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Overview

There’s been much progress in the fields of symplectic and
contact geometry in recent years.

Much of it is quite involved, requiring:
Fredholm / index theory of Cauchy-Riemann operators
moduli spaces of pseudo-holomorphic curves
delicate differential geometry and topology
intricate algebraic structures keeping track of analytic data

However, in the simplest cases some of this structure
reduces to some elementary combinatorics and algebra
which is interesting in its own right.



Introduction Combinatorial and algebraic structure Contact topology Holomorphic invariants

Overview

There’s been much progress in the fields of symplectic and
contact geometry in recent years.
Much of it is quite involved, requiring:

Fredholm / index theory of Cauchy-Riemann operators
moduli spaces of pseudo-holomorphic curves
delicate differential geometry and topology
intricate algebraic structures keeping track of analytic data

However, in the simplest cases some of this structure
reduces to some elementary combinatorics and algebra
which is interesting in its own right.



Introduction Combinatorial and algebraic structure Contact topology Holomorphic invariants

Overview

There’s been much progress in the fields of symplectic and
contact geometry in recent years.
Much of it is quite involved, requiring:

Fredholm / index theory of Cauchy-Riemann operators
moduli spaces of pseudo-holomorphic curves
delicate differential geometry and topology
intricate algebraic structures keeping track of analytic data

However, in the simplest cases some of this structure
reduces to some elementary combinatorics and algebra
which is interesting in its own right.



Introduction Combinatorial and algebraic structure Contact topology Holomorphic invariants

Overview

This talk will:
Give some very brief background to the subjects of
symplectic and contact geometry and holomorphic curves.

Discuss some of our algebraic and combinatorial results in
their own right.
(No symplectic/contact geometry or holomorphic curves
assumed.)
Briefly explain how this elementary algebra/combinatorics
describes contact topology and arises from holomorphic
invariants.
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Symplectic manifolds

Definition
A symplectic manifold is a pair

(M, ω)

where
M is a smooth manifold
ω is a closed 2-form (dω = 0) which is non-degenerate.

Structure of Hamiltonian mechanics:

Given a smooth function H : M −→ R (Hamiltonian) we
obtain a 1-form dH and a dual vector field XH via

ω(XH , ·) = dH

E.g. M = R2n, ω =
∑n

j=1 dxj ∧ dyj .
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Contact geometry

“The odd-dimensional sibling of symplectic geometry”

Definition
A contact structure ξ on a (2n + 1)-dimensional manifold M is a
totally non-integrable comdimension-1 hyperplane field on M.

Equivalently, a contact structure is the kernel of a contact form
α, i.e. satisfying α ∧ (dα)n 6= 0 everywhere.
E.g. R3 with α = dz − y dx .
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Symplectic vs complex geometry

Complex geometry also only exists in even number of
dimensions.
Gromov (1985): Consider almost complex structures on
symplectic manifolds and holomorphic curves.

Definition
An almost complex structure on a smooth manifold is a map

J : TM −→ TM

preserving each fibre TpM and satisfying J2 = −1.

M
v

Jv

p

TpM
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Almost complex vs complex

Almost complex structure is a pointwise definition.
A complex structure requires local charts to Cn with
holomorphic transition maps.
(Much more onerous.)

Existence:
Not every symplectic manifold has a complex structure.
Every symplectic manifold has a compatible almost
complex structure J, and all choices of compatible J are
homotopic.
(Compatible: J and ω behave in linear algebra like i and
dx ∧ dy . ω(v ,w) = ω(Jv , Jw) and ω(v , Jv) > 0)
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Holomorphic curves

Given symplectic (M, ω) and compatible almost complex J...

Definition
A holomorphic curve is a map u : Σ −→ M, where Σ is a
Riemann surface, satisfying the Cauchy-Riemann equations

Du ◦ i = J ◦ Du.

M

v
Jv

C

u

Σ

An almost complex structure is sufficient for the equations:
“pseudo-holomorphic”, “J-holomorphic”.
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Moduli spaces

Given appropriate constraints (marked points, boundary
conditions) and transversality, the space of holomorphic
curves is a finite-dimensional orbifold: moduli spaceM.

Index theory (Riemann–Roch etc.) gives dimension ofM.
M compactified toM: Gromov compactness theorem.
Boundary ofM is stratified: boundary strata are moduli
spaces for “degenerate” holomorphic curves (nodal
surfaces, etc.)

M

v
Jvu

M andM encode a great deal of information about M.
Some powerful invariants use only the codimension-1
boundary ofM.
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Homology theories

Floer Homology theories (e.g. contact homology, Heegaard
Floer homology), roughly...

