Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sutures, quantum groups and topological quantum field theory

Daniel V. Mathews

Monash University Daniel.Mathews@monash.edu

The University of Melbourne 24 May 2013

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

2 Sutured and occupied surfaces

3 Sutured TQFT

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Introduction

- Overview
- Three key ideas
- Categorification
- Topological quantum field theory (TQFT)
- Quantum groups
- Motivation
- 2 Sutured and occupied surfaces

3 Sutured TQFT

Sutured TQFT

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview

Important ideas in recent developments in topology:

- Categorification
- Quantum group representations
- Topological quantum field theory (TQFT)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview

Important ideas in recent developments in topology:

- Categorification
- Quantum group representations
- Topological quantum field theory (TQFT)
- Some recent work in the areas of
 - Contact geometry
 - Floer homology
 - Homological algebra

leads to a simple model demonstrating all these important ideas.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Overview

The model:

Sutured quantum field theory

Introduction •••••••••• Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Overview

The model:

Sutured quantum field theory

• Is *simple*: Built from curves on surfaces — sutures.

Introduction •••••••••• Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Overview

The model:

Sutured quantum field theory

• Is *simple*: Built from curves on surfaces — sutures. and has important features:

• TQFT: Is (almost!) a 2-dimensional TQFT.

Sutured TQFT

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview

The model:

Sutured quantum field theory

• Is *simple*: Built from curves on surfaces — sutures. and has important features:

- TQFT: Is (almost!) a 2-dimensional TQFT.
- Categorification: Is a categorified version of (a generalisation of) the Alexander polynomial

Sutured TQFT

Overview

The model:

Sutured quantum field theory

• Is *simple*: Built from curves on surfaces — sutures.

and has important features:

- TQFT: Is (almost!) a 2-dimensional TQFT.
- Categorification: Is a categorified version of (a generalisation of) the Alexander polynomial
- Quantum groups: Carries representations of U_q(sl(1|1)). (These representations include, as special cases, a (quantized) Temperley–Lieb algebra.)

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Key Idea 1: Categorification

Two important and powerful knot invariants:

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Key Idea 1: Categorification

Two important and powerful knot invariants:

Jones polynomial (Jones, 1984)

$$\frac{1}{t} J\left(\swarrow \right) - t J\left(\swarrow \right) = \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right) J\left(\swarrow \right)$$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

(日) (日) (日) (日) (日) (日) (日)

Key Idea 1: Categorification

Two important and powerful knot invariants:

Jones polynomial (Jones, 1984)

$$\frac{1}{t} J\left(\swarrow \right) - t J\left(\swarrow \right) = \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right) J\left(\swarrow \right)$$

Alexander polynomial (Alexander, 1923)

$$A\left(\begin{array}{c} \\ \end{array}\right) - A\left(\begin{array}{c} \\ \end{array}\right) = \left(\sqrt{t} - \frac{1}{\sqrt{t}}\right) J\left(\begin{array}{c} \\ \end{array}\right)$$

Both are Laurent polynomials in a single variable with integer coefficients.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Key Idea 1: Categorification

Two more recent, important and more powerful knot invariants:

Sutured and occupied surfaces

Sutured TQFT

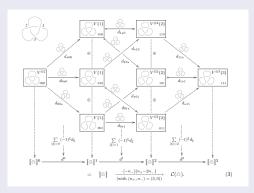
Quantum actions

Key Idea 1: Categorification

Two more recent, important and more powerful knot invariants:

Khovanov homology (Khovanov, late 1990s)

Knot \rightarrow resolve crossings \rightarrow arrange resolutions into cube \rightarrow vertices = groups, edges = homomorphisms based on $U_q(s/(2))$ (1+1)-dimensional TQFT \rightarrow find differential \rightarrow Take homology



(Source: Bar-Natan, "On Khovanov's categorification of the Jones polynomial")

Sutured and occupied surfaces

Sutured TQFT

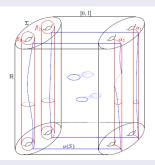
Quantum actions

Key Idea 1: Categorification

Two more recent, important and more powerful knot invariants:

Heegaard Floer homology (Ozsváth–Szabó, Rasmussen, 2003)

Take Heegaard decomposition $(\Sigma, \alpha, \beta) \rightarrow \text{Form } \Sigma \times I \times \mathbb{R} \rightarrow \text{Take almost complex structure} \rightarrow \text{Consider holomorphic curves in } \Sigma \times I \times \mathbb{R} \rightarrow \text{Prescribe boundary conditions at } \pm \infty \text{ by } (\alpha \cap \beta) \rightarrow \text{Form chain complex, groups = boundary conditions, differential = holomorphic curve counts } \rightarrow \text{Take homology}$



Source: Lipshitz, "A cylindrical reformulation of Heegaard Floer homology"

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Key Idea 1: Categorification

 Both Khovanov and Heegaard Floer homology are bi-graded abelian groups: Kh_{i,j}(K), HFK_{i,j}(K).

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Key Idea 1: Categorification

- Both Khovanov and Heegaard Floer homology are bi-graded abelian groups: Kh_{i,j}(K), HFK_{i,j}(K).
- Taking the Euler characteristic (= alternating sum of dimensions) of Khovanov homology gives the Jones polynomial:

$$\sum_{j} t^{j} \sum_{i} (-1)^{i} \dim \operatorname{Kh}_{i,j}(K) = J(K).$$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Key Idea 1: Categorification

- Both Khovanov and Heegaard Floer homology are bi-graded abelian groups: Kh_{i,j}(K), HFK_{i,j}(K).
- Taking the Euler characteristic (= alternating sum of dimensions) of Khovanov homology gives the Jones polynomial:

$$\sum_{j} t^{j} \sum_{i} (-1)^{i} \dim \operatorname{Kh}_{i,j}(K) = J(K).$$

• Taking the Euler characteristic of Floer homology gives the Alexander polynomial:

$$\sum_{j} t^{j} \sum_{i} (-1)^{i} \operatorname{dim} \widehat{HFK}_{i,j}(K) = A(K).$$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Key Idea 1: Categorification

- Both Khovanov and Heegaard Floer homology are bi-graded abelian groups: Kh_{i,j}(K), HFK_{i,j}(K).
- Taking the Euler characteristic (= alternating sum of dimensions) of Khovanov homology gives the Jones polynomial:

$$\sum_{j} t^{j} \sum_{i} (-1)^{i} \dim \operatorname{Kh}_{i,j}(K) = J(K).$$

• Taking the Euler characteristic of Floer homology gives the Alexander polynomial:

$$\sum_{j} t^{j} \sum_{i} (-1)^{i} \dim \widehat{HFK}_{i,j}(K) = A(K).$$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Key Idea 2: TQFT

Witten, Segal, Atiyah 1980s:

An (n + 1)-dimensional TQFT assigns

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Key Idea 2: TQFT

Witten, Segal, Atiyah 1980s:

An (n + 1)-dimensional TQFT assigns

n-manifold $M \rightsquigarrow Vector space Z(M)$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Key Idea 2: TQFT

Witten, Segal, Atiyah 1980s:

An (n + 1)-dimensional TQFT assigns

n-manifold $M \rightsquigarrow$ Vector space Z(M)(*n*+1)-manifold W "filling" $M \rightsquigarrow c(W) \in Z(M)$

satisfying properties such as...

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Key Idea 2: TQFT

Witten, Segal, Atiyah 1980s:

An (n + 1)-dimensional TQFT assigns

n-manifold $M \rightsquigarrow$ Vector space Z(M)(*n*+1)-manifold W "filling" $M \rightsquigarrow c(W) \in Z(M)$

satisfying properties such as...

$$\left\{ \begin{array}{l} (n+1)\text{-dim cobordism} \\ \partial W = M_{in} \cup M_{out} \end{array} \right\} \rightsquigarrow \left\{ \begin{array}{l} \text{Linear map} \\ \mathcal{D}_W : Z(M_{in}) \to Z(M_{out}) \end{array} \right\}$$
$$Z(\sqcup_i M_i) = \bigotimes_i Z(M_i)$$
$$Z(\bar{M}) = Z(M)^*$$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Key Idea 2: TQFT

Witten, Segal, Atiyah 1980s:

An (n + 1)-dimensional TQFT assigns

n-manifold $M \rightsquigarrow$ Vector space Z(M)(*n*+1)-manifold W "filling" $M \rightsquigarrow c(W) \in Z(M)$

satisfying properties such as...

$$\left\{ \begin{array}{l} (n+1)\text{-dim cobordism} \\ \partial W = M_{in} \cup M_{out} \end{array} \right\} \rightsquigarrow \left\{ \begin{array}{l} \text{Linear map} \\ \mathcal{D}_W : Z(M_{in}) \to Z(M_{out}) \end{array} \right\}$$
$$Z(\sqcup_i M_i) = \bigotimes_i Z(M_i)$$
$$Z(\bar{M}) = Z(M)^*$$

A *functor* from a cobordism/topological category to an algebraic category.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Key Idea 3: Quantum groups

"Definition by example" Lie group: E.g. $G = SL_2\mathbb{R}$.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Key Idea 3: Quantum groups

"Definition by example" Lie group: E.g. $G = SL_2\mathbb{R}$. Lie algebra: E.g. $\mathfrak{g} = \mathfrak{sl}_2\mathbb{R}$.

