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Dimensionally reduced sutured Floer homology
as a string homology

DANIEL V MATHEWS

ERIC SCHOENFELD

We show that the sutured Floer homology of a sutured 3–manifold of the form .D2�

S1;F�S1/ can be expressed as the homology of a string-type complex, generated by
certain sets of curves on .D2;F / and with a differential given by resolving crossings.
We also give some generalisations of this isomorphism, computing “hat” and “infinity”
versions of this string homology. In addition to giving interesting elementary facts
about the algebra of curves on surfaces, these isomorphisms are inspired by, and
establish further, connections between invariants from Floer homology and string
topology.

57M50; 57R58, 57M27

1 Introduction

On the one hand, this paper is about an interesting combinatorial/topological fact
about curves on surfaces. On the other hand, it establishes some connections between
invariants of 3–manifolds from contact topology, Floer homology and string topology.

1A A combinatorial question about curves on surfaces

We consider the following simple question. Fix an oriented surface † and a finite set
of signed points F on @†. Consider sets s of oriented immersed curves on † with
signed boundary @s D F. These sets of curves, which we call string diagrams, consist
of immersed closed curves and immersed arcs with boundary points on F. Take the
Z2 –vector space spanned by homotopy classes of string diagrams. (Several meanings
of “homotopy” are possible here, as we will see.) On this vector space, there is a
differential @ defined by resolving crossings, as shown in Figure 1.

One can show that, with appropriate definitions of the words above, this is a chain
complex, and hence has a homology, which we call string homology. (Notwithstanding
other uses of this word; see Chas and Sullivan [1].) The question is: what is the
homology? We will give some answers to this question for two variants of the definitions,
which we shall define in due course, and which we shall argue are the only variants
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Figure 1: Resolving a crossing

C C D 0

Figure 2: Bypass relation

for which the question is a reasonable one. The two chain complexes will be calledcCS.†;F / and CS1.†;F /, and their homologies cHS.†;F / and HS1.†;F /.

The answer appears to be that (i) homology is zero unless F is alternating, ie the
points alternate in sign around @†; (ii) any element of homology can be represented
by string diagrams which are sets of sutures; and (iii) the “only” relation between sets
of sutures in this homology is the bypass relation introduced by Honda, Kazez and
Matić [13] and developed by the first author [24; 25; 26; 27], shown in Figure 2.

The simplest illustration of the “reason” for this relation (far from a proof, of course)
is Figure 3.

@ D C C

Figure 3: The bypass relation is a boundary.

In this paper we will prove the above results when † is a disc D2 , and some partial
results for a general surface †.

Theorem 1.1 If F contains two consecutive distinct points of the same sign, thencHS.†;F /D HS1.†;F /D 0.

When F contains two such consecutive points of the same sign, of course, F is not
alternating. And if † is a disc, then any non-alternating F has two consecutive points
of the same sign. But in general, there remain cases of non-alternating F not covered
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by the above theorem; the remaining cases arise when there are boundary components
of † with exactly one point of F. We conjecture that cHS.†;F /D HS1.†;F /D 0

in these cases also.

Theorem 1.2 If F alternates in sign, then

cHS.D2;F /Š
Z2hisotopy classes of sutures on .D2;F /i

bypass relation

and HS1.D2;F /Š Z2ŒU;U
�1�˝cHS.D2;F /.

As the notation here suggests, the “1–complex” CS1 has a “U–map” and indeed the
notation is by analogy with Floer homology; see Sections 2 and 3F below. We will
discuss the various structures preserved by these isomorphisms as we proceed.

1B Relations between Floer-theoretic invariants

The above combinatorial question about curves on surfaces is in fact motivated by
relations between several invariants of 3–manifolds. In particular, it sheds light on the
correspondence between SFH (sutured Floer homology) and ECH (embedded contact
homology) for 3–manifolds with sutured boundary of the form .† � S1;F � S1/,
where † is a surface with boundary and F is a finite subset of @†. Because such
a 3–manifold is then “reduced” to a product of a surface and a circle, this can be
considered as a dimensionally reduced version of SFH.

It has long been believed that several Floer-theoretic invariants associated to a closed
oriented 3–manifold M are equivalent: Heegaard Floer homology HF (as defined
by Ozsváth and Szabó beginning in [28; 29]), embedded contact homology ECH (as
defined by Hutchings in [14]), and Seiberg–Witten Floer homology HM (as defined
by Kronheimer and Mrowka in [17]). All of these invariants come in various flavours,
for instance cHF, HFC , HF� , HF1 . Recent work of Kutluhan, Lee and Taubes, in
a series of 5 papers running to well over 750 pages [18; 19; 20; 21; 22], asserts a
proof of these equivalences, in their various flavours, for closed connected oriented
3–manifolds. Independent work of Colin, Ghiggini and Honda [4], also running into
hundreds of pages (summarised in [4], details in [3; 5; 6; 7]), asserts a proof of similar
equivalences between HF and ECH, avoiding Seiberg–Witten theory and using open
books.

These correspondences are expected to apply, with appropriate modifications, also to
3–manifolds with boundary. Although there is a theory of bordered Heegaard Floer
homology for general 3–manifolds with boundary Lipshitz, Ozsváth and Thurston [23],
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the more restricted class of sutured 3–manifolds plays a natural role in both Heegaard
Floer homology and embedded contact homology. Sutured Floer homology SFH, as
defined by Juhász [15], is a generalisation of cHF to sutured 3–manifolds. Analogously,
Colin, Ghiggini, Honda and Hutchings [8] have given a definition of ECH for sutured
3–manifolds.

This paper explores the HF–ECH correspondence, in a combinatorial form, in the
particular case of sutured manifolds of the product form .†�S1;F �S1/, where †
is a compact oriented surface with nonempty boundary. Previous work of the authors
and others has considered these two (or, in the case of ECH, only similar) homology
theories in a combinatorial form, and in this paper we show these two combinatorial
forms are related.

Regarding SFH, in a series of papers [24; 25; 26; 27] the first author gave several
combinatorial descriptions of various SFH.†�S1;F�S1/ in terms of a diagrammatic
calculus of chord diagrams or more generally sutures.

On the ECH side, recall that ECH of a 3–manifold is constructed by choosing a
contact structure and counting certain holomorphic curves in the symplectization.
When that contact 3–manifold is closed, there is another holomorphic curve theory,
called symplectic field theory, due to Eliashberg, Givental and Hofer, developed in [9].
Consider the special case when the 3–manifold is the unit cotangent bundle of a
hyperbolic surface U T �†. In [2], Cieliebak and Latschev proved that the only relevant
nontrivial holomorphic curves in this context correspond to resolving intersections
between geodesics on †, as in Figure 1. In [10; 31], Goldman and Turaev discovered
the structures of a Lie bracket and cobracket on the space of geodesics by considering
the same resolutions of intersection points. All of the SFT invariants in this case can
then be described in terms of these combinatorial operations on the base †. Indeed this
is expected to be just a special case of a general relation between the SFT invariants
of T �M for any closed manifold M , and the string topology of M , as discovered by
Chas and Sullivan in [1].

Relating back to ECH, the holomorphic curves considered in this special case include
those counted in the ECH of the unit cotangent bundle U T �†, given a very particular
choice of contact and complex structure. Thus one might expect the ECH to be
expressible in terms of these same combinatorial operations on geodesics.

Based on the above, we might make the following plausibility argument. When † is
a compact oriented surface with boundary, U T �† Š †�S1 , and taking “vertical”
sutures � DF �S1 � @†�S1 (where F � @† is a finite set of signed points) gives a
reasonable boundary structure for Reeb chords and corresponding holomorphic curves
which, following [8], would require Reeb chords to flow in or out of † according to
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the signed components of @†nF. The ECH complex might then, from the discussion
above, be generated by homotopy classes of collections of curves in † (ie string
diagrams), with a differential related to the Goldman bracket. On the other hand,
according to the first author’s work, the SFH complex should be generated by isotopy
classes of sutures on .†;F /, modulo a bypass relation. Thus there should be an
isomorphism between the homology of a complex generated by curves on † with a
differential determined by resolving crossings, and a vector space of sutures on .†;F /
modulo a bypass relation, which is also SFH.†�S1;F �S1/.

The theorems of this paper confirm some of these ideas, and we have the following
result for discs.

Theorem 1.3 Let .D2;F / be a sutured background disc. Then, with Z2 coefficients,cHS.D2;F /Š SFH.D2
�S1;F �S1/:

The first author has shown that SFH.†�S1;F �S1/ is isomorphic to the Z2 –vector
space generated by isotopy classes of sets of sutures on .†;F /, modulo the bypass
relation. (This was shown in [24] for † D D2 , and for general surfaces it follows
immediately combining results there with a theorem of Juhász [16]. It also follows
immediately from results of [27].) From these results, Theorem 1.3 follows immediately
from Theorem 1.2.

The chain complexes cCS.†;F / and CS1.†;F / considered here possess several
natural gradings, and our isomorphisms preserve some of them. Sets of sutures have
an Euler class, and under our isomorphisms, this grading corresponds to the grading
by spin-c structure in sutured Floer and Heegaard Floer homology. String diagrams
are also naturally filtered by the (minimal) number of intersections between curves in
a diagram; the differential decreases the number of intersections. Since, as described
above, all homology classes in string homology are represented by sutures, which have
no intersections, all homology is carried in intersection-filtration level 0.