Define a chain complex generated by boundary conditions
for holomorphic curves
A differential counting 0-dimensional families of
holomorphic curves between boundary conditions.
Boundary structure of moduli space gives ∂2 = 0.

(Analogous Morse construction
of singular homology: complex
generated by critical points of
Morse function, differential
counts 0-dimensional families
of gradient trajectories.)

Index i

i − 1i − 1

i − 2
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The power of holomorphic invariants

Floer homology theories give very powerful invariants of
3-manifolds, knots, etc...
Related to Seiberg–Witten theory, Donaldson–Thomas
theory, etc...
E.g., knot Floer homology can compute the genus of a
knot.

For a less complicated variant called sutured Floer
homology, and a simple class of manifolds M = Σ×S1, we
obtain all the combinatorial structure we are about to see,
and more...
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Quantum Pawn Dynamics

Pawns on a finite 1-dimensional chessboard.
A state of the QPD universe:

P P P

Pawns move from left to right, one square at a time.
(No capturing, no en passant, no double first moves.)

Quantum pawns: “Inner product” 〈·|·〉 describes the possibility
of pawn moves from one state to another.
Valued in Z2.

Definition (Pawn “inner product”)

〈w0|w1〉 =


1 if it is possible for pawns to move from w0 to w1

(this includes the case w0 = w1);
0 if not.
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Quantum Pawn Dynamics

E.g.

〈 P P P | P P P 〉 = 1

Also, entangled chessboards.

〈
P P P |

P P P
+

P P P

〉
= 1 + 0 = 1.

Note asymmetry of 〈·|·〉.
A “booleanized” partial order. (Complete lattice.)
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Dirac Pawn Sea

Think of an “empty” chessboard as a thriving sea of
anti-pawns.
“Anti-pawn” = “absence of pawn”.

P P P = P p P P p p
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Creation and annihilation operators

The initial pawn creation operator a∗p,0 adjoins a new initial
(leftmost) square to the chessboard, containing a pawn.

a∗p,0 P p P P p p = P P p P P p p

The initial pawn annihilation operator ap,0 deletes the leftmost
square from the chessboard, and a pawn on it.

ap,0 P p P P p p = p P P p p

If no pawn (anti-pawn) in the leftmost square, try to delete...
“error 404 universe not found” mod 2 = 0.

ap,0 p P P p p = 0

Similar initial anti-pawn annihilation aq,0 and creation a†q,0.
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Creation of chessboards

The vacuum state of the QPD universe is the null
chessboard ∅.
(Note ∅ 6= 0.)
Applying initial creation operators to the vacuum can
create any chessboard.

a∗p,0a†q,0a∗p,0a∗p,0a†q,0a†q,0 ∅ = P p P P p p

The ∗ and † refer to adjoints.
(Galois connections on partial orders.)
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Adjoints

Recall an adjoint f ∗ of an operator f usually means that

〈fx |y〉 = 〈x |f ∗y〉, 〈x |fy〉 = 〈f ∗x |y〉.

As our “inner product” is asymmetric, we have two distinct
adjoints f ∗, f † of an operator f .

〈fx |y〉 = 〈x |f ∗y〉, 〈x |fy〉 = 〈f †x |y〉.

So f ∗† = f †∗ = f .
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Initial creation and annihilation are adjoint

Proposition

〈ap,0x |y〉 = 〈x |a∗p,0y〉

Proof.
a∗p,0y begins with a pawn.
If x begins with an anti-pawn, both sides are 0.
If x begins with a pawn, 〈x |a∗p,0y〉 6= 0 compares two
chessboards with initial pawns.
ap,0 removes an initial pawn so 〈ap,0x |y〉 gives the same
result.

Similarly, initial anti-pawn creation/annihilation †-adjoint.
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Adjoining adjoints

What is a∗∗p,0? What operator f satisfies

〈a∗p,0x |y〉 = 〈x |fy〉?

Answer: the operator which deletes the first pawn from the left
on a chessboard.〈

a∗p,0 P P | P P P
〉

=
〈

P P P | P P P
〉

=
〈

P P | P P
〉

= 1
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Iterated adjoints

Proposition
The iterated adjoints of ap,0 are

ap,0 → a∗p,0 → ap,1 → a∗p,1 → ap,2 → · · · → ap,Ω → a∗p,Ω

where:
ap,i deletes the i’th pawn
a∗p,i doubles the i’th pawn
ap,Ω,a∗p,Ω are final pawn creation and annihilation.

Similarly for anti-pawns in the opposite direction.

a†q,Ω
→ aq,Ω → · · · aq,2 → a†q,1 → aq,1 → a†q,0 → aq,0

(A simplicial structure.)
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Adjoint periodicity

Hence
a∗

2np+2

p,0 = ap,Ω

where np = number of pawns.