• Has a *Lie bracket* $[\cdot, \cdot]$ but not a "multiplication".

$$\mathfrak{sl}(2,\mathbb{R}) = \{A, \operatorname{Tr} A = 0\} = \left\langle \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\rangle$$
$$= \left\langle E, F, K \mid [E, F] = K, [E, K] = [F, K] = 0 \right\rangle$$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Key Idea 3: Quantum groups

"Definition by example" Lie group: E.g. $G = SL_2\mathbb{R}$. Lie algebra: E.g. $\mathfrak{g} = \mathfrak{sl}_2\mathbb{R}$.

• Has a *Lie bracket* [.,.] but not a "multiplication".

$$\mathfrak{sl}(2,\mathbb{R}) = \{A, \operatorname{Tr} A = 0\} = \left\langle \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\rangle$$
$$= \left\langle E, F, K \mid [E, F] = K, [E, K] = [F, K] = 0 \right\rangle$$

Universal enveloping algebra: E.g. $U(\mathfrak{g}) = U(\mathfrak{sl}_2\mathbb{R})$.

Has multiplication, "Lie brackets become commutators"
 [X, Y] → XY - YX

 $U(\mathfrak{sl}(2,\mathbb{R})) = \mathbb{R} \langle E, F, K \mid EF - FE = K, EK = KE, FK = KF \rangle$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Key Idea 3: Quantum groups

The quantum group $U_q(\mathfrak{g})$ is a deformation of $U(\mathfrak{g})$ over a "quantum" variable q.

$$U_q(\mathfrak{sl}(2)) = \mathbb{Q}(q) \left\langle E, F, K^{\pm 1} | \begin{array}{c} \mathsf{K} \mathsf{E} = q^2 \mathsf{E} \mathsf{K}, \ \mathsf{K} \mathsf{F} = q^{-2} \mathsf{F} \mathsf{K}, \\ \mathsf{E} \mathsf{F} - \mathsf{F} \mathsf{E} = \frac{\mathsf{K} - \mathsf{K}^{-1}}{q - q^{-1}} \end{array} \right\rangle$$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Key Idea 3: Quantum groups

The quantum group $U_q(\mathfrak{g})$ is a deformation of $U(\mathfrak{g})$ over a "quantum" variable q.

$$U_q(\mathfrak{sl}(2)) = \mathbb{Q}(q) \left\langle E, F, K^{\pm 1} | \begin{array}{c} \mathsf{K} \mathsf{E} = q^2 \mathsf{E} \mathsf{K}, \ \mathsf{K} \mathsf{F} = q^{-2} \mathsf{F} \mathsf{K}, \\ \mathsf{E} \mathsf{F} - \mathsf{F} \mathsf{E} = \frac{\mathsf{K} - \mathsf{K}^{-1}}{q - q^{-1}} \end{array} \right\rangle$$

"Quantum algebra" tends to do things like

• Replace integers n with expressions like

$$rac{q^n-q^{-n}}{q-q^{-1}}=q^{n-1}+q^{n-3}+\dots+q^{1-n}$$

• Taking $q \rightarrow 1$ gives a "semiclassical limit".

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Key Idea 3: Quantum groups

 Quantum groups have representation theory analogous to their classical counterparts.

Sutured and occupied surfaces

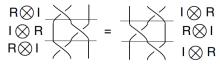
Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Key Idea 3: Quantum groups

- Quantum groups have representation theory analogous to their classical counterparts.
- Extra algebraic structure allows us to mimic *braids* by algebra of quantum group representations.



Source: Kauffman, "Knot theory and physics"

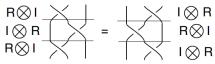
Sutured and occupied surfaces

Sutured TQFT

Quantum actions

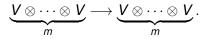
Key Idea 3: Quantum groups

- Quantum groups have representation theory analogous to their classical counterparts.
- Extra algebraic structure allows us to mimic *braids* by algebra of quantum group representations.



Source: Kauffman, "Knot theory and physics"

• A braid on *m* strands gives a map of quantum group representations



Closing the braid we obtain a *knot*; taking a trace we obtain a *quantum knot invariant*.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Key Idea 3: Quantum groups

Quantum group	Rep'n	Invariant	
$U_q(\mathfrak{sl}(2))$	V ₂	Jones	(Witten 1989, Reshetikhin-Turaev 1990)
$U_q(\mathfrak{sl}(2))$	Vn	Coloured Jones	(Turaev 1994, Melvin-Morton 1995)
$U_q(\mathfrak{sl}(1 1))$	V ₂	Alexander	(Kauffman-Saleur 1991)

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Key Idea 3: Quantum groups

Quantum group	Rep'n	Invariant	
$U_q(\mathfrak{sl}(2))$	V ₂	Jones	(Witten 1989, Reshetikhin-Turaev 1990)
$U_q(\mathfrak{sl}(2))$	Vn	Coloured Jones	(Turaev 1994, Melvin-Morton 1995)
$U_q(\mathfrak{sl}(1 1))$	V_2	Alexander	(Kauffman-Saleur 1991)
		1	

Knot invariant	Quantum invariant of	Categorified by
Jones polynomial	$U_q(\mathfrak{sl}(2))$	Khovanov
Alexander polynomial	$U_q(\mathfrak{sl}(1 1))$	Heegaard Floer

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Key Idea 3: Quantum groups

Quantum group	Rep'n	Invariant	
$U_q(\mathfrak{sl}(2))$	V ₂	Jones	(Witten 1989, Reshetikhin-Turaev 1990)
$U_q(\mathfrak{sl}(2))$	Vn	Coloured Jones	(Turaev 1994, Melvin-Morton 1995)
$U_q(\mathfrak{sl}(1 1))$	V_2	Alexander	(Kauffman-Saleur 1991)

Knot invariant	Quantum invariant of	Categorified by
Jones polynomial	$U_q(\mathfrak{sl}(2))$	Khovanov
Alexander polynomial	$U_q(\mathfrak{sl}(1 1))$	Heegaard Floer

- The definition of Khovanov homology "contains" $U_q(\mathfrak{sl}(2))$.
- The definition of Heegaard Floer homology *does not* obviously contain U_q(st(1|1)).

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Motivation

Long-standing question:

Is there a $U_q(\mathfrak{sl}(1|1))$ action in Heegaard Floer homology?

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation

Long-standing question:

Is there a $U_q(\mathfrak{sl}(1|1))$ action in Heegaard Floer homology?

Definition

$$U_q(\mathfrak{sl}(1|1)) = \mathbb{Q}(q) \left\langle E, F, H^{\pm 1} \mid \begin{array}{c} E^2 = F^2 = 0, \\ EH = HE, FH = HF, \\ EF + FE = rac{H-H^{-1}}{q-q^{-1}} \end{array}
ight
angle$$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Motivation

Long-standing question:

Is there a $U_q(\mathfrak{sl}(1|1))$ action in Heegaard Floer homology?

Definition

$$U_q(\mathfrak{sl}(1|1)) = \mathbb{Q}(q) \left\langle E, F, H^{\pm 1} \mid \begin{array}{c} E^2 = F^2 = 0, \\ EH = HE, FH = HF, \\ EF + FE = rac{H-H^{-1}}{q-q^{-1}} \end{array}
ight
angle$$

- Recent work of Yin Tian gives a "categorification of (some variants of) U_q(st(1|1))" through contact topology.
- We can apply this to our own work... which is just about curves on surfaces...

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

2 Sutured and occupied surfaces

- Sutures
- Occupied surfaces
- Quadrangulations

3 Sutured TQFT

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Sutures

Let Σ be an oriented surface with nonempty boundary.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Sutures

Let Σ be an oriented surface with nonempty boundary.

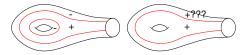
Definition

A set of sutures Γ on Σ is a set of disjoint oriented curves on Σ , cutting Σ into coherently oriented pieces

 $\boldsymbol{\Sigma} \backslash \boldsymbol{\Gamma} = \boldsymbol{R}_{\!+} \cup \boldsymbol{R}_{\!-}, \quad \partial \boldsymbol{R}_{\!\pm} \backslash \partial \boldsymbol{\Sigma} = \boldsymbol{\Gamma}.$

Every component of $\partial \Sigma$ is required to intersect Γ .

This notion goes back to Gabai, 1983.



Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Sutures

Let Σ be an oriented surface with nonempty boundary.

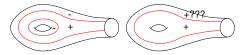
Definition

A set of sutures Γ on Σ is a set of disjoint oriented curves on Σ , cutting Σ into coherently oriented pieces

 $\boldsymbol{\Sigma} \backslash \boldsymbol{\Gamma} = \boldsymbol{R}_{\!+} \cup \boldsymbol{R}_{\!-}, \quad \partial \boldsymbol{R}_{\!\pm} \backslash \partial \boldsymbol{\Sigma} = \boldsymbol{\Gamma}.$

Every component of $\partial \Sigma$ is required to intersect Γ .