The Z2 –vector space SFH.†�S1;F �S1/ can also be described as a tensor power
of a fundamental two-dimensional vector space, which in [27] was given basis f0; 1g
following an analogy with quantum information theory. (Note 0 ¤ 0!) It follows
immediately from [27] that SFH.†�S1;F �S1/ is isomorphic to the .n��.†//th

tensor power of this fundamental vector space Z20˚Z21 (where jF j D 2n); that
paper also describes in detail how to interpret the “qubit” elements of this vector space
as sets of sutures. The isomorphism, without this interpretation, was shown earlier by
Honda, Kazez, Matić [13]. Thus the above theorem also amounts to showing thatcHS.D2;F /Š .Z20˚Z21/˝.n�1/:
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Our notion of string homology applies more broadly than to surfaces with sutures.
When we speak of a surface † with signed points F on the boundary, the points of F

only make sense for sutures if the signs of points of F alternate around each boundary
component. We allow more general sets F, which we call markings, as long as each
boundary component has at least one point, and there are the same number of points
of each sign. In this case string homology is well defined, although sutures are not.
Theorem 1.1 shows that both cHS and HS1 are trivial in this case; and this is true not
just for discs but for general †.

Although embedded contact homology plays a strong role in the motivations of this
paper, none of the theorems directly assert an isomorphism with ECH. This is partly
because of the well-known difficulties in considering holomorphic curves near the
boundary of the symplectization of a contact 3–manifold with boundary. It is also partly
because the situation of .†�S1;F �S1/ is closer to the situation of Golovko [11]
than the situation of cotangent bundles considered by Cieliebak and Latschev in [2] and
by the second author in [30]. Our string complex appears to require Reeb chords as well
as closed Reeb orbits in ECH considerations. This is a matter for further investigation.

This paper is organised as follows. In Section 2 we define our basic concepts, includ-
ing markings, sutures, string diagrams, and various forms of homotopy, importantly
including spin homotopy. In Section 3 we define the string complexes CS1 and cCS.
We consider their gradings, discuss bypasses and the U map, and are then able to state
our main theorems precisely. In Section 4 we prove various properties of the string
complexes, prove that they are well defined, and argue why our choices of definitions
for CS1 and cCS are appropriate. In Section 5 we consider non-alternating markings
and show that in this case homology is zero. In Section 6 we extend the notion of Euler
class to general string diagrams on discs. In Section 7 we define operators on the string
complexes which are crucial for the proof. Then in Section 8 we prove the theorem
for cHS, and in Section 9 for HS1 .

2 String diagrams

2A Markings, sutures and string diagrams

Throughout, let † be a compact oriented surface with nonempty boundary.

Definition 2.1 A marking F on † is a set of 2n points on @†, where n � 1, with
n points labelled “in” and the other n points labelled “out”, and at least one point
on each component of @†. The pair .†;F / is called a marked surface. Write Fin

and Fout for the corresponding points of F.
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Note different boundary components may have different (but always nonzero) numbers
of points of F. Also, a boundary component may have a different number of “in” and
“out” points.

Definition 2.2 A marking F on † is alternating if, in order around each component
of @†, the points of F are labelled (in, out, . . . , in, out).

An alternating marked surface .†;F / has the structure of a sutured background, as
in [25; 27]. (Compare the terminology of [33].) As defined in [27], this means that
we can write @†nF D CC tC� , where C˙ is a collection of oriented arcs, C˙ is
oriented as ˙@†, and @C˙D�F as signed points; so the arcs of CC and C� alternate
around @†. We will use both “alternating marking” and “sutured background” in this
paper; the terms are synonymous.

An alternating .†;F / is the boundary structure for a set of sutures on †. Roughly
speaking, a set of sutures on .†;F / is a properly embedded set of curves � with
oriented boundary F and cutting † coherently into positive and negative regions R˙ .
Our definition follows [27].

Definition 2.3 A set of sutures � on .†;F / is a properly embedded oriented 1–
submanifold of † with @� D F such that

(1) †n� DRC[R� , where R˙ are surfaces oriented as ˙†;

(2) @R˙n@†D � as oriented 1–manifolds;

(3) for every component C of @†, C \� ¤∅.

The pair .†; �/ is called a sutured surface.

In particular, as we cross � we proceed from RC to R� or vice versa. A component
of � is called a suture. At each point of @� D F, precisely one suture either enters or
exits †, according to the labelling on F. The arcs C˙ of the sutured background lie
in the boundary of R˙ ; specifically, @R˙ D C˙[� .

Thus, given a sutured background .†;F / we may consider sets of sutures � on †
such that @� D F; as such, � “fills in” .†;F /.

As a generalisation of sutures, allowing curves to intersect and allowing a non-alternating
marked surface as boundary data, we make the following definition.

Definition 2.4 A string diagram s on the marked surface .†;F / is an immersed
oriented 1–manifold in †, such that @s D F (as signed points).
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That is, arcs of a string diagram run from Fin to Fout . Generically a string diagram
contains only transverse double intersections; this is general position. When a string
diagram has no crossings and the complementary regions may be coherently oriented,
it forms a set of sutures.

When needed, the string diagram s can be given as an explicit immersion

sW

lG
iD1

S1
t

mG
iD1

Œ0; 1�! .†;F /;

where there are l arcs and m closed curves in s . In practice we often abuse notation
and identify this immersion with its image in †.

2B Homotopy of string diagrams

Several types of homotopy are useful for string diagrams. Note that the arcs and
closed curves of a string diagram are oriented; these orientations are respected under
homotopies.

Firstly, two string diagrams s0; s1 are homotopic if there is a homotopy relative to
endpoints from s0 to s1 . Such a homotopy may introduce or remove intersections in the
diagram, including self-intersections. We do not require that the homotopy be through
immersions; thus the two string diagrams s0; s1 shown in Figure 4 are homotopic. For
any homotopy st from s0 to s1 which changes the writhe of the string, a singularity
will occur.

 !

s0 s1

Figure 4: Type I string Reidemeister move

Secondly, two string diagrams s0; s1 are regular homotopic if they are homotopic
relative to endpoints through immersions. The two string diagrams of Figure 4 are
not regular homotopic. A theorem of Whitney states that closed curves in the plane
are regular homotopic if and only if they are homotopic and have the same winding
number [32].

A homotopy st between two string diagrams s0; s1 is an ambient isotopy if it arises
from an isotopy of diffeomorphisms F W †� Œ0; 1�!† which hold @† constant (ie
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each Ft W †� ftg !† is a diffeomorphism, F0 is the identity, and st D Ft ı s0 , and
for any x 2 @†, Ft .x/D x ). In an ambient isotopy of string diagrams, no crossings
are altered; the strings move around the surface together. An ambient isotopy induces
an isotopy relative to the boundary of the images of the immersions s0; s1 , regarded as
graphs on †.

Obviously every ambient isotopy of string diagrams is a regular homotopy, and every
regular homotopy of string diagrams is a homotopy.

Any string diagram is homotopic to one in general position, ie which has only transverse
double intersection points. Just as for knot projections, two homotopic string diagrams in
general position are related by a sequence of ambient isotopies and string Reidemeister
moves, as shown in Figures 5 and 6. Note that as string diagrams are oriented, there
are two versions of the type II and III moves.

 !  !

Figure 5: Type II string Reidemeister moves

 !  !

Figure 6: Type III string Reidemeister moves

Similarly, any string diagram is regular homotopic to one in general position, and two
regular homotopic string diagrams are related by a sequence of ambient isotopies and
string Reidemeister moves of type II and III (not type I, which changes winding number
and regular homotopy class).

For example, when †DD2 , any string diagram without closed curves is homotopic
to one consisting of straight line chords between points of F. Any string diagram
without closed curves is regular homotopic to one consisting of chords, each with a
fixed number of whirls giving the correct winding number. The ambient isotopy classes
of string diagrams on D2 are much more complicated, since in general string diagrams
can have curves intersecting obnoxiously.
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2C Spin homotopy

For our purposes it will be useful to define a notion of “spin homotopy”, which is
closely related to regular homotopy. Roughly, a spin homotopy of string diagrams is a
regular homotopy, but it also allows type I Reidemeister moves, putting “whirls” in
the strings, and altering the winding number of a string, as long as the total change in
winding number is zero.

First, consider the operation, a type I Reidemeister move, of taking an embedded
arc which forms part of a string diagram, and putting a “whirl” there (see Figure 4).
Since the strings of a string diagram are oriented, that “whirl” may run clockwise or
anticlockwise, changing the winding number of the string by �1 or C1 respectively.
We call that type I Reidemeister move negative or positive accordingly.

Definition 2.5 A balanced type I Reidemeister move on a string diagram s consists
of taking two disjoint embedded arcs a�; aC , in s , performing a negative type I
Reidemeister move on a� , and a positive type I Reidemeister move on aC .

(Note the two arcs a�; aC may lie on the same immersed curve of s , or not.) A
balanced type I Reidemeister move is shown in Figure 7.

 !

Figure 7: Balanced type I string Reidemeister move

Definition 2.6 A spin homotopy of string diagrams is a homotopy which can be
expressed as a sequence of

(1) ambient isotopies,

(2) type II string Reidemeister moves,

(3) type III string Reidemeister moves,

(4) balanced type I Reidemeister moves.

