▲□▶▲□▶▲□▶▲□▶ □ のQ@

# Itsy Bitsy Topological Field Theory

#### Daniel V. Mathews

Boston College dan.v.mathews@gmail.com

#### University of Southern California 30 April 2012 arXiv: 1201.4584

# Outline



- Origins
- Sutured Floer homology
- 2 Decompositions & quadrangulations
  - Decomposing sutured surfaces
  - Occupied surfaces
  - Quadrangulation
  - Sutured quadrangulated surfaces
  - Sutured quadrangulated field theory

## Itsy bitsy topology

- Sutures store information
- Bypass relation
- Digital creation and annihilation
- Structure theorem
- Physical connections

# Outline



- Origins
- Sutured Floer homology
- Decompositions & quadrangulations
  - Decomposing sutured surfaces
  - Occupied surfaces
  - Quadrangulation
  - Sutured quadrangulated surfaces
  - Sutured quadrangulated field theory
  - Itsy bitsy topology
    - Sutures store information
    - Bypass relation
    - Digital creation and annihilation
    - Structure theorem
    - Physical connections

# **Motivation**

- Work in SFH & contact geometry gives results which
  - can be described purely topologically/combinatorially; and
  - have striking physical analogies.
- We describe an object very like a (2 + 1)-dimensional TQFT (based on work of Honda–Kazez–Matić) which is:
  - Simple as a "toy model" ; and
  - Algebraic structure can be interpreted as processing information (*bits*),
  - or as analogous to creation/annihilation operators in QFT (*its*).
- John Archibald Wheeler: "it from bit".

# **Motivation**

- Work in SFH & contact geometry gives results which
  - can be described purely topologically/combinatorially; and
  - have striking physical analogies.
- We describe an object very like a (2 + 1)-dimensional TQFT (based on work of Honda–Kazez–Matić) which is:
  - Simple as a "toy model" ; and
  - Algebraic structure can be interpreted as processing information (*bits*),
  - or as analogous to creation/annihilation operators in QFT (*its*).
- John Archibald Wheeler: "it from bit".

# **Motivation**

- Work in SFH & contact geometry gives results which
  - can be described purely topologically/combinatorially; and
  - have striking physical analogies.
- We describe an object very like a (2 + 1)-dimensional TQFT (based on work of Honda–Kazez–Matić) which is:
  - Simple as a "toy model" ; and
  - Algebraic structure can be interpreted as processing information (*bits*),
  - or as analogous to creation/annihilation operators in QFT (*its*).
- John Archibald Wheeler: "it from bit".

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# **Motivation**

- Work in SFH & contact geometry gives results which
  - can be described purely topologically/combinatorially; and
  - have striking physical analogies.
- We describe an object very like a (2 + 1)-dimensional TQFT (based on work of Honda–Kazez–Matić) which is:
  - Simple as a "toy model" ; and
  - Algebraic structure can be interpreted as processing information (*bits*),
  - or as analogous to creation/annihilation operators in QFT (*its*).
- John Archibald Wheeler: "it from bit".

# **Motivation**

- Work in SFH & contact geometry gives results which
  - can be described purely topologically/combinatorially; and
  - have striking physical analogies.
- We describe an object very like a (2 + 1)-dimensional TQFT (based on work of Honda–Kazez–Matić) which is:
  - Simple as a "toy model" ; and
  - Algebraic structure can be interpreted as processing information (*bits*),
  - or as analogous to creation/annihilation operators in QFT (*its*).
- John Archibald Wheeler: "it from bit".

Itsy bitsy topology

## Topological Quantum Field Theory

"Classically" (Witten, Segal, Atiyah 1980s) an (n+1)-dimensional TQFT assigns

n-manifold  $M \rightarrow Vector space Z(M)$ (n+1)-manifold W "filling"  $M \rightarrow c(W) \in Z(M)$ 

 $\left\{\begin{array}{c} (n+1)\text{-dim cobordism} \\ \partial W = M_{in} \cup M_{out} \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} \text{Linear map} \\ \mathcal{D}_W : Z(M_{in}) \to Z(M_{out}) \end{array}\right\}$ 

$$Z(\sqcup_i M_i) = \bigotimes_i Z(M_i)$$
$$Z(\bar{M}) = Z(M)^*$$

Itsy bitsy topology

## Topological Quantum Field Theory

"Classically" (Witten, Segal, Atiyah 1980s) an (n+1)-dimensional TQFT assigns

 $\begin{array}{rcl} n\text{-manifold } M & \rightsquigarrow & \text{Vector space } Z(M) \\ (n+1)\text{-manifold } W \text{"filling" } M & \rightsquigarrow & c(W) \in Z(M) \end{array}$ 

 $\left\{\begin{array}{c} (n+1)\text{-dim cobordism} \\ \partial W = M_{in} \cup M_{out} \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} \text{Linear map} \\ \mathcal{D}_W : Z(M_{in}) \to Z(M_{out}) \end{array}\right\}$ 

$$Z(\sqcup_i M_i) = \bigotimes_i Z(M_i)$$
$$Z(\bar{M}) = Z(M)^*$$

Itsy bitsy topology

## Topological Quantum Field Theory

"Classically" (Witten, Segal, Atiyah 1980s) an (n+1)-dimensional TQFT assigns

 $\begin{array}{rcl} n \text{-manifold } M & \rightsquigarrow & \text{Vector space } Z(M) \\ (n+1) \text{-manifold } W \text{"filling" } M & \rightsquigarrow & c(W) \in Z(M) \end{array}$ 

 $\left\{\begin{array}{c} (n+1)\text{-dim cobordism} \\ \partial W = M_{in} \cup M_{out} \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} \text{Linear map} \\ \mathcal{D}_W : Z(M_{in}) \to Z(M_{out}) \end{array}\right\}$ 

$$Z(\sqcup_i M_i) = \bigotimes_i Z(M_i)$$
$$Z(\bar{M}) = Z(M)^*$$

Itsy bitsy topology

## Topological Quantum Field Theory

"Classically" (Witten, Segal, Atiyah 1980s) an (n+1)-dimensional TQFT assigns

*n*-manifold  $M \rightsquigarrow$  Vector space Z(M)(n+1)-manifold W "filling"  $M \rightsquigarrow c(W) \in Z(M)$ 

$$\left\{\begin{array}{c} (n+1)\text{-dim cobordism} \\ \partial W = M_{in} \cup M_{out} \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} \text{Linear map} \\ \mathcal{D}_W : Z(M_{in}) \to Z(M_{out}) \end{array}\right\}$$

$$Z(\sqcup_i M_i) = \bigotimes_i Z(M_i)$$
$$Z(\bar{M}) = Z(M)^*$$

Itsy bitsy topology

## Topological Quantum Field Theory

"Classically" (Witten, Segal, Atiyah 1980s) an (n+1)-dimensional TQFT assigns

*n*-manifold 
$$M \rightsquigarrow$$
 Vector space  $Z(M)$   
 $(n+1)$ -manifold  $W$  "filling"  $M \rightsquigarrow c(W) \in Z(M)$ 

$$\left\{\begin{array}{c} (n+1)\text{-dim cobordism} \\ \partial W = M_{in} \cup M_{out} \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} \text{Linear map} \\ \mathcal{D}_W : Z(M_{in}) \to Z(M_{out}) \end{array}\right\}$$

$$Z(\sqcup_i M_i) = \bigotimes_i Z(M_i)$$
$$Z(\bar{M}) = Z(M)^*$$

Itsy bitsy topology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# A TQFT with sutures

Honda–Kazez–Matić defined a TQFT-like object based on 2-dimensional surfaces (*always with nonempty boundary*) and *sutures*.