This notion goes back to Gabai, 1983.



Definition

The Euler class
$$e(\Gamma) = \chi(R_+) - \chi(R_-)$$
.

Sutured and occupied surfaces

Sutured TQFT

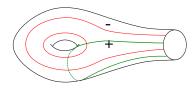
Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Decomposing sutures

A natural way to decompose a sutured surface (Σ, Γ) :

• Cut along a properly embedded arc *a* transverse to sutures (*decomposing* arc).



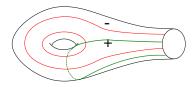
Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Decomposing sutures

- Cut along a properly embedded arc *a* transverse to sutures (*decomposing* arc).
- Often it's possible to cut along a decomposing arc intersecting sutures once, |a ∩ Γ| = 1.



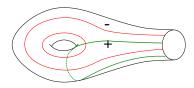
Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Decomposing sutures

- Cut along a properly embedded arc *a* transverse to sutures (*decomposing* arc).
- Often it's possible to cut along a decomposing arc intersecting sutures once, |a ∩ Γ| = 1.
- But a boundary parallel *a* with $|a \cap \Gamma| = 1$ is trivial.



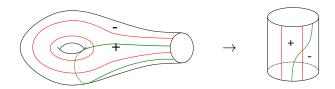
Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Decomposing sutures

- Cut along a properly embedded arc *a* transverse to sutures (*decomposing* arc).
- Often it's possible to cut along a decomposing arc intersecting sutures once, |a ∩ Γ| = 1.
- But a boundary parallel *a* with $|a \cap \Gamma| = 1$ is trivial.

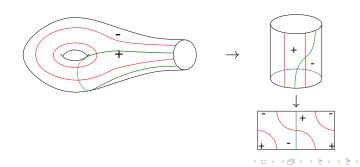


Sutured TQFT

Quantum actions

Decomposing sutures

- Cut along a properly embedded arc *a* transverse to sutures (*decomposing* arc).
- Often it's possible to cut along a decomposing arc intersecting sutures once, |a ∩ Γ| = 1.
- But a boundary parallel *a* with $|a \cap \Gamma| = 1$ is trivial.

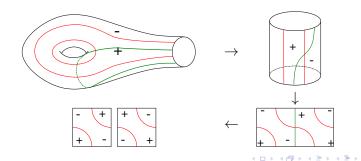


Sutured TQFT

Quantum actions

Decomposing sutures

- Cut along a properly embedded arc *a* transverse to sutures (*decomposing* arc).
- Often it's possible to cut along a decomposing arc intersecting sutures once, |a ∩ Γ| = 1.
- But a boundary parallel *a* with $|a \cap \Gamma| = 1$ is trivial.



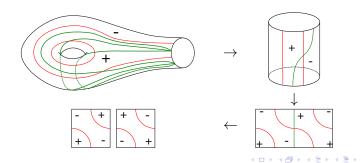
Sutured TQFT

Quantum actions

Decomposing sutures

A natural way to decompose a sutured surface (Σ, Γ) :

- Cut along a properly embedded arc *a* transverse to sutures (*decomposing* arc).
- Often it's possible to cut along a decomposing arc intersecting sutures once, |a ∩ Γ| = 1.
- But a boundary parallel *a* with $|a \cap \Gamma| = 1$ is trivial.



590

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Building blocks of sutures

After decomposing a sutured surface, end up with simple objects like

Sutured and occupied surfaces

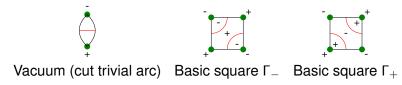
Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Building blocks of sutures

After decomposing a sutured surface, end up with simple objects like



Sutured and occupied surfaces

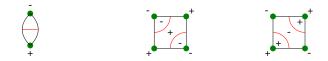
Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Building blocks of sutures

After decomposing a sutured surface, end up with simple objects like



Vacuum (cut trivial arc) Basic square Γ_- Basic square Γ_+

Some facts about these decompositions...

Let Γ intersect $\partial \Sigma$ in 2*N* points.

Sutured and occupied surfaces

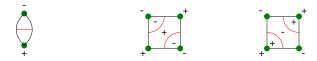
Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Building blocks of sutures

After decomposing a sutured surface, end up with simple objects like



Vacuum (cut trivial arc) Basic square Γ_{-} Basic square Γ_{+}

Some facts about these decompositions...

Let Γ intersect $\partial \Sigma$ in 2*N* points.

Lemma

 Σ decomposes along N – 2 χ arcs into N – χ squares.

Sutured and occupied surfaces

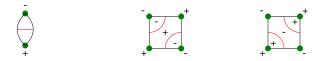
Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Building blocks of sutures

After decomposing a sutured surface, end up with simple objects like



Vacuum (cut trivial arc) Basic square Γ_- Basic square Γ_+

Some facts about these decompositions...

Let Γ intersect $\partial \Sigma$ in 2*N* points.

Lemma

 Σ decomposes along N – 2 χ arcs into N – χ squares.

 Γ is *isolating* if a component of $\Sigma \setminus \Gamma$ does not intersect $\partial \Sigma$.

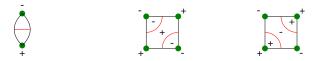
Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Building blocks of sutures

After decomposing a sutured surface, end up with simple objects like



Vacuum (cut trivial arc) Basic square Γ_{-} Basic square Γ_{+}

Some facts about these decompositions... Let Γ intersect $\partial \Sigma$ in 2*N* points.

Lemma

 Σ decomposes along N – 2 χ arcs into N – χ squares.

 Γ is *isolating* if a component of $\Sigma \setminus \Gamma$ does not intersect $\partial \Sigma$.

Lemma

If Γ is non-isolating, Σ decomposes into $N - \chi$ basic squares.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Occupied surfaces

Take endpoints of decomposing (green) arcs — vertices — to alternate with suture endpoints around $\partial \Sigma$. Vertices are *signed*.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目・のへ⊙

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Occupied surfaces

Take endpoints of decomposing (green) arcs — vertices — to alternate with suture endpoints around $\partial \Sigma$. Vertices are *signed*.

Sutured and occupied surfaces

Sutured TQFT

・ コット (雪) (小田) (コット 日)

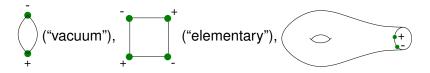
Quantum actions

Occupied surfaces

Take endpoints of decomposing (green) arcs — vertices — to alternate with suture endpoints around $\partial \Sigma$. Vertices are *signed*.

Definition

An occupied surface (Σ, V) is an oriented surface Σ with signed points $V \subset \partial \Sigma$, alternating in sign, $V = V_{-} \cup V_{+}$.



Sutured and occupied surfaces

Sutured TQFT

Quantum actions

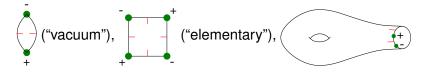
くしゃ 人間 そう キャット マックタイ

Occupied surfaces

Take endpoints of decomposing (green) arcs — vertices — to alternate with suture endpoints around $\partial \Sigma$. Vertices are *signed*.

Definition

An occupied surface (Σ, V) is an oriented surface Σ with signed points $V \subset \partial \Sigma$, alternating in sign, $V = V_{-} \cup V_{+}$.



Occupied surfaces = boundary conditions for sutures.

Sutured and occupied surfaces

Sutured TQFT

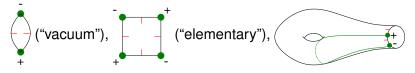
Quantum actions

Occupied surfaces

Take endpoints of decomposing (green) arcs — vertices — to alternate with suture endpoints around $\partial \Sigma$. Vertices are *signed*.

Definition

An occupied surface (Σ, V) is an oriented surface Σ with signed points $V \subset \partial \Sigma$, alternating in sign, $V = V_{-} \cup V_{+}$.



Occupied surfaces = boundary conditions for sutures.

Definition

A decomposing arc is a properly embedded arc in (Σ, V) from V_{-} to V_{+} .

Sutured and occupied surfaces

Sutured TQFT

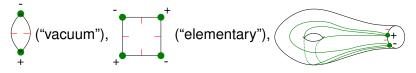
Quantum actions

Occupied surfaces

Take endpoints of decomposing (green) arcs — vertices — to alternate with suture endpoints around $\partial \Sigma$. Vertices are *signed*.

Definition

An occupied surface (Σ, V) is an oriented surface Σ with signed points $V \subset \partial \Sigma$, alternating in sign, $V = V_{-} \cup V_{+}$.



Occupied surfaces = boundary conditions for sutures.

Definition

A decomposing arc is a properly embedded arc in (Σ, V) from V_{-} to V_{+} .

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Quadrangulations

Any occupied (Σ , V) (without vacua) decomposes along $N - 2\chi$ decomposing arcs into $N - \chi$ squares — a quadrangulation.