Thus a regular homotopy that never uses type I Reidemeister moves is a spin homotopy.
Similarly, a spin homotopy is a homotopy. There are inclusions

ambient isotopy� regular homotopy� spin homotopy� homotopy:
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Given two homotopic string diagrams s0; s1 , there exists a unique integer n such that
introducing n whirls into s0 (at any possible locations) to obtain a string diagram s0

0
,

the string diagrams s0
0
; s1 are spin homotopic. We call this integer n the relative

winding of s1 with respect to s0 . Spin homotopic string diagrams have relative winding
of 0.

When † is a disc, we can in fact replace the notion of “relative” with “absolute”
winding. In Section 6 we will assign an integer e.s/ to a general string diagram s on a
disc, such that e.s1/� e.s0/ is the relative winding of s1 with respect to s0 . In the
case that s is a set of sutures � , we will show that this e.�/ is the Euler class of s ,
which is defined as e.�/D �.RC/��.R�/. We will also call e.s/ the Euler class
of the string diagram. So, on D2 , a homotopy class of string diagrams splits into a
countable infinity of spin homotopy classes, which are indexed precisely by the Euler
class.

3 The string complex

3A Definition of the complex

Definition 3.1 Given a marked surface .†;F /, we define the following vector spaces
over Z2 :

(1) CS1.†;F / is freely generated by spin homotopy classes of string diagrams on
.†;F /.

(2) cCS.†;F / is freely generated by homotopy classes of string diagrams on .†;F /
which contain no contractible closed curves.

Since a spin homotopy is a homotopy, there is a natural map pW CS1.†;F / !cCS.†;F / which is the identity on string diagrams without contractible closed curves,
and sends string diagrams with contractible closed curves to 0.

For example, when †DD2 and jF j D 2n, dim cCS.†;F /D n!, and CS1.†;F / is
infinite-dimensional.

3B Grading by intersections

Both CS1 and cCS are naturally graded according to number of intersections of the
curves in a string diagram. A string diagram s in general position has a finite number of
crossings. If we consider the homotopy class of s then there is a string diagram in that
class which has a minimal number of crossings, which we denote by yI.s/. Similarly,
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if we consider the spin homotopy class of s there is a minimal number of crossings,
which we denote by I1.s/.

A nonzero element v 2 CS1.†;F / can be written as a finite sum v D
P

j sj , where
sj is a string diagram up to spin homotopy. We define I1.v/Dmaxj I1.sj /, and let
CS1i .†;F / be the free Z2 –vector space generated by (spin homotopy classes of) dia-
grams s with I1.s/D i . Similarly, v 2cCS.†;F / can be written as vD

P
j sj , where

sj are string diagrams without contractible loops up to homotopy. We let yI.v/ D
maxj

yI.sj /, and let cCSi.†;F / be spanned by (homotopy classes of) diagrams with
yI.s/D i . We also set I1.0/D yI.0/D�1 for completeness. We then have

CS1.†;F /D
M
i�0

CS1i .†;F /; cCS.†;F /D
M
i�0

cCSi.†;F /;

and the map pW CS1.†;F /!cCS.†;F / decreases grading: yI.p.v//� I1.v/.

Among the string diagrams with 0 crossings are those string diagrams which are sets
of sutures, ie when the curves cut .†;F / into coherently oriented regions. A string
diagram s may be spin homotopic to a set of sutures; if so, that set of sutures is unique.
We write CS1sut.†;F / for the subspace of CS10 .†;F / generated by spin homotopy
classes of sets of sutures. Isotopy classes of sutures form a basis for CS1sut.†;F /.

Similarly, a string diagram s may be homotopic to a set of sutures, and if so that set of
sutures is unique. We define cCSsut.†;F / for the subspace of cCS0.†;F / generated
by homotopy classes of sutures without contractible closed curves. The isotopy classes
of sutures without contractible loops form a basis for cCSsut.†;F /.

3C Grading by Euler class

As noted above, when † D D2 , we will define an Euler class e.s/ of a string dia-
gram s , which is constant on spin homotopy classes (but not on homotopy classes in
general). This gives another grading on CS1.D2;F / (but not on cCS.D2;F /). We
write CS1e .D

2;F / for the span of (spin homotopy classes of) string diagrams of Euler
class e , and CS1e;i.D

2;F / for the span of (spin homotopy classes of) string diagrams s

with Euler class e and I1.s/D i . Then

CS1.D2;F /D
M
e2Z

CS1e .D
2;F /D

M
e2Z

M
i�0

CS1e;i.D
2;F /;

CS1i .D
2;F /D

M
e2Z

CS1e;i.D
2;F /

Restricting to sets of sutures, the Euler class gives a grading on CS1sut.D
2;F /. Writing

CS1sut;e.D
2;F / for the span of sutures of Euler class e we have CS1sut.D

2;F / DL
e2Z CS1sut;e.D

2;F /.
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As we will define it, the Euler class is not well defined on homotopy classes of sutures,
hence not on cCS.D2;F /. But the Euler class is well defined on sutures; and if a string
diagram is homotopic to a set of sutures, then the set of sutures is unique. So we obtain
a grading cCSsut.D

2;F /D
L

e2Z
cCSsut;e.D

2;F /.

3D Bypass triples of sutures

There are distinguished triples of sets of sutures on .†;F / known as bypass triples.
In [12], Honda introduced a contact-geometric operation known as bypass addition,
which has the effect of performing an operation on a dividing set on a convex surface.
Dividing sets can be regarded as sutures, and the operation on sutures is called bypass
surgery.

Bypass surgery consists of taking an embedded disc D in a sutured surface .†; �/, such
that D\� consists of 3 disjoint parallel arcs, and rotating the sutures by 60 degrees as
shown in Figure 2. This rotation of sutures can be done in two possible ways, known
as upwards or downwards bypass surgery. Bypass surgery on a string diagram may
produce more or less closed sutures, but the result is always a set of sutures. Any two
sets of sutures related by bypass surgery determine a third set of sutures related to both.

Bypass surgery is an order 3 operation, and sets of sutures related by bypass surgery
along the same D come in triples, called bypass triples. A bypass triple of sutures
�1; �2; �3 on .†;F / can be regarded as an element �1C �2C �3 of CS1sut.†;F /

or of cCSsut.†;F / (setting sutures with closed loops equal to zero, using the map
pW CS1.†;F /!cCS.†;F /, which takes CS1sut.†;F / to cCSsut.†;F /).

Definition 3.2 (1) Byp1.†;F / is the Z2 –vector subspace of CS1sut.†;F / spanned
by bypass triples.

(2) The Z2 –vector space bByp.†;F / is the subspace of cCSsut.†;F / spanned by
bypass triples.

Obviously p.Byp1.†;F //DbByp.†;F /.

We note that bypass triples are defined not just for sutures, but for string diagrams in
general: there is a more general notion of bypass surgery.

3E Resolving crossings and differential

Since the curves of a string diagram s are oriented, any transverse double crossing x

of s has a natural resolution; see Figure 1. After this resolution we have a string
diagram, well defined up to ambient isotopy, with one fewer crossings, which we
denote by rx.s/. This resolution may add or remove curves to or from s .
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The idea is to set, for a string diagram s ,

@.s/D
X

x crossing of s

rx.s/:

This is a formal sum of string diagrams. Each rx.s/ is well defined up to ambient
isotopy, hence up to spin homotopy and up to homotopy of string diagrams. We
will prove (Lemma 4.1) that @ is actually well defined on homotopy classes of string
diagrams without contractible loops, and on spin homotopy classes of string diagrams
in general. Hence we will obtain a well-defined linear map @ on both CS1.†;F / andcCS.†;F /, which decreases the intersection gradings I1 , yI .

Consider @2.s/; this is the sum of string diagrams obtained by resolving ordered
pairs of double points. Obviously the diagram obtained by resolving crossing x then
crossing y is ambient isotopic to the diagram obtained by resolving y then x ; so,
once we have proved @ is well defined, it’s clear @2 D 0 on both CS1.†;F / andcCS.†;F /. It will then follow that the homologies HS1.†;F /DH.CS1.†;F /; @/
and cHS.†;F /DH.cCS.†;F /; @/ are well defined.

We will also (Section 4C) show why @ does not define a differential on other similar
vector spaces of string diagrams; for instance, not on regular homotopy classes of string
diagrams. This motivates our particular chain complexes.

Once we have defined the Euler class of a string diagram on D2 , it will not be difficult
to show that the differential preserves the Euler class, so that

HS1.D2;F /D
M

e

HS1e .D
2;F /; where HS1e .D

2;F /DH.CS1e .D
2;F /; @/:

3F The U map

In the HF1 version of Heegaard Floer theory, there is a U map; and likewise in ECH.
This map has the effect of changing grading, and counts some type of intersection.
The resulting algebraic objects essentially become ZŒU;U�1�–modules. Something
roughly analogous happens with HS1 and we will name the map obtained U .

Consider the spin homotopy class of a string diagram s on a marked surface .†;F /.
By definition, within this class we can perform ambient isotopies, type II and III
string Reidemeister moves, and balanced type I string Reidemeister moves. The U

map simply performs “unbalanced” type I string Reidemeister moves, adding two
anticlockwise whirls. Since s is only defined up to spin homotopy, this anticlockwise
“whirl” may be added anywhere in the diagram, and the result is well defined up to spin
homotopy. Similarly, the U�1 map adds two clockwise whirls. It’s not difficult to see
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that applying U and then U�1 to s results in a string diagram spin homotopic to s . On
D2 , we will see that U n adjusts the Euler class of s by 4n, ie e.U ns/D e.s/C 4n.
(However, in HF1 the U map leaves the spin-c grading unchanged, and changes the
Maslov grading by �2 or �1 depending on the definition: [29].)