#### Definition

A set of sutures  $\Gamma$  on an oriented surface  $\Sigma$  is a set of disjoint oriented curves on  $\Sigma$ , cutting  $\Sigma$  into coherently oriented pieces

$$\Sigma \setminus \Gamma = R_+ \cup R_-, \quad \partial R_\pm \setminus \partial \Sigma = \Gamma.$$

Every component of  $\partial \Sigma$  is required to intersect  $\Gamma$ .

Itsy bitsy topology

# A TQFT with sutures

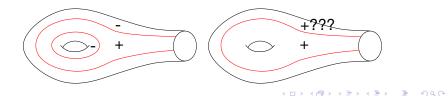
Honda–Kazez–Matić defined a TQFT-like object based on 2-dimensional surfaces (*always with nonempty boundary*) and *sutures*.

#### Definition

A set of sutures  $\Gamma$  on an oriented surface  $\Sigma$  is a set of disjoint oriented curves on  $\Sigma$ , cutting  $\Sigma$  into coherently oriented pieces

$$\Sigma \setminus \Gamma = R_+ \cup R_-, \quad \partial R_\pm \setminus \partial \Sigma = \Gamma.$$

Every component of  $\partial \Sigma$  is required to intersect  $\Gamma$ .

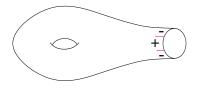


Itsy bitsy topology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## Boundaries of sutures

The restriction of  $\Gamma$  to  $\partial \Sigma$  forms a set of *signed points*  $F \subset \partial \Sigma$ . Note  $\partial \Sigma \setminus F = C_+ \cup C_-$  where  $C_{\pm}$  forms part of  $\partial R_{\pm}$ .



Definition

The pair  $(\Sigma, F)$  is called a sutured background.

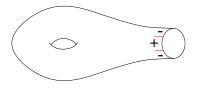
Sutures  $\Gamma$  "fill in" ( $\Sigma$ , F),  $\partial \Gamma = F$ .

Itsy bitsy topology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## Boundaries of sutures

The restriction of  $\Gamma$  to  $\partial \Sigma$  forms a set of *signed points*  $F \subset \partial \Sigma$ . Note  $\partial \Sigma \setminus F = C_+ \cup C_-$  where  $C_{\pm}$  forms part of  $\partial R_{\pm}$ .



Definition

The pair  $(\Sigma, F)$  is called a sutured background.

Sutures  $\Gamma$  "fill in" ( $\Sigma$ , F),  $\partial \Gamma = F$ .

Itsy bitsy topology

## The itsy bitsy TQFT

## Our "TQFT" will assign (always over $\mathbb{Z}_2$ ):

Sutured background  $(\Sigma, F) \rightsquigarrow$  (Graded) vector space  $Z(\Sigma, F)$ Sutures  $\Gamma$  "filling"  $(\Sigma, F) \rightsquigarrow$  Suture element  $c(\Gamma) \in Z(\Sigma, F)$ 

# $\left\{\begin{array}{c} \text{Decorated morphism} \\ (\phi, \Gamma_c) : (\Sigma, F) \to (\Sigma', F') \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} (\text{Graded}) \text{ linear map} \\ \mathcal{D}_{\phi, \Gamma} : Z(\Sigma, F) \to Z(\Sigma', F') \end{array}\right\}$

Decorated morphism is painful to define... roughly consists of:

- an *inclusion*  $\phi : \Sigma \to \Sigma'$ , together with
- sutures  $\Gamma_c$  on the complement  $(\Sigma' \setminus \Sigma, F \cup F')$

Itsy bitsy topology

# The itsy bitsy TQFT

Our "TQFT" will assign (always over  $\mathbb{Z}_2$ ):

Sutured background  $(\Sigma, F) \rightsquigarrow$  (Graded) vector space  $Z(\Sigma, F)$ Sutures  $\Gamma$  "filling"  $(\Sigma, F) \rightsquigarrow$  Suture element  $c(\Gamma) \in Z(\Sigma, F)$ 

 $\left\{\begin{array}{c} \text{Decorated morphism} \\ (\phi, \Gamma_c) : (\Sigma, F) \to (\Sigma', F') \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} (\text{Graded}) \text{ linear map} \\ \mathcal{D}_{\phi, \Gamma} : Z(\Sigma, F) \to Z(\Sigma', F') \end{array}\right\}$ 

Decorated morphism is painful to define... roughly consists of:

• an *inclusion*  $\phi : \Sigma \to \Sigma'$ , together with

• sutures  $\Gamma_c$  on the complement  $(\Sigma' \setminus \Sigma, F \cup F')$ 

# The itsy bitsy TQFT

Our "TQFT" will assign (always over  $\mathbb{Z}_2$ ):

Sutured background  $(\Sigma, F) \rightsquigarrow$  (Graded) vector space  $Z(\Sigma, F)$ Sutures  $\Gamma$  "filling"  $(\Sigma, F) \rightsquigarrow$  Suture element  $c(\Gamma) \in Z(\Sigma, F)$ 

 $\left\{\begin{array}{c} \textbf{Decorated morphism} \\ (\phi, \Gamma_c) : (\Sigma, F) \to (\Sigma', F') \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} (\text{Graded}) \text{ linear map} \\ \mathcal{D}_{\phi, \Gamma} : Z(\Sigma, F) \to Z(\Sigma', F') \end{array}\right\}$ 

Decorated morphism is painful to define... roughly consists of:

• an *inclusion*  $\phi : \Sigma \to \Sigma'$ , together with

• sutures  $\Gamma_c$  on the complement  $(\Sigma' \setminus \Sigma, F \cup F')$ 

# The itsy bitsy TQFT

Our "TQFT" will assign (always over  $\mathbb{Z}_2$ ):

Sutured background  $(\Sigma, F) \rightsquigarrow$  (Graded) vector space  $Z(\Sigma, F)$ Sutures  $\Gamma$  "filling"  $(\Sigma, F) \rightsquigarrow$  Suture element  $c(\Gamma) \in Z(\Sigma, F)$ 

 $\left\{\begin{array}{c} \text{Decorated morphism} \\ (\phi, \Gamma_c) : (\Sigma, F) \to (\Sigma', F') \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} (\text{Graded}) \text{ linear map} \\ \mathcal{D}_{\phi, \Gamma} : Z(\Sigma, F) \to Z(\Sigma', F') \end{array}\right\}$ 

Decorated morphism is painful to define... roughly consists of:

- an *inclusion*  $\phi : \Sigma \to \Sigma'$ , together with
- sutures  $\Gamma_c$  on the complement  $(\Sigma' \setminus \Sigma, F \cup F')$

# The itsy bitsy TQFT

Our "TQFT" will assign (always over  $\mathbb{Z}_2$ ):

Sutured background  $(\Sigma, F) \rightsquigarrow$  (Graded) vector space  $Z(\Sigma, F)$ Sutures  $\Gamma$  "filling"  $(\Sigma, F) \rightsquigarrow$  Suture element  $c(\Gamma) \in Z(\Sigma, F)$ 

 $\left\{\begin{array}{c} \text{Decorated morphism} \\ (\phi, \Gamma_c) : (\Sigma, F) \to (\Sigma', F') \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} (\text{Graded}) \text{ linear map} \\ \mathcal{D}_{\phi, \Gamma} : Z(\Sigma, F) \to Z(\Sigma', F') \end{array}\right\}$ 

Decorated morphism is painful to define... roughly consists of:

- an *inclusion*  $\phi : \Sigma \to \Sigma'$ , together with
- sutures  $\Gamma_c$  on the complement  $(\Sigma' \setminus \Sigma, F \cup F')$

# The itsy bitsy TQFT

Our "TQFT" will assign (always over  $\mathbb{Z}_2$ ):

Sutured background  $(\Sigma, F) \rightsquigarrow$  (Graded) vector space  $Z(\Sigma, F)$ Sutures  $\Gamma$  "filling"  $(\Sigma, F) \rightsquigarrow$  Suture element  $c(\Gamma) \in Z(\Sigma, F)$ 

