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Abstract

In recent times a great amount of progress has been achieved in symplectic and contact geometry,
leading to the development of powerful invariants of 3-manifolds such as Heegaard Floer homology
and embedded contact homology. These invariants are based on holomorphic curves and moduli
spaces, but in the simplest cases, some of their structure reduces to some elementary combinatorics
and algebra which may be of interest in its own right. In this note, which is essentially a light-hearted
exposition of some previous work of the author, we give a brief introduction to some of the ideas
of contact topology and holomorphic curves, discuss some of these elementary results, and indicate
how they arise from holomorphic invariants.
c⃝ 2013 Elsevier GmbH. All rights reserved.
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1. Introduction

In recent years a great amount of progress has been achieved in understanding the
structures of symplectic and contact geometry. Powerful invariants of manifolds and their
contact and symplectic structures have been defined, such as Heegaard Floer homology and
contact homology. These theories are based on generalised Cauchy–Riemann equations,
holomorphic curves and their moduli spaces.

In a series of papers, the author has developed some of the structure that arises in some of
the most simple cases of the holomorphic invariants known as sutured Floer homology and
embedded contact homology [32–36]. This note is essentially a light-hearted exposition of
some of that subject matter.
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The structures that we discuss here are algebraic and combinatorial, and entirely ele-
mentary. They may be of interest for their own sake, as well as for their relation to other
subjects, including quantum information theory, representation theory, topological quan-
tum field theory, and especially contact geometry. That all this structure can arise from the
most simple cases of sutured Floer homology and embedded contact homology, testifies to
the power of these invariants.

It is our desire here to convey some of these results to a broad mathematical audience.
Consequently, this note assumes no knowledge of symplectic or contact geometry or holo-
morphic curves. Since the subject matter is in a certain sense a “combinatorialization of
contact geometry”, we will give an exposition, as we proceed, of how these elementary
results relate to contact geometry—and this may serve as an unorthodox introduction to
some of the ideas of contact geometry.

The reader who is only interested in combinatorics or algebra can easily skip the sec-
tions on symplectic and contact geometry and holomorphic curves. The reader without
such background in geometry, but who wishes to know where the subject matter comes
from, can hopefully gain here some idea of the types of considerations involved, whether
in symplectic or contact geometry or holomorphic curves, and is encouraged to follow the
references for further details.

2. Symplectic and contact geometry

We begin with a little – very, very little – about what symplectic and contact geometry
are, and where some holomorphic invariants come from. For a proper introduction to sym-
plectic geometry we refer to [37] and to [16] or [10] for contact geometry. We will give
essentially no proofs in this section, just assert some basic facts.

None of this is needed for the combinatorics and algebra that we will shortly discuss, but
it will be useful as we proceed to make connections with contact geometry and holomor-
phic invariants. The reader who is solely interested in combinatorial and algebraic aspects
can safely skip this section.

2.1. Symplectic geometry

Symplectic geometry is the mathematical structure of Hamiltonian mechanics. A sym-
plectic manifold is a pair

(M, ω),

where M is a smooth manifold and ω is a closed nondegenerate differential 2-form on M .
This implies that M is even-dimensional.

The key property that allows this structure to produce mechanics is that any smooth
function H : M −→ R (called a Hamiltonian) has a naturally associated vector field X H
on M . Namely, from H we obtain a differential 1-form d H , and then the nondegeneracy
of ω gives the vector field X H via the equation

ω(X H , ·) = d H.

(Different authors have different sign conventions in this equation, but this is the idea.)
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The fact that ω is closed implies that flowing along X H leaves ω unchanged:

L X H ω = iX H dω + diX H ω = iX H 0+ d(d H) = 0.

The physical interpretation is that M is the phase space (“space of states”) of the universe,
H gives the energy of any state, and X H is the time evolution of the universe.

The simplest example of a symplectic manifold is R2n with the symplectic form

ω =

n
j=1

dx j ∧ dy j .

Here each y j can be considered a “position coordinate” and each x j a corresponding
“conjugate momentum”.

2.2. Symplectic vs. complex geometry

The fact that symplectic geometry only arises in even numbers of dimensions suggests a
similarity to complex geometry. Indeed this is even the etymological root: Weyl introduced
the word “symplectic” as a Greek version of the word “complex” [44]. The Latin complexus
and the Greek symplektikos both mean “braided together”.

There is a difference of course. In a complex manifold every point has a neighbourhood
holomorphic to Cn . In particular, for every direction there is also “i times” that direction.
This is very different from having a closed nondegenerate 2-form.

The relationship between symplectic and complex geometry has been exploited to great
effect in the last 25 years or so, with the use of holomorphic curves, starting with the work
of Gromov in 1985 [20], leading to great advances in the understanding of symplectic
geometry.

In particular, any symplectic manifold (M, ω) has an almost complex structure. An al-
most complex structure is a map which is like “multiplication by i at every point of M”.
That is, J is a map

J : T M −→ T M

which is linear on every fibre Tp M → Tp M and satisfies J 2
= −1.

An almost complex structure is often required to be compatible with the symplectic
form. Roughly this means that J and ω behave like i and


j dx j ∧ dy j in Cn (where the

z j = x j + iy j are the coordinates). (Precisely, it means that ω(v, w) = ω(Jv, Jw) for all
tangent vectors v, w; and ω(v, Jv) > 0 for all tangent vectors v ≠ 0.)

It turns out that any symplectic manifold has a compatible almost complex structure.
Moreover, all compatible almost complex structures on (M, ω) are homotopic. (The space
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of compatible almost complex structures on (M, ω) is the space of sections of a fibre bundle
over M with contractible fibres.) However, an almost complex structure by no means
implies the existence of a complex structure. An almost complex structure only requires
a pointwise condition. A complex structure requires local charts to Cn with holomorphic
transition functions, which is a far more onerous condition. To drop the “almost” requires
an additional condition, the vanishing of the Nijenhuis tensor.

For proper discussion of these issues we refer to [37] or [38].

2.3. Holomorphic curves in symplectic manifolds, and Floer homology

Gromov in [20] had the idea of considering holomorphic curves in symplectic manifolds.
This has led to many developments, including the development of Floer homology theories.

The point of this note is not really to explain any such homology theories, or the detail
of why they work, or how they work, or how to compute them. The point is to discuss some
of the structure obtained from them in some very simple cases, which is elementary and of
independent interest.

Nonetheless, for the interested reader, we can summarise some of the ideas involved in
Floer homology, very roughly and avoiding all details, as follows. Readers not interested
in holomorphic curves should skip to the next section.

• Start with a symplectic manifold (M, ω) you want to understand.
• Introduce a compatible almost complex structure J on (M, ω). As we just noted, one

always exists, and any choice is homotopic to any other.
• Take a Riemann surface (Σ , i) and consider maps

u : (Σ , i) −→ (M, J )

which are holomorphic,1 meaning that the following diagram commutes.

I.e., the Cauchy–Riemann equations hold: Du ◦ i = J ◦ Du.