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Quadrangulations

Any occupied (Σ, V) (without vacua) decomposes along $N - 2\chi$ decomposing arcs into $N - \chi$ squares — a quadrangulation. How are different quadrangulations of (Σ, V) related?

Sutured TQFT

Quantum actions

Quadrangulations

Any occupied (Σ , V) (without vacua) decomposes along $N - 2\chi$ decomposing arcs into $N - \chi$ squares — a quadrangulation. How are different quadrangulations of (Σ , V) related?

Theorem (M.)

Any two quadrangulations of (Σ, V) are related by diagonal slides.



▲□▶▲□▶▲□▶▲□▶ □ のへ⊙

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Quadrangulations

We can also consider quadrangulations where we add vertices (still signed) in the interior of Σ — a slack quadrangulation.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Quadrangulations

We can also consider quadrangulations where we add vertices (still signed) in the interior of Σ — a slack quadrangulation.

Theorem (M.)

Any two slack quadrangulations of (Σ, V) are related by diagonal slides and slack square collapse/inflation.

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

3 Sutured TQFT

- The idea of sutured TQFT
- Occupied surface morphisms
- Normalization
- Definition of sutured TQFT
- Properties of suture elements
- Operators in SQFT
- Structure theorem of SQFT

Sutured TQFT

Quantum actions

The idea of sutured TQFT

Witten, Segal, Atiyah 1980s:

An (n + 1)-dimensional TQFT assigns

n-manifold $M \rightsquigarrow$ Vector space Z(M)(*n*+1)-manifold W "filling" $M \rightsquigarrow c(W) \in Z(M)$

satisfying properties such as...

$$\begin{cases} (n+1)\text{-dim cobordism} \\ \partial W = M_{in} \cup M_{out} \end{cases} \longrightarrow \begin{cases} \text{Linear map} \\ \mathcal{D}_W : Z(M_{in}) \to Z(M_{out}) \end{cases}$$
$$Z(\sqcup_i M_i) = \bigotimes_i Z(M_i) \\ Z(\bar{M}) = Z(M)^* \end{cases}$$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

The idea of sutured TQFT

Honda–Kazez–Matic (sp), M.:

Sutured TQFT assigns

n-manifold $M \rightsquigarrow$ Vector space Z(M)(*n*+1)-manifold W "filling" $M \rightsquigarrow c(W) \in Z(M)$

satisfying properties such as...

$$\begin{cases} (n+1)\text{-dim cobordism} \\ \partial W = M_{in} \cup M_{out} \end{cases} \longrightarrow \begin{cases} \text{Linear map} \\ \mathcal{D}_W : Z(M_{in}) \to Z(M_{out}) \end{cases}$$
$$Z(\sqcup_i M_i) = \bigotimes_i Z(M_i) \\ Z(\bar{M}) = Z(M)^* \end{cases}$$

Sutured TQFT

Quantum actions

The idea of sutured TQFT

Honda-Kazez-Matic (sp), M.:

Sutured TQFT assigns

Occupied surface $(\Sigma, V) \rightsquigarrow$ (Graded) \mathbb{Z}_2 Vector space $Z(\Sigma, V)$ Sutures Γ "filling" $(\Sigma, V) \rightsquigarrow c(\Gamma) \in Z(\Sigma, V)$ "Suture element"

satisfying properties such as...

$$\left\{\begin{array}{c} (n+1)\text{-dim cobordism} \\ \partial W = M_{in} \cup M_{out} \end{array}\right\} \rightsquigarrow \left\{\begin{array}{c} \text{Linear map} \\ \mathcal{D}_W : Z(M_{in}) \to Z(M_{out}) \end{array}\right.$$

$$\begin{array}{rcl} Z\left(\sqcup_{i} \mathcal{M}_{i}\right) & = & \bigotimes_{i} Z(\mathcal{M}_{i}) \\ Z\left(\bar{\mathcal{M}}\right) & = & Z(\mathcal{M})^{*} \end{array}$$

Sutured TQFT

Quantum actions

The idea of sutured TQFT

Honda-Kazez-Matic (sp), M.:

Sutured TQFT assigns

Occupied surface $(\Sigma, V) \rightsquigarrow$ (Graded) \mathbb{Z}_2 Vector space $Z(\Sigma, V)$ Sutures Γ "filling" $(\Sigma, V) \rightsquigarrow c(\Gamma) \in Z(\Sigma, V)$ "Suture element"

satisfying properties such as...

 $\left\{ \begin{array}{c} \text{"Occupied surface morphism"} \\ (\Sigma, V) \longrightarrow (\Sigma', V') \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} \text{Linear map} \\ Z(\Sigma, V) \rightarrow Z(\Sigma', V') \end{array} \right\}$

$$\begin{array}{rcl} Z\left(\sqcup_{i}M_{i}\right) & = & \bigotimes_{i}Z(M_{i}) \\ Z\left(\bar{M}\right) & = & Z(M)^{*} \end{array}$$

Sutured TQFT

Quantum actions

The idea of sutured TQFT

Honda-Kazez-Matic (sp), M.:

Sutured TQFT assigns

Occupied surface $(\Sigma, V) \rightsquigarrow$ (Graded) \mathbb{Z}_2 Vector space $Z(\Sigma, V)$ Sutures Γ "filling" $(\Sigma, V) \rightsquigarrow c(\Gamma) \in Z(\Sigma, V)$ "Suture element"

satisfying properties such as...

 $\left\{\begin{array}{c} \text{``Occupied surface morphism''}\\ (\Sigma, V) \longrightarrow (\Sigma', V') \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} \text{Linear map}\\ Z(\Sigma, V) \rightarrow Z(\Sigma', V') \end{array}\right\}$

 $\left\{\begin{array}{l} \mathsf{Quadrangulation}\\ (\Sigma, V) = \cup_i \Box_i \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{l} \mathsf{Decomposition}\\ Z(\Sigma, V) = \bigotimes_i Z(\Box_i) \end{array}\right\}$

A *functor* from a cobordism/topological category to an algebraic category.

Sutured TQFT

Quantum actions

The idea of sutured TQFT

Honda-Kazez-Matic (sp), M.:

Sutured TQFT assigns

Occupied surface $(\Sigma, V) \rightsquigarrow$ (Graded) \mathbb{Z}_2 Vector space $Z(\Sigma, V)$ Sutures Γ "filling" $(\Sigma, V) \rightsquigarrow c(\Gamma) \in Z(\Sigma, V)$ "Suture element"

satisfying properties such as...

 $\left\{\begin{array}{c} \text{``Occupied surface morphism''}\\ (\Sigma, V) \longrightarrow (\Sigma', V') \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} \text{Linear map}\\ Z(\Sigma, V) \rightarrow Z(\Sigma', V') \end{array}\right\}$

 $\left\{\begin{array}{l} \text{Quadrangulation} \\ (\Sigma, V) = \cup_i \Box_i \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{l} \text{Decomposition} \\ Z(\Sigma, V) = \bigotimes_i Z(\Box_i) \end{array}\right\}$

A *functor* from "occupied surface category" to graded \mathbb{Z}_2 vector spaces.

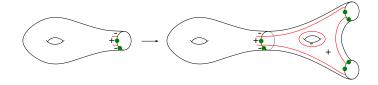
Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Some occupied surface morphisms



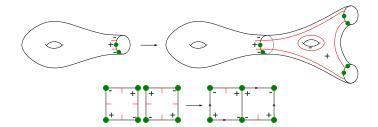
Sutured and occupied surfaces

Sutured TQFT

・ コット (雪) (小田) (コット 日)

Quantum actions

Some occupied surface morphisms

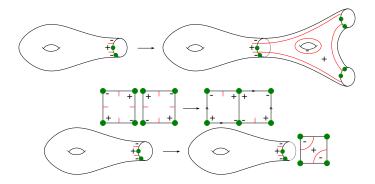


Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Some occupied surface morphisms

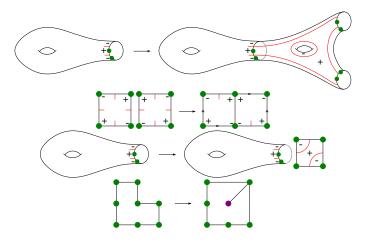


Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Some occupied surface morphisms



Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Occupied surface morphisms

Definition

A decorated occupied surface morphism $(\phi, \Gamma_c) : (\Sigma, V) \rightarrow (\Sigma', V')$ satisfies

- $\phi: \Sigma \to \Sigma'$ is an embedding on the interior of Σ
- ϕ is a homeomorphism on boundary edges
- Boundary edges of Σ', or φ(boundary edges of Σ), which intersect other than at endpoints, coincide
- $\phi(V_+) \cup V'_+$ and $\phi(V_-) \cup V'_-$ disjoint
- Γ_c sutures on complementary occupied surface $\Sigma' \setminus \phi(\Sigma)$.