 $\left\{\begin{array}{c} \text{Decorated morphism} \\ (\phi, \Gamma_c) : (\Sigma, F) \to (\Sigma', F') \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} (\text{Graded}) \text{ linear map} \\ \mathcal{D}_{\phi, \Gamma} : Z(\Sigma, F) \to Z(\Sigma', F') \end{array}\right\}$ 

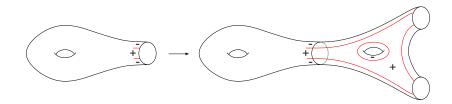
Decorated morphism is painful to define... roughly consists of:

• an *inclusion*  $\phi : \Sigma \to \Sigma'$ , together with

• sutures  $\Gamma_c$  on the complement  $(\Sigma' \setminus \Sigma, F \cup F')$ 

Itsy bitsy topology

## **Decorated morphisms**

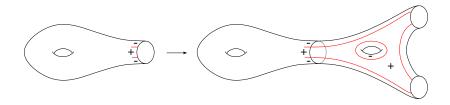


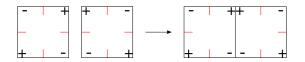
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Itsy bitsy topology

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

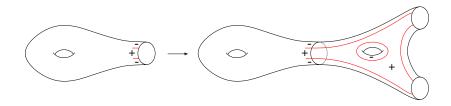
## **Decorated morphisms**

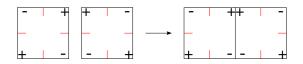


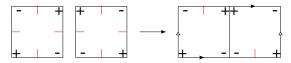


Itsy bitsy topology

## **Decorated morphisms**







< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Definition (Gabai)

A sutured 3-manifold  $(M, \Gamma)$  is a 3-manifold M with  $\partial$  such that  $(\partial M, \Gamma)$  is a sutured surface.

#### SFH assigns:

Balanced sutured  $(M, \Gamma) \rightsquigarrow$  (Graded) abelian gp.  $SFH(M, \Gamma)$ Contact structure  $\xi$  on  $(M, \Gamma) \rightsquigarrow c(\xi) \in SFH(M, \Gamma)$ 

(Balanced:  $\chi(R_+) = \chi(R_-)$ ; every component of  $\partial M$  has sutures.)

#### Definition (Gabai)

A sutured 3-manifold  $(M, \Gamma)$  is a 3-manifold M with  $\partial$  such that  $(\partial M, \Gamma)$  is a sutured surface.

## SFH assigns:

Balanced sutured  $(M, \Gamma) \rightsquigarrow$  (Graded) abelian gp.  $SFH(M, \Gamma)$ Contact structure  $\xi$  on  $(M, \Gamma) \rightsquigarrow c(\xi) \in SFH(M, \Gamma)$ 

(Balanced:  $\chi(R_+) = \chi(R_-)$ ; every component of  $\partial M$  has sutures.)

#### Definition (Gabai)

A sutured 3-manifold  $(M, \Gamma)$  is a 3-manifold M with  $\partial$  such that  $(\partial M, \Gamma)$  is a sutured surface.

## SFH assigns:

Balanced sutured  $(M, \Gamma) \rightsquigarrow$  (Graded) abelian gp.  $SFH(M, \Gamma)$ Contact structure  $\xi$  on  $(M, \Gamma) \rightsquigarrow c(\xi) \in SFH(M, \Gamma)$ 

(Balanced:  $\chi(R_+) = \chi(R_-)$ ; every component of  $\partial M$  has sutures.)

#### Definition (Gabai)

A sutured 3-manifold  $(M, \Gamma)$  is a 3-manifold M with  $\partial$  such that  $(\partial M, \Gamma)$  is a sutured surface.

## SFH assigns:

Balanced sutured  $(M, \Gamma) \rightsquigarrow$  (Graded) abelian gp.  $SFH(M, \Gamma)$ Contact structure  $\xi$  on  $(M, \Gamma) \rightsquigarrow c(\xi) \in SFH(M, \Gamma)$ 

(Balanced:  $\chi(R_+) = \chi(R_-)$ ; every component of  $\partial M$  has sutures.)

Itsy bitsy topology

## Dimensionally reduced SFH

Our TQFT originates from SFH of product manifolds

$$Z(\Sigma, F) = SFH(\Sigma \times S^1, F \times S^1)$$

Contact structures on these manifolds are described by

Theorem (Giroux, Honda)

Tight contact str's on  $(\Sigma \times S^1, F \times S^1)$ up to isotopy rel  $\partial$ 

 $\leftrightarrow$ 

Sutures Γ on (Σ, F) without contractible loops up to isotopy rel ∂

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Itsy bitsy topology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Dimensionally reduced SFH

Our TQFT originates from SFH of product manifolds

$$Z(\Sigma, F) = SFH(\Sigma \times S^1, F \times S^1)$$

Contact structures on these manifolds are described by

#### Theorem (Giroux, Honda)

$$\left.\begin{array}{c} \text{Tight contact str's}\\ \text{on}\left(\Sigma \times S^{1}, F \times S^{1}\right)\\ \text{up to isotopy rel }\partial\end{array}\right\} \leftrightarrow \left\{\begin{array}{c} \text{Sutures } \Gamma \text{ on }(\Sigma, F)\\ \text{without contractible loops}\\ \text{up to isotopy rel }\partial\end{array}\right.$$

Itsy bitsy topology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Dimensionally reduced SFH

Our TQFT originates from SFH of product manifolds

$$Z(\Sigma, F) = SFH(\Sigma imes S^1, F imes S^1)$$

Contact structures on these manifolds are described by

#### Theorem (Giroux, Honda)

$$\left.\begin{array}{c} \text{Tight contact str's} \\ \text{on}\left(\Sigma \times S^{1}, F \times S^{1}\right) \\ \text{up to isotopy rel }\partial \end{array}\right\} \quad \leftrightarrow \quad \left\{\begin{array}{c} \text{Sutures } \Gamma \text{ on }(\Sigma, F) \\ \text{without contractible loops} \\ \text{up to isotopy rel }\partial \end{array}\right.$$

Itsy bitsy topology

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Dimensionally reduced SFH

Our TQFT originates from SFH of product manifolds

$$Z(\Sigma, F) = SFH(\Sigma imes S^1, F imes S^1)$$

Contact structures on these manifolds are described by

#### Theorem (Giroux, Honda)

$$\left\{\begin{array}{cc} \text{Tight contact str's}\\ on (\Sigma \times S^1, F \times S^1)\\ up \text{ to isotopy rel }\partial\\ \xi_{\Gamma} \end{array}\right\} \leftrightarrow \left\{\begin{array}{cc} \text{Sutures } \Gamma \text{ on } (\Sigma, F)\\ \text{without contractible loops}\\ up \text{ to isotopy rel }\partial\\ \Gamma\end{array}\right\}$$

Itsy bitsy topology

## Dimensionally reduced SFH

Our TQFT originates from SFH of product manifolds

$$Z(\Sigma, F) = SFH(\Sigma \times S^1, F \times S^1)$$

Contact structures on these manifolds are described by

#### Theorem (Giroux, Honda)

$$\left\{\begin{array}{cc} \text{Tight contact str's} \\ \text{on} \left(\Sigma \times S^{1}, F \times S^{1}\right) \\ \text{up to isotopy rel } \partial \\ \xi_{\Gamma} \end{array}\right\} \leftrightarrow \left\{\begin{array}{cc} \text{Sutures } \Gamma \text{ on} \left(\Sigma, F\right) \\ \text{without contractible loops} \\ \text{up to isotopy rel } \partial \\ \Gamma \end{array}\right.$$

Our *c*(Γ) is the contact element of the contact structure  $\xi_{\Gamma}$  corresponding to Γ.

