ
H

p0

[g   ,h     ]p−1−1p  = h   g     q

pq = gh

−1−1

h   ph   gh p

H

GH

G

hg
−1

Can find two geodesic loops G,H, intersecting only at q, cutting
S into a pentagon; interior angle sum θ.
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Punctured tori and pentagons

Pentagon need not be embedded in H2...

Definition

Given g,h ∈ PSL2R, p ∈ H2, the pentagon P(g,h;p) is

p → h−1ghp → ghp→ hp → g−1h−1ghp→ p.

Lemma (Construction lemma)

ρ is the holonomy of a punctured torus with a corner if and only
if ∃ a free basis G,H of π1(S,q) and p ∈ H2 such that P(g,h;p)
is nondegenerate bounding an immersed disc.

To construct punctured tori: just find a good pentagon.
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Non-rigidity

If P(g,h;p) works, can vary p and it still works!
Obtain many punctured tori with different hyperbolic
cone-manifold structures, but same holonomy ρ.
Cone angle is determined by g,h,p as “twist of commutator”.
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Constructing pentagons

Use 2 results.

Theorem (Nielsen 1918)

Any automorphism of 〈G,H〉 takes [G,H] to a conjugate of itself
or its inverse.

Proposition (Goldman)

Tr [g,h] < 2 iff g,h are both hyperbolic and their axes cross.

By Nielsen, Tr (ρ([G,H])) = t is invariant of choice of basis
G,H. Go case-by-case on t .

By Goldman, obtain geometric information from g,h.
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Various cases

Case t < −2:

g,h hyperbolic, axes cross, [g,h] hyperbolic also. In fact ρ
discrete, complete hyp structure with geodesic ∂.

Case t ∈ (−2,2):

ρ holonomy of a (non-punctured!) torus with a cone point.
Pentagon degenerate — perturb to nondegenerate.
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Various cases

Case t > 2:
Need to choose a good basis. Consider action of MCG(S) on
character variety.

Use Markoff triples to get basis with good character.

Use good character, Goldman & more for explicit
construction.

−1

[g   ,h    ]p

h    gh p

−1−1

gh p

r=h p

g

h

−1

p

h   gh

−1

[g    ,h    ]p

h    gh p=r
−1−1

gh p

g   hg

h p

−1

g

h

p
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Representation and character varieties

Character of a (PSL2R)-representation ρ:

X : π1(S) −→ R, X (G) = Tr (ρ(G)).

Trace relations⇒ X determined by values on a finite subset.
Character variety X (S) = {characters of all representations}.
When S is a punctured torus:

(x , y , z) = (Tr g,Tr h,Tr gh) enough: X (S) ⊂ R3.

–2
–1

0
1

2

x
–1

0

1

2

y

–2

–1

0

1

2



Background Statements Ideas in the proofs

Punctured torus case

MCG(S) ∼= Outπ1(S) ∼= GL2Z

Action of GL2Z on X (S)⇒ Markoff triples.
(x , y , z) ∼ (x ′, y ′, z′):

corresponding representations ρ, ρ′ are conjugate in
PSL2R after applying an automorphism of π1(S).

Proposition

For irreducible representations, (x , y , z) ∼ (x ′, y ′, z′) iff they can
be related by the moves

(x , y , z) 7→
{

(x , y , xy − z), (−x ,−y , z),
coordinate permutations

}
.

Dynamics of this GL2Z-action are ergodic in certain regions
(Goldman 2003).
This is the key to structures “almost everywhere”.
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