1 It is common to say “pseudo-holomorphic” or “J -holomorphic” to indicate that the target has an almost
complex structure, rather than a complex structure. We prefer simply to say holomorphic here and there should
be no ambiguity.
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• If we consider holomorphic curves with appropriate constraints such as marked points,
fixed degree and boundary conditions, and provided sufficient transversality conditions
are satisfied, then the space of holomorphic curves will be a finite-dimensional orbifold-
like space called a moduli space.

(This is a vast generalisation of elementary facts such as the following. The space of
holomorphic maps CP1

−→ CP1 of degree 1 fixing 3 points is a point. The space of
holomorphic maps CP1

−→ CP1 of degree 1 fixing 2 points is an annulus.)
The analysis involved in proving such statements is often very difficult.
• More generally, under these favourable conditions, there is an index theory for holo-

morphic curves. This is a version of the Riemann–Roch theorem and a special case of
the Atiyah–Singer index theorem; the Cauchy–Riemann equations give a ∂̄ operator and
its index is computed in terms of topological data. The dimension of the moduli space
is given in terms of the symplectic topology of the constraints. Such moduli spaces
intricately encode topological data about the manifold.
• A moduli space has a natural compactification which is the subject of the Gromov com-

pactness theorem. The compactified moduli space has a stratified boundary, and the
strata are moduli spaces of “degenerate” holomorphic curves such as nodal surfaces.

• Some information can be extracted from a moduli space by exploiting the codimension-
1 parts of its boundary, and defining homology theories based on it. Roughly, and al-
though there are several different approaches, one takes a chain complex generated by
sets of boundary conditions for holomorphic curves. One then defines a differential δ

counting holomorphic curves between two sets of boundary conditions, at positive and
negative ends respectively. Under favourable conditions, the boundary structure of the
moduli space and the index theory of solutions to the Cauchy–Riemann equations give
δ2
= 0.
This is analogous to how the singular homology of a smooth manifold can be ob-

tained from a Morse function f via a chain complex (the Morse complex) generated
by critical points of f , and a differential counting gradient trajectories between critical
points. Critical points are “boundary conditions for gradient trajectories”.
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• Depending on the details of how this chain complex is constructed, one can obtain
various flavours of Floer homology, contact homology or symplectic field theory. An
intricate algebraic structure of generating functions can be used to keep track of detail
about counts of holomorphic curves.

• It often turns out that the resulting homology is independent of the choice of almost
complex structure J , and sometimes even of the underlying symplectic or contact struc-
ture. It is possible to obtain smooth manifold or knot invariants.

• For instance, one of the earliest versions of Floer homology, namely symplectic Floer
homology [12], proceeds in one variant as follows (see e.g. [38, ch. 12] for details and
proper definitions). We start with a symplectic manifold and a Hamiltonian function H
on it, which induces a vector field X H . The vector field X H integrates to give trajecto-
ries, some of which may return to their beginning and form periodic orbits. Roughly,
one can take a chain complex generated by certain periodic orbits and a differential
counting certain holomorphic cylinders from one orbit to another. The resulting ho-
mology turns out to be independent of the Hamiltonian function, and essentially inde-
pendent of the symplectic structure as well, producing an invariant of the topological
manifold isomorphic to quantum cohomology.

• However, the Floer homology theories of interest in this note are Heegaard Floer ho-
mology theories, powerful invariants introduced by Ozsváth and Szabó [41–43]. From a
3-manifold M , we take a Heegaard decomposition consisting of a surface Σ with curves
α1, . . . , αg bounding discs on one side and β1, . . . , βg on the other. We then (as in [29])
consider holomorphic curves in the symplectic manifold Σ × I × R with asymptotics
prescribed by the αi and β j .
It turns out that one can set up a chain complex so that the resulting homology is inde-
pendent of any symplectic or almost complex structure chosen – and even of the choice
of Heegaard decomposition! – giving a smooth manifold invariant of M . Different ver-
sions, such as the hat, infinity, minus, knot, bordered [30] and sutured [27] Heegaard
Floer homologies vary between the types of manifolds they apply to, the complexity of
the theory, and the ease of obtaining information.
One indication of the power of Heegaard Floer homology is that it detects the genus of
a knot [40,39]; this can be computed combinatorially [31].

We shall say no more about holomorphic curves until the final section, when we briefly
return to sutured Floer homology to see how it is related to the elementary structures
forming the main subject of this note.

2.4. Contact geometry

Contact geometry is the odd-dimensional sibling of symplectic geometry. Its roots can
be traced back to Lie’s work on systems of differential equations, and arguably back to
Christiaan Huygens [14,15].

One way to define a symplectic structure is a 2-form ω satisfying

dω = 0 and ωn is nowhere zero, i.e. a volume form.
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Analogously, a contact form α on a (2n + 1)-dimensional manifold M is a 1-form
satisfying

α ∧ (dα)n is nowhere zero, i.e. a volume form.

The kernel of α is a hyperplane field ξ on M and it is this plane field that is called a contact
structure.

Contact manifolds arise in considering wavefronts in optics. They also arise naturally
as submanifolds of symplectic manifolds. In fact, so many geometric problems can be
interpreted in terms of contact geometry, that Arnold once famously said that “contact
geometry is all geometry” [1].

The condition α∧ (dα)n
≠ 0 has a geometric interpretation from Frobenius’ theorem in

differential geometry. It is that ξ is totally non-integrable.
We are interested in 3-dimensional contact manifolds. Non-integrability then means

that there is no 2-dimensional surface immersed in M which is tangent to ξ . There are
1-dimensional curves tangent to ξ , but not 2-dimensional surfaces, not even locally.

The simplest example of a 3-dimensional contact manifold is R3 with contact form

α = dz − ydx .

The corresponding contact structure ξ = ker α is shown below.

Any contact manifold with a contact form (M, α) can be used to obtain a symplectic
manifold, called its symplectization:

M × R, d

etα


,

where t is the coordinate on R. It is then possible to consider holomorphic curves in this
symplectization, with asymptotics prescribed by contact geometry. Using the analytic tech-
niques mentioned above, we can obtain homology theories such as contact homology [2]
and embedded contact homology [26].

Having said a little about contact and symplectic topology, I now propose to drop the
subject entirely and talk about some seemingly unrelated algebra and combinatorics. We
will later see how this becomes, in a certain sense, a combinatorial version of contact
topology, and how it is related to holomorphic invariants.
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3. Quantum pawn dynamics

The theory of quantum pawn dynamics, or QPD, is a strange theory of pawns on chess-
boards.

3.1. Pawns on 1-dimensional chessboards

This theory has no space, no time, and no proper chessboards. It does have pawns
though. The pawns move along a finite 1-dimensional chessboard.

The pawns move from left to right. As they are pawns, they can only move ahead one
space at a time, and only into an unoccupied square. There is no capturing, no en pas-
sant, and no double first moves. Two pawns cannot occupy the same square. So from the
situation above, the pawns could eventually arrive at

in two moves, but could never get to

as the middle pawn would have to move backwards.
There is nothing special about the number of pawns or the size of the chess-“board”. We

can have a chess-“board” of any length n, and we can have any number of pawns n p where
0 ≤ n p ≤ n. Any setup of the board is a state of the QPD universe.