Itsy bitsy topology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# TQFT property of SFH

#### Theorem (Honda–Kazez–Matić)

Given  $(M, \Gamma)$  and  $(M', \Gamma')$ , an inclusion  $M \hookrightarrow Int M'$ , and a contact structure  $\xi_c$  on  $(M' \setminus M, \Gamma \cup \Gamma')$ , there is a natural map

 $SFH(M, \Gamma) \rightarrow SFH(M', \Gamma')$ 

which sends each

 $c(\xi) \mapsto c(\xi \cup \xi_c).$ 

Our "decorated morphisms" derive from inclusions and complementary contact structures, but are more general...

Itsy bitsy topology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# TQFT property of SFH

#### Theorem (Honda–Kazez–Matić)

Given  $(M, \Gamma)$  and  $(M', \Gamma')$ , an inclusion  $M \hookrightarrow Int M'$ , and a contact structure  $\xi_c$  on  $(M' \setminus M, \Gamma \cup \Gamma')$ , there is a natural map

 $SFH(M, \Gamma) \rightarrow SFH(M', \Gamma')$ 

which sends each

 $c(\xi) \mapsto c(\xi \cup \xi_c).$ 

Our "decorated morphisms" derive from inclusions and complementary contact structures, but are more general...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Outline

- Background
  - Origins
  - Sutured Floer homology
- Decompositions & quadrangulations
  - Decomposing sutured surfaces
  - Occupied surfaces
  - Quadrangulation
  - Sutured quadrangulated surfaces
  - Sutured quadrangulated field theory
  - Itsy bitsy topology
    - Sutures store information
    - Bypass relation
    - Digital creation and annihilation
    - Structure theorem
    - Physical connections

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

### Decomposing sutured surfaces

A natural way to decompose a sutured surface  $(\Sigma, \Gamma)$ :

 Cut along a properly embedded arc *a* from C<sub>-</sub> to C<sub>+</sub>, transverse to Γ.

A natural way to decompose a sutured background  $(\Sigma, F)$ :

Cut along a properly embedded arc *a* from C<sub>-</sub> to C<sub>+</sub>.
 (Juhász, Honda–Kazez–Matić: such cuts induce isomorphisms on SFH...)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### Decomposing sutured surfaces

A natural way to decompose a sutured surface  $(\Sigma, \Gamma)$ :

 Cut along a properly embedded arc *a* from C<sub>-</sub> to C<sub>+</sub>, transverse to Γ.

A natural way to decompose a sutured background ( $\Sigma$ , F):

• Cut along a properly embedded arc *a* from  $C_{-}$  to  $C_{+}$ .

(Juhász, Honda–Kazez–Matić: such cuts induce isomorphisms on *SFH*...)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

### Decomposing sutured surfaces

A natural way to decompose a sutured surface  $(\Sigma, \Gamma)$ :

 Cut along a properly embedded arc *a* from C<sub>-</sub> to C<sub>+</sub>, transverse to Γ.

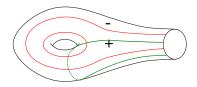
A natural way to decompose a sutured background  $(\Sigma, F)$ :

• Cut along a properly embedded arc *a* from  $C_{-}$  to  $C_{+}$ .

(Juhász, Honda–Kazez–Matić: such cuts induce isomorphisms on *SFH*...)

Itsy bitsy topology

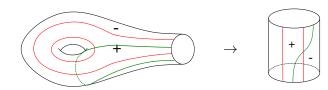
### Decomposition into squares





Itsy bitsy topology

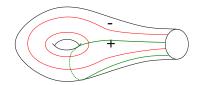
### Decomposition into squares

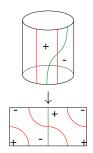




Itsy bitsy topology

# Decomposition into squares



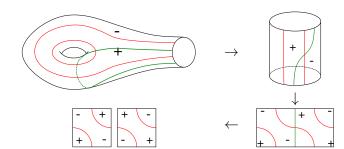


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Itsy bitsy topology

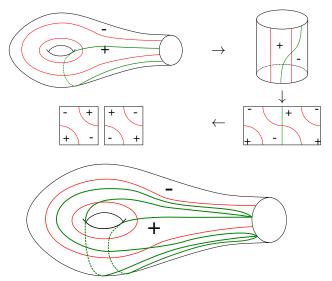
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

# Decomposition into squares



Itsy bitsy topology

# Decomposition into squares



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

## Occupied surfaces

#### Definition

An occupied surface  $(\Sigma, V)$  is an oriented surface  $\Sigma$  with signed points  $V \subset \partial \Sigma$ , alternating in sign,  $V = V_{-} \cup V_{+}$ .

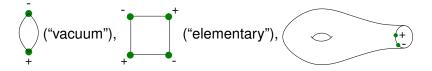
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Occupied surfaces

#### Definition

An occupied surface  $(\Sigma, V)$  is an oriented surface  $\Sigma$  with signed points  $V \subset \partial \Sigma$ , alternating in sign,  $V = V_{-} \cup V_{+}$ .

#### Examples:



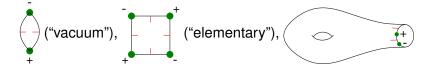
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Occupied surfaces

#### Definition

An occupied surface  $(\Sigma, V)$  is an oriented surface  $\Sigma$  with signed points  $V \subset \partial \Sigma$ , alternating in sign,  $V = V_{-} \cup V_{+}$ .

#### Examples:



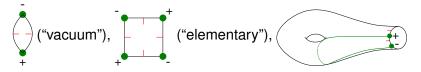
Occupied surfaces and sutured backgrounds are equivalent.

# Occupied surfaces

#### Definition

An occupied surface  $(\Sigma, V)$  is an oriented surface  $\Sigma$  with signed points  $V \subset \partial \Sigma$ , alternating in sign,  $V = V_{-} \cup V_{+}$ .

#### Examples:



Occupied surfaces and sutured backgrounds are equivalent.

#### Definition

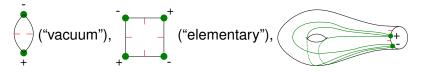
A decomposing arc is a properly embedded arc in  $(\Sigma, V)$  from  $V_{-}$  to  $V_{+}$ .

# Occupied surfaces

#### Definition

An occupied surface  $(\Sigma, V)$  is an oriented surface  $\Sigma$  with signed points  $V \subset \partial \Sigma$ , alternating in sign,  $V = V_{-} \cup V_{+}$ .

#### Examples:



Occupied surfaces and sutured backgrounds are equivalent.

#### Definition

A decomposing arc is a properly embedded arc in  $(\Sigma, V)$  from  $V_{-}$  to  $V_{+}$ .

#### Note:

- Any (Σ, V) without vacuum components decomposes into occupied squares — i.e. has a *quadrangulation*.
- Any quadrangulation of (Σ, V) has precisely N χ(Σ) occupied squares, where |V| = 2N.
- A simple way to adjust quadrangulations: diagonal slide.

#### Theorem (M.)

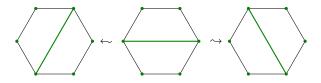
#### Note:

- Any (Σ, V) without vacuum components decomposes into occupied squares — i.e. has a *quadrangulation*.
- Any quadrangulation of (Σ, V) has precisely N χ(Σ) occupied squares, where |V| = 2N.
- A simple way to adjust quadrangulations: diagonal slide.

#### Theorem (M.)

#### Note:

- Any (Σ, V) without vacuum components decomposes into occupied squares — i.e. has a *quadrangulation*.
- Any quadrangulation of (Σ, V) has precisely N χ(Σ) occupied squares, where |V| = 2N.
- A simple way to adjust quadrangulations: diagonal slide.



#### Theorem (M.)

#### Note:

- Any (Σ, V) without vacuum components decomposes into occupied squares — i.e. has a *quadrangulation*.
- Any quadrangulation of (Σ, V) has precisely N χ(Σ) occupied squares, where |V| = 2N.
- A simple way to adjust quadrangulations: diagonal slide.