It may seem somewhat curious that the U map is given by adding two whirls. However
we will see in Section 9A that adding a single “whirl” gives a string diagram that is
zero in homology.

In any case, there is a Z2ŒU;U
�1� action on CS1.†;F / so it becomes a Z2ŒU;U

�1�–
module. We will show that this in fact descends to an action on homology, so that
HS1.†;F / is a Z2ŒU;U

�1�–module. Also CS1sut.†;F / and Byp1.†;F / can be
regarded as Z2ŒU;U

�1�–modules, respectively generated by sutures and bypass triples.
Note however that applying U to a set of sutures results in a string diagram that is no
longer a set of sutures; when we consider these spaces it will always be over Z2ŒU;U

�1�

and so this larger class of diagrams will be considered.

3G Statements of main theorems

Our main theorems are descriptions of the above homologies. They clearly include the
statements in the introduction.

Theorem 1.1 states that HS1.†;F /DcHS.†;F /D0 when F contains two consecutive
distinct points of the same sign; this is now a precise statement. We can state Theorems
1.2 and 1.3 in full generality.

Theorem 3.3 Let .D2;F / be an alternating marked disc with jF j D 2n. ThencHS.D2;F /Š SFH.D2
�S1;F �S1/Š .Z20˚Z21/˝.n�1/;

where the isomorphism cHS.D2;F /Š SFH.D2 �S1;F �S1/ is induced by the map
which sends a set of sutures � to the contact element of the corresponding contact
structure on .D2 �S1;F �S1/.

Moreover:
(1) Any nonzero homology class in cHS.D2;F / is represented by a linear combina-

tion of string diagrams which are sets of sutures on .D2;F /; in other words, the
map cCSsut.D

2;F / ,! ker @! cHS.D2;F /

induced by inclusions and quotient by boundaries is surjective. The kernel of
this map is precisely the span of bypass triples, hence

cHS.D2;F /Š
cCSsut.D

2;F /

bByp.D2;F /
:
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(2) The above isomorphisms restrict to Euler graded summandscHSe.D
2;F /Š SFHe.D

2
�S1;F �S1/Š

M
ei2f0;1g
#1�#0De

e1˝ � � �˝ en;

and cHSe.D
2;F /Š

cCSsut;e.D
2;F /

bBype.D2;F /
:

The description of HS1 is similar, but with the U map giving extra structure. In
essence, we just take the previous answer and allow everything to be multiplied by
powers of U ; this amounts to tensoring with Z2ŒU;U

�1�.

Theorem 3.4 Let .D2;F / be an alternating marked disc with jF j D 2n. Then

HS1.D2;F /D Z2ŒU;U
�1�˝cHS.D2;F /:

In particular:

(1) Any nonzero homology class in HS1.D2;F / is represented by a Z2ŒU;U
�1�–

linear combination of string diagrams which are sets of sutures on .D2;F /. We
have, as Z2ŒU;U

�1�–modules,

HS1.D2;F /Š
CS1sut.D

2;F /

Byp1.D2;F /
Š Z2ŒU;U

�1�˝

�cCSsut.D
2;F /

bByp.D2;F /

�
:

(2) Over Z2 , HS1.D2;F / decomposes over powers of U , and over Euler class, as

HS1.D2;F /Š
M
j2Z

U j cHS.D2;F /Š
M
j2Z

M
e2Z

U j cHSe.D
2;F /;

HS1e .D
2;F /Š

M
j2Z

U j cHSe�4j .D
2;F /Š

M
j2Z

U j
cCSsut;e�4j .D

2;F /

bBype�4j .D2;F /
:

At this stage we may note the following:

(1) In HS1.D2;F /, any string diagram s with a contractible loop is zero.

(2) The decompositions in (ii) are pure algebraic manipulations, since Z2ŒU;U
�1�DL

j2Z U j Z2 . We also use the fact that U raises Euler class by 4 in the second
set of decompositions.

In essence, in both variants of HS all homology lies in sutures, and the only relation
between these sutures is the bypass relation.
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In [24] the first author defined a vector space SFHcomb.T; n/ to be the Z2 –vector space
generated by chord diagrams on the disc, which are sutures without closed curves
(ie cCSsut.D

2;F /), modulo the bypass relation:

SFHcomb.T; n/D
cCSsut.D

2;F /

bByp.D2;F /
:

The first author gave a natural basis of chord diagrams/sutures for this space, and a
natural partial order on this basis; described general chord diagrams with respect to this
basis; related the various spaces SFHcomb.T; n/ via various operators; and considered
relations to contact geometry, category theory, and sutured Floer homology. In particular,
SFHcomb.T; n/Š SFH.T; n/, the (Z2 ) sutured Floer homology of the solid torus T

with n pairs of longitudinal sutures. In [25] these considerations were extended to
Z coefficients, and in [27] to general surfaces .†;F /. The above isomorphisms can
be regarded as another type of combinatorial description of sutured Floer homology.

4 Properties of the string complexes

4A Well-definition

We first show that the differential @ makes CS1.†;F / and cCS.†;F / into well-
defined chain complexes. We can always assume, after performing a regular homotopy
if necessary, that a string diagram is in general position.

First consider CS1.†;F /. An element v 2 CS1.†;F / is given as v D
Pm

jD1 sj ,
where sj are distinct string diagrams, up to spin homotopy. Two such elements
vD

Pm
jD1 sj , v0D

Pm0

jD1 s0j are equal in CS1.†;F / if and only if there is a bijection
between the fsj g

m
jD1

and fs0j g
m0

jD1
with corresponding sj and s0j spin homotopic; in

this case we say v; v0 are spin homotopic. More generally, we will call formal sums of
diagrams homotopic, or regular homotopic, or ambient isotopic when their terms are
bijective and the corresponding diagrams are homotopic of the corresponding type.

Lemma 4.1 The map @W CS1.†;F /!CS1.†;F / is well defined. That is, if string
diagrams s; s0 are spin homotopic then @s; @s0 are spin homotopic.

Proof Clearly if s; s0 are ambient isotopic string diagrams then @s; @s0 are sums of
ambient isotopic string diagrams, hence ambient isotopic. It remains then to show that
if s; s0 are related by a string Reidemeister II, III or balanced Reidemeister I move,
then @s; @s0 are spin homotopic.
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 !

@

0  ! C

Figure 8: Balanced type I string Reidemeister move and differential

 !  !

Figure 9: A clockwise contractible curve can be made anticlockwise with 2
anticlockwise whirls.

 !

@

0  ! C

 !

@

0  ! C

Figure 10: Type II string Reidemeister moves and differential

Figures 8, 10 and 11 show that this is the case. In each figure we show the local
effect of a Reidemeister move. In applying @, we must resolve differentials both in
the region where the Reidemeister move is performed, and also outside that region.
For the balanced Reidemeister I move (Figure 8) we have two local regions where
Reidemeister I moves are performed, adding two whirls; after resolving the crossings
at these whirls, two diagrams are obtained, and these are spin homotopic. The idea
of this spin homotopy, illustrated in Figure 9, is that a clockwise contractible curve
may be turned into an anticlockwise one by adding two anticlockwise whirls in two
balanced Reidemeister I moves, and then using a regular homotopy.

There are two types of Reidemeister II and III moves (up to symmetry), since the
strands are oriented, which affects how crossings are resolved. Performing @ on two
diagrams related by a type II move gives diagrams which are spin homotopic, though
not always regular homotopic; performing @ on two diagrams related by a type III move
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gives diagrams which are regular homotopic. We conclude @s; @s0 are spin homotopic,
and hence @s D @s0 in CS.†;F /.

 !

@

C C  ! C C

 !

@

C C  ! C C

Figure 11: Type III string Reidemeister moves and differential

Similarly we may consider string diagrams up to homotopy in general. If s0; s1 are
related by an ambient isotopy or string type II or III Reidemeister move, then @s0

and @s1 are homotopic. If s0; s1 are related by a string type I Reidemeister move,
however, then @s0 and @s1 are not homotopic: one contains a contractible loop where
the other does not. However if we declare all string diagrams with contractible loops
to be 0, then the differential is well defined and we obtain the following lemma.

Lemma 4.2 The map @W cCS.†;F /! cCS.†;F / is well defined. That is, if string
diagrams s; s0 without contractible loops are homotopic then @s; @s0 are homotopic
(possibly both zero).

4B Differential and filtration

Now that @ is well defined, we can see that, given a string diagram s up to spin
homotopy, @2s is well defined up to spin homotopy and is given by resolving all pairs
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of crossings in s . As each pair of crossings is resolved twice, mod 2 the result is zero
in CS1.†;F /. If we set diagrams with contractible loops equal to zero and consider
them up to homotopy, again @2 D 0.

Lemma 4.3 The operator @ is a differential on both CS1.†;F / and cCS.†;F /.

It follows that HS1.†;F / and cHS.†;F / are well defined.

We now show that the gradings by intersections become filtrations, ie @ lowers I1

and yI .

Lemma 4.4 For v 2 CS1.†;F /, I1.@v/� I1.v/� 1.