3.2. Quantum “inner product”

We now have pawns, and they move—hence, dynamics. We now make the dynamics
quantum by declaring an “inner product” ⟨·|·⟩. In quantum mechanics the inner product is
supposed to give you a probability amplitude for getting from one state of the universe to
another.

The QPD universe is more binary than that. Given one setup of pawns w0, you can
either get to another setup of pawns w1 or you cannot. And in fact, we do not need a
number system more complicated than Z2. So we do not have probabilities so much as
possibilities.

We declare that

⟨w0|w1⟩ =

1 if it is possible for pawns to move from w0 to w1
(in some number of moves, possibly 0);

0 if not.
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So our examples above translate to

and

Moreover, this is quantum pawn dynamics, so we can have superpositions of states—
entangled chessboards! We consider that we can add chessboards. But, as we said, we will
not consider numbers more complicated than 1; we take coefficients in Z2. The space of
states is the Z2-vector space freely generated by chessboard setups. We declare that the
“inner product” is bilinear, e.g.:

Importantly, note that the “inner product” is not symmetric. But it is asymmetric in a
very interesting way, as we will see. It is a “booleanized” partial order on the setups of the
chessboard. In fact, the configurations of a chessboard form a complete lattice in a natural
way.

3.3. Dirac sea and anti-pawns

Actually, there is some strong symmetry in QPD. We can think of chessboard with no
pawns as a thriving sea of anti-pawns. We can think of any square not occupied by a pawn,
as containing an anti-pawn. An anti-pawn is just an “absence of pawn”. This is very similar
to the idea of the “Dirac sea” of matter and anti-matter. We draw pawns as white and anti-
pawns as black.

Note when a pawn moves right, an anti-pawn moves left. So we can get from one setup
of the chessboard to another, iff all pawns move right, iff all anti-pawns move left.

So white and black are not exactly like the opposing sides of chess, but they do move in
opposite directions. Each is the absence of the other.

In each of the examples above, we imagine we have 6 pawn-particles: 3 pawns, and 3
anti-pawns. With n as the number of squares on the chessboard/number of pawn-particles,
and n p the number of pawns, we let nq = n − n p be the number of anti-pawns.

3.4. The initial creation and annihilation of pawns

Being a quantum field theory of pawns, QPD will have to allow us to create and annihi-
late pawns and anti-pawns.
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We will define the initial pawn creation operator a∗p,0 to take a chessboard setup,
and adjoin a new initial square to the chessboard—i.e. at the left hand side. This new
square/particle has a pawn on it (is a pawn-particle).

We will also define the initial pawn annihilation operator ap,0 to delete an initial pawn.
That is, it will annihilate the leftmost square from the chessboard – the chessboard shrinks
and a particle disappears – provided that square contains a pawn. What does the QPD
universe do if the initial square does not contain a pawn, but an anti-pawn? Why, it returns
an error of course: error 404 universe not found mod 2 is 0.

So, for example:

The vacuum ∅ is the state of the QPD universe with no chessboard. (This is different
from 0.) The universe is a lonely, empty place without a chessboard. But you can make a
bang and start your universal chessboard by creating an initial pawn.

Everything we have said for pawns applies also to anti-pawns. So there is an initial
anti-pawn creation operator aĎ

q,0, which creates a new leftmost square with an anti-pawn.
There is also an initial anti-pawn annihilation operator aq,0, which annihilates a leftmost
anti-pawn, or else returns error 0.

Using initial pawn and anti-pawn creation operators you can build any chessboard setup
out of nothing.

The ∗ and Ď on creation operators refer to adjoints, which we discuss next. In the world
of lattices and partial orders these are known as Galois connections. (See [33] for further
details.)

3.5. Adjoints

It is standard notation in physics to write annihilation operators with an a and creation
operators as a∗ or aĎ. And these operators are supposed to be related: they are adjoint with
respect to the inner product.

⟨ax |y⟩ = ⟨x |a∗y⟩, ⟨x |ay⟩ = ⟨a∗x |y⟩.

In our case, the “inner product” is not really an inner product because it is not symmetric.
However it is bilinear and nondegenerate (check!). An operator f on chessboards can have
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an adjoint—but, in fact, two adjoints. We will write one of these as f ∗ and one of them as
f Ď, as shown below.

⟨ f x |y⟩ = ⟨x | f ∗y⟩, ⟨x | f y⟩ = ⟨ f Ďx |y⟩.

Note this means that f ∗Ď = f Ď∗ = f .
In general f ∗∗ ≠ f . Some interesting things happen as we repeatedly take adjoints.

3.6. Initial creation and annihilation are adjoint

We can now see that our initial pawn creation a∗p,0 is indeed the ∗-adjoint of the initial
pawn annihilation ap,0.

⟨ap,0x |y⟩ = ⟨x |a∗p,0 y⟩.

Let us see why. Here x and y are chessboards. Note that if the leftmost square of x is empty

(contains an anti-pawn), so that then

The first expression equals zero because we tried to annihilate an initial pawn where
there was none and the universe returned an error. The second expression equals zero
because a pawn would have to move backwards to get to the leftmost square.

On the other hand, if the leftmost square of x contains a pawn, so that

then

So we have shown that a∗p,0 is indeed the ∗ adjoint of ap,0.
To (try to) put it succinctly: a∗p,0 y begins with a pawn, so ⟨x |a∗p,0 y⟩ is only nonzero if

x also begins with a pawn; in which case ap,0x removes that pawn so ⟨ap,0x |y⟩ gives the
same result.

It is not difficult to check by a similar argument that aĎ
q,0, the initial anti-pawn creation

operator, is indeed the Ď-adjoint of the initial anti-pawn annihilation operator aq,0.

3.7. Adjoints and adjoints of adjoints

We have seen one adjoint a∗p,0, and by definition a∗Ďp,0 = ap,0; but what happens if we
take the ∗ adjoint twice? In other words, what operator f satisfies

⟨a∗p,0x |y⟩ = ⟨x | f y⟩?
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Note a∗p,0x just puts a pawn at the left end of x , and we compare a∗p,0x to y. Clearly the
newly-added first pawn cannot move left. The real question to compute ⟨a∗p,0x |y⟩ is what
happens to all the other pawns. In fact, if you eliminate the first pawn from the left in both
a∗p,0x and y, you will reduce to the problem of looking at the other pawns.

We conclude that a∗∗p,0 is the operator which annihilates the first pawn on the chessboard,
from left to right. We will write this as ap,1.

But why stop there? What is a∗p,1? This is the operator f which satisfies

⟨ap,1x |y⟩ = ⟨x | f y⟩.

Given chessboards x and y, you delete the first pawn from x , and compare ap,1x and y.
You now want to come up with a chessboard f y, so that comparing the deleted chessboard
ap,1x to y always gives the same result as comparing x to f y. Well, you certainly do not
want to disturb the relative positions of the pawns. You just want to quietly slip a first pawn
into y in such a way that the first pawn of x can easily move there. And the place to slip in
that pawn is to double the first pawn in y.

