Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact topology and holomorphic invariants via elementary combinatorics

Daniel V. Mathews

University of Melbourne Contextual Systems dan.v.mathews@gmail.com

> Monash University 7 December 2012

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2 Combinatorial and algebraic structure

- 3 Contact topology
- 4 Holomorphic invariants

Holomorphic invariants

Outline

Introduction

- Overview
- Symplectic geometry
- Contact geometry
- Complex structures and holomorphic curves
- 2 Combinatorial and algebraic structure
- Contact topology
- 4 Holomorphic invariants

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへで

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• There's been much progress in the fields of symplectic and contact geometry in recent years.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Overview

- There's been much progress in the fields of symplectic and contact geometry in recent years.
- Much of it is quite involved, requiring:
 - Fredholm / index theory of Cauchy-Riemann operators
 - moduli spaces of pseudo-holomorphic curves
 - delicate differential geometry and topology
 - intricate algebraic structures keeping track of analytic data

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Overview

- There's been much progress in the fields of symplectic and contact geometry in recent years.
- Much of it is quite involved, requiring:
 - Fredholm / index theory of Cauchy-Riemann operators
 - moduli spaces of pseudo-holomorphic curves
 - delicate differential geometry and topology
 - intricate algebraic structures keeping track of analytic data
- However, *in the simplest cases* some of this structure reduces to some *elementary combinatorics and algebra* which is interesting in its own right.

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Overview

This talk will:

 Give some very brief background to the subjects of symplectic and contact geometry and holomorphic curves.

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview

This talk will:

- Give some very brief background to the subjects of symplectic and contact geometry and holomorphic curves.
- Discuss some of our algebraic and combinatorial results in their own right. (No symplectic/contact geometry or holomorphic curves assumed.)

Holomorphic invariants

(日) (日) (日) (日) (日) (日) (日)

Overview

This talk will:

- Give some very brief background to the subjects of symplectic and contact geometry and holomorphic curves.
- Discuss some of our algebraic and combinatorial results in their own right. (No symplectic/contact geometry or holomorphic curves assumed.)
- Briefly explain how this elementary algebra/combinatorics describes contact topology and arises from holomorphic invariants.

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Symplectic manifolds

Definition

A symplectic manifold is a pair

 (M,ω)

where

- M is a smooth manifold
- ω is a closed 2-form (d $\omega = 0$) which is non-degenerate.

Contact topology

Holomorphic invariants

Symplectic manifolds

Definition

A symplectic manifold is a pair

$$(M, \omega)$$

where

- M is a smooth manifold
- ω is a closed 2-form (d $\omega = 0$) which is non-degenerate.

Structure of Hamiltonian mechanics:

• Given a smooth function $H: M \longrightarrow \mathbb{R}$ (Hamiltonian) we obtain a 1-form dH and a dual vector field X_H via

$$\omega(X_H, \cdot) = dH$$

E.g. $M = \mathbb{R}^{2n}$, $\omega = \sum_{j=1}^{n} dx_j \wedge dy_j$.

・ロト・西・・田・・日・・日・

Combinatorial and algebraic structure

Contact topology

ヘロト ヘポト ヘヨト ヘヨト

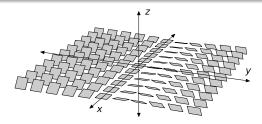
Holomorphic invariants

Contact geometry

"The odd-dimensional sibling of symplectic geometry"

Definition

A contact structure ξ on a (2n + 1)-dimensional manifold M is a totally non-integrable comdimension-1 hyperplane field on M.



Contact topology

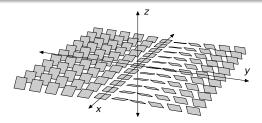
Holomorphic invariants

Contact geometry

"The odd-dimensional sibling of symplectic geometry"

Definition

A contact structure ξ on a (2n + 1)-dimensional manifold M is a totally non-integrable comdimension-1 hyperplane field on M.



Equivalently, a contact structure is the kernel of a *contact form* α , i.e. satisfying $\alpha \wedge (d\alpha)^n \neq 0$ everywhere. E.g. \mathbb{R}^3 with $\alpha = dz - y \, dx$.

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Symplectic vs complex geometry

- Complex geometry also only exists in *even* number of dimensions.
- Gromov (1985): Consider *almost complex structures* on symplectic manifolds and *holomorphic curves*.

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Symplectic vs complex geometry

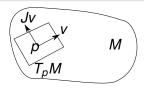
- Complex geometry also only exists in *even* number of dimensions.
- Gromov (1985): Consider *almost complex structures* on symplectic manifolds and *holomorphic curves*.

Definition

An almost complex structure on a smooth manifold is a map

$$J:TM\longrightarrow TM$$

preserving each fibre T_pM and satisfying $J^2 = -1$.



Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Almost complex vs complex

- Almost complex structure is a pointwise definition.
- A complex structure requires local charts to Cⁿ with holomorphic transition maps.
 (Much more onerous.)

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Almost complex vs complex

- Almost complex structure is a pointwise definition.
- A complex structure requires local charts to Cⁿ with holomorphic transition maps.
 (Much more onerous.)
- Existence:
 - Not every symplectic manifold has a complex structure.
 - Every symplectic manifold has a *compatible* almost complex structure *J*, and all choices of compatible *J* are homotopic.