#### Theorem (M.)

Itsy bitsy topology

### Sutured quadrangulated surfaces



Itsy bitsy topology

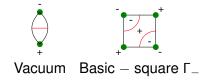
### Sutured quadrangulated surfaces





Itsy bitsy topology

### Sutured quadrangulated surfaces

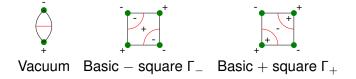




Itsy bitsy topology

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

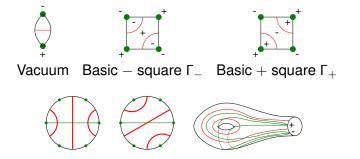
### Sutured quadrangulated surfaces



Itsy bitsy topology

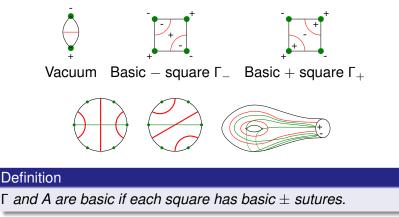
▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

### Sutured quadrangulated surfaces



Itsy bitsy topology

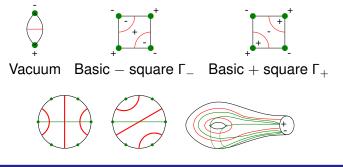
### Sutured quadrangulated surfaces



Itsy bitsy topology

## Sutured quadrangulated surfaces

Consider  $\Sigma$  with sutures  $\Gamma$  and quadrangulation  $A = \{a_j\}$ , transverse.



#### Definition

 $\Gamma$  and A are basic if each square has basic  $\pm$  sutures.

Whenever  $\Gamma$  is *nonconfining* (each component of  $\Sigma \setminus \Gamma$  intersects  $\partial \Sigma$ ), we can find a basic quadrangulation.

# Sutured quadrangulated field theory

A sutured quadrangulated field theory (SQFT) is a pair  $(\mathcal{D}, c)$  where

•  $\mathcal{D}$  is a functor

 $\left\{\begin{array}{c} \text{Occupied surfaces &} \\ \text{decorated morphisms} \end{array}\right\} \rightarrow \left\{\begin{array}{c} \text{Graded } \mathbb{Z}_2 \\ \text{vector spaces} \end{array}\right\}$ 

i.e.

$$(\Sigma, V) \rightsquigarrow Z(\Sigma, V) \text{ and}$$
  
 $(\phi, \Gamma_c) : (\Sigma, V) \rightarrow (\Sigma', V') \rightsquigarrow \mathcal{D}_{\phi, \Gamma_c} : Z(\Sigma, V) \rightarrow Z(\Sigma', V')$ 

▲□▶▲□▶▲□▶▲□▶ □ のQ@

## Sutured quadrangulated field theory

A sutured quadrangulated field theory (SQFT) is a pair  $(\mathcal{D}, c)$  where

•  $\mathcal{D}$  is a functor

$$\left\{\begin{array}{c} \mathsf{Occupied surfaces \&} \\ \mathsf{decorated morphisms} \end{array}\right\} \rightarrow \left\{\begin{array}{c} \mathsf{Graded } \mathbb{Z}_2 \\ \mathsf{vector spaces} \end{array}\right\}$$

i.e.

$$(\Sigma, V) \rightsquigarrow Z(\Sigma, V) \text{ and}$$
  
 $(\phi, \Gamma_c) : (\Sigma, V) \rightarrow (\Sigma', V') \rightsquigarrow \mathcal{D}_{\phi, \Gamma_c} : Z(\Sigma, V) \rightarrow Z(\Sigma', V')$ 

▲□▶▲□▶▲□▶▲□▶ □ のQ@

## Sutured quadrangulated field theory

A sutured quadrangulated field theory (SQFT) is a pair  $(\mathcal{D}, c)$  where

•  $\mathcal{D}$  is a functor

$$\left\{\begin{array}{l} \text{Occupied surfaces \&} \\ \text{decorated morphisms} \end{array}\right\} \rightarrow \left\{\begin{array}{l} \text{Graded } \mathbb{Z}_2 \\ \text{vector spaces} \end{array}\right\}$$

i.e.

$$(\Sigma, V) \rightsquigarrow Z(\Sigma, V)$$
 and  
 $(\phi, \Gamma_c) : (\Sigma, V) \rightarrow (\Sigma', V') \rightsquigarrow \mathcal{D}_{\phi, \Gamma_c} : Z(\Sigma, V) \rightarrow Z(\Sigma', V')$ 

## Sutured quadrangulated field theory

A sutured quadrangulated field theory (SQFT) is a pair  $(\mathcal{D}, c)$  where

•  $\mathcal{D}$  is a functor

$$\left\{\begin{array}{c} \text{Occupied surfaces &} \\ \text{decorated morphisms} \end{array}\right\} \rightarrow \left\{\begin{array}{c} \text{Graded } \mathbb{Z}_2 \\ \text{vector spaces} \end{array}\right\}$$

i.e.

$$(\Sigma, V) \rightsquigarrow Z(\Sigma, V) \text{ and}$$
  
 $(\phi, \Gamma_c) : (\Sigma, V) \rightarrow (\Sigma', V') \rightsquigarrow \mathcal{D}_{\phi, \Gamma_c} : Z(\Sigma, V) \rightarrow Z(\Sigma', V')$ 

## Sutured quadrangulated field theory

A sutured quadrangulated field theory (SQFT) is a pair  $(\mathcal{D}, c)$  where

•  $\mathcal{D}$  is a functor

$$\left\{\begin{array}{l} \text{Occupied surfaces \&} \\ \text{decorated morphisms} \end{array}\right\} \rightarrow \left\{\begin{array}{l} \text{Graded } \mathbb{Z}_2 \\ \text{vector spaces} \end{array}\right\}$$

i.e.

$$(\Sigma, V) \rightsquigarrow Z(\Sigma, V) \text{ and}$$
  
 $(\phi, \Gamma_c) : (\Sigma, V) \rightarrow (\Sigma', V') \rightsquigarrow \mathcal{D}_{\phi, \Gamma_c} : Z(\Sigma, V) \rightarrow Z(\Sigma', V')$ 

Itsy bitsy topology

### Sutured quadrangulated field theory

For a quadrangulation 
$$(\Sigma, V) = \bigcup_i (\Sigma_i^{\Box}, V_i^{\Box})$$
  
 $Z(\Sigma, V) = \bigotimes_i Z(\Sigma_i^{\Box}, V_i^{\Box}),$ 

and if  $\Gamma$  is a basic set of sutures  $\Gamma = \bigcup_i \Gamma_i$  $c(\Gamma) = \otimes_i c(\Gamma_i)$ 

2 (*Naturality*) Linear maps preserve suture elements,  $\mathcal{D}_{\phi,\Gamma_c}(c(\Gamma)) = c(\Gamma \cup \Gamma_c).$ 



Itsy bitsy topology

### Sutured quadrangulated field theory

For a quadrangulation 
$$(\Sigma, V) = \bigcup_i (\Sigma_i^{\Box}, V_i^{\Box})$$
  
 $Z(\Sigma, V) = \bigotimes_i Z(\Sigma_i^{\Box}, V_i^{\Box}),$ 

and if  $\Gamma$  is a basic set of sutures  $\Gamma = \bigcup_i \Gamma_i$  $c(\Gamma) = \otimes_i c(\Gamma_i)$ 

(*Naturality*) Linear maps preserve suture elements,  $\mathcal{D}_{\phi,\Gamma_c}(c(\Gamma)) = c(\Gamma \cup \Gamma_c).$ 