3.8. Round-up of adjoints

We can continue in this fashion, computing more and more adjoints. Given what is
above, it might not be too surprising to discover that the iterated adjoints of ap,0 can be
expressed as

ap,0 → a∗p,0 → ap,1 → a∗p,1 → ap,2 → · · · ap,n p

→ a∗p,n p
→ ap,Ω → a∗p,Ω

where the arrows represented the operation of taking the ∗-adjoint. The operators ap,i for
1 ≤ i ≤ n p delete the i’th pawn. The operators a∗p,i double the i’th pawn. And at the end
we obtain final creation and annihilation operators, which we have denoted a∗p,Ω and ap,Ω .
These are to the right end of a chessboard what initial creation and annihilation operators
are to the left end.
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We can do just the same for the anti-pawn creation and annihilation operators. Drawing
a similar diagram, with arrows representing the ∗ adjoint (the inverse of the Ď adjoint), we
obtain something similar (although in a different direction).

aĎ
q,Ω → aq,Ω → aĎ

q,nq → aq,nq → · · · aq,2 → aĎ
q,1

→ aq,1 →aĎ
q,0 → aq,0.

It follows that

a∗
2n p+2

p,0 = ap,Ω and aĎ2nq+2

q,0 = aq,Ω .

But there is no reason to stop there; you can just keep taking adjoints. The description of
these adjoints in terms of pawns, however, becomes more complicated.

It turns out that these adjoints are periodic.

Theorem 3.1. On a chessboard with n squares,

a∗
2n+2

p,0 = ap,0, a∗
2n+2

q,0 = aq,0.

We might say that “∗2n+2
= 1”. Our proof of this involves a little more geometry, by

considering the combinatorics of chords on discs, as discussed in the next section.
The various creation and annihilation operators in different positions actually satisfy the

relations of a simplicial set: see [33] for details.

3.9. Chessboards and words

By now “chessboard notation” is becoming somewhat unwieldy. In fact, we can denote
any chessboard by a sequence of p’s and q’s, where a p is a pawn and q an anti-pawn.

4. Chords on discs

4.1. Curves on a disc

We now consider curves on discs and cylinders.
We consider a disc with 2n + 2 points marked on the boundary, which we number

clockwise by integers modulo 2n + 2. The point numbered 0 is considered a basepoint.
We consider chord diagrams, which are collections of non-intersecting curves joining the
points up in pairs. We only consider them up to isotopy relative to the boundary.

Note that each chord in a chord diagram must connect points with opposite parity. We
can shade the complementary regions of a chord diagram, so that each boundary interval
(2i, 2i + 1) is shaded black, and each interval (2i − 1, 2i) is shaded white.



134 D.V. Mathews / Expo. Math. 32 (2014) 121–160

Now we will declare that the effect of the creation operator a∗p,0 on a chord diagram
is to insert a new chord between the points currently numbered 0 and 1; the new points
are numbered −1 and 0 and so the points on the left need to be renumbered. The existing
chords remain in place but are pushed around the disc as shown.

More generally, we will declare that the creation operator a∗p,i inserts a new chord be-
tween the points currently labelled −2i and −2i + 1; the new points are labelled −2i − 1
and −2i , and points are renumbered accordingly,

For example

We will declare the effect of the annihilation operator ap,0 on a chord diagram to “close
off” the points 0 and 1 by joining them with a chord, and pushing this into the disc. Points
numbered 3, 4, . . . retain their numbering; the points labelled −1,−2, . . . have their label
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increased by 2. We obtain a diagram with two fewer points on the boundary. It might have
a closed curve as well as chords.

For example,

More generally, we declare that the annihilation operator ap,i closes off the points −2i
and −2i + 1, and relabels points: the points −2i + 2,−2i + 3, . . . retain their numbering
but the points −2i − 1,−2i − 2, . . . have their label increased by 2. Again we might see a
closed curve as a result.

When i = 0, both a∗p,i and ap,i perform operations near the basepoint labelled 0. When
i increases by 1, those operations occur 2 spots anticlockwise.

We will also declare creation operators aĎ
q,i and annihilation operators aq,i . These have

a similar effect but on the other side of the diagram. We declare aĎ
q,i inserts a new chord

between the points labelled 2i − 1 and 2i ; and we declare that aq,i closes off the points

2i−1 and 2i . So aq,0 and aĎ
q,0 perform operations near the basepoint, and when i increases

by 1, those operations occur 2 spots clockwise.

Note that the p-creation operator always creates a new white region, and the q-creation
operator always creates a new black region. Also, the p-annihilation operator always closes
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off a black region, while the q-annihilation operator always closes off a white region. The
similarity to pawn colours is not coincidental.

4.2. Diagrams of chessboards

We will call the simplest possible chord diagram, with one chord, the vacuum Γ∅.

Now for any word w in the letters p and q, we can apply a corresponding sequence
of initial creation operators a∗p,0 and aĎ

q,0 to the vacuum chord diagram Γ∅ to get a chord
diagram Γw for the word w.

For example, for the word w = qpqq we obtain

Now a word w in p and q corresponds to a chessboard, where each p stands for a pawn
and each q stands for an anti-pawn. So we can say that the chessboard w has chord diagram
Γw.
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It turns out that the creation and annihilation operators ap,i , a∗p,i , aq,i , aĎ
q,i act on chess-

boards and chord diagrams coherently.

Proposition 4.1. For any chessboard/word w,

Γa∗p,i w
= a∗p,iΓw.

In other words, the following diagram commutes.

A similar result holds for operators aĎ
q,i . And also for annihilation operators ap,i , aq,i ,

provided we take any diagram with a closed loop to be zero. Annihilating a pawn in the
wrong place gives an error “universe not found”; annihilating a chord in the wrong place,
so that the result is not a chord diagram, gives an error “chord diagram not found”.

4.3. Chord diagrams of chessboards as ski slopes

In fact there is a quicker way to draw the diagram of a chessboard, which also illustrates
why the above proposition is true. But we need to consider a different sport: skiing.

We imagine we have a ski slope, where as usual we ski from top to bottom. It is
rectangular in shape, with a starting line at the top, a finishing line at the bottom, and a
left and right side along the slope.

We consider a slalom run. There are obstacles, which we can imagine as poles in the
ground. As you go down the slope, you have to round all the obstacles, from top to bottom;
and after rounding each one you have to return to the centre of the course. There are some
(white) poles placed on the left, and some (black) on the right of the slope. We will write p
for a pole on the left, and q for a pole on the right. For the slalom course qpqq the course
looks as follows.
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Now, if we just consider that part of the course inside the obstacles, we get an interesting
chord diagram. In fact, it is just the chord diagram Γqpqq .

It is not difficult to see why this skiing algorithm gives the correct chord diagram for
each word/chessboard. Having the chord diagram arranged this way, with all the chords
coming from pawns/p’s on the left, and all the chords coming from anti-pawns/q’s on the
right, makes it easier to see why the chord diagram operations correspond to operations on
chessboards. For instance, a∗p,i adds an extra component to the ski run, entering from the
left side, then sharply turning back to the left hand side of the slope. This is precisely what
you get when you add an extra pole on the left.
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4.4. Square decomposition

We can also note that the pawns and anti-pawns correspond to a precise decomposition
of the chord diagram into squares, as shown by the green lines.