Sutured TQFT

Quantum actions

Occupied surface morphisms

Definition

A decorated occupied surface morphism $(\phi, \Gamma_c) : (\Sigma, V) \rightarrow (\Sigma', V')$ satisfies

- $\phi: \Sigma \to \Sigma'$ is an embedding on the interior of Σ
- ϕ is a homeomorphism on boundary edges
- Boundary edges of Σ', or φ(boundary edges of Σ), which intersect other than at endpoints, coincide
- $\phi(V_+) \cup V'_+$ and $\phi(V_-) \cup V'_-$ disjoint
- Γ_c sutures on complementary occupied surface $\Sigma' \setminus \phi(\Sigma)$.

Note:

- Morphisms turn sutures on (Σ, V) into sutures on (Σ', V'):
 Γ → Γ ∪ Γ_c.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Occupied surface morphisms

A morphism (ϕ, Γ_c) is confining if for any sutures Γ on (Σ, V) , $\Gamma \cup \Gamma_c$ is isolating.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Occupied surface morphisms

A morphism (ϕ, Γ_c) is confining if for any sutures Γ on (Σ, V) , $\Gamma \cup \Gamma_c$ is isolating.

Theorem

Any non-confining morphism is a composition of 4 standard types of morphisms.

Sutured and occupied surfaces

Sutured TQFT

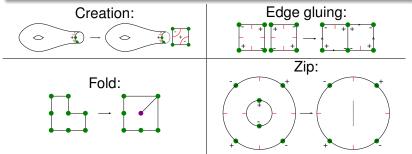
Quantum actions

Occupied surface morphisms

A morphism (ϕ, Γ_c) is confining if for any sutures Γ on (Σ, V) , $\Gamma \cup \Gamma_c$ is isolating.

Theorem

Any non-confining morphism is a composition of 4 standard types of morphisms.



Occupied surface morphisms are very combinatorial: "gluing up squares".

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Normalization

We normalize sutured TQFT by requiring:

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Normalization

We normalize sutured TQFT by requiring:

• Basic sutures on a square form a basis ("qubits").

$$Z(\square) = \mathbb{Z}_2 \mathbf{0} \oplus \mathbb{Z}_2 \mathbf{1},$$

$$|| \qquad || \qquad || \qquad c(\square) = \mathbf{0}, \quad c(\square) = \mathbf{1}$$

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Normalization

We normalize sutured TQFT by requiring:

• Basic sutures on a square form a basis ("qubits").

$$Z(\begin{array}{c} \square \\ \square \\ \square \\ \square \\ Z_{-1} \\ \oplus \\ Z_{1} \\ \end{array}) = \mathbb{Z}_{2}\mathbf{0} \oplus \mathbb{Z}_{2}\mathbf{1}, \qquad c(\begin{array}{c} \square \\ \square \\ \square \\ \square \\ Z_{1} \\ \end{array}) = \mathbf{0}, \quad c(\begin{array}{c} \square \\ \square \\ \square \\ \square \\ \square \\ \square \\ \blacksquare \\ \end{array}) = \mathbf{1}$$

"Basic means basic" on all occupied surfaces (not just squares): for a quadrangulation (Σ, V) = ∪_i□_i with basic sutures Γ = ∪_iΓ_i, c(Γ) = ⊗_i c(Γ_i).

Sutured TQFT

Quantum actions

Normalization

We normalize sutured TQFT by requiring:

• Basic sutures on a square form a basis ("qubits").

$$Z(\begin{array}{c} \square \\ \square \\ \square \\ \square \\ Z_{-1} \\ \oplus \\ Z_{1} \\ \end{array}) = \mathbb{Z}_{2}\mathbf{0} \oplus \mathbb{Z}_{2}\mathbf{1}, \qquad c(\begin{array}{c} \square \\ \square \\ \square \\ \square \\ Z_{1} \\ \end{array}) = \mathbf{0}, \quad c(\begin{array}{c} \square \\ \square \\ \square \\ \square \\ \square \\ \square \\ \blacksquare \\ \end{array}) = \mathbf{1}$$

- "Basic means basic" on all occupied surfaces (not just squares): for a quadrangulation (Σ, V) = ∪_i□_i with basic sutures Γ = ∪_iΓ_i, c(Γ) = ⊗_i c(Γ_i).
- Vector spaces are *Graded*: $c(\Gamma)$ grading $e(\Gamma)$.

$$Z(\Sigma, V) = \bigotimes_{i} (\mathbb{Z}_{2} \mathbf{0} \oplus \mathbb{Z}_{2} \mathbf{1})^{\otimes n} = \mathbb{Z}_{2}^{\binom{n}{0}} \oplus \mathbb{Z}_{2}^{\binom{n}{1}} \oplus \cdots \oplus \mathbb{Z}_{2}^{\binom{n}{n}}$$

$$= Z_{-n} \oplus Z_{-n+2} \oplus \cdots \oplus Z_n$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition of sutured TQFT

To summarise: SQFT is a pair (\mathcal{D}, c) where

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition of sutured TQFT

To summarise: SQFT is a pair (\mathcal{D}, c) where

• \mathcal{D} is functor { Occ. surfaces } \rightarrow { Graded \mathbb{Z}_2 v. spaces }

$$\begin{array}{ccc} (\Sigma, V) & \rightsquigarrow & Z(\Sigma, V) \\ (\Sigma, V) \stackrel{\phi, \Gamma_c}{\longrightarrow} (\Sigma', V') & \rightsquigarrow & Z(\Sigma, V) \stackrel{\mathcal{D}(\phi, \Gamma_c)}{\longrightarrow} Z(\Sigma', V') \end{array}$$

• *c* assigns element $c(\Gamma) \in Z(\Sigma, V)$ to sutures Γ on (Σ, V)

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition of sutured TQFT

To summarise: SQFT is a pair (\mathcal{D}, c) where

• \mathcal{D} is functor { Occ. surfaces } \rightarrow { Graded \mathbb{Z}_2 v. spaces }

$$\begin{array}{ccc} (\Sigma, V) & \rightsquigarrow & Z(\Sigma, V) \\ (\Sigma, V) \stackrel{\phi, \Gamma_{\mathcal{C}}}{\longrightarrow} (\Sigma', V') & \rightsquigarrow & Z(\Sigma, V) \stackrel{\mathcal{D}(\phi, \Gamma_{\mathcal{C}})}{\longrightarrow} Z(\Sigma', V') \end{array}$$

• *c* assigns element $c(\Gamma) \in Z(\Sigma, V)$ to sutures Γ on (Σ, V) such that...

(*Naturality*) Maps $Z(\Sigma, V) \xrightarrow{\mathcal{D}(\phi, \Gamma_c)} Z(\Sigma', V')$ preserve suture elements, $c(\Gamma) \mapsto c(\Gamma \cup \Gamma_c)$.

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition of sutured TQFT

To summarise: SQFT is a pair (\mathcal{D}, c) where

• \mathcal{D} is functor { Occ. surfaces } \rightarrow { Graded \mathbb{Z}_2 v. spaces }

$$\begin{array}{ccc} (\Sigma, V) & \rightsquigarrow & Z(\Sigma, V) \\ (\Sigma, V) \stackrel{\phi, \Gamma_{\mathcal{C}}}{\longrightarrow} (\Sigma', V') & \rightsquigarrow & Z(\Sigma, V) \stackrel{\mathcal{D}(\phi, \Gamma_{\mathcal{C}})}{\longrightarrow} Z(\Sigma', V') \end{array}$$

• *c* assigns element $c(\Gamma) \in Z(\Sigma, V)$ to sutures Γ on (Σ, V) such that...

- (*Naturality*) Maps $Z(\Sigma, V) \xrightarrow{\mathcal{D}(\phi, \Gamma_c)} Z(\Sigma', V')$ preserve suture elements, $c(\Gamma) \mapsto c(\Gamma \cup \Gamma_c)$.
- **2** For a quadrangulation $(\Sigma, V) = \bigcup_i \Box_i, Z(\Sigma, V) = \bigotimes_i Z(\Box_i)$. For basic sutures $\Gamma = \bigcup_i \Gamma_i, c(\Gamma) = \bigotimes_i c(\Gamma_i) \in \bigotimes_i Z(\Box_i)$.

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition of sutured TQFT

To summarise: SQFT is a pair (\mathcal{D}, c) where

• \mathcal{D} is functor { Occ. surfaces } \rightarrow { Graded \mathbb{Z}_2 v. spaces }

$$\begin{array}{ccc} (\Sigma, V) & \rightsquigarrow & Z(\Sigma, V) \\ (\Sigma, V) \stackrel{\phi, \Gamma_{\mathcal{C}}}{\longrightarrow} (\Sigma', V') & \rightsquigarrow & Z(\Sigma, V) \stackrel{\mathcal{D}(\phi, \Gamma_{\mathcal{C}})}{\longrightarrow} Z(\Sigma', V') \end{array}$$

• *c* assigns element $c(\Gamma) \in Z(\Sigma, V)$ to sutures Γ on (Σ, V) such that...