Holomorphic invariants

Almost complex vs complex

- Almost complex structure is a pointwise definition.
- A complex structure requires local charts to Cⁿ with holomorphic transition maps.
 (Much more onerous.)
- Existence:
 - Not every symplectic manifold has a complex structure.
 - Every symplectic manifold has a *compatible* almost complex structure *J*, and all choices of compatible *J* are homotopic.

(Compatible: *J* and ω behave in linear algebra like *i* and $dx \wedge dy$. $\omega(v, w) = \omega(Jv, Jw)$ and $\omega(v, Jv) > 0$)

Contact topology

Holomorphic invariants

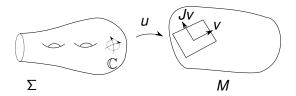
Holomorphic curves

Given symplectic (M, ω) and compatible almost complex J...

Definition

A holomorphic curve is a map $u : \Sigma \longrightarrow M$, where Σ is a Riemann surface, satisfying the Cauchy-Riemann equations

 $Du \circ i = J \circ Du.$



An *almost* complex structure is sufficient for the equations: "pseudo-holomorphic", "*J*-holomorphic".

Introduction	Combinatorial and algebraic structure	Contact topology	Holomorphic invariants
0000000000			

Moduli spaces

 Given appropriate constraints (marked points, boundary conditions) and transversality, the space of holomorphic curves is a finite-dimensional orbifold: *moduli space* M.

(日) (日) (日) (日) (日) (日) (日)

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Given appropriate constraints (marked points, boundary conditions) and transversality, the space of holomorphic curves is a finite-dimensional orbifold: *moduli space* \mathcal{M} .
- Index theory (Riemann–Roch etc.) gives dimension of \mathcal{M} .

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Given appropriate constraints (marked points, boundary conditions) and transversality, the space of holomorphic curves is a finite-dimensional orbifold: *moduli space* \mathcal{M} .
- Index theory (Riemann–Roch etc.) gives dimension of \mathcal{M} .
- \mathcal{M} compactified to $\overline{\mathcal{M}}$: Gromov compactness theorem.

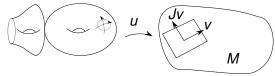
Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Given appropriate constraints (marked points, boundary conditions) and transversality, the space of holomorphic curves is a finite-dimensional orbifold: *moduli space* \mathcal{M} .
- Index theory (Riemann–Roch etc.) gives dimension of M.
- \mathcal{M} compactified to $\overline{\mathcal{M}}$: Gromov compactness theorem.
- Boundary of *M* is stratified: boundary strata are moduli spaces for "degenerate" holomorphic curves (nodal surfaces, etc.)



Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

- Given appropriate constraints (marked points, boundary conditions) and transversality, the space of holomorphic curves is a finite-dimensional orbifold: *moduli space* \mathcal{M} .
- Index theory (Riemann–Roch etc.) gives dimension of \mathcal{M} .
- \mathcal{M} compactified to $\overline{\mathcal{M}}$: Gromov compactness theorem.
- Boundary of *M* is stratified: boundary strata are moduli spaces for "degenerate" holomorphic curves (nodal surfaces, etc.)



- \mathcal{M} and $\overline{\mathcal{M}}$ encode a great deal of information about M.
- Some powerful invariants use only the *codimension-1* boundary of *M*.

Holomorphic invariants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Homology theories

Floer Homology theories (e.g. contact homology, Heegaard Floer homology), roughly...

- Define a chain complex generated by boundary conditions for holomorphic curves
- A differential counting 0-dimensional families of holomorphic curves between boundary conditions.
- Boundary structure of moduli space gives $\partial^2 = 0$.

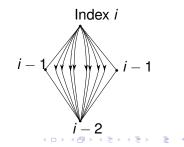
Holomorphic invariants

Homology theories

Floer Homology theories (e.g. contact homology, Heegaard Floer homology), roughly...

- Define a chain complex generated by boundary conditions for holomorphic curves
- A differential counting 0-dimensional families of holomorphic curves between boundary conditions.
- Boundary structure of moduli space gives $\partial^2 = 0$.

(Analogous Morse construction of singular homology: complex generated by critical points of Morse function, differential counts 0-dimensional families of gradient trajectories.)



Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The power of holomorphic invariants

- Floer homology theories give very powerful invariants of 3-manifolds, knots, etc...
- Related to Seiberg–Witten theory, Donaldson–Thomas theory, etc...
- E.g., *knot Floer homology* can compute the genus of a knot.

Contact topology

Holomorphic invariants

The power of holomorphic invariants

- Floer homology theories give very powerful invariants of 3-manifolds, knots, etc...
- Related to Seiberg–Witten theory, Donaldson–Thomas theory, etc...
- E.g., *knot Floer homology* can compute the genus of a knot.
- For a *less complicated* variant called *sutured Floer homology*, and a *simple class* of manifolds $M = \Sigma \times S^1$, we obtain all the combinatorial structure we are about to see, and more...