Proof First, take a string diagram s , and suppose s is in general position and has the
least number of self-intersections among spin-homotopic string diagrams. Then @s is
given as a sum

P
j sj , where each sj is given by resolving a single crossing of s , and

hence has fewer crossings than s . Now I1.sj / is the least number of crossings in a
string diagram spin-homotopic to sj , and hence I1.sj /� I1.s/� 1. We then have
I1.@s/Dmaxj I1.sj /� I1.s/� 1.

Taking now a general element v 2 CS.†;F /. We may take v D
P

i si , where the si

are in general position, pairwise non-spin-homotopic, and each si minimizes self-
intersections in its spin homotopy class; so I1.v/ D maxi I1.si/. Let each @si DP

j sij , so each I1.sij /� I1.si/� 1� I1.v/� 1. Then

I1.@v/�max
i;j

I1.sij /� I1.v/� 1:

A similar result holds for cCS, referring everywhere to homotopy rather than spin
homotopy, and neglecting any diagrams that have contractible loops.

Lemma 4.5 For v 2cCS.†;F /, yI.@v/� yI.v/� 1.

4C Why these chain complexes?

It may have seemed that we chose two particular types of string diagrams and types of
homotopy arbitrarily. We now give a brief argument why.

First, it is natural to consider the collection of all string diagrams. Ideally we would
like to consider them up to homotopy, the most general of the types of homotopy
we consider. But the vector space generated by homotopy classes of string diagrams
on .†;F / has no well-defined differential: Lemma 4.1 fails for this vector space.
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That is, there exist homotopic diagrams s; s0 for which @s and @s0 are in no sense
homotopic.

For example, consider two string diagrams s; s0 related by a type I Reidemeister move
(say s0 has an extra “whirl”). So s; s0 are homotopic, yet @s and @s0 differ by one
term: @s0 has an extra term with a contractible loop. This is still a nontrivial diagram,
and so @s , @s0 are not homotopic. Our two chain complexes arise from restricting the
type of diagram, or the type of homotopy considered, in a minimal way.

If we want to restrict the type of homotopy considered, examining Figure 10 leads
naturally to the idea that we should consider string diagrams related by a balanced
type I string Reidemeister moves as equivalent, and hence to the idea of spin homotopy.
And we have seen that, using the finer notion of spin homotopy class, we obtain a
well-defined differential and chain complex with filtration, namely CS1.†;F /.

Alternatively, if we want to consider always homotopy classes of diagrams, then the
difficulties with type I Reidemeister moves impose the condition that contractible loops
should be zero. And indeed we have seen, considering only string diagrams without
contractible loops, that we obtain the well-defined complex cCS.†;F /.

The two chain complexes CS1 and cCS, then, are arguably the most natural chain
complexes which can be constructed out of curves on a marked surface .†;F /.

4D Definition of U

We can now define the U map on CS1.†;F /, for any marked surface .†;F /.

Given a spin homotopy class of string diagram � , we define U� to be obtained from �

by adding two anticlockwise whirls. Obviously U does not change the homotopy class
of � . As two string diagrams related by a balanced type I Reidemeister string move
are spin homotopic, we need not specify where we add the whirls. Likewise we define
U�1� by adding two clockwise whirls to � . We can see that U U�1� DU�1U� D � ,
and in general U iU j� DU iCj� for any i; j 2Z. Indeed we have well-defined maps

U˙1
W CS1.†;F /! CS1.†;F /

which make CS1.†;F / into a Z2ŒU;U
�1�–module.

We also note that U commutes with @, as shown in Figure 12. Note here that it is crucial
that U adds an even number of whirls, so the terms obtained by resolving crossings
introduced by U cancel. It follows then that HS1.†;F / also has the structure of a
Z2ŒU;U

�1�–module.
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@

s

D

s

C

s

C

@s

D

@s

Figure 12: @U D U @

5 Non-alternating case

We now prove Theorem 1.1: if F contains two consecutive distinct points of the same
sign (hence is not alternating) then HS1.†;F /D cHS.†;F /D 0.

The proof is based upon a switching operation W on a string diagram s . Let the two
consecutive marked points on @† with the same label, “in” or “out”, be p and q . The
operation S “switches” s between p and q as shown in Figure 13: it alters s near
p and q , so that the strand which previously began at p , now begins at q ; and vice
versa, the strand which previously began at q now begins at p ; introducing precisely
one new crossing in the process.

p

q W

p

q

Figure 13: Switching operation

If s and s0 are ambient isotopic, then clearly Ws and Ws0 are also. Similarly, if s; s0

are related by type I, II or III string Reidemeister move, then so are Ws and Ws0 .
So W certainly gives a well-defined operation on string diagrams up to homotopy,
regular homotopy or spin homotopy. Further if s is without contractible loops then
so too is Ws . So we obtain well-defined linear maps on CS1 and cCS; in a minor
abuse of notation we denote both by W :

W W CS1.†;F /! CS1.†;F /; cCS.†;F /!cCS.†;F /:

Given a string diagram s , consider @Ws . First Ws is obtained from s by the switching
operation near p and q , introducing one more crossing, and then @Ws is obtained
from Ws by resolving each crossing and summing the resulting diagrams. (If we
are working in CS1 , this is a sum of diagrams up to spin homotopy; if in cCS, up to
homotopy, and setting contractible loops to zero.)
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The diagram obtained by resolving the new intersection point in Ws is just s . The
diagrams obtained from resolving the other intersection points are just the diagrams
in @s , but with the switching W then applied. Thus we have @Ws D sCW @s ; see
Figure 14.

@ s D s C @s

Figure 14: @Ws D sCW @s . The operation S is a chain homotopy.

This equation holds both in CS1.†;F / and cCS.†;F /. We may therefore write
(always mod 2)

@W CW @D 1:

That is, W is a chain homotopy between the chain maps 1 and 0 on CS1.†;F / orcCS.†;F /. It follows that

HS1.†;F /D cHS.†;F /D 0;

as desired.

Explicitly, if x 2 ker @, then @W xCW @x D x so that x D @.W x/ is a boundary.

Note that this proof works even if F does not have an even number of points on each
boundary component; all we require is two consecutive points of F of the same sign
somewhere on @†.

Henceforth we will assume all markings are alternating, so that .†;F / always has the
structure of a sutured background.

6 The generalised Euler class on discs

A set of sutures � on a sutured background .†;F / has an Euler class given by
e.�/D �.RC/��.R�/. We now generalise this notion to the Euler class of a string
diagram on an alternating disc .D2;F /.

The idea is that the Euler class e.�/ can be described in terms of the curvature of the
curves of � with respect to a standard metric on D2 .

Note that this section applies only to discs. Complications arise when trying to apply
these ideas to more general surfaces.
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6A Euler class of sutures via curvature

We first reinterpret the Euler class for sutures on discs in terms of curvature. Let � be
a set of sutures on the disc sutured background .D;F /, where F consists of 2n points
alternating in sign around @D . Consider D as the unit disc in the Euclidean plane,
with the 2n points of F spaced equally around the unit circle, and by ambient isotopy
assume that all sutures intersect @D at right angles.

Let  be a suture, ie a component of � ; so  is either a properly embedded arc in D

joining two points of F, or is an embedded closed curve. Suppose  is traversed at unit
speed, and consider its velocity vector; it turns through some total angle k , measured
anticlockwise. Note that if  is a closed curve then, being embedded, k D ˙2� .
If  is an arc, as the endpoints F are equally spaced and  meets @D at right angles,
k must be an integer multiple of 2�=2nD �=n. (More precisely, taking into account
labels on sutures: if n is odd then k is an integer multiple of 2�=n; if n is even then
k is of the form .2l C 1/�=n for some integer l .) This k is the total curvature of  .

Let the components of � be 1; : : : ; M , and let i have curvature ki .

Lemma 6.1 e.�/D
1

�

MX
iD1

ki

Proof First suppose � has no closed curve components, so the number of sutures
M D n and RC;R� both consist of discs. Consider a disc component of RC : its
boundary consists of sutures j (traversed in the direction of j ), and arcs of @D
of curvature �=n, which meet sutures at right angles. Moreover, as we traverse the
boundary of all of RC , we traverse each suture of � , precisely half of @D , and precisely
2n right angles. As each component of RC has a single full turn around its boundary,
the number of components of RC is

1

2�

�� nX
iD1

ki

�
C� C 2n

�

2

�
D

1

2�

� nX
iD1

ki

�
C

nC1

2
:

Similarly, considering @R� , the number of components of R� is

�
1

2�

� nX
iD1

ki

�
C

nC1

2
:

As all components of R˙ are discs, we have

e.�/D �.RC/��.R�/D
1

�

nX
iD1

ki ;

as desired.
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Now suppose � also contains closed curve components. Adding an anticlockwise
closed curve suture adds an extra disc region to RC and removes a disc from a region
of R� . Thus �.RC/ increases by 1 and �.R�/ decreases by 1, so e.�/ increases by
2. The new curve has curvature 2� , and 1

�

P
ki also increases by 2. Similarly for a

clockwise suture, both e.�/ and 1
�

P
ki decrease by 2. Any set of sutures on .D;F /

can be constructed from sutures without closed curves by repeatedly adding sutures in
this way.

In fact a more general result is possible; there is no necessity to restrict to a standard
round metric with points of F evenly spaced, but this is all we need.