One can essentially read the chord diagram as a chessboard in this way: reading the ski
slope from top to bottom, reads off the chessboard from left to right.

Moreover, we see that each of these squares in the chord diagram contains chords in a
particular configuration, corresponding to a pawn or anti-pawn.

In this way, each pawn or anti-pawn provides one of two ways of drawing in chords into
the chord diagram—providing, in a sense, one bit of information and suggesting relations to
quantum information theory. Moreover, since we have creation and annihilation operators
for pawns and anti-pawns, and they can also be regarded as bits of information, one is
reminded of the “it from bit” idea of John Archibald Wheeler [45]. These ideas are more
fully developed in [35].

This decomposition of a chord diagram into pieces, each of which has curves in one of
two specified configurations, is also reminiscent of statistical mechanics.

4.5. Curves on cylinders

Consider the cylinder shown. Its boundary consists of discs on the top and bottom, and
a vertical annulus. On the vertical annulus we have some vertical curves, drawn in red.
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We are going to draw chord diagrams Γ0 and Γ1 on the bottom and top discs, and then
join up all the curves to obtain curves on the boundary of the cylinder, which of course is
topologically a sphere.

However, when we do so, we draw the curves are arranged along the corners as shown:

When we connect up the curves, we do it in the following fashion. We could imagine
that we are turning and walking along the corner, as shown on the left; or rounding the
corners and the curves, as shown on the right.
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Here we have an example, with a chord diagram at the top (namely Γqp, if we regard the
basepoint as being at the back), and another chord diagram at the bottom (namely Γpq ).

If we join up the curves as we specified, we obtain the following, which you can check is a
single connected curve on the cylinder/sphere. (A fun exercise is to prove that if we draw
the same chord diagram on the top and bottom of the cylinder, aligned exactly, then joining
up the curves on the cylinder in this fashion always gives a single connected curve.)
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4.6. Finger moves

Now, suppose we perform an annihilation operation ap,i on the chord diagram on the
bottom of the cylinder. The topological effect is the same as performing the creation
operator a∗p,i on the top of the cylinder—the two are related by a finger move as shown.

Similarly, if we perform the creation operator aĎ
q,i on the bottom of the cylinder, the

topological effect is the same as performing the annihilation operator aq,i on the top.

So these creation and annihilation operators, inserting and closing off chords in a chord
diagram, are related in a way that is quite similar to an adjoint.

4.7. “Inner product” on chord diagrams

In fact, based on the above, we will define an “inner product” of two chord diagrams
⟨Γ0|Γ1⟩ via what happens when you insert those two diagrams into the cylinder and round
the corners. The result must be a collection of curves on the sphere; it may be one connected
curve, or it may be disconnected and consist of several connected curve components.

We set

⟨Γ0|Γ1⟩ =

1 if the result of rounding the curves on the cylinder is a single
connected curve on the sphere;

0 if the result is disconnected.

Note the asymmetry: we require that Γ0 go on the bottom, and Γ1 on the top.
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The example drawn above in Section 4.5 shows that

⟨Γpq |Γqp⟩ = 1.

The finger move we drew above shows that

⟨aĎ
q,iΓ0|Γ1⟩ = ⟨Γ0|aq,iΓ1⟩.

Similar finger moves show that annihilation and creation operators on chord diagrams are
adjoint—just as on chessboards.

⟨ap,iΓ0|Γ1⟩ = ⟨Γ0|a
∗

p,iΓ1⟩

⟨aq,i+1Γ0|Γ1⟩ = ⟨Γ0|a
Ď
q,iΓ1⟩

⟨a∗p,iΓ0|Γ1⟩ = ⟨Γ0|ap,i+1Γ1⟩.

One can prove that this bilinear form is isomorphic to the one defined on chessboards.

Theorem 4.2 ([32,33]). For any two chessboards/words w0, w1,

⟨w0|w1⟩ = ⟨Γw0 |Γw1⟩.

That is, the property of pawns on a chessboard being able to move from one setup to
another, is precisely the property of curves on the cylinder joining up to give a single
connected curve.

Having seen this, it is perhaps more plausible why repeated adjoints of chessboard
operators might be periodic.

4.8. Bypass discs and 120◦ rotations

Suppose we have a chord diagram Γ on a disc D, and we consider a sub-disc B ⊂ D on
which the chord diagram appears as shown.
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Such a disc, on which the chord diagram restricts to 3 parallel arcs, is called a bypass
disc. There are two natural ways to adjust this chord diagram, consistent with the colours,
which amount to 120◦ rotations. These operations are called bypass surgeries.

With these surgeries on B ⊂ D, we have three chord diagrams on D, which we denote
Γ ,Γ ′,Γ ′′. We consider inserting Γ ,Γ ′,Γ ′′ successively into one end of a cylinder, with
some other chord diagram Γ1 on the other end. We obtain three sets of curves on the
cylinder.

Below is drawn a possible arrangement of curves on the cylinder. We draw what happens
inside B inside a circle, and what happens outside B outside the circle—this does not
necessarily correspond to the top and bottom of the cylinder.

We find here that, of the three sets of curves on the cylinder, 2 of them are connected.
The key observation is that whatever chord diagrams we have for Γ and Γ1, out of the 3
sets of curves obtained on the cylinder, the number of sets of curves which is connected is
even.

Proposition 4.3. Let Γ ,Γ1 be chord diagrams on the disc D with the same number of
chords. Then, with Γ ′,Γ ′′ obtained from Γ as above,

⟨Γ |Γ1⟩ + ⟨Γ ′|Γ1⟩ + ⟨Γ ′′|Γ1⟩ = 0.

In other words,

⟨Γ + Γ ′ + Γ ′′ | Γ1⟩ = 0.

Proof. The arrangement is either as in the above diagram, giving 1 + 0 + 1 = 0 mod 2,
or more degenerate, giving 0+ 0+ 0 = 0. See below.



D.V. Mathews / Expo. Math. 32 (2014) 121–160 145

�

4.9. A vector space of chord diagrams

We have seem how some chord diagrams can be drawn from chessboards. But this is
a very small class of chord diagrams; there are many more chord diagrams than chess-
board/ski slope chord diagrams.

On the other hand, our creation and annihilation operators are defined on any chord dia-
gram, not just chessboard ones. It is easy to draw in extra chords, or close off chords, on any
chord diagram, not just those drawn from chessboards. The adjoint relations from finger
moves also work generally, and the bilinear form/“inner product” defined from insertion
into a cylinder also works for any chord diagram.

We can relate general chord diagrams, to chessboard chord diagrams, with the following
observations.

If our “inner product” is supposed to be nondegenerate, then based on our previous
proposition, we should set

Γ + Γ ′ + Γ ′′ = 0

for any triple of chord diagrams Γ ,Γ ′,Γ ′′ obtained by bypass surgeries.
This relation is called the bypass relation and can be written schematically as
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We therefore define a vector space Vn as follows: Vn is generated over Z2 by all chord
diagrams with n chords, subject to the bypass relation, i.e. the relation that any three chord
diagrams related by bypass surgeries sum to zero.