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

- 2 Combinatorial and algebraic structure
 - Quantum Pawn Dynamics (QPD)
 - Adjoining adjoints
 - Chord diagrams
- 3 Contact topology

Combinatorial and algebraic structure

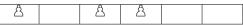
Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quantum Pawn Dynamics

- Pawns on a finite 1-dimensional chessboard.
- A state of the QPD universe:



 Pawns move from left to right, one square at a time. (No capturing, no en passant, no double first moves.)

Contact topology

Holomorphic invariants

Quantum Pawn Dynamics

- Pawns on a finite 1-dimensional chessboard.
- A state of the QPD universe:

 Pawns move from left to right, one square at a time. (No capturing, no en passant, no double first moves.)

Quantum pawns: "Inner product" $\langle \cdot | \cdot \rangle$ describes the possibility of pawn moves from one state to another. Valued in \mathbb{Z}_2 .

Definition (Pawn "inner product")

 $\langle w_0 | w_1 \rangle = \begin{cases} 1 & \text{if it is possible for pawns to move from } w_0 \text{ to } w_1 \\ & (\text{this includes the case } w_0 = w_1); \\ 0 & \text{if not.} \end{cases}$

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Quantum Pawn Dynamics

E.g.

Combinatorial and algebraic structure

Contact topology

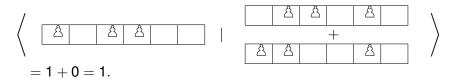
Holomorphic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quantum Pawn Dynamics

E.g.

Also, entangled chessboards.



Note asymmetry of $\langle \cdot | \cdot \rangle$. A "booleanized" partial order. (Complete lattice.)

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Dirac Pawn Sea

 Think of an "empty" chessboard as a thriving sea of anti-pawns.

"Anti-pawn" = "absence of pawn".

Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Creation and annihilation operators

The *initial pawn creation operator* $a_{p,0}^*$ adjoins a new *initial* (leftmost) square to the chessboard, containing a pawn.

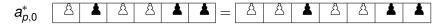
$$a^*_{p,0}$$
 (Δ) (Δ)

Holomorphic invariants

・ コット (雪) (小田) (コット 日)

Creation and annihilation operators

The *initial pawn creation operator* $a_{p,0}^*$ adjoins a new *initial* (leftmost) square to the chessboard, containing a pawn.



The *initial pawn annihilation operator* $a_{p,0}$ deletes the leftmost square from the chessboard, and a pawn on it.

$$a_{p,0}$$
 (Δ) (Δ)

Holomorphic invariants

Creation and annihilation operators

The *initial pawn creation operator* $a_{p,0}^*$ adjoins a new *initial* (leftmost) square to the chessboard, containing a pawn.

The *initial pawn annihilation operator* $a_{p,0}$ deletes the leftmost square from the chessboard, and a pawn on it.

If no pawn (anti-pawn) in the leftmost square, try to delete... "error 404 universe not found" mod 2 = 0.

Similar initial anti-pawn annihilation $a_{q,0}$ and creation $a_{q,0}^{\dagger}$.

Holomorphic invariants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Creation of chessboards

- The vacuum state of the QPD universe is the null chessboard Ø.
 (Note Ø ≠ 0.)
- Applying initial creation operators to the vacuum can create any chessboard.

$$a_{p,0}^*a_{q,0}^\dagger a_{p,0}^*a_{p,0}^*a_{q,0}^\dagger a_{q,0}^\dagger \quad \emptyset \quad = \quad \boxed{\hat{\Delta}} \quad \blacktriangle \quad \hat{\Delta} \quad \hat{\Delta} \quad \bigstar \quad \bigstar \quad \bigstar$$

Holomorphic invariants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Creation of chessboards

- The vacuum state of the QPD universe is the null chessboard Ø.
 (Note Ø ≠ 0.)
- Applying initial creation operators to the vacuum can create any chessboard.

$$a^*_{
ho,0}a^{\dagger}_{q,0}a^*_{
ho,0}a^*_{
ho,0}a^{\dagger}_{q,0}a^{\dagger}_{q,0}$$
 \emptyset = Δ Δ Δ

• The * and † refer to *adjoints*. (*Galois connections* on partial orders.)

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Adjoints

• Recall an adjoint f* of an operator f usually means that

$$\langle f x | y \rangle = \langle x | f^* y \rangle, \quad \langle x | f y \rangle = \langle f^* x | y \rangle.$$

Contact topology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Adjoints

• Recall an adjoint f* of an operator f usually means that

$$\langle fx|y\rangle = \langle x|f^*y\rangle, \quad \langle x|fy\rangle = \langle f^*x|y\rangle.$$

 As our "inner product" is asymmetric, we have two distinct adjoints f*, f[†] of an operator f.

$$\langle fx|y \rangle = \langle x|f^*y \rangle, \quad \langle x|fy \rangle = \langle f^{\dagger}x|y \rangle.$$

So $f^{*\dagger} = f^{\dagger *} = f.$

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Initial creation and annihilation are adjoint

Proposition

$$\langle a_{
ho,0} x | y
angle = \langle x | a^*_{
ho,0} y
angle$$

Proof.