6B Generalised Euler class of string diagrams

Consider now a general string diagram s on an alternating disc .D;F /. Again con-
sider D as the unit disc in the Euclidean plane, with the 2n points of F equally spaced
around the unit circle; again require curves of s to meet @D at right angles. Let the
curves of s be �1; : : : ; �M ; each �i is oriented and has a total curvature ki .

Definition 6.2 The generalised Euler class e.s/ of s is 1
�

PM
iD1 ki .

Obviously this generalises the Euler class of sutures. It is not difficult to see that the
total curvature of s is unchanged by

(1) ambient isotopy of s on † (always requiring s to meet @† at right angles),

(2) type II string Reidemeister moves,

(3) type III string Reidemeister moves,

(4) balanced type I Reidemeister moves,

(5) resolving a crossing.

It follows that any string diagram obtained by successively resolving crossings and
performing spin homotopies has the same total curvature as s . In particular we have
proved the following.

Proposition 6.3 Any set of sutures � obtained by resolving crossings and performing
spin homotopies of a string diagram s satisfies e.�/D e.s/.

Resolving all the crossings of a string diagram s on .D;F / will result in a string
diagram without crossings, which is not necessarily a set of sutures, but which is
homotopic to a set of sutures. For instance consider resolving the crossing in a “whirl”
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created from a type I Reidemeister move; it does not form a set of sutures, but the
contractible loop can be homotoped across a string to give sutures. Note this statement
is only true for discs.

Note that adding a “whirl” by a type I string Reidemeister move changes the Euler
class by ˙2 respectively as the “whirl” is anticlockwise or clockwise; a change of C2

and �2 cancel out in a balanced type I move.

Note also that, from this definition, it is clear that @ preserves e : resolving a crossing
replaces an intersection (where curves can be assumed straight and intersecting at
right angles) with two curving segments, of curvature ��=2 and �=2, contributing 0

to total curvature. It follows that the direct sum decomposition CS1.D2;F / DL
e CS1e .D

2;F / also gives one in homology: HS1 D
L

e HS1e .D
2;F /.

The above leads us to an alternative definition of spin homotopy.

Proposition 6.4 Two string diagrams on .D;F / are spin homotopic if and only if
they are homotopic and have the same generalised Euler class.

Proof If string diagrams are spin homotopic then, by definition, they are related by
ambient isotopies and type II, type III and balanced type I string Reidemeister moves.
All these moves result in homotopic string diagrams with the same Euler class.

Conversely, if s0; s1 are homotopic and have the same Euler class, they are related by
ambient isotopies and type I, II and III Reidemeister moves. However of these, only
type I moves change Euler class. As s0; s1 have the same Euler class, the number of
type I moves which increase and decrease Euler class must be equal.

It remains to show that the homotopy between s0 and s1 can be achieved with positive
and negative type I Reidemeister moves occur in pairs at the same time. There are 4

variants of the type I move: the positive moves consist of adding an anticlockwise “whirl”
or deleting a clockwise “whirl”; the negative moves consist of adding a clockwise
“whirl” or deleting an anticlockwise “whirl”.

We note first that a “deletion of whirl” type I move can be achieved by performing
the addition of “whirl” type I move of the same sign, followed by a regular homotopy.
So we can assume that all type I moves consist of additions of whirls; and hence the
number of additions of anticlockwise whirls is equal to the number of additions of
clockwise whirls.

We also note that a “whirl” added at time t in a homotopy, can be added at a time
earlier than t , and then carried forward to time t . So type I moves can indeed be
added in balanced pairs. Hence the homotopy can be achieved by using balanced type
I Reidemeister moves, and s0; s1 are spin homotopic.
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We can now see that the relative winding of a string diagram s1 with respect to a
homotopic string diagram s0 , defined in Section 2C, is just e.s1/� e.s0/. And we can
see that a homotopy class of string diagrams splits into a countable infinity of spin
homotopy classes, indexed precisely by Euler class.

Note the effect of U on e : adding two anticlockwise whirls adjusts e by 4, and adding
two clockwise whirls adjusts e by �4. So the maps U;U�1 on CS1.D2;F / restrict
to the summands CS1e .D

2;F / generated by string diagrams with fixed Euler class e

as
U˙1
W CS1e .D

2;F /! CS1e˙4.D
2;F /:

Since U commutes with @ this also applies to homology:

U˙1
W HS1e .D

2;F /! HS1e˙4.D
2;F /:

7 Creation and annihilation

Our proof proceeds by showing that various parts of the structure developed in [24]
apply in the present situation. In particular, we will use creation and annihilation
operators similar to the operators defined in that paper.

We will only need creation and annihilation operators on discs, but there is no more
difficulty in defining these operators on general surfaces. After giving the definition in
general, we give our main proofs, which apply only to discs.

7A Creation operators

We define a creation operator to take a string diagram on a sutured background .†;F /
and insert an outermost string, not intersecting any others, at a specified location on @†,
with the new string in a specified orientation.

More precisely, given an alternating marking F on †, we consider an alternating
marking F 0 obtained from F by adding two points fin; fout , lying in the same compo-
nent of @†nF, respectively labelled “in” and “out”. We consider CS1 and cCS cases
separately, though the pictures are similar. As F;F 0 are required to be alternating,
there is precisely one way to insert fin; fout between two consecutive points of F. (One
can easily, however, define similar operators when F is not alternating.)

The creation operator

a�F;F 0 W CS1.†;F /! CS1.†;F 0/
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takes a spin homotopy class s of a string diagram s on .†;F /, and inserts an extra
string from fin to fout , not intersecting itself or any other strands. The result a�

F;F 0s

is well defined up to spin homotopy. Being defined on a basis of CS1.†;F /, a�
F;F

extends to a linear map on CS1 .

Similarly, the creation operator

Oa�F;F 0 W cCS.†;F /!cCS.†;F 0/

takes a homotopy class Os of a string diagram s without contractible loops on .†;F /,
and inserts an extra string in the same way, giving a result Oa�

F;F 0 Os without contractible
loops and well defined up to homotopy. It extends to a linear map on cCS. See Figure 15.

fin

fout a�
F;F 0

fin

fout

Figure 15: Creation operator

Note that if s0; s1 are string diagrams on .†;F / which are not spin homotopic, then
inserting the extra string in a creation operator results in string diagrams which are not
spin homotopic. It follows that any Oa�

F;F 0 is injective. Similarly we see that any a�
F;F 0

is injective.

We next consider the effect of a creation operator followed by the differential, ie @a�
F;F 0 .

Again the pictures are similar in the CS1 and cCS cases.

Given a spin homotopy class of string diagram s 2 CS1.†;F /, we add an additional
string to obtain a�

F;F 0s . Consider resolving (single) crossings in this string diagram.
The resolutions are precisely those of s , but with the extra strand from fin to fout

adjoined. Thus
@a�F;F 0s D a�F;F 0@s:

In fact, this is true at the level of ambient isotopy classes.

Similarly, given a regular homotopy class Os of a string diagram s without contractible
loops, resolving crossings in Oa�

F;F 0 Os gives precisely the string diagrams of @Os with the
extra strand adjoined; and any resolution which creates a contractible loop also created
a contractible loop in @Os . Thus

@ Oa�F;F 0 Os D Oa
�
F;F 0@Os:
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Thus @a�
F;F 0 D a�

F;F 0@ and @ Oa�
F;F 0 D Oa

�
F;F 0@. We have proved the following.

Lemma 7.1 The creation operators a�
F;F 0 ; Oa

�
F;F 0 are chain maps, hence define maps

a�F;F 0 W HS1.†;F /! HS1.†;F 0/; Oa�F;F 0 W cHS.†;F /! cHS.†;F 0/:

7B Annihilation operators

In a similar fashion we may define annihilation operators. An annihilation operator
takes a string diagram and “closes off” two consecutive points of F, as shown in
Figure 16, to give a string diagram with fewer arcs (and maybe a new closed curve).

More precisely, given an alternating marking F on †, consider a marking F 0 obtained
from F by removing two consecutive points fin; fout of F, respectively labelled “in”
and “out”. Note that for F 0 to be a valid marking there must be at least 4 points
of F on the boundary component of fin and fout . Also note that F 0 is necessarily
alternating; although one could easily define a similar operation on a non-alternating F

whenever two consecutive points of F have opposite directions. Again we consider
CS1 and cCS cases separately but the pictures are similar.

The annihilation operator

aF;F 0 W CS1.†;F /! CS1.†;F 0/

takes a spin homotopy class s of a string diagram s on .†;F / and joins the strings
previously ending at fin; fout , without introducing any new intersections of strings. The
result aF;F 0 is well defined up to spin homotopy and we linearly extend to define aF;F 0

on CS1.†;F /. Note that if the strings ending at fin; fout in s are distinct then
aF;F 0s has one fewer arc component that s ; while if a single string has endpoints at
fin; fout then aF;F 0s has two fewer arc components than s but one more closed curve
component.

Similarly, the annihilation operator

OaF;F 0 W cCS.†;F /!cCS.†;F 0/

takes a homotopy class Os of a string diagram s without contractible loops on .†;F /,
and joins strings in the same way, giving a result well defined up to homotopy. If
joining the strings results in a contractible loop then we regard the result as zero incCS.†;F 0/. We extend linearly to define OaF;F 0 on cCS.†;F /. See Figure 16.