- (*Naturality*) Maps $Z(\Sigma, V) \xrightarrow{\mathcal{D}(\phi, \Gamma_c)} Z(\Sigma', V')$ preserve suture elements, $c(\Gamma) \mapsto c(\Gamma \cup \Gamma_c)$.
- **2** For a quadrangulation $(\Sigma, V) = \bigcup_i \Box_i, Z(\Sigma, V) = \bigotimes_i Z(\Box_i)$. For basic sutures $\Gamma = \bigcup_i \Gamma_i, c(\Gamma) = \bigotimes_i c(\Gamma_i) \in \bigotimes_i Z(\Box_i)$.
- (Normalization) Basic sutures are basic,

$$Z(\mathbf{D}^{*}) = \mathbb{Z}_2 \mathbf{0} \oplus \mathbb{Z}_2 \mathbf{1}, \quad c(\mathbf{D}^{*}) = \mathbf{0}, \quad c(\mathbf{D}^{*}) = \mathbf{1}$$

Sutured TQFT

Quantum actions

Definition of sutured TQFT

To summarise: SQFT is a pair (\mathcal{D}, c) where

• \mathcal{D} is functor { Occ. surfaces } \rightarrow { Graded \mathbb{Z}_2 v. spaces }

$$\begin{array}{ccc} (\Sigma, V) & \rightsquigarrow & Z(\Sigma, V) \\ (\Sigma, V) \stackrel{\phi, \Gamma_{\mathcal{C}}}{\longrightarrow} (\Sigma', V') & \rightsquigarrow & Z(\Sigma, V) \stackrel{\mathcal{D}(\phi, \Gamma_{\mathcal{C}})}{\longrightarrow} Z(\Sigma', V') \end{array}$$

• *c* assigns element $c(\Gamma) \in Z(\Sigma, V)$ to sutures Γ on (Σ, V) such that...

- (*Naturality*) Maps $Z(\Sigma, V) \xrightarrow{\mathcal{D}(\phi, \Gamma_c)} Z(\Sigma', V')$ preserve suture elements, $c(\Gamma) \mapsto c(\Gamma \cup \Gamma_c)$.
- **2** For a quadrangulation $(\Sigma, V) = \bigcup_i \Box_i, Z(\Sigma, V) = \bigotimes_i Z(\Box_i)$. For basic sutures $\Gamma = \bigcup_i \Gamma_i, c(\Gamma) = \bigotimes_i c(\Gamma_i) \in \bigotimes_i Z(\Box_i)$.
- (Normalization) Basic sutures are basic,

$$Z(\mathbf{D}^{*}) = \mathbb{Z}_2 \mathbf{0} \oplus \mathbb{Z}_2 \mathbf{1}, \quad c(\mathbf{P}^{*}, \mathbf{0}) = \mathbf{0}, \quad c(\mathbf{P}^{*}, \mathbf{0}) = \mathbf{1}$$

(*Euler grading*) $Z(\Sigma, V) = \bigoplus_e Z_e$ and $c(F) \in Z_{e(\Gamma)}$ is a second

Sutured and occupied surfaces

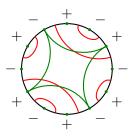
Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Suture elements: An Example

Take $(\Sigma, V) = (D^2, 12 \text{ pts})$ and Γ basic as shown.



Sutured and occupied surfaces

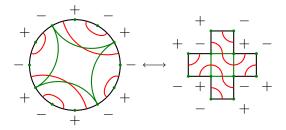
Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Suture elements: An Example

Take $(\Sigma, V) = (D^2, 12 \text{ pts})$ and Γ basic as shown.



Sutured and occupied surfaces

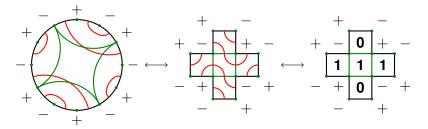
Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Suture elements: An Example

Take $(\Sigma, V) = (D^2, 12 \text{ pts})$ and Γ basic as shown.



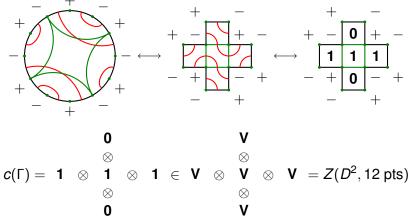
Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Suture elements: An Example

Take $(\Sigma, V) = (D^2, 12 \text{ pts})$ and Γ basic as shown.



Here $\mathbf{V} = Z(\Box) = \mathbb{Z}_2 \mathbf{0} \oplus \mathbb{Z}_2 \mathbf{1}$.

SQFT reads a basic quadrangulation "in binary format".

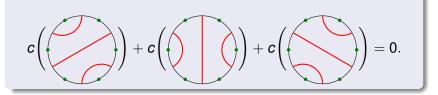
Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Properties of suture elements

Proposition (Bypass relation)



▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

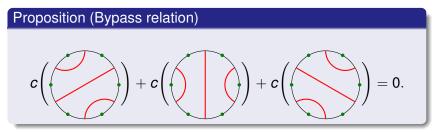
Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Properties of suture elements



Allows us to decompose suture elements into basis elements.

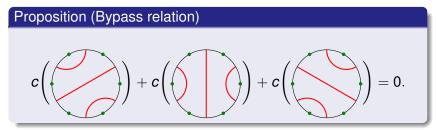
Sutured and occupied surfaces

Sutured TQFT

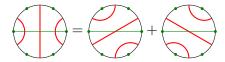
Quantum actions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Properties of suture elements



Allows us to decompose suture elements into basis elements.



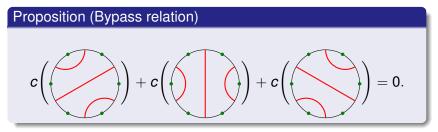
Sutured and occupied surfaces

Sutured TQFT

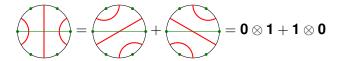
Quantum actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties of suture elements



Allows us to decompose suture elements into basis elements.

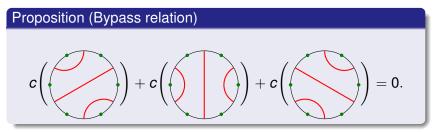


Sutured and occupied surfaces

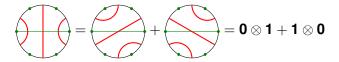
Sutured TQFT

Quantum actions

Properties of suture elements



Allows us to decompose suture elements into basis elements.



Proposition

If Γ is isolating, i.e. some component of $\Sigma \setminus \Gamma$ does not intersect $\partial \Sigma$, then $c(\Gamma) = 0$.

Sutured and occupied surfaces

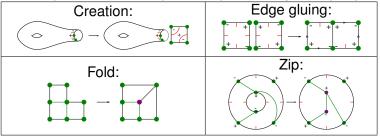
Sutured TQFT

Quantum actions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Elementary linear maps in SQFT

An occupied surface morphism adjoins and glues up squares:



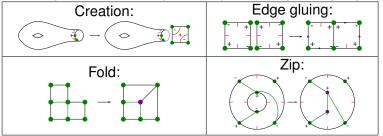
Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Elementary linear maps in SQFT

An occupied surface morphism adjoins and glues up squares:



After gluing, we still have a quadrangulation, possibly *slack*. Obtain a true quadrangulation by collapsing slack squares.

We find the algebraic effect of *creation* and *slack square collapse*.

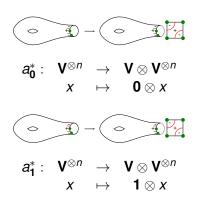
Sutured TQFT

Quantum actions

Creation operators

Effect of creation is a digital creation operator.

We create the digit/"particle"/qubit **0** or **1** according to the sutures on the created square.



Sutured and occupied surfaces

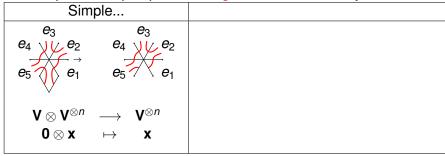
Sutured TQFT

Quantum actions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Annihilation operators

Slack square collapse performs digital annihilation. May be



Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Annihilation operators

Slack square collapse performs digital annihilation. May be

Simple	or complicated.
<i>e</i> ₃ <i>e</i> ₃	<i>e</i> ₃ <i>e</i> ₃
e_4 e_2 e_4 e_2	e_4 e_2 e_4 e_2
e_5 e_1 e_5 e_1	$e_5 \xrightarrow{\rightarrow} e_1 \xrightarrow{\rightarrow} e_5 \xrightarrow{\rightarrow} e_1$
	\vee
$\mathbf{V}\otimes\mathbf{V}^{\otimes n}~\longrightarrow~\mathbf{V}^{\otimes n}$	
$0\otimes\mathbf{x}\mapsto\mathbf{x}$	