 $a_{p,0}^*y$ begins with a pawn.

If x begins with an anti-pawn, both sides are 0.

If x begins with a pawn, $\langle x | a_{p,0}^* y \rangle \neq 0$ compares two chessboards with initial pawns.

 $a_{p,0}$ removes an initial pawn so $\langle a_{p,0} x | y \rangle$ gives the same result.

Similarly, initial anti-pawn creation/annihilation †-adjoint.

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Adjoining adjoints

What is $a_{p,0}^{**}$? What operator *f* satisfies

 $\langle a_{p,0}^* x | y \rangle = \langle x | fy \rangle$?

Contact topology

Holomorphic invariants

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Adjoining adjoints

What is $a_{p,0}^{**}$? What operator *f* satisfies

$$\langle a_{p,0}^* x | y \rangle = \langle x | f y \rangle$$
?

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Adjoining adjoints

What is $a_{p,0}^{**}$? What operator *f* satisfies

$$\langle a_{p,0}^* x | y \rangle = \langle x | f y \rangle$$
?

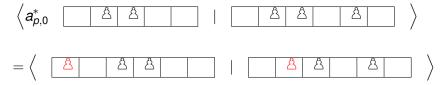
Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Adjoining adjoints

What is $a_{p,0}^{**}$? What operator *f* satisfies

$$\langle a_{p,0}^* x | y \rangle = \langle x | f y \rangle$$
?



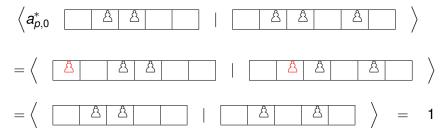
Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Adjoining adjoints

What is $a_{p,0}^{**}$? What operator *f* satisfies

$$\langle a_{p,0}^* x | y \rangle = \langle x | f y \rangle$$
?



Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Iterated adjoints

Proposition

The iterated adjoints of $a_{p,0}$ are $a_{p,0} \rightarrow a_{p,0}^* \rightarrow a_{p,1} \rightarrow a_{p,1}^* \rightarrow a_{p,2} \rightarrow \cdots \rightarrow a_{p,\Omega} \rightarrow a_{p,\Omega}^*$ where: $a_{p,i}$ deletes the i'th pawn $a_{p,i}^*$ doubles the i'th pawn $a_{p,\Omega}^*$, $a_{p,\Omega}^*$ are final pawn creation and annihilation.

Similarly for anti-pawns in the opposite direction.

 $a_{q,\Omega}^{\dagger} \rightarrow a_{q,\Omega} \rightarrow \cdots a_{q,2} \rightarrow a_{q,1}^{\dagger} \rightarrow a_{q,1} \rightarrow a_{q,0}^{\dagger} \rightarrow a_{q,0}$

(A simplicial structure.)

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

Adjoint periodicity

Hence

$$a_{p,0}^{*^{2n_p+2}}=a_{p,\Omega}$$

where n_p = number of pawns.

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Adjoint periodicity

Hence

$$a_{p,0}^{*^{2n_{p+2}}}=a_{p,\Omega}$$

where n_p = number of pawns.

Theorem (M.)

$$a_{p,0}^{*^{2n+2}}=a_{p,0}.$$

where n is the number of squares on the chessboard.

Contact topology

Holomorphic invariants

Adjoint periodicity

Hence

$$a_{p,0}^{*^{2n_{p+2}}}=a_{p,\Omega}$$

where n_p = number of pawns.

Theorem (M.)

$$a_{p,0}^{*^{2n+2}}=a_{p,0}.$$

where n is the number of squares on the chessboard.

One can also show that the *duality* operator defined by

$$\langle u|v\rangle = \langle v|Hu\rangle$$

satisfies

Theorem (M.)

$$H^{2n+2} = 1.$$

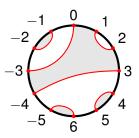
Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Chord diagrams

Consider a disc *D* with some points *F* marked on ∂D . A *chord diagram* is a collection of non-intersecting curves on *D* joining points of *F*. E.g.



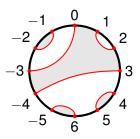
Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Chord diagrams

Consider a disc *D* with some points *F* marked on ∂D . A *chord diagram* is a collection of non-intersecting curves on *D* joining points of *F*. E.g.



- Curves join points of opposite parity, so shade as shown.
- 0 is a basepoint.

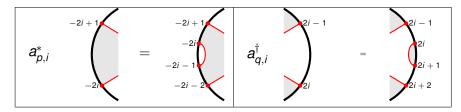
Contact topology

Holomorphic invariants

(日) (日) (日) (日) (日) (日) (日)

Creation and annihilation of chords

Define *creation operators* $a_{p,i}^*$, $a_{q,i}^{\dagger}$ to insert a new chord in a specific place in a chord diagram as shown.



 $a_{p,i}^*$ creates a *white* region *i* spots down on the left. $a_{q,i}^{\dagger}$ creates a *black* region *i* spots down on the right.

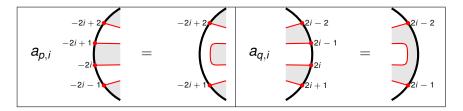
Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Creation and annihilation of chords

Define annihilation operators $a_{p,i}$, $a_{q,i}$ to close off chords in a chord diagram as shown.