Itsy bitsy topology

### Sutured quadrangulated field theory

For a quadrangulation 
$$(\Sigma, V) = \bigcup_i (\Sigma_i^{\Box}, V_i^{\Box})$$
  
 $Z(\Sigma, V) = \bigotimes_i Z(\Sigma_i^{\Box}, V_i^{\Box}),$ 

and if  $\Gamma$  is a basic set of sutures  $\Gamma = \bigcup_i \Gamma_i$ 

 $c(\Gamma) = \otimes_i c(\Gamma_i)$ 

(*Naturality*) Linear maps preserve suture elements,  $\mathcal{D}_{\phi,\Gamma_c}(c(\Gamma)) = c(\Gamma \cup \Gamma_c).$ 



Itsy bitsy topology

### Sutured quadrangulated field theory

For a quadrangulation 
$$(\Sigma, V) = \bigcup_i (\Sigma_i^{\Box}, V_i^{\Box})$$
  
 $Z(\Sigma, V) = \bigotimes_i Z(\Sigma_i^{\Box}, V_i^{\Box}),$ 

and if  $\Gamma$  is a basic set of sutures  $\Gamma = \bigcup_i \Gamma_i$ 

 $c(\Gamma) = \otimes_i c(\Gamma_i)$ 

(*Naturality*) Linear maps preserve suture elements,  $\mathcal{D}_{\phi,\Gamma_c}(c(\Gamma)) = c(\Gamma \cup \Gamma_c).$ 

(Normalization) Basic sutures are basic ("qubits"),

$$Z(\mathbf{x}^{*}) = \mathbb{Z}_{2}\mathbf{0} \oplus \mathbb{Z}_{2}\mathbf{1}, \quad c(\mathbf{x}^{*}) = \mathbf{0}, \quad c(\mathbf{x}^{*}) = \mathbf{1}$$

Itsy bitsy topology

## Sutured quadrangulated field theory

For a quadrangulation 
$$(\Sigma, V) = \bigcup_i (\Sigma_i^{\Box}, V_i^{\Box})$$
  
 $Z(\Sigma, V) = \bigotimes_i Z(\Sigma_i^{\Box}, V_i^{\Box}),$ 

and if  $\Gamma$  is a basic set of sutures  $\Gamma = \bigcup_i \Gamma_i$ 

 $c(\Gamma) = \otimes_i c(\Gamma_i)$ 

(*Naturality*) Linear maps preserve suture elements,  $\mathcal{D}_{\phi,\Gamma_c}(c(\Gamma)) = c(\Gamma \cup \Gamma_c).$ 

(Normalization) Basic sutures are basic ("qubits"),

$$Z(\mathbf{r}) = \mathbb{Z}_2 \mathbf{0} \oplus \mathbb{Z}_2 \mathbf{1}, \quad c(\mathbf{r}) = \mathbf{0}, \quad c(\mathbf{r}) = \mathbf{1}$$

Itsy bitsy topology

# Morphisms are gluing together squares

Occupied surface morphisms allow us to glue sides of squares in combinatorial fashion.

#### Definition

A decorated occupied surface morphism  $(\phi, \Gamma_c) : (\Sigma, V) \rightarrow (\Sigma', V')$  satisfies

- $\phi: \Sigma \to \Sigma'$  is an embedding on the interior of  $\Sigma$
- $\phi$  is a homeomorphism on boundary edges
- Distinguished arcs in Σ' (i.e. boundary edges of Σ' or φ(boundary edges of Σ) which intersect other than at endpoints, coincide
- $\phi(V_+) \cup V'_+$  and  $\phi(V_-) \cup V'_-$  disjoint
- $\Gamma_c$  sutures on complementary occupied surface  $\Sigma' \setminus \phi(\Sigma)$ .

Itsy bitsy topology

# Morphisms are gluing together squares

Occupied surface morphisms allow us to glue sides of squares in combinatorial fashion.

#### Definition

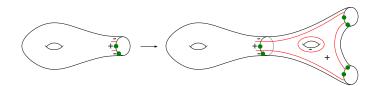
A decorated occupied surface morphism  $(\phi, \Gamma_c) : (\Sigma, V) \rightarrow (\Sigma', V')$  satisfies

- $\phi: \Sigma \to \Sigma'$  is an embedding on the interior of  $\Sigma$
- Distinguished arcs in Σ' (i.e. boundary edges of Σ' or φ(boundary edges of Σ) which intersect other than at endpoints, coincide
- $\phi(V_+) \cup V'_+$  and  $\phi(V_-) \cup V'_-$  disjoint
- Γ<sub>c</sub> sutures on complementary occupied surface Σ'\φ(Σ).

Itsy bitsy topology

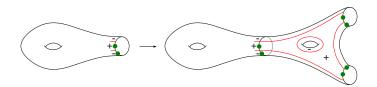
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

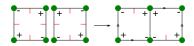
# Some decorated morphisms



Itsy bitsy topology

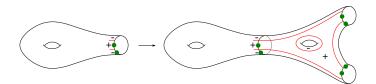
# Some decorated morphisms

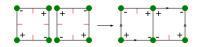


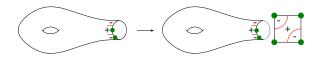


Itsy bitsy topology

## Some decorated morphisms



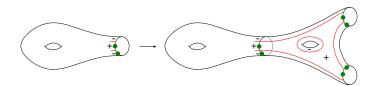


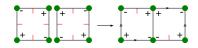


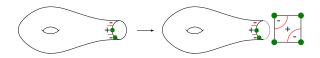
▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Itsy bitsy topology

# Some decorated morphisms



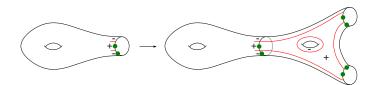


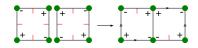


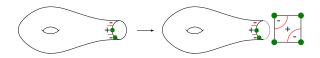


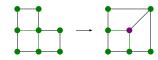
Itsy bitsy topology

# Some decorated morphisms









◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Dimensionally reduced SFH is an SQFT

#### Theorem

SFH( $\Sigma \times S^1, F \times S^1$ ), together with its TQFT properties, form an SQFT.

(All known properties of SQFT:

- (Juhász) Decomposition theorems
- (Honda-Kazez-Matić) TQFT property
- Normalization =  $SFH(D^2 \times S^1, \{\cdot, \cdot\} \times S^1)$
- Euler-calss  $\leftrightarrow$  spin-c grading)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Dimensionally reduced SFH is an SQFT

#### Theorem

SFH( $\Sigma \times S^1, F \times S^1$ ), together with its TQFT properties, form an SQFT.

(All known properties of SQFT:

- (Juhász) Decomposition theorems
- (Honda-Kazez-Matić) TQFT property
- Normalization =  $SFH(D^2 \times S^1, \{\cdot, \cdot\} \times S^1)$
- Euler-calss ↔ spin-c grading)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Outline

- Background
  - Origins
  - Sutured Floer homology
- Decompositions & quadrangulations
  - Decomposing sutured surfaces
  - Occupied surfaces
  - Quadrangulation
  - Sutured quadrangulated surfaces
  - Sutured quadrangulated field theory

# Itsy bitsy topology

- Sutures store information
- Bypass relation
- Digital creation and annihilation
- Structure theorem
- Physical connections

Itsy bitsy topology

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

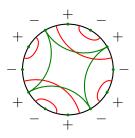
## Sutures store information

A basic quadrangulation puts sutures "in binary format".

Itsy bitsy topology

# Sutures store information

A basic quadrangulation puts sutures "in binary format".

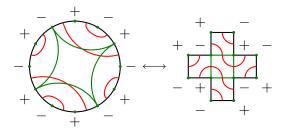




Itsy bitsy topology

# Sutures store information

A basic quadrangulation puts sutures "in binary format".