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Annihilation operators

Slack square collapse performs digital annihilation. May be

I I I	<u> </u>
Simple	or complicated.
<i>e</i> ₃ <i>e</i> ₃	<i>e</i> ₃ <i>e</i> ₃
$e_4 \downarrow \downarrow e_2 e_4 \downarrow \downarrow e_2$	e_4 e_2 e_4 e_2 e_2
e_5 $\vec{e_1}$ e_5 $\vec{e_1}$	e_5 e_1 e_5 e_1
$\mathbf{V}\otimes\mathbf{V}^{\otimes n}~\longrightarrow~\mathbf{V}^{\otimes n}$	$\begin{array}{ccc} \mathbf{V} \otimes \mathbf{V}^{\otimes n} & \longrightarrow & \mathbf{V}^{\otimes n} \\ 1 \otimes \mathbf{e}_1 \otimes \cdots \otimes \mathbf{e}_n & \mapsto \end{array}$
$0\otimes\mathbf{x}$ \mapsto \mathbf{x}	$\sum_{\mathbf{e}_i=0} \mathbf{e}_1 \otimes \cdots \otimes 1 \otimes \cdots \otimes \mathbf{e}_n$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Annihilation operators

Slack square collapse performs digital annihilation. May be

· · · ·	
Simple	or complicated.
<i>e</i> ₃ <i>e</i> ₃	<i>e</i> ₃ <i>e</i> ₃
e_4 e_2 e_4 e_2	e_4 e_2 e_4 e_2
e_5 e_1 e_5 e_1	$e_5 \xrightarrow{\rightarrow} e_1 e_5 \xrightarrow{\rightarrow} e_1$
$V \otimes V^{\otimes n} \longrightarrow V^{\otimes n}$	$V\otimesV^{\otimes n} \longrightarrow V^{\otimes n}$
	$1 \otimes \mathbf{e}_1 \otimes \cdots \otimes \mathbf{e}_n \mapsto$
$0 \otimes \mathbf{X} \mapsto \mathbf{X}$	$\sum_{\mathbf{e}_i=0} \mathbf{e}_1 \otimes \cdots \otimes 1 \otimes \cdots \otimes \mathbf{e}_n$
The O explicition energies	a tha man

The **0**-annihilation operator is the map

 $\begin{array}{rcl} a_{\mathbf{0}}: & \mathbf{V}^{\otimes (n+1)} = \mathbf{V} \otimes \mathbf{V}^{\otimes n} & \to & \mathbf{V}^{\otimes n} \\ & \mathbf{0} \otimes e_{1} \otimes \cdots \otimes e_{n} & \mapsto & e_{1} \otimes \cdots \otimes e_{n} \\ & \mathbf{1} \otimes e_{1} \otimes \cdots \otimes e_{n} & \mapsto & \sum_{e_{i}=\mathbf{0}} e_{1} \otimes \cdots \otimes \mathbf{1} \otimes \cdots \otimes e_{n} \end{array}$

(Similarly, **1**-annihilation *a*₁.)

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Structure theorem of SQFT

A slack square collapse only affects squares adjacent to the collapse.

A generalised digital annihilation operator is $Id \otimes a_0$ or $Id \otimes a_1$.

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Structure theorem of SQFT

A slack square collapse only affects squares adjacent to the collapse.

A generalised digital annihilation operator is $Id \otimes a_0$ or $Id \otimes a_1$.

Theorem (M.)

Any map of vector spaces in SQFT (over \mathbb{Z}_2) is a composition of digital creation and generalised digital annihilation operators.

Sutured TQFT

Quantum actions

Structure theorem of SQFT

A slack square collapse only affects squares adjacent to the collapse.

A generalised digital annihilation operator is $Id \otimes a_0$ or $Id \otimes a_1$.

Theorem (M.)

Any map of vector spaces in SQFT (over \mathbb{Z}_2) is a composition of digital creation and generalised digital annihilation operators.

SQFT maps can be interpreted as creating/annihilating

- "particles of topology" in occupied squares
- manipulating binary information "qubits" on each square John Archibald Wheeler: "It from bit"

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Quantum information: It's possible to perform some (conservative) topological quantum computation in SQFT.
 - E.g. "quantum conservative logic gates".

Introduction

Sutured TQFT

Quantum actions

(日) (日) (日) (日) (日) (日) (日)

- Quantum information: It's possible to perform some (conservative) topological quantum computation in SQFT.
 - E.g. "quantum conservative logic gates".
- A quadrangulation gives Σ the structure of a ribbon graph:
 - squares of quadrangulation ~> vertices of ribbon graph
 - edges of quadrangulation ~> edges of ribbon graph

Introduction

Sutured TQFT

Quantum actions

(日) (日) (日) (日) (日) (日) (日)

- Quantum information: It's possible to perform some (conservative) topological quantum computation in SQFT.
 - E.g. "quantum conservative logic gates".
- A quadrangulation gives Σ the structure of a ribbon graph:
 - squares of quadrangulation ~> vertices of ribbon graph
 - $\bullet\,$ edges of quadrangulation \rightsquigarrow edges of ribbon graph
- Heegaard Floer homology: In fact SQFT derives from sutured Floer homology SFH:
 - $Z(\Sigma, V) = SFH(\Sigma \times S^1, V \times S^1)$
 - $\Gamma \rightsquigarrow$ contact structures on $\Sigma \times S^1$, $c(\Gamma) = contact$ invariant So we also have a structure theory for *SFH*.
- SFH is defined over Z so SQFT should lift to Z coefficients.

Introduction	

Sutured TQFT

Quantum actions

- Quantum information: It's possible to perform some (conservative) topological quantum computation in SQFT.
 - E.g. "quantum conservative logic gates".
- A quadrangulation gives Σ the structure of a ribbon graph:
 - squares of quadrangulation ~> vertices of ribbon graph
 - $\bullet\,$ edges of quadrangulation \rightsquigarrow edges of ribbon graph
- Heegaard Floer homology: In fact SQFT derives from sutured Floer homology SFH:
 - $Z(\Sigma, V) = SFH(\Sigma \times S^1, V \times S^1)$
 - $\Gamma \rightsquigarrow$ contact structures on $\Sigma \times S^1$, $c(\Gamma) =$ contact invariant So we also have a structure theory for *SFH*.
- SFH is defined over \mathbb{Z} so SQFT should lift to \mathbb{Z} coefficients.
- Representation theory: Tensor powers of 2-dimensional V recall the representation theory of sl(2)... or sl(1|1)

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

- 2 Sutured and occupied surfaces
- 3 Sutured TQFT

Quantum actions

- The idea
- An annular Temperley–Lieb action
- Quantizing the action
- The quantum group action

Sutured and occupied surfaces

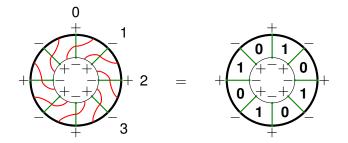
Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The idea of the action

Consider a boundary component *C* of (Σ, V) with 2*n* vertices. Take a nice (possibly slack) quadrangulation of (Σ, V) near *C*:



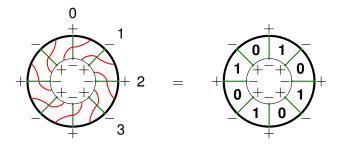
Sutured and occupied surfaces

Sutured TQFT

Quantum actions

The idea of the action

Consider a boundary component *C* of (Σ, V) with 2*n* vertices. Take a nice (possibly slack) quadrangulation of (Σ, V) near *C*:



Definition

The integral form
$$\mathbf{U}_n$$
 of $U_q(\mathfrak{sl}(1|1))$ is

$$\mathbb{Z}[q^{\pm 1}] \left\langle E, F \mid EF + FE = \frac{q^n - q^{-n}}{q - q^{-1}} = q^{n-1} + q^{n-3} + \dots + q^{1-n} \right\rangle$$

Sutured and occupied surfaces

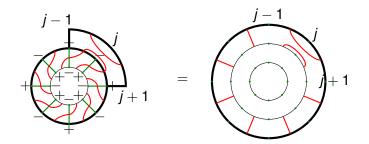
Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

An annular Temperley–Lieb action

Consider gluing a square at position *j*; let the SQFT map be a_i .



Sutured and occupied surfaces

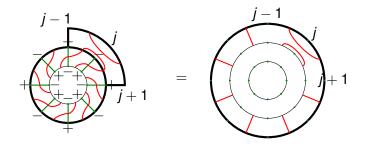
Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

An annular Temperley–Lieb action

Consider gluing a square at position *j*; let the SQFT map be a_j .



These operations form the *annular Temperley–Lieb algebra*. Usual Temperley–Lieb relations:

$$U_j^2 = \delta U_j$$

$$U_j U_{j+1} U_j = U_j$$

$$U_i U_j = U_j U_i \text{ for } |i-j| > 1.$$

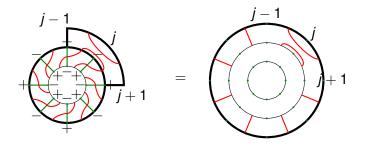
Sutured and occupied surfaces

Sutured TQFT

Quantum actions

An annular Temperley–Lieb action

Consider gluing a square at position *j*; let the SQFT map be a_j .