 $a_{p,i}$ closes off a black region *i* spots down on the left. $a_{q,i}$ closes off a white region *i* spots down on the right.

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Diagrams of chessboards

The simplest chord diagram is called the *vacuum* Γ_{\emptyset} .

Build up more complicated diagrams with creation operators.

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

Diagrams of chessboards

The simplest chord diagram is called the *vacuum* Γ_{\emptyset} .

Build up more complicated diagrams with creation operators.

Proposition (M.)

For any chessboard w, there is a chord diagram Γ_w such that creation and annihilation operators agree (are equivariant):

$$\Gamma_{a_{\rho,i}^*w} = a_{\rho,i}^*\Gamma_w.$$

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Ski slopes

Construction of the *slalom skiing* chord diagram of a chessboard.

$$qpqq \leftrightarrow riangle A riangle A$$

Combinatorial and algebraic structure

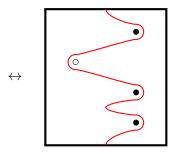
Contact topology

Holomorphic invariants

Ski slopes

Construction of the *slalom skiing* chord diagram of a chessboard.

$$qpqq \leftrightarrow$$



Combinatorial and algebraic structure

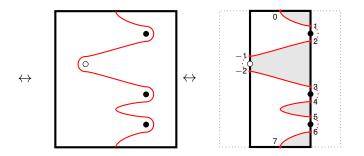
Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Ski slopes

Construction of the *slalom skiing* chord diagram of a chessboard.



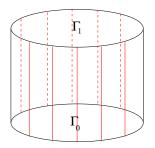
Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An "Inner product" on chord diagrams

There's a bilinear form on chord diagrams defind by *entering into a cylinder*.



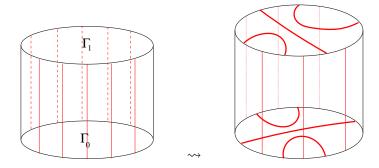
Contact topology

Holomorphic invariants

▲□▶▲□▶▲□▶▲□▶ □ のQ@

An "Inner product" on chord diagrams

There's a bilinear form on chord diagrams defind by *entering into a cylinder*.



Combinatorial and algebraic structure

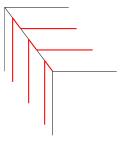
Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An "Inner product" on chord diagrams

Note curves don't meet at corners! We treat corners as shown.

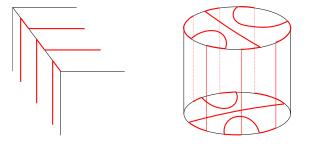


Combinatorial and algebraic structure

Contact topology

An "Inner product" on chord diagrams

Note curves don't meet at corners! We treat corners as shown.



Definition $\langle \Gamma_0 | \Gamma_1 \rangle = \left\{ \begin{array}{ll} 1 & \mbox{if the resulting curves on the cylinder} \\ & \mbox{form a single connected curve;} \\ 0 & \mbox{if the result is disconnected.} \end{array} \right.$

Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Theorem (M.)

For any two chessboards w_0, w_1 ,

$$\langle w_0 | w_1 \rangle = \langle \Gamma_{w_0} | \Gamma_{w_1} \rangle.$$

Contact topology

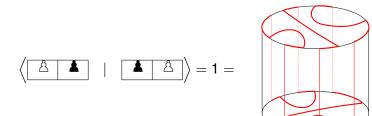
Holomorphic invariants

Theorem (M.)

For any two chessboards w_0, w_1 ,

$$\langle w_0 | w_1 \rangle = \langle \Gamma_{w_0} | \Gamma_{w_1} \rangle.$$

E.g.



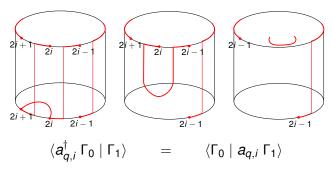
Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Adjoint relations can be seen topologically as "finger moves".



Now perhaps believable that adjoint is periodic.

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

Bypass surgery

In a chord diagram on disc D, consider a sub-disc B as shown:

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Bypass surgery

In a chord diagram on disc D, consider a sub-disc B as shown:

Two natural ways to adjust this chord diagram, consistent with the colours: *bypass surgeries*.

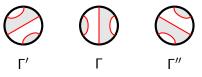
Contact topology

Holomorphic invariants

Bypass surgery

In a chord diagram on disc D, consider a sub-disc B as shown:

Two natural ways to adjust this chord diagram, consistent with the colours: *bypass surgeries*.