Theorem (M.)

a∗
2n+2

p,0 = ap,0.

where n is the number of squares on the chessboard.

One can also show that the duality operator defined by

〈u|v〉 = 〈v |Hu〉

satisfies

Theorem (M.)

H2n+2 = 1.
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Chord diagrams

Consider a disc D with some points F marked on ∂D.
A chord diagram is a collection of non-intersecting curves on D
joining points of F .
E.g.

0 1
2

3

4
56−5

−4

−3

−2
−1

Curves join points of opposite parity, so shade as shown.
0 is a basepoint.
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Creation and annihilation of chords

Define creation operators a∗p,i , a†q,i to insert a new chord in a
specific place in a chord diagram as shown.

a∗p,i

−2i + 1

−2i

=

−2i + 1

−2i

−2i − 1

−2i − 2

a†q,i

2i − 1

2i

=

2i − 1

2i

2i + 1

2i + 2

a∗p,i creates a white region i spots down on the left.

a†q,i creates a black region i spots down on the right.
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Creation and annihilation of chords

Define annihilation operators ap,i , aq,i to close off chords in a
chord diagram as shown.

ap,i

−2i + 2

−2i + 1

−2i

−2i − 1

=

−2i + 2

−2i + 1

aq,i

2i − 2

2i − 1

2i

2i + 1

=

2i − 2

2i − 1

ap,i closes off a black region i spots down on the left.
aq,i closes off a white region i spots down on the right.
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Diagrams of chessboards

The simplest chord diagram is called the vacuum Γ∅.

Build up more complicated diagrams with creation operators.

Proposition (M.)
For any chessboard w, there is a chord diagram Γw such that
creation and annihilation operators agree (are equivariant):

Γa∗p,i w = a∗p,iΓw .

w Γw

a∗p,i w
Γa∗p,i w

Draw
diagram

Draw
diagram

Create
pawn

Create
chord
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Ski slopes

Construction of the slalom skiing chord diagram of a
chessboard.

qpqq ↔ p P p p

↔

0
1

2

−1

−2

3

4

5

6
7

↔
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An “Inner product” on chord diagrams

There’s a bilinear form on chord diagrams defind by entering
into a cylinder.

Γ1

Γ0
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An “Inner product” on chord diagrams

Note curves don’t meet at corners! We treat corners as shown.

Definition

〈Γ0|Γ1〉 =


1 if the resulting curves on the cylinder

form a single connected curve;
0 if the result is disconnected.
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Theorem (M.)
For any two chessboards w0,w1,

〈w0|w1〉 = 〈Γw0 |Γw1〉.

E.g.

〈
P p | p P

〉
= 1 =
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Adjoints

Adjoint relations can be seen topologically as “finger moves”.

2i − 12i

2i 2i − 1
2i + 1

2i + 1
2i − 12i

2i − 1

2i + 1

2i − 1

2i − 1

〈a†q,i Γ0 | Γ1〉 = 〈Γ0 | aq,i Γ1〉

Now perhaps believable that adjoint is periodic.
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Bypass surgery

In a chord diagram on disc D, consider a sub-disc B as shown:

Two natural ways to adjust this chord diagram, consistent with
the colours: bypass surgeries.

Γ′ Γ Γ′′

Proposition

With Γ, Γ′, Γ′′ as above, for any Γ1,

〈Γ|Γ1〉+ 〈Γ′|Γ1〉+ 〈Γ′|Γ1〉 = 0.
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Bypass surgery

Idea of proof:

1 + 0 + 1 = 0

If 〈·|·〉 is to be nondegenerate, any three chord diagrams related
by bypass surgery should sum to 0: bypass relation.

+ + = 0

So we define a vector space

Vn =
Z2〈Chord diagrams with n chords〉

Bypass relation
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A vector space of chord diagrams

Theorem (M.)

Vn has dimension 2n−1 and the diagrams from chessboards of
n − 1 squares form a basis.

E.g.

= +

= + + +

= Γppqq + Γpqqp + Γqppq + Γqpqp
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Chord diagrams and contact structures

Giroux (1991): theory of convex surfaces.
A chord diagram Γ / dividing set on a disc D describes a contact
structure ξΓ on a neighbourhood D × I of D.

Roughly speaking, the contact planes are
Tangent to ∂D
“Perpendicular” to D precisely along Γ

Colours in chord diagram = visible side of contact plane.
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Overtwisted contact structures

Eliashberg (1989): fundamentally 2 types of contact structures.
Overtwisted: contains an overtwisted disc.
Tight: does not.