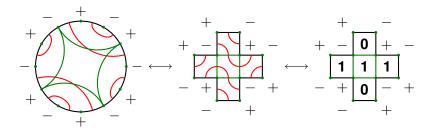
◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Itsy bitsy topology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Sutures store information

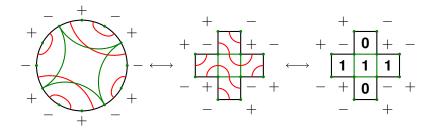
A basic quadrangulation puts sutures "in binary format".



Itsy bitsy topology

# Sutures store information

A basic quadrangulation puts sutures "in binary format".

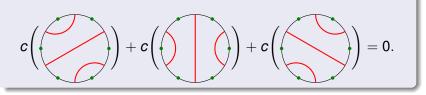




・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

# Bypass relation

#### Proposition



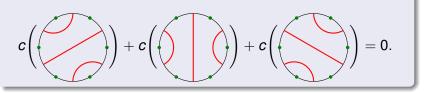
(A *bypass* is a contact-geometric object introduced by Honda, giving rise to such dividing set alterations.) This allows us to write any suture element as a sum of basis elements.

Itsy bitsy topology

・ コット (雪) ( 小田) ( コット 日)

# **Bypass relation**

#### Proposition



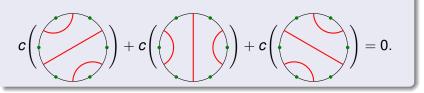
(A *bypass* is a contact-geometric object introduced by Honda, giving rise to such dividing set alterations.)

Itsy bitsy topology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Bypass relation

#### Proposition



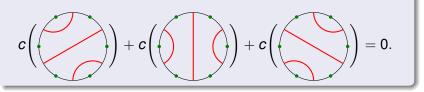
(A *bypass* is a contact-geometric object introduced by Honda, giving rise to such dividing set alterations.)



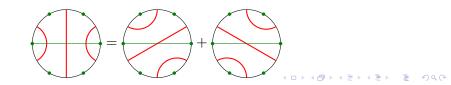
Itsy bitsy topology

# Bypass relation

#### Proposition



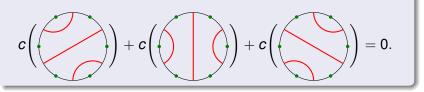
(A *bypass* is a contact-geometric object introduced by Honda, giving rise to such dividing set alterations.)



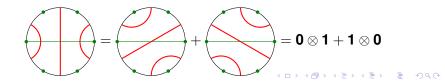
Itsy bitsy topology

# Bypass relation

#### Proposition



(A *bypass* is a contact-geometric object introduced by Honda, giving rise to such dividing set alterations.)



Itsy bitsy topology

## Two curious maps

#### Adjoining an extra square (with a 0 or a 1) gives a map

 $\begin{array}{rcccc} a^*_{\mathbf{0}}: & \mathbf{V}^{\otimes n} & \to & \mathbf{V} \otimes \mathbf{V}^{\otimes n} \\ & x & \mapsto & \mathbf{0} \otimes x \end{array}$ 

 $\begin{array}{rccc} a_1^*: & \mathsf{V}^{\otimes n} & \to & \mathsf{V} \otimes \mathsf{V}^{\otimes n} \\ & x & \mapsto & \mathsf{1} \otimes x \end{array}$ 

or

We call this a *digital creation* operator: "creation of **0**". Other operations give *digital annihilation*, "deletion of **0**".

 $\begin{array}{rcl} a_{0}: & \mathsf{V}^{\otimes (n+1)} = \mathsf{V} \otimes \mathsf{V}^{\otimes n} & \to & \mathsf{V}^{\otimes n} \\ & & \mathsf{0} \otimes e_{1} \otimes \cdots \otimes e_{n} & \mapsto & e_{1} \otimes \cdots \otimes e_{n} \\ & & \mathsf{1} \otimes e_{1} \otimes \cdots \otimes e_{n} & \mapsto & \sum_{e_{i}=\mathsf{0}} e_{1} \otimes \cdots \otimes e_{i-1} \otimes \mathsf{1} \otimes \cdots \otimes e_{n} \end{array}$ 

Similarly a1.

Itsy bitsy topology

## Two curious maps

Adjoining an extra square (with a 0 or a 1) gives a map

$$egin{array}{rcl} a^*_{f 0}: & {f V}^{\otimes n} & 
ightarrow & {f V}\otimes {f V}^{\otimes n} \ & x & \mapsto & {f 0}\otimes x \end{array}$$

 $\begin{array}{rccc} a_1^*: & \mathsf{V}^{\otimes n} & \to & \mathsf{V} \otimes \mathsf{V}^{\otimes n} \\ & x & \mapsto & \mathsf{1} \otimes x \end{array}$ 

or

We call this a *digital creation* operator: "creation of **0**". Other operations give *digital annihilation*, "deletion of **0**".

 $\begin{array}{rcl} a_{0}: & \mathsf{V}^{\otimes (n+1)} = \mathsf{V} \otimes \mathsf{V}^{\otimes n} & \to & \mathsf{V}^{\otimes n} \\ & & \mathsf{0} \otimes e_{1} \otimes \cdots \otimes e_{n} & \mapsto & e_{1} \otimes \cdots \otimes e_{n} \\ & & \mathsf{1} \otimes e_{1} \otimes \cdots \otimes e_{n} & \mapsto & \sum_{e_{i}=\mathsf{0}} e_{1} \otimes \cdots \otimes e_{i-1} \otimes \mathsf{1} \otimes \cdots \otimes e_{n} \end{array}$ 

Similarly a1.

Itsy bitsy topology

## Two curious maps

Adjoining an extra square (with a 0 or a 1) gives a map

 $\begin{array}{rccc} a_1^*: & \mathsf{V}^{\otimes n} & \to & \mathsf{V} \otimes \mathsf{V}^{\otimes n} \\ & x & \mapsto & \mathbf{1} \otimes x \end{array}$ 

or

## We call this a *digital creation* operator: "creation of **0**". Other operations give *digital annihilation*, "deletion of **0**

$$\begin{array}{rcl} a_{\mathbf{0}}: & \mathbf{V}^{\otimes (n+1)} = \mathbf{V} \otimes \mathbf{V}^{\otimes n} & \to & \mathbf{V}^{\otimes n} \\ & \mathbf{0} \otimes e_{1} \otimes \cdots \otimes e_{n} & \mapsto & e_{1} \otimes \cdots \otimes e_{n} \\ & \mathbf{1} \otimes e_{1} \otimes \cdots \otimes e_{n} & \mapsto & \sum_{e_{i}=\mathbf{0}} e_{1} \otimes \cdots \otimes e_{i-1} \otimes \mathbf{1} \otimes \cdots \otimes e_{n} \end{array}$$

Similarly a1.

Itsy bitsy topology

## Two curious maps

Adjoining an extra square (with a 0 or a 1) gives a map

 $\begin{array}{rccc} a_1^*: & \mathsf{V}^{\otimes n} & \to & \mathsf{V} \otimes \mathsf{V}^{\otimes n} \\ & x & \mapsto & \mathbf{1} \otimes x \end{array}$ 

or

We call this a *digital creation* operator: "creation of **0**". Other operations give *digital annihilation*, "deletion of **0**".

Similarly a1.