Proposition

With $\Gamma, \Gamma', \Gamma''$ as above, for any Γ_1 ,

 $\langle \Gamma | \Gamma_1 \rangle + \langle \Gamma' | \Gamma_1 \rangle + \langle \Gamma' | \Gamma_1 \rangle = 0.$

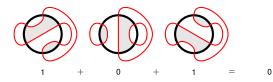
Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

Bypass surgery

Idea of proof:



◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Combinatorial and algebraic structure

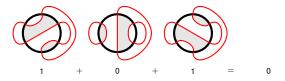
Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Bypass surgery

Idea of proof:



If $\langle \cdot | \cdot \rangle$ is to be nondegenerate, any three chord diagrams related by bypass surgery should sum to 0: *bypass relation*.

$$\bigcirc$$
 + \bigcirc + \bigcirc = 0

Combinatorial and algebraic structure

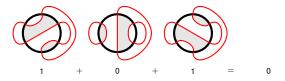
Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Bypass surgery

Idea of proof:



If $\langle \cdot | \cdot \rangle$ is to be nondegenerate, any three chord diagrams related by bypass surgery should sum to 0: *bypass relation*.

So we define a vector space

$$V_n = \frac{\mathbb{Z}_2 \langle \text{Chord diagrams with } n \text{ chords} \rangle}{\text{Bypass relation}}$$

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A vector space of chord diagrams

Theorem (M.)

 V_n has dimension 2^{n-1} and the diagrams from chessboards of n-1 squares form a basis.

Combinatorial and algebraic structure

Contact topology

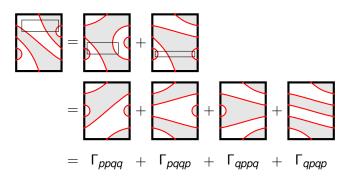
Holomorphic invariants

A vector space of chord diagrams

Theorem (M.)

 V_n has dimension 2^{n-1} and the diagrams from chessboards of n-1 squares form a basis.

E.g.



Contact topology

Holomorphic invariants

Outline

2 Combinatorial and algebraic structure

Contact topology

- Chord diagrams and contact structures
- Bypasses
- Contact QFT = Quantum pawn dynamics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Chord diagrams and contact structures

Giroux (1991): theory of *convex surfaces*. A chord diagram Γ / *dividing set* on a disc *D* describes a contact structure ξ_{Γ} on a neighbourhood $D \times I$ of *D*.

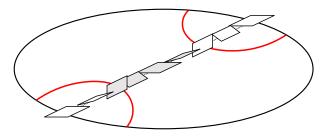
Contact topology

Holomorphic invariants

Chord diagrams and contact structures

Giroux (1991): theory of *convex surfaces*. A chord diagram Γ / *dividing set* on a disc *D* describes a contact structure ξ_{Γ} on a neighbourhood $D \times I$ of *D*. Roughly speaking, the contact planes are

- Tangent to ∂D
- "Perpendicular" to D precisely along Γ



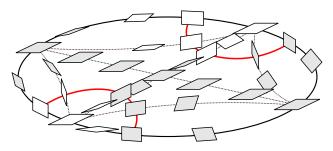
Contact topology

Holomorphic invariants

Chord diagrams and contact structures

Giroux (1991): theory of *convex surfaces*. A chord diagram Γ / *dividing set* on a disc *D* describes a contact structure ξ_{Γ} on a neighbourhood $D \times I$ of *D*. Roughly speaking, the contact planes are

- Tangent to ∂D
- "Perpendicular" to D precisely along F



Colours in chord diagram = visible side of contact plane.

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Overtwisted contact structures

Eliashberg (1989): fundamentally 2 types of contact structures.

- Overtwisted: contains an overtwisted disc.
- Tight: does not.

Combinatorial and algebraic structure

Contact topology

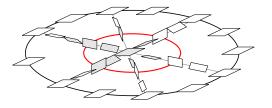
Holomorphic invariants

Overtwisted contact structures

Eliashberg (1989): fundamentally 2 types of contact structures.

- Overtwisted: contains an overtwisted disc.
- Tight: does not.

An overtwisted disc is:



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Combinatorial and algebraic structure

Contact topology

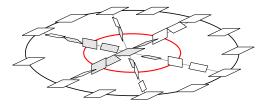
Holomorphic invariants

Overtwisted contact structures

Eliashberg (1989): fundamentally 2 types of contact structures.

- Overtwisted: contains an overtwisted disc.
- Tight: does not.

An overtwisted disc is:



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 Overtwisted contact geometry reduces to (well-understood) homotopy theory. Tight contact structures offer important topological information.

Combinatorial and algebraic structure

Contact topology

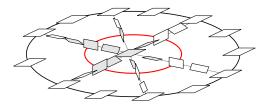
Holomorphic invariants

Overtwisted contact structures

Eliashberg (1989): fundamentally 2 types of contact structures.

- Overtwisted: contains an overtwisted disc.
- Tight: does not.

An overtwisted disc is:



- Overtwisted contact geometry reduces to (well-understood) homotopy theory. Tight contact structures offer important topological information.
- Eliashberg (1992): contact structure near an S^2 is tight iff dividing set is *connected*. If so, contact structure extends uniquely (up to isotopy) to a tight contact structure on B^3 .

Combinatorial and algebraic structure

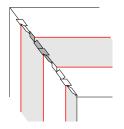
Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Contact corners

When two convex surfaces meet along a boundary, contact planes are arranged as shown.

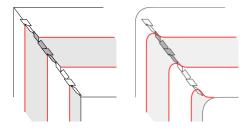


Contact topology

Holomorphic invariants

Contact corners

When two convex surfaces meet along a boundary, contact planes are arranged as shown.