An overtwisted disc is:

Overtwisted contact geometry reduces to
(well-understood) homotopy theory. Tight contact
structures offer important topological information.
Eliashberg (1992): contact structure near an S2 is tight iff
dividing set is connected. If so, contact structure extends
uniquely (up to isotopy) to a tight contact structure on B3.
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Contact corners

When two convex surfaces meet along a boundary, contact
planes are arranged as shown.

Proposition
Let Γ0, Γ1 be chord diagrams. The following are equivalent:

〈Γ0|Γ1〉 = 1.
The solid cylinder with dividing set Γ0 on the bottom and Γ1
on the top has a tight contact structure.
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Bypasses

Honda (2000’s): any 3-manifold can be built up from a surface
and dividing set by adding bypasses.

Effect on dividing set is “bypass surgery” as defined earlier.

Corresponds to
〈Γpq|Γqp〉 = 1

or
P p → p P
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Bypasses

Stacking two bypasses on top of each other produces an
overtwisted contact structure!

Can build a triangulated category out of dividing sets and
contact structures (Honda, M.). Vn is the Grothiendick group.
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Contact TQFT = Quantum pawn dynamics

These definitions give many of the properties of a
(2+1)-dimensional topological quantum field theory.

Contact structure near disc (2-dim) “states” in Vn

Contact structure over cylinder (2+1-dim) element of Z2.
“Possibility of a tight contact structure from one state to
another” inner product 〈·|·〉 : Vn ⊗ Vn −→ Z2.

Theorem (M.)
“Contact TQFT is isomorphic to quantum pawn dynamics.”



Introduction Combinatorial and algebraic structure Contact topology Holomorphic invariants

Contact TQFT = Quantum pawn dynamics

These definitions give many of the properties of a
(2+1)-dimensional topological quantum field theory.

Contact structure near disc (2-dim) “states” in Vn

Contact structure over cylinder (2+1-dim) element of Z2.
“Possibility of a tight contact structure from one state to
another” inner product 〈·|·〉 : Vn ⊗ Vn −→ Z2.

Theorem (M.)
“Contact TQFT is isomorphic to quantum pawn dynamics.”



Introduction Combinatorial and algebraic structure Contact topology Holomorphic invariants

Outline

1 Introduction

2 Combinatorial and algebraic structure

3 Contact topology

4 Holomorphic invariants
Sutured Floer homology
A “computation”



Introduction Combinatorial and algebraic structure Contact topology Holomorphic invariants

Sutured Floer homology

Actually all the above comes from sutured Floer homology, a
holomorphic invariant of sutured manifolds.
Very roughly... (Ozsváth–Szabó 2004, Juhasz 2006)

A sutured manifold is a 3-manifold M with boundary, and
some curves Γ on ∂M dividing ∂M into alternating positive
and negative regions.

Given (M, Γ), take a Heegaard decomposition with surface
Σ and curves α1, . . . , αk bounding discs on one side and
β1, . . . , βk bounding discs on the other.
Consider Σ× I × R as a symplectic manifold with an
almost complex structure and consider holomorphic curves

u : S −→ Σ× I × R

where S is a Riemann surface.
Boundary conditions based on Heegaard curves αi and βi .
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Sutured Floer homology

Cylindrical picture of Lipshitz (2006):
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Sutured Floer homology

Cylindrical picture of Lipshitz (2006):

ind (D∂̄) = k − χ(S) +
k∑

i=1

µ(ai)−
k∑

i=1

µ(bi).
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Sutured Floer homology

Chain complex generated by boundary conditions, which
are intersections of boundary curves.

z1 ∈ α1 ∩ βσ(1), z2 ∈ α2 ∩ βσ(2), . . . , zk ∈ αk ∩ βσ(k).

Differential counting index-1 holomorphic curves between
boundary conditions.
Resulting homology is SFH(M, Γ).
Etnyre–Honda (2009): Any contact structure ξ on (M, Γ)
defines a natural element c(ξ) ∈ SFH(M, Γ).
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Solid tori

We consider the sutured solid torus
D2 × S1 with 2n longitudinal curves
Fn × S1. (|Fn| = 2n)

Theorem (M.)

SFH(D2×S1,Fn×S1) ∼= Vn =
Z2〈Chord diagrams w/ n chords〉

Bypass relation

Any chord diagram Γ in Vn corresponds to a a contact structure
ξΓ on D2 × S1 and maps to c(ξΓ).
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R
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Chain complex = Z2 ⊕ Z2.
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A “computation” of Sutured Floer homology

α

β

Chain complex = Z2 ⊕ Z2.
Nowhere for holomorphic curves to go! ∂ = 0.

SFH = Z2 ⊕ Z2 = V2
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Thanks for listening!
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