Itsy bitsy topology

## Two curious maps

Adjoining an extra square (with a 0 or a 1) gives a map

 $\begin{array}{rccc} a_1^*: & \mathsf{V}^{\otimes n} & \to & \mathsf{V} \otimes \mathsf{V}^{\otimes n} \\ & x & \mapsto & \mathbf{1} \otimes x \end{array}$ 

or

We call this a *digital creation* operator: "creation of **0**". Other operations give *digital annihilation*, "deletion of **0**".

$$\begin{array}{rcccc} a_{\mathbf{0}}: & \mathbf{V}^{\otimes (n+1)} = \mathbf{V} \otimes \mathbf{V}^{\otimes n} & \to & \mathbf{V}^{\otimes n} \\ & \mathbf{0} \otimes e_{1} \otimes \cdots \otimes e_{n} & \mapsto & e_{1} \otimes \cdots \otimes e_{n} \\ & \mathbf{1} \otimes e_{1} \otimes \cdots \otimes e_{n} & \mapsto & \sum_{e_{i}=\mathbf{0}} e_{1} \otimes \cdots \otimes e_{i-1} \otimes \mathbf{1} \otimes \cdots \otimes e_{n} \end{array}$$

#### Similarly a1.

Itsy bitsy topology

## Two curious maps

Adjoining an extra square (with a 0 or a 1) gives a map

 $\begin{array}{rccc} a_1^*: & \mathsf{V}^{\otimes n} & \to & \mathsf{V} \otimes \mathsf{V}^{\otimes n} \\ & x & \mapsto & \mathsf{1} \otimes x \end{array}$ 

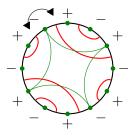
or

We call this a *digital creation* operator: "creation of **0**". Other operations give *digital annihilation*, "deletion of **0**".

$$\begin{array}{rcccc} a_{\mathbf{0}}: & \mathbf{V}^{\otimes (n+1)} = \mathbf{V} \otimes \mathbf{V}^{\otimes n} & \to & \mathbf{V}^{\otimes n} \\ & \mathbf{0} \otimes e_{1} \otimes \cdots \otimes e_{n} & \mapsto & e_{1} \otimes \cdots \otimes e_{n} \\ & \mathbf{1} \otimes e_{1} \otimes \cdots \otimes e_{n} & \mapsto & \sum_{e_{i}=\mathbf{0}} e_{1} \otimes \cdots \otimes e_{i-1} \otimes \mathbf{1} \otimes \cdots \otimes e_{n} \end{array}$$

Similarly a1.

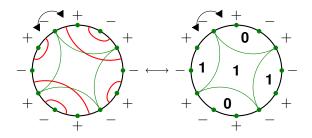
Itsy bitsy topology



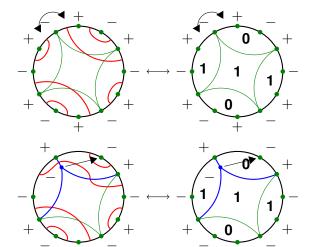


Itsy bitsy topology

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

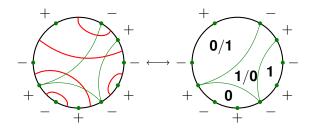


Itsy bitsy topology



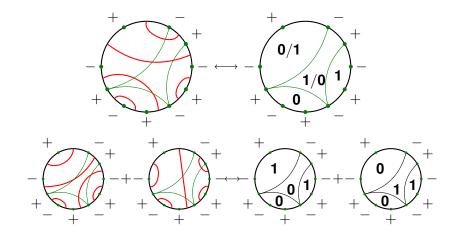
Itsy bitsy topology

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ



Itsy bitsy topology

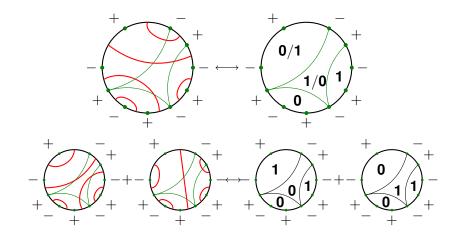
# An example



▲□▶▲□▶▲□▶▲□▶ □ のへで

Itsy bitsy topology

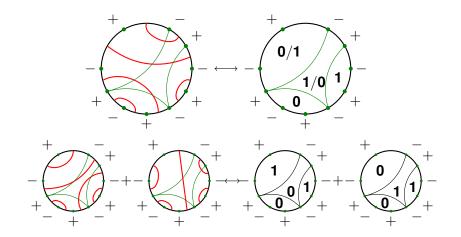
# An example



Result  $\mathbf{0} \otimes \mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1} \otimes \mathbf{0} \mapsto (\mathbf{1} \otimes \mathbf{0} + \mathbf{0} \otimes \mathbf{1}) \otimes \mathbf{1} \otimes \mathbf{0}$ .

Itsy bitsy topology

## An example



 $\begin{array}{l} \text{Result } \mathbf{0}\otimes\mathbf{1}\otimes\mathbf{1}\otimes\mathbf{1}\otimes\mathbf{0}\mapsto(\mathbf{1}\otimes\mathbf{0}+\mathbf{0}\otimes\mathbf{1})\otimes\mathbf{1}\otimes\mathbf{0}. \\ \text{I.e. } a_{\mathbf{1}}\otimes\mathbf{1}^{\otimes 2}. \end{array}$ 

Itsy bitsy topology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## A structure theorem for SQFT

#### Theorem (M.)

Any map of vector spaces in SQFT (over  $\mathbb{Z}_2$ ) is a composition of digital creation and generalised digital annihilation operators.

#### Corollary

Any map SFH( $\Sigma \times S^1, F \times S^1$ )  $\rightarrow$  SFH( $\Sigma' \times S^1, F' \times S^1$ ) induced by a surface inclusion is a composition of digital creation and generalised digital annihilation operators.

Itsy bitsy topology

# A structure theorem for SQFT

#### Theorem (M.)

Any map of vector spaces in SQFT (over  $\mathbb{Z}_2$ ) is a composition of digital creation and generalised digital annihilation operators.

#### Corollary

Any map  $SFH(\Sigma \times S^1, F \times S^1) \rightarrow SFH(\Sigma' \times S^1, F' \times S^1)$ induced by a surface inclusion is a composition of digital creation and generalised digital annihilation operators.

・ロト・雪・・雪・・雪・・ 白・ 今々ぐ

#### Maps in SQFT can be interpreted as

- Creating/annihilating "particles" in occupied squares
- Manipulating binary information/"qubits" on each square. Itsy and bitsy...

- It's possible to construct some analogous objects to "quantum logic gates" (over Z<sub>2</sub>...)
- Similar to topological quantum computation via anyons.
- A quadrangulation of (Σ, *V*) gives Σ the structure of a *ribbon graph*:
  - squares of quadrangulation ~> vertices
  - edges of quadrangulation ~> edges

Maps in SQFT can be interpreted as

- Creating/annihilating "particles" in occupied squares
- Manipulating binary information/"qubits" on each square. Itsy and bitsy...

- It's possible to construct some analogous objects to "quantum logic gates" (over Z<sub>2</sub>...)
- Similar to topological quantum computation via anyons.
- A quadrangulation of (Σ, *V*) gives Σ the structure of a *ribbon graph*:
  - squares of quadrangulation ~-> vertices
  - edges of quadrangulation ~> edges

Maps in SQFT can be interpreted as

- Creating/annihilating "particles" in occupied squares
- Manipulating binary information/"qubits" on each square. Itsy and bitsy...

- It's possible to construct some analogous objects to "quantum logic gates" (over Z<sub>2</sub>...)
- Similar to topological quantum computation via anyons.
- A quadrangulation of (Σ, *V*) gives Σ the structure of a *ribbon graph*:
  - squares of quadrangulation ~-> vertices
  - edges of quadrangulation ~> edges

Maps in SQFT can be interpreted as

- Creating/annihilating "particles" in occupied squares
- Manipulating binary information/"qubits" on each square. Itsy and bitsy...

- It's possible to construct some analogous objects to "quantum logic gates" (over Z<sub>2</sub>...)
- Similar to topological quantum computation via anyons.
- A quadrangulation of (Σ, V) gives Σ the structure of a ribbon graph:
  - squares of quadrangulation ~> vertices
  - edges of quadrangulation ~> edges

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Further, a sutured quadrangulated surface gives a ribbon graph with:

- a number of points where sutures intersecting each edge
- a *diagram connecting points* on each vertex

Very reminiscent of *spin networks*, *diagrammatic representation theory*, *categorification*, etc...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

# Thanks for listening.