Vn =
Z2⟨Chord diagrams with n chords⟩

Bypass relation
.

Before taking a quotient, the vector space is freely generated by chord diagrams, and its
dimension is equal to the number of chord diagrams with n chords, which is Cn , the n’th
Catalan number.

After the quotient, something interesting happens. The dimension is reduced to 2n−1 and
a basis is rather familiar.

Theorem 4.4 ([32]). The Z2 vector space Vn has dimension 2n−1 and the diagrams from
chessboards of n − 1 squares form a basis.

Indeed, there are 2n−1 configurations of pawns on a chessboard with n − 1 squares, and
these give the chessboard chord diagrams with n chords. (Each square, again, contributing
one bit of information.) Alternatively, this is the Z2 vector space freely generated by words
in p and q .

Corollary 4.5.

Vn ∼= (pZ2 ⊕ qZ2)
⊗(n−1) .

There is much more structure in this vector space, encoding various combinatorial and
representation-theoretic properties of chord diagrams. For instance, Vn has 22n−1

elements;
the Cn of these which correspond to chord diagrams are distributed in a combinatorially
interesting way (see e.g. [32,33]).

To give an idea of how chord diagrams decompose into chessboard diagrams, we give a
computation below.
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We should point out that this is not the only interesting basis of Vn . In [35] we defined a
large class of bases, one from any quadrangulation of a surface.

5. Contact topology

As it turns out, all these curves on surfaces and stuffing into cylinders and 120◦ rotations
describe 3-dimensional contact topology.

5.1. Chord diagrams and contact structures

First of all, a chord diagram Γ on a disc D describes a contact structure ξΓ on D × I .
This contact structure ξΓ consists of planes which are, roughly (and inaccurately) speaking,

• Tangent to D around the boundary of D.

• “Perpendicular” to D precisely along Γ .2

In the simple example below of a disc with two chords, as we proceed from one side to
the other, crossing both chords, the contact planes rotate through a full 360◦. A rough (and
inaccurate) interpretation of the contact condition of non-integrability is that if we follow
a curve C tangent to the contact structure ξ , dotted in the diagram, then the contact planes
always rotate in the same direction about C .

If we colour one side of the contact planes white and the other side black (grey) then the
black and white regions in a chord diagram correspond to which side of the contact planes
are visible from above.

2 This statement makes no sense: a contact manifold has no metric, and no notion of perpendicularity! Rather,
we should say that ξ is invariant under translations in the I direction, and the vector field in the I direction lies in
ξ precisely along Γ × I .
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It turns out that, in a sense which can be made precise, there is only one “way up to
isotopy” to draw contact planes consistent with the chords. The lines of intersection of the
contact planes with the disc D trace out a foliation called the characteristic foliation, some
curves of which are dotted in the diagrams. The characteristic foliation determines the
germ of a contact structure near D. The characteristic foliation is transverse to the chords
Γ (known as a dividing set in contact geometry) and in fact can be directed by a vector
field to exponentially dilate an area form on each component of D \ Γ exiting through Γ .
All such foliations compatible with Γ give isotopic germs of contact structures. This is all
part of the theory of convex surfaces developed by Giroux [17] in 1991.

5.2. Contact structures and overtwisted discs

Given a 3-manifold M , it is an interesting and difficult question to find all the isotopy
classes of contact structures on M .

Eliashberg in [7] showed that there are fundamentally two types of contact structures,
called overtwisted and tight. An overtwisted contact structure is one that contains an object
called an overtwisted disc; a tight contact structure is one that does not.

An overtwisted disc is a neighbourhood of a disc with a contact structure as shown. It
corresponds to seeing a contractible closed curve in a chord diagram/dividing set on a disc.

Eliashberg in 1989 [7] proved that the classification of overtwisted contact structures
on a 3-manifold M is equivalent to the homotopy classification of plane fields on M . In
this case the contact geometry reduces to a well-understood topic in homotopy theory and
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contact geometry offers nothing new. So contact topologists tend to regard an overtwisted
disc as “spoiling” a contact structure or rendering it trivial. It is quite surprising that
the presence of one particular disc in a contact 3-manifold has such global topological
consequences.

The tight contact structures on M , on the other hand, offer important information about
the topology of M . Not every 3-manifold has a tight contact structure, as Etnyre and Honda
proved in 1999 [11]; and the number of tight contact structures on a 3-manifold depends
intricately on the topology of M (see, e.g., [18,19,22,23]).

This makes it quite reasonable that we regard a diagram on a disc, with a red closed
curve, as “trivial”, and count it as 0, such as in this figure seen previously:

5.3. Contact structures on spheres and balls

Contact structures in the neighbourhood of a sphere S2 are again given by dividing sets
on S2, which we continue to draw in red. It turns out that there is essentially only one tight
contact structure in the neighbourhood of an S2, and that is given by a single connected
curve. Any dividing set with more than one curve gives an overtwisted contact structure.

The sphere on the left has a tight contact neighbourhood. The sphere on the right has an
overtwisted contact neighbourhood, and boundaries of two overtwisted discs are drawn in
dashed black.

Now consider each sphere S2 as the boundary of a ball B3. Contact structures on balls
were classified by Eliashberg in 1992 [8]. Putting aside the overtwisted structures, there is
essentially only one tight contact structure on the ball, up to isotopy. Given a dividing set
on the boundary sphere which is connected, there is an essentially unique way to fill it in.
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5.4. Contact corners

When considering a surface S with boundary ∂S in a contact 3-manifold (M, ξ), we
often require the contact planes to be tangent to the boundary ∂S. Above, all our diagrams
of discs with contact planes have been drawn in this way.

When two surfaces meet along their boundary, forming a corner, then the dividing sets
do not intersect along the corner—with our rough interpretation of dividing set as “where
contact planes are perpendicular to the surface”, this would mean that the contact planes
are perpendicular to both surfaces meeting at the corner, as well as tangent to the corner,
which is impossible.

Rather, the contact planes rotate around the corner curve, and the dividing sets interleave
as shown.

It is not too difficult to believe, then, that if we round the corners, then dividing curves
behave as we proposed earlier.



D.V. Mathews / Expo. Math. 32 (2014) 121–160 151

It follows immediately from Eliashberg’s classification of contact structures on balls [8],
then, that the “inner product” on chord diagrams, involving insertion into a cylinder, has a
simple contact geometry interpretation.

Proposition 5.1 ([32]). Let Γ0,Γ1 be chord diagrams. The following are equivalent:

(i) ⟨Γ0|Γ1⟩ = 1.
(ii) The solid cylinder with dividing set Γ0 on the bottom and Γ1 on the top has a tight

contact structure. �

The “finger moves” we saw earlier for curves on the cylinder now correspond simply to
isotopy of contact structures near the sphere, and in the ball.

5.5. Bypasses

Suppose we start from a surface S with a dividing set on it—such as a disc with a chord
diagram. This describes a contact structure near S; effectively, on S× I . We could then try
to build up a contact manifold by gluing on more pieces on top of S × I , and gluing them
up.