Consider the effect of an annihilation operator fillowed by the differential, ie @aF;F 0 . As
the annihilation operation introduces no new crossings, it commutes with the differential,
in both the CS1 and cCS cases, similarly to creation operators.
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fin

fout aF;F 0

fin

fout

Figure 16: Annihilation operator

Lemma 7.2 The annihilation operators aF;F 0 , OaF;F 0 are chain maps, hence define
maps

aF;F 0 W HS1.†;F /! HS1.†;F 0/; OaF;F 0 W cHS.†;F /! cHS.†;F 0/:

8 Homology computation for discs

We now compute cHS.D2;F / when F is an alternating marking on D2 , proving
Theorem 3.3, and hence Theorem 1.3. Let jF j D 2n; for convenience we will write Fn

for the alternating marking on the disc with 2n points. The proof will be by induction
on n.

8A Base case

Lemma 8.1 cHS.D2;F1/Š Z2 . The single summand lies in intersection grading 0

and is generated by the string diagram consisting of a single arc.

Proof As cCS only considers string diagrams without contractible loops, any string
diagram in cCS.D2;F1/ consists of a single arc joining the two points of F1 . As cCS
considers string diagrams up to homotopy, such a string diagram is equivalent to a
single properly embedded arc. Hence cCS.D2;F1/ is spanned over Z2 by this single
homotopy class of diagram, which has intersection number 0. We have @D 0, so cHS
is as claimed.

Following [24], we denote the nonzero element of cHS.D2;F1/ as v∅ and call it the
vacuum.

8B Building a basis

On each .D2;Fn/ we will select once and for all a basepoint in Fn , labelled “in”. We
can then consider two specific creation operators on .D2;Fn/, creating new strands
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in the two sites adjacent to the basepoint; and two specific annihilation operators,
annihilating at the two sites which include the basepoint. After creating or annihilating
at these sites, the basepoints are positioned as shown in Figure 17.

a�C

aC

a��

a�

Figure 17: Creation and annihilation operators a�
˙
; a˙ . Basepoints are de-

noted by a dot.

Thus we obtain on each cCS.D2;Fn/ two annihilation operators a˙ and two creation
operators a�

˙
; here we follow the notation of [25], which is different from that of [24]

(where they were called A˙;B˙ ). Being chain maps, these operators descend to
homology:

a˙W cHS.D2;Fn/! cHS.D2;Fn�1/; a�˙W
cHS.D2;Fn/! cHS.D2;FnC1/:

These operators satisfy the relations

a�a�� D aCa�C D 1; a�a�C D aCa�� D 0:

In particular, each creation a�
˙

is injective, with partial inverse a˙ .

Still following [24], for any word w of length n on the symbols f�;Cg, we may
compose the corresponding creation operators to obtain a creation operator a�w . Then we
define vwDa�wv∅ 2

cHS.D2;FnC1/; this generalises the notation of v∅ by regarding ∅
as the empty word, of length 0. As there are 2n words of length n on f�;Cg, we
obtain 2n distinguished elements (although we do not yet know they are distinct) in
each cHS.D2;FnC1/. These diagrams are described at length in [24]. We will show
below that they form a basis.

Lemma 8.2 The 2n elements of the form vw in cHS.D2;FnC1/ are linearly indepen-
dent.

(In particular, the vw are distinct!)
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Proof This proof appears in [24]. Suppose some nontrivial linear combinationP
i vwi

equals 0, where the wi are distinct words of length n. For each word wi ,
there is a sequence of annihilation operators which undo the creation operators used
to create vwi

; this sequence of annihilation operators sends vwi
7! v∅ but annihilates

every other vwi
to 0. Applying this annihilation operator to

P
i vwi

D 0 then gives
v∅ D 0, a contradiction.

8C The crossed wires lemma

The following lemma is the technical key to the present computation. It applies more
generally than to discs, and so we state it generally. It only requires regular homotopy,
and it works whether or not we disregard contractible loops. We will state it for the
more general case of CS1 , and then for the case immediately at hand, of cCS.

The lemma applies in a situation where we have two creation operators a�
˙

which
insert strings at adjacent sites, from an alternating marked surface .†;F / to .†;F 0/;
F 0 is obtained from F by adding two adjacent points. The strings created by a�

˙
have

endpoints which together form 3 consecutive points of F 0 : let them be f�1; f0; f1 in
order around @†. This generalises the operators above in Figure 17.

Lemma 8.3 (Crossed wires lemma) Let †;F;F 0 and

a�˙W CS1.†;F /! CS1.†;F 0/

be as above. Suppose x 2 CS1.†;F 0/ satisfies @x D 0. Then there exist y; z 2

CS1.†;F / and u 2 CS1.†;F 0/ such that

@y D @z D 0 and x D a��yC a�CzC @u:

To prove this lemma, we will need a certain switching operation B on string diagrams
on .†;F / which switches f�1 and f1 , so “crosses 3 wires”; hence the name of
the lemma. More precisely, given a string diagram s on .†;F /, we make a local
modification near the arc of @† connecting f�1; f0; f1 . The arc of s , which ran to
f1 , we now reroute to f�1 , and vice versa, as shown in Figure 18. This introduces
three new crossings in s : a crossing between the two rerouted strands, and a crossing
between the arc emanating from f0 with each of the two rerouted arcs. These are our
crossed wires.

We thus obtain a string diagram Bs , well-defined up to regular homotopy. (If we like
we could specify the diagram in Figure 18 and make Bs defined up to ambient isotopy,
but there are two simplest non-ambient-isotopic ways of drawing this arrangement,
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f�1

f0

f1 B

f�1

f0

f1

Figure 18: The crossing wires operation B

which are regular homotopic.) In any case Bs is certainly well defined up to spin
homotopy or just homotopy. Extending linearly we obtain the maps

yBW cCS.†;F /!cCS.†;F /; BW CS1.†;F /! CS1.†;F /:

Now yB , B are not chain maps, and do not commute with @. But asking how closely yB ,
B and @ commute leads to the lemma, which we now prove.

Proof Let x D
Pm

iD1 si , where each si is a distinct spin homotopy class of string
diagram without contractible loops; let si be a string diagram representing si . Con-
sider @Bsi , which is a sum of diagrams obtained by resolving crossings in Bsi . There
are three diagrams which arise from resolving the three crossings in the crossed wires;
these contain all the crossings of si . The other diagrams in the sum are all the diagrams
in @si , with the wires crossed, ie B@si . Of the first three diagrams, we see that up to
homotopy (in fact up to regular homotopy), one is just si , and the other two both have
an outermost non-intersecting strand at f0 ; hence they are a��yi and a�Czi for some
string diagrams yi ; zi on .†;F 0/. See Figure 19.

@

si

D

si

C

si

C

si

C

@si

Figure 19: Resolutions in @Bsi : @Bsi D a��yi C a�Czi C si CB@si .

Thus we obtain the following equality in CS1.†;F /, writing yi ; zi for the spin
homotopy classes of yi ; zi ,

@Bsi D si C a��yi C a�Czi CB@si :

Algebraic & Geometric Topology, Volume 15 (2015)



724 Daniel V Mathews and Eric Schoenfeld

Summing over i and recalling that x D
Pm

iD1 si gives

@Bx D xC a��

� mX
iD1

yi

�
C a�C

� mX
iD1

zi

�
CB@x:

Recalling that @x D 0, that as always we are working mod 2, and setting u D Bx ,
y D

Pm
iD1 yi , z D

Pm
iD1 zi gives the desired equality x D a��y C a�Cz C @u. It

remains only to show that @y D @z D 0. Applying @ to this equality, and recalling that
creation operators are chain maps, gives

a��

mX
iD1

@yi D a�C

mX
iD1

@zi :

Both sides are sums of (spin homotopy classes of) string diagrams, but on the left
all diagrams have a non-intersecting arc connecting f0 to f�1 ; while on the right all
diagrams have a non-intersecting arc connecting f0 to f1 . Thus no diagram which
occurs on the left is homotopic to any diagram which occurs on the right; so both
sides must be 0. Thus a��@y D a�C@z D 0. As creation operators are injective we have
@y D @z D 0.

By the same proof we obtain the corresponding result for cCS; the same proof works
whether we consider diagrams up to spin homotopy or just homotopy. Let .†;F /,
.†;F 0/ be as above, and let a��; a

�
C now be creation operators cCS.†;F 0/!cCS.†;F /

obtained by inserting strings in the same places as above.

Lemma 8.4 (Crossed wires lemma, cCS version) Suppose x 2 cCS.†;F / satisfies
@x D 0. Then there exist y; z 2cCS.†;F 0/ and u 2cCS.†;F / such that

@y D @z D 0 and x D a��yC a�CzC @u:

8D Inductive step

The crossed wires lemma now allows us to find a basis for each cHS.D2;Fn/.

Proposition 8.5 Let n� 1. If the 2n�1 elements of the form vw in cHS.D2;Fn/ form
a basis, then the 2n elements of the form vw in cHS.D2;FnC1/ also form a basis.

Proof An element of cHS.D2;FnC1/ is represented by x 2 ker @ �cCS.D2;FnC1/,
ie x is a linear combination of (homotopy classes of) string diagrams without loops on
.D2;FnC1/ such that @x D 0.
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From the crossed wires lemma, there exist y; z 2cCS.D2;Fn/ and u 2cCS.D2;FnC1/

such that
@y D @z D 0; x D a��yC a�CzC @u:

It follows that the homology class of x lies in a��
cHS.D2;Fn/C a�C

cHS.D2;Fn/. AscHS.D2;Fn/ is spanned by the vw for words w of length n� 1, a��
cHS.D2;Fn/ is

spanned by the a��vw D v�w and a�C
cHS.D2;Fn/ is spanned by the a�Cvw D vCw ;

hence cHS.D2;FnC1/ is spanned by the vw for words of length n. Lemma 8.2 says
the vw are linearly independent, so they form a basis.