Proposition

Let Γ_0, Γ_1 be chord diagrams. The following are equivalent:

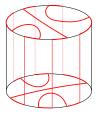
- $\langle \Gamma_0 | \Gamma_1 \rangle = 1.$
- The solid cylinder with dividing set Γ₀ on the bottom and Γ₁ on the top has a tight contact structure.

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Honda (2000's): any 3-manifold can be built up from a surface and dividing set by adding *bypasses*.



Effect on dividing set is "bypass surgery" as defined earlier.

Combinatorial and algebraic structure

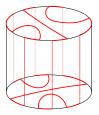
Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Bypasses

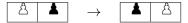
Honda (2000's): any 3-manifold can be built up from a surface and dividing set by adding *bypasses*.



Effect on dividing set is "bypass surgery" as defined earlier. Corresponds to

$$\langle \Gamma_{\rho q} | \Gamma_{q \rho} \rangle = 1$$

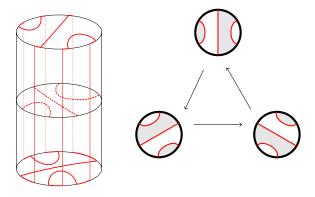
or



Contact topology

Holomorphic invariants

Stacking two bypasses on top of each other produces an overtwisted contact structure!



Can build a *triangulated category* out of dividing sets and contact structures (Honda, M.). *V_n* is the *Grothiendick group*.

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact TQFT = Quantum pawn dynamics

These definitions give many of the properties of a (2+1)-dimensional *topological quantum field theory*.

- Contact structure near disc (2-dim) → "states" in V_n
- Contact structure over cylinder (2+1-dim) \rightsquigarrow element of \mathbb{Z}_2 .
- "Possibility of a tight contact structure from one state to another" → inner product ⟨·|·⟩ : V_n ⊗ V_n → Z₂.

Contact topology ○○○○○● Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact TQFT = Quantum pawn dynamics

These definitions give many of the properties of a (2+1)-dimensional *topological quantum field theory*.

- Contact structure near disc (2-dim) → "states" in V_n
- Contact structure over cylinder (2+1-dim) \rightsquigarrow element of \mathbb{Z}_2 .
- "Possibility of a tight contact structure from one state to another" → inner product ⟨·|·⟩ : V_n ⊗ V_n → Z₂.

Theorem (M.)

"Contact TQFT is isomorphic to quantum pawn dynamics."

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

- 2 Combinatorial and algebraic structure
- 3 Contact topology
- 4 Holomorphic invariants
 - Sutured Floer homology
 - A "computation"

Contact topology

Holomorphic invariants

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sutured Floer homology

Actually all the above comes from *sutured Floer homology*, a holomorphic invariant of sutured manifolds. Very roughly... (Ozsváth–Szabó 2004, Juhasz 2006)

• A sutured manifold is a 3-manifold M with boundary, and some curves Γ on ∂M dividing ∂M into alternating positive and negative regions.

Contact topology

Holomorphic invariants

(ロ) (同) (三) (三) (三) (○) (○)

Sutured Floer homology

Actually all the above comes from *sutured Floer homology*, a holomorphic invariant of sutured manifolds. Very roughly... (Ozsváth–Szabó 2004, Juhasz 2006)

- A sutured manifold is a 3-manifold M with boundary, and some curves Γ on ∂M dividing ∂M into alternating positive and negative regions.
- Given (M, Γ) , take a *Heegaard decomposition* with surface Σ and curves $\alpha_1, \ldots, \alpha_k$ bounding discs on one side and β_1, \ldots, β_k bounding discs on the other.

Contact topology

Holomorphic invariants

Sutured Floer homology

Actually all the above comes from *sutured Floer homology*, a holomorphic invariant of sutured manifolds. Very roughly... (Ozsváth–Szabó 2004, Juhasz 2006)

- A sutured manifold is a 3-manifold M with boundary, and some curves Γ on ∂M dividing ∂M into alternating positive and negative regions.
- Given (M, Γ) , take a *Heegaard decomposition* with surface Σ and curves $\alpha_1, \ldots, \alpha_k$ bounding discs on one side and β_1, \ldots, β_k bounding discs on the other.
- Consider Σ × I × ℝ as a symplectic manifold with an almost complex structure and consider holomorphic curves

$$u : S \longrightarrow \Sigma \times I \times \mathbb{R}$$

where S is a Riemann surface.

• Boundary conditions based on Heegaard curves α_i and β_i .

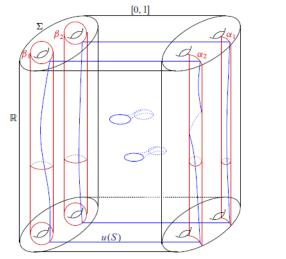
Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

Sutured Floer homology

Cylindrical picture of Lipshitz (2006):



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

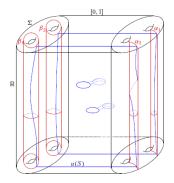
Combinatorial and algebraic structure

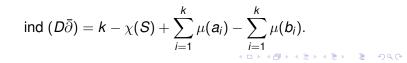
Contact topology

Holomorphic invariants

Sutured Floer homology

Cylindrical picture of Lipshitz (2006):





Contact topology

Holomorphic invariants

Sutured Floer homology

• Chain complex generated by boundary conditions, which are *intersections* of boundary curves.