It turns out that any contact 3-manifold can be built up in this way, using only funda-
mental building blocks called bypasses. Drawn in terms of chord diagrams and cylinders,
a bypass is actually something we saw earlier in computing ⟨Γpq | Γqp⟩. It is drawn below.

A bypass is nothing but a particular contact 3-ball. We consider the cylinder as bounding
a 3-ball; from Eliashberg’s theorem we know that the contact structure on the boundary of
the cylinder extends uniquely throughout the ball to a tight contact structure.

Thus, the elementary building blocks of contact topology are, in a certain sense, pre-
cisely the elementary pawn moves
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However, beware! If you stack two bypasses directly on top of each other, you will find
an overtwisted disc. We might say that the shortest step in contact topology is half way to
oblivion.

To build a tight contact structure, you will need to place bypasses in more sophisticated
locations than just on top of each other.

We see that addition of a bypass on top of a disc performs a 120◦ rotation in the chord
diagram. This is precisely the operation described earlier and we defined the vector space
Vn by setting triples of bypass-related chord diagrams to sum to zero.

In fact, our creation and annihilation operators, which added or closed off curves in a
chord diagram, can also be seen as building onto an existing contact structure.

5.6. The contact category

Honda has introduced the concept of the contact category [21]. For a disc, the contact
category Cn consists of objects and morphisms as follows.

(i) The objects are chord diagrams with n chords, i.e. contact structures near discs D.
(ii) The morphisms Γ0 −→ Γ1 are contact structures on the cylinder D × I , with Γ0 on

the bottom and Γ1 on the top.
(iii) Composition of morphisms is given by stacking cylinders on top of each other.

Honda showed that this category has many of the properties of a triangulated category.
In particular bypass triples behave very much like exact triangles. If Γ ,Γ ′,Γ ′′ are
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successively obtained from each other by adding bypasses, then the composition of any
two is overtwisted, hence 0.

But we have seen here that chord diagrams themselves can be described by pawns and
chessboards—and the dynamics of pawns on chessboards is itself essentially a partial
order, which is a type of category. Our work in [32] defined a contact 2-category out
of this geometric structure.

In fact, looking now at the vector space Vn we defined, we have essentially

Vn =
Z2⟨Chord diagrams with n chords⟩

Bypass relation
=

Z2⟨Objects of Cn⟩

Exact triangles sum to zero

and thus Vn is the Grothendieck group of Cn .

5.7. Combinatorics of contact geometry

To summarise, we have now seen various ways in which the combinatorics of chords on
discs and cylinders, quantum pawn dynamics, and contact geometry are connected:

(i) Any chord diagram describes a contact structure near a disc.
(ii) The “inner product” ⟨·|·⟩ can be interpreted as pawn dynamics on a chessboard,

insertion of chord diagrams into a cylinder, or the existence of tight contact structures
in solid cylinders.

(iii) Creation and annihilation operators can be defined as pawn/anti-pawn creation/
annihilation, or the insertion/closure of curves in a chord diagram, or building a con-
tact structure.

(iv) The adjoint property of creation and annihilation can be interpreted via the combina-
torics of chessboards, finger moves on cylinders, or isotopy of contact structures on
the sphere.
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(v) A diagram on a disc with a closed curve describes an overtwisted contact structure,
hence is “trivial” in terms of contact geometry. Similarly for curves on a cylinder with
more than one component.

(vi) Bypass triples of chord diagrams correspond to: building blocks of contact 3-
manifolds; triples which must sum to zero for the “insertion into cylinder inner prod-
uct” ⟨·|·⟩ to be nondegenerate; and exact triangles in the contact category.

(vii) Chessboards correspond to a special class of chord diagrams, which look like slalom
ski slopes, forming a basis for Vn , the Grothendieck group of the contact category of
the disc.

Much of this structure is similar to topological quantum field theories (TQFT’s). In par-
ticular, we have assigned vector spaces Vn to discs, which are 2-dimensional. To cylinders,
which we can think of as (2 + 1)-dimensional, or as the “time evolution” of a disc, we
have associated an element of Z2, or a morphism in the contact category. And we have
the “inner product” which describes not so much a probability amplitude, but a possibility
amplitude for a tight contact structure to evolve from one disc to another. We can call this
structure contact TQFT and summarise much of what we have said as

Contact TQFT ∼= QPD.

6. Holomorphic invariants

In fact, all of this structure actually arose from some of the holomorphic invariants men-
tioned earlier.

6.1. Sutured Floer homology

Sutured Floer homology is a variant of Heegaard Floer homology. A sutured 3-manifold
(M,Γ ) is (roughly) a 3-manifold M with boundary, and some curves Γ on the boundary
∂ M , which divide ∂ M into positive and negative regions. Sutured 3-manifolds were studied
by Gabai in the 1980s in the context of foliation theory [13], but also describe contact 3-
manifolds with boundary—indeed, the diagrams we have drawn with discs, red curves, and
complementary regions coloured black and white are sutures. There are close relationships
between foliation theory, sutured manifolds and contact topology [24,9].

Sutured Floer homology, again speaking roughly and imprecisely, is defined as follows.
A sutured 3-manifold3 (M,Γ ) has a Heegaard decomposition, consisting of a Heegaard
surface with boundary Σ , and two sets of curves α1, . . . , αk and β1, . . . , βk on Σ . The
manifold can be recovered from the decomposition by gluing to Σ × [0, 1] discs along
αi × {0} and βi × {1}. The sutures lie along ∂Σ × [0, 1], the negative part of the boundary
is Σ × {0} surgered along the αi × {0}, and the positive part of the boundary is Σ × {1}
surgered along the βi × {1}. We then consider holomorphic curves

u : S −→ Σ × I × R

3 Strictly speaking, a balanced sutured 3-manifold.
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where S is a Riemann surface with boundary and with negative boundary punctures p1,

. . . , pk and positive boundary punctures q1, . . . , qk , satisfying conditions including the
following (among others)4:

(i) u sends ∂S to

((∪i αi )× {1} × R) ∪ ((∪i βi )× {0} × R) .

(ii) u asymptotically sends each pi to −∞ in the R coordinate, and each qi to +∞.
(iii) Each u−1(αi × {1} ×R) and u−1(βi × {0} ×R) consists of precisely one segment of

∂S \ {p1, . . . , pk, q1, . . . , qk}.

The point I want to make here is that, whatever the precise boundary conditions for
holomorphic curves, they are defined in terms of the Heegaard decomposition. At+∞, the
curve u(S) (or rather, its projection to Σ ) runs through several intersections of α and β

curves. Indeed, at +∞ we obtain a set of points z1, . . . , zk ∈ Σ , such that

z1 ∈ α1 ∩ βσ(1), z2 ∈ α2 ∩ βσ(2), . . . , zk ∈ αk ∩ βσ(k)

for some permutation σ . We obtain a similar set of intersection points at −∞.
We define a chain complex C F generated over Z2 by sets of such intersection points,

x = {z1, . . . , zk}.