As fv∅g forms a basis for cHS.D2;F1/ by Lemma 8.1, Proposition 8.5 immediately
yields a corollary.

Corollary 8.6 For all n� 0, the elements vw , for words of length n form a basis ofcHS.D2;FnC1/.

Corollary 8.7 Any nonzero homology class in cHS.D2;Fn/ is represented by a lin-
ear combination of string diagrams without intersections, which are in fact sets of
sutures.

Indeed, writing cCSsut for the subspace of cCS generated by sets of sutures, and @ for the
differential on cCS, we have a linear map

i W cCSsut.D
2;Fn/! ker @!

ker @
Im @

D cHS.D2;Fn/

arising from the composition of inclusion and quotient maps. Since, as we have shown,cHS.D2;Fn/ is spanned by homology classes of (homotopy classes of) string diagrams
which are sutures, this map i is surjective.

Now the sum of a bypass triple of sutures on .D2;Fn/ lies in the image of @, as
shown in Figure 3. If we introduce “crossed wires” at the site of the bypass, then @
gives precisely the sum of the diagrams in the bypass triple. Thus the surjective map i

factors as cCSsut.D
2;Fn/!

cCSsut.D
2;Fn/

bByp.D2;Fn/
! cHS.D2;Fn/:

In the notation of [24], the quotient cCSsut.D
2;Fn/=bByp.D2;Fn/ is SFHcomb.T; n/,

which is computed in that paper to have dimension 2n�1 . Above we computed thatcHS.D2;Fn/ has the same dimension. Thus we have an isomorphism

cHS.D2;Fn/Š
cCSsut.D

2;Fn/

bByp.D2;Fn/
:

Algebraic & Geometric Topology, Volume 15 (2015)



726 Daniel V Mathews and Eric Schoenfeld

As discussed in Section 1B, from [24], sutures modulo bypasses on .D2;Fn/ gives
SFH.D2 �S1;Fn �S1/. So the above isomorphic vector spaces are also isomorphic
with SFH.D2�S1;Fn�S1/. From [27], this is also isomorphic to .Z20˚Z21/˝.n�1/ .

As bypass surgery preserves Euler class, we can immediately restrict to sutures of a
specific Euler class and obtain an isomorphism

cHSe.D
2;Fn/Š

cCSsut;e.D
2;Fn/

bBype.D2;Fn/
:

As discussed in [24], this is also isomorphic to a summand SFHe.D
2 �S1;Fn �S1/

of SFH.D2 �S1;Fn �S1/. And as discussed in [27], this is also isomorphic to the
summand of .Z20˚Z21/˝.n�1/ generated by tensor products e1˝ � � �˝ en , where
each ei 2 f0; 1g, and the number of 1 minus the number of 0 is e .

This proves Theorem 3.3.

9 Discs with spin

We now prove the main theorem 3.4 for HS1 when †DD2 . The proof runs along
the lines of the proof for cHS; most of the effort goes into the base case.

9A Base case

We analyse string diagrams s on .D2;F1/ up to spin homotopy. Any such s must
consist of a single oriented arc running from the “in” point of F1 to the “out” point of
F1 , together with some number m� 0 of closed curves. Two such string diagrams are
homotopic if and only if they have the same number m of closed curves.

Given a string diagram s , we may perform a string Reidemeister I move, adding a
clockwise or anticlockwise “whirl” on it, which adjusts the generalised Euler class
by �2 or 2 respectively. By the definition of generalised Euler class, e.s/ must be even:
all the curves of s have curvature which is an even multiple of 2� . By Proposition 6.4,
the spin homotopy class of a string diagram is determined by its homotopy class (ie m)
and its generalised Euler class e .

Thus, the spin homotopy classes of string diagrams on .D2;F1/ are precisely parame-
terised by pairs of integers .m; e/, where m� 0 and e is even. Let �m;e denote this
spin homotopy class.

We noted in Section 6 that @ preserves e . As @ is well-defined on spin homotopy classes,
to compute @�m;e it’s sufficient to take a single representative string diagram sm;e
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of the class �m;e . We can take sm;e to consist of m non-intersecting anticlockwise
closed curves, and a strand which has some number k of whirls (and hence jkj self-
intersections) added to obtain the correct e . See Figure 20. We can easily compute
k D e

2
�m.

Figure 20: The string diagram sm;e . There are k whirls in the arc, and m

anticlockwise closed curves.

We see that, if k is even, then @sm;e consists of an even number of spin homotopic
diagrams; while if k is odd, then @sm;e consists of an odd number of spin homotopic
diagrams, with mC 1 closed curves and generalised Euler class e . Hence we have
proved the following lemma.

Lemma 9.1 The chain complex CS1.D2;F1/ is freely generated over Z2 by f�m;eg,
over all integers m; e satisfying m� 0 and e even. The differential is given by

@�m;e D

�
0 mC e

2
even,

�mC1;e mC e
2

odd.

As @ preserves e , the chain complex and homology split into summands CS1e .D
2;F1/

and HS1e .D
2;F1/ over all even e 2Z. When e is not a multiple of 4, ie e D 4i C 2,

the differential is given by

�0;e 7! �1;e; �2;e 7! �3;e; : : : ;

and the homology in this summand is trivial. When e is a multiple of 4, it is given by

�0;e 7! 0; �1;e 7! �2;e; �3;e 7! �4;e; : : : ;

and the homology is generated by (the homology class of) �0;e .

Thus HS1.D2;F1/ has a basis given by (homology classes of) �0;e , over all e 2 4Z.
Recalling the definition of the U map (Section 4D) and its effect on Euler class
(Section 6B), we have �0;4i D U i�0;0 . The following computation is immediate.

Proposition 9.2 The map

Z2ŒU;U
�1�! HS1.D2;F1/

which takes 1 7! �0;0 and preserves the action of U defined on HS1.D2;F1/, is an
isomorphism of Z2ŒU;U

�1�–modules.
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Note 1 2 Z2ŒU;U
�1� corresponds to the vacuum diagram v∅ , and U j 2 Z2ŒU;U

�1�

corresponds to that diagram with 2j whirls, a “whirly vacuum”. “Homology is
generated by whirly vacua.”

Note also how closed curves have disappeared in the homology. Any x 2HS1.D2;F1/

can be written as x D
P

i �i , where each �i is the spin homotopy class of a string
diagram with no closed curves. Each �i can be taken to be a whirly vacuum.

9B Inductive step

Annihilation and creation operators can then be applied on each .D2;Fn/ as in
Section 8B, giving maps

a˙W HS1.D2;Fn/! HS1.D2;Fn�1/; a�˙W HS1.D2;Fn/! HS1.D2;FnC1/;

which satisfy similar relations. They also commute with U and hence give maps of
Z2ŒU;U

�1�–modules. Again each a�
˙

is injective. And again for a word w of length n

on f�;Cg we obtain a composite creation operator a�w and let vw D a�wv∅ D a�w1.

Lemma 9.3 The 2n elements of the form vw in HS1.D2;FnC1/ are linearly inde-
pendent over Z2ŒU;U

�1�.

Proof Again for each word w there is a sequence of annihilations which send vw 7!v∅
but send each other vw0 7! 0. These annihilations commute with U . If we have a
nontrivial linear combination over Z2ŒU;U

�1�, thenX
i

pwi
.U /vwi

D 0;

where each pwi
.U / is a Laurent polynomial in U over Z2 . Then applying the sequence

of annihilations for wi sends pwi
.U /vwi

7! pwi
.U / but every other term to 0. Hence

pwi
.U /D 0.

On the other hand, if the 2n�1 elements of the form vw generate HS1.D2;Fn/

over Z2ŒU;U
�1�, then the crossed wires lemma 8.3 shows that HS1.D2;FnC1/ is

spanned by a��HS1.D2;Fn/ and a�CHS1.D2;Fn/, hence is generated by the vw
for words w of length n.

Corollary 9.4 For all n � 0, the elements vw for words of length n form a basis of
HS1.D2;FnC1/ over Z2ŒU;U

�1�. The elements U jvw , over all j 2Z and words w
of length n, form a basis of HS1.D2;FnC1/ over Z2 .
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In particular,

HS1.D2;Fn/Š Z2ŒU;U
�1�˝cHS.D2;Fn/Š Z2ŒU;U

�1�˝

�cCSsut.D
2;Fn/

bByp.D2;Fn/

�
;

and Theorem 1.2 is proved.

For the remaining details of Theorem 3.4, every element of HS1.D2;Fn/ is a
Z2ŒU;U

�1�–linear combination of string diagrams which are sets of sutures. So
the composition

CS1sut.D
2;Fn/!

CS1sut.D
2;Fn/

Byp1.D2;Fn/
! HS1.D2;Fn/

is surjective, and comparing dimensions gives

HS1.D2;Fn/Š
CS1sut.D

2;Fn/

Byp1.D2;Fn/

as Z2ŒU;U
�1�–modules. Decomposing over powers of U , we obtain part (ii) of

Theorem 3.4, completing the proof.
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