 $z_1 \in \alpha_1 \cap \beta_{\sigma(1)}, \ z_2 \in \alpha_2 \cap \beta_{\sigma(2)}, \ \ldots, \ z_k \in \alpha_k \cap \beta_{\sigma(k)}.$

- Differential counting index-1 holomorphic curves between boundary conditions.
- Resulting homology is $SFH(M, \Gamma)$.
- Etnyre–Honda (2009): Any contact structure ξ on (M, Γ) defines a natural element c(ξ) ∈ SFH(M, Γ).

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

Solid tori

We consider the *sutured solid torus* $D^2 \times S^1$ with 2n longitudinal curves $F_n \times S^1$. ($|F_n| = 2n$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

Solid tori

We consider the *sutured solid torus* $D^2 \times S^1$ with 2*n* longitudinal curves $F_n \times S^1$. ($|F_n| = 2n$)

Theorem (M.)

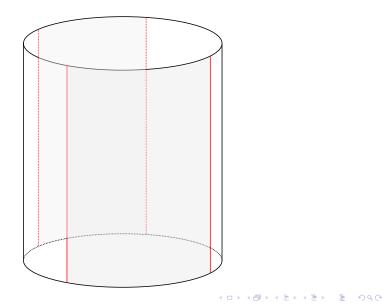
 $SFH(D^2 \times S^1, F_n \times S^1) \cong V_n = \frac{\mathbb{Z}_2 \langle Chord \ diagrams \ w/n \ chords \rangle}{Bypass \ relation}$

Any chord diagram Γ in V_n corresponds to a a contact structure ξ_{Γ} on $D^2 \times S^1$ and maps to $c(\xi_{\Gamma})$.

Combinatorial and algebraic structure

Holomorphic invariants 0000000

A "computation" of Sutured Floer homology

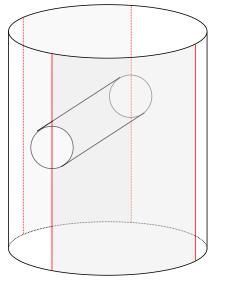


Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

A "computation" of Sutured Floer homology



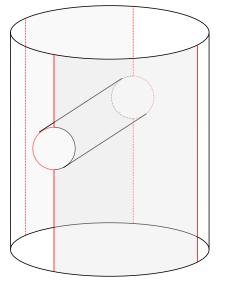
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

A "computation" of Sutured Floer homology



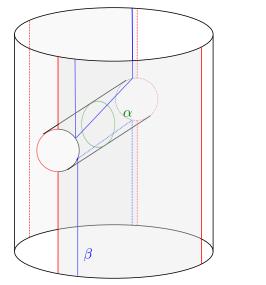
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

A "computation" of Sutured Floer homology



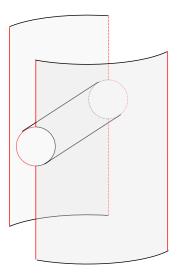
・ロト・日本・モト・モー ショー ショー

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

A "computation" of Sutured Floer homology



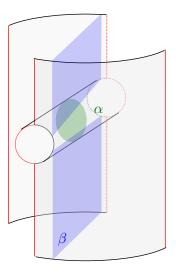
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

A "computation" of Sutured Floer homology



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

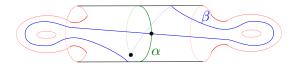
Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A "computation" of Sutured Floer homology



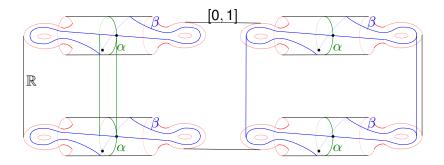
Chain complex $= \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

A "computation" of Sutured Floer homology



Chain complex $= \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

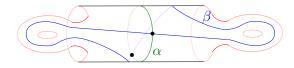
Combinatorial and algebraic structure

Contact topology

Holomorphic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A "computation" of Sutured Floer homology



Chain complex = $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. Nowhere for holomorphic curves to go! $\partial = 0$.

$$SFH = \mathbb{Z}_2 \oplus \mathbb{Z}_2 = V_2$$

Thanks for listening!

References:

- D. Mathews, Chord diagrams, contact-topological quantum field theory, and contact categories, Alg. & Geom. Top. 10 (2010) 2091–2189
- D. Mathews, Sutured Floer homology, sutured TQFT and non-commutative QFT, Alg. & Geom. Top. 11 (2011) 2681–2739.
- D. Mathews, *Sutured TQFT, torsion, and tori* (2011) arXiv 1102.3450.
- D. Mathews, *Itsy bitsy topological field theory* (2012) arXiv 1201.4584.
- D. Mathews and E. Schoenfeld, *Dimensionally-reduced sutured Floer homology as a string homology* (2012) arXiv 1210.7394.
- D. Mathews, Contact topology and holomorphic invariants via elementary combinatorics, forthcoming.