These operations form the *annular Temperley–Lieb algebra*. Usual Temperley–Lieb relations:

$$U_j^2 = \delta U_j$$

 $U_j U_{j+1} U_j = U_j$
 $U_i U_j = U_j U_i$ for $|i-j| > 1$.
 $a_j a_{j+1} a_j = a_j$
 $a_i a_j = a_j a_i$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Quantizing the action

Taking basis elements $\mathbf{e}_1 \otimes \cdots \otimes \mathbf{e}_{2n}$ we find

$$a_{2j-1}(\mathbf{e}_1 \otimes \cdots \otimes \mathbf{e}_{2n}) = \sum_{\substack{k=2j-1,2j\\k=2j}}^{\mathbf{e}_k=\mathbf{1}} \mathbf{e}_1 \otimes \cdots \otimes \underbrace{\mathbf{0}}_k \otimes \cdots \otimes \mathbf{e}_{2n}$$
$$a_{2j}(\mathbf{e}_1 \otimes \cdots \otimes \mathbf{e}_{2n}) = \sum_{\substack{k=2j,2j+1\\k=2j,2j+1}}^{\mathbf{e}_k=\mathbf{0}} \mathbf{e}_1 \otimes \cdots \otimes \underbrace{\mathbf{1}}_k \otimes \cdots \otimes \mathbf{e}_{2n}$$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quantizing the action

Taking basis elements $\mathbf{e}_1 \otimes \cdots \otimes \mathbf{e}_{2n}$ we find

$$a_{2j-1}(\mathbf{e}_1 \otimes \cdots \otimes \mathbf{e}_{2n}) = \sum_{k=2j-1,2j}^{\mathbf{e}_k = \mathbf{1}} \mathbf{e}_1 \otimes \cdots \otimes \underbrace{\mathbf{0}}_k \otimes \cdots \otimes \mathbf{e}_{2n}$$
$$a_{2j}(\mathbf{e}_1 \otimes \cdots \otimes \mathbf{e}_{2n}) = \sum_{k=2j,2j+1}^{\mathbf{e}_k = \mathbf{0}} \mathbf{e}_1 \otimes \cdots \otimes \underbrace{\mathbf{1}}_k \otimes \cdots \otimes \mathbf{e}_{2n}$$

Following ideas of Tian categorifying $U_q(\mathfrak{sl}(1|1))$ we lift from \mathbb{Z}_2 to $\mathbb{Z}[q^{1/2}, q^{-1/2}]$ — quantization. Now $\mathbf{V} = \mathbb{Z}[q^{1/2}, q^{-1/2}] \langle \mathbf{0}, \mathbf{1} \rangle$.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quantizing the action

Taking basis elements $\mathbf{e}_1 \otimes \cdots \otimes \mathbf{e}_{2n}$ we find

$$a_{2j-1} = \sum_{k=2j-1,2j}^{\mathbf{e}_{k}=\mathbf{1}} (-1)^{\beta_{k}} q^{n-k+\frac{1}{2}} \mathbf{e}_{1} \otimes \cdots \otimes \underbrace{\mathbf{0}}_{k} \otimes \cdots \otimes \mathbf{e}_{2n}$$
$$a_{2j} = \sum_{k=2j,2j+1}^{\mathbf{e}_{k}=\mathbf{0}} (-1)^{\beta_{k}} q^{n-k+\frac{1}{2}} \mathbf{e}_{1} \otimes \cdots \otimes \underbrace{\mathbf{1}}_{k} \otimes \cdots \otimes \mathbf{e}_{2n}$$

where β_k is the number of 1's among $\mathbf{e}_1, \ldots, \mathbf{e}_{k-1}$. Following ideas of Tian categorifying $U_q(\mathfrak{sl}(1|1))$ we lift from \mathbb{Z}_2 to $\mathbb{Z}[q^{1/2}, q^{-1/2}] \longrightarrow quantization$. Now $\mathbf{V} = \mathbb{Z}[q^{1/2}, q^{-1/2}] \langle \mathbf{0}, \mathbf{1} \rangle$.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

Quantizing the action

Taking basis elements $\mathbf{e}_1 \otimes \cdots \otimes \mathbf{e}_{2n}$ we find

$$a_{2j-1} = \sum_{k=2j-1,2j}^{\mathbf{e}_{k}=\mathbf{1}} (-1)^{\beta_{k}} q^{n-k+\frac{1}{2}} \mathbf{e}_{1} \otimes \cdots \otimes \underbrace{\mathbf{0}}_{k} \otimes \cdots \otimes \mathbf{e}_{2n}$$
$$a_{2j} = \sum_{k=2j,2j+1}^{\mathbf{e}_{k}=\mathbf{0}} (-1)^{\beta_{k}} q^{n-k+\frac{1}{2}} \mathbf{e}_{1} \otimes \cdots \otimes \underbrace{\mathbf{1}}_{k} \otimes \cdots \otimes \mathbf{e}_{2n}$$

where β_k is the number of **1**'s among $\mathbf{e}_1, \ldots, \mathbf{e}_{k-1}$. Following ideas of Tian categorifying $U_q(\mathfrak{sl}(1|1))$ we lift from \mathbb{Z}_2 to $\mathbb{Z}[q^{1/2}, q^{-1/2}]$ — quantization. Now $\mathbf{V} = \mathbb{Z}[q^{1/2}, q^{-1/2}] \langle \mathbf{0}, \mathbf{1} \rangle$. These then form a quantized Temperley–Lieb algebra

$$a_j^2 = 0$$

 $a_j a_{j+1} a_j = q^{n-2j+1} a_j$
 $a_i a_j = -a_j a_i$ for $|i-j| > 1$.

Also... $a_j a_{j+1} + a_{j+1} a_j = q^{n-2j+1}$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The quantum group action

Again following ideas of Tian we define

$$E = \sum_{j \text{ odd}} a_j = \sum_{1 \le k \le 2n}^{\mathbf{e}_k = \mathbf{1}} (-1)^{\beta_k} q^{n-k+\frac{1}{2}} \mathbf{e}_1 \otimes \cdots \otimes \underbrace{\mathbf{0}}_k \otimes \cdots \otimes \mathbf{e}_{2n}$$
$$F = \sum_{j \text{ even}} a_j = \sum_{1 \le k \le 2n}^{\mathbf{e}_k = \mathbf{0}} (-1)^{\beta_k} q^{n-k+\frac{1}{2}} \mathbf{e}_1 \otimes \cdots \otimes \underbrace{\mathbf{1}}_k \otimes \cdots \otimes \mathbf{e}_{2n}$$

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The quantum group action

Again following ideas of Tian we define

$$E = \sum_{j \text{ odd}} a_j = \sum_{1 \le k \le 2n}^{\mathbf{e}_k = \mathbf{1}} (-1)^{\beta_k} q^{n-k+\frac{1}{2}} \mathbf{e}_1 \otimes \cdots \otimes \underbrace{\mathbf{0}}_k \otimes \cdots \otimes \mathbf{e}_{2n}$$
$$F = \sum_{j \text{ even}} a_j = \sum_{1 \le k \le 2n}^{\mathbf{e}_k = \mathbf{0}} (-1)^{\beta_k} q^{n-k+\frac{1}{2}} \mathbf{e}_1 \otimes \cdots \otimes \underbrace{\mathbf{1}}_k \otimes \cdots \otimes \mathbf{e}_{2n}$$

We find $E^2 = F^2 = 0$ and $EF + FE = q^{2n-1} + q^{2n-3} + \dots + q^{1-2n}$.

Sutured TQFT

Quantum actions

The quantum group action

Again following ideas of Tian we define

$$E = \sum_{j \text{ odd}} a_j = \sum_{1 \le k \le 2n}^{\mathbf{e}_k = \mathbf{1}} (-1)^{\beta_k} q^{n-k+\frac{1}{2}} \mathbf{e}_1 \otimes \cdots \otimes \underbrace{\mathbf{0}}_k \otimes \cdots \otimes \mathbf{e}_{2n}$$
$$F = \sum_{j \text{ even}} a_j = \sum_{1 \le k \le 2n}^{\mathbf{e}_k = \mathbf{0}} (-1)^{\beta_k} q^{n-k+\frac{1}{2}} \mathbf{e}_1 \otimes \cdots \otimes \underbrace{\mathbf{1}}_k \otimes \cdots \otimes \mathbf{e}_{2n}$$

We find
$$E^2 = F^2 = 0$$
 and
 $EF + FE = q^{2n-1} + q^{2n-3} + \dots + q^{1-2n}$.

Theorem (M.)

For each boundary component of (Σ, V) with 2n vertices, there is an action of \mathbf{U}_{2n} on $\mathbf{V}^{\otimes 2n}$ (where $\mathbf{V} = \mathbb{Z}[q^{\pm \frac{1}{2}}]\langle \mathbf{0}, \mathbf{1} \rangle$), which projects to the SQFT maps induced by annular Temperley–Lieb algebra upon setting q = 1 and reducing mod 2.

Sutured and occupied surfaces

Sutured TQFT

Quantum actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Thanks for listening.