If we fix x and y to be two sets of intersection points, then we consider the moduli space
M(x, y) with boundary conditions given by x at +∞ and y at −∞. The dimension of
this moduli space can be given in terms of the topology of x and y (an index formula).
It follows, with some serious analysis, that we can define a differential to count index-1
curves

δx =


dim M(x,y)=1

# M(x, y) · y

and δ2
= 0. (Here M is the quotient of the moduli space M by the action of translation

along R; so M consists of finitely many points.) Then we may take the homology and
Ozsváth–Szabó (for closed manifolds [42,41]) and Juhász (for sutured manifolds [27])
showed that this homology is independent of the choice of Heegaard decomposition
(and independent of other technical choices made along the way). That is, the resulting
homology is a sutured manifold invariant which we may call SFH(M,Γ ).

Sutured Floer homology also has the nice property that any contact structure ξ on (M,Γ )

gives a contact element c(ξ) in SFH(M,Γ ) [25].5

6.2. SFH, contact geometry and pawns

It turns out that our subject matter in this note has been sutured Floer homology—in
particular, SFH of solid tori D2

× S1. If we let Fn consist of 2n points on the boundary
∂ D2, so that Fn × S1 forms a set of sutures on D2

× S1, then we have the following.

4 There are also some more technical conditions including conditions on the complex structure, non-constant
projections of u, and finite energy. We just highlight the fact that the boundary conditions come from 3-manifold
topology. See [29,27].

5 This element is only defined up to sign; however if we take Z2 coefficients, no ambiguity arises.



156 D.V. Mathews / Expo. Math. 32 (2014) 121–160

Theorem 6.1 ([32]).

SFH(D2
× S1, Fn × S1) ∼= Vn .

Moreover, this isomorphism nicely relates chord diagrams, contact geometry and quan-
tum chessboards.

Consider a chord diagram Γ on the disc D2 of n chords. As we have seen, this corre-
sponds to a tight contact structure on a neighbourhood D2

× I of the disc. If we glue the two
ends D2

×{0} and D2
×{1} of this cylinder together, then we obtain a contact structure ξΓ

on (D2
×S1, Fn×S1), which turns out to be tight. (In fact all tight contact contact structures

on (D2
× S1, Fn × S1), up to isotopy, can be obtained in this way: [22].) As we mentioned

above, such a contact structure gives a contact element c(ξΓ ) ∈ SFH(D2
× S1, Fn × S1).

Proposition 6.2 ([32]). The above isomorphism sends chord diagrams to the correspond-
ing contact elements:

Γ ←→ c(ξΓ ).

We recall that chessboards give chord diagrams on D2 via slalom slopes; these, accord-
ingly, now correspond to elements in sutured Floer homology SFH(D2

× S1, D2
× Fn).

We saw previously, in Section 4.4, how the squares of a chessboard give a decomposition
of a chord diagram into squares. In a chessboard chord diagram, each square has chords in
one of two configurations, corresponding to a pawn or anti-pawn.

Such a decomposition of a chord diagram corresponds to a decomposition theorem in
sutured Floer homology. It follows from a theorem of Juhász [28] that in SFH, one takes a
tensor product each time one glues such squares. In particular,

SFH(D2
× S1, Fn × S1) ∼=

n−1
i=1

SFH(D2
× S1, F2 × S1)

so that, as we saw in Theorem 4.4 and Corollary 4.5,

Vn ∼= V⊗(n−1)
2 .

Therefore, all of the structure we have been discussing, is contained in sutured Floer
homology of one of the simplest sutured 3-manifolds, namely a solid torus. By regluing and
combining squares in different combinations, one obtains an intricate algebra mirroring the
combinatorics of chord diagrams and bypass surgeries. Following this idea further in [35],
one obtains much of the structure of a topological quantum field theory in which bits (or
are they its? They can still be created and annihilated) are encoded on the squares of a
quadrangulation of a surface.

As a final irony, it turns out that if one goes through the details of a Heegaard decom-
position of a sutured solid torus (D2

× S1, Fn × S1) to compute the chain complex for
sutured Floer homology, no holomorphic curves contribute. The differential in the chain
complex is trivial. So all of the structure we have discussed arises in an essentially null
case of sutured Floer homology.
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6.3. Embedded contact homology and string homology

Let us conclude with a brief reference to another holomorphic invariant. Embedded
contact homology, defined by Hutchings [26], starts from a 3-manifold M with a contact
structure ξ and a contact form α. From the 1-form α there is a natural vector field called
the Reeb vector field R, which is defined by

dα (R, ·) = 0, α(R) = 1.

Embedded contact homology counts holomorphic curves in the symplectization M×R with
symplectic form d(etα), where t is the coordinate on R. The most important condition
prescribed on holomorphic curves is that the curves must approach Reeb orbits, i.e.
periodic orbits of R, as t →±∞. Roughly, given certain collections of Reeb orbits

γ+ = {γ+1 , . . . , γ+n } and γ− = {γ−1 , . . . , γ−n },

(some of which might be repeated and some of which might be covered multiple times), we
consider the moduli space M(γ+, γ−) of embedded holomorphic curves which approach
γ+ at +∞ and γ− at −∞. Again there is an index formula giving the dimension of the
moduli space in terms of the contact geometry of the γ±i and again, after a lot of work, it
is possible to define a differential

∂γ+ =


dim M(γ+,γ−)=1

# M(γ+, γ−) · γ−

where ∂2
= 0. The homology of this complex is embedded contact homology, ECH. It is

possible to define ECH also for sutured manifolds [6].
It has recently been shown that embedded contact homology is isomorphic to Heegaard

Floer homology (see e.g. [5]). Note that ECH, even though it is defined in terms of a contact
form, turns out not to depend on the contact structure at all, but is a smooth manifold
invariant.

This deep isomorphism between ECH and H F implies that we should be able to obtain
all of the combinatorial and algebraic structure we have discussed above, from embedded
contact homology. Based on work of Cieliebak–Latschev [4], as discussed in [36], one is
led to consider the following ideas.

Take a disc D with 2n points F marked on the boundary, as we have seen with chord di-
agrams. But now consider sets of curves on D with boundary F , which are not necessarily
chord diagrams—the curves may intersect. We call these string diagrams.

We define a Z2 vector space freely generated by string diagrams, up to homotopy relative
to boundary. On this vector space, there is a differential ∂ defined by resolving crossings.
That is, given a string diagram s, ∂s is the sum of string diagrams, each obtained by re-
solving one of the crossings of s as shown.
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It turns out that ∂2
= 0, and the homology is something with which we are by now

familiar.

Theorem 6.3 ([36]).

H S ∼= Vn ∼=
Z2⟨chord diagrams on (D2, F)⟩

Bypass relation
.

The “reason” for this relation – which is far from a proof – is the following picture.

This idea of taking vector spaces generated by topological classes of curves, and resolv-
ing their crossings, is closer to the sorts of objects studied in string topology (e.g. [3]) and
as such we can say that contact topology and sutured Floer homology are expressed as a
string homology. Further details and generalisations of this result are given in [36].
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