An explicit formula for the A-polynomial of twist knots

Daniel V. Mathews
Monash University, School of Mathematical Sciences, Victoria 3800, Australia
Daniel.Mathews@monash.edu

Received 12 March 2014
Accepted 23 August 2014
Published 16 September 2014

Abstract

We extend Hoste-Shanahan's calculations for the A-polynomial of twist knots, to give an explicit formula.

Keywords: A-polynomial; twist knots.
Mathematics Subject Classification 2010: 57M27, 57M25

1. Introduction

Since Cooper-Culler-Gillet-Long-Shalen introduced the A-polynomial in 1994 [1], A-polynomials have found important applications to hyperbolic geometry, the topology of knot complements, and K-theory. More recently, they appear in relation to physics, in particular in the AJ conjecture.

However, calculations of A-polynomials remain relatively difficult. In particular, there are very few infinite families of knots for which A-polynomials are known. In his 1996 thesis, Shanahan [5] gave a formula for A-polynomials of torus knots. In 2004, Hoste-Shanahan [3] gave recursive formulas for the A-polynomials of twist knots and the knots $J(3,2 n)$ described below, and Tamura-Yokota [6] gave a recursive formula for the A-polynomials of $(-2,3,1+2 n)$-pretzel knots. In 2011, Garoufalidis-Mattman [2] showed that the A-polynomials of $(-2,3,3+2 n)$-pretzel knots satisfy a linear recursion relation, effectively demonstrating a recursive formula. Most recently, Petersen [4] gave a description of the A-polynomials of a family of two-bridge knots $J(k, l)$ including the twist knots (illustrated below) as the resultant of two recursively-defined polynomials, and in the cases of twist knots and the family $J(3,2 n)$ recovered the recursive formulas of Hoste-Shanahan. To our knowledge this exhausts the current state of knowledge on formulas for A-polynomials of infinite families of knots.

Fig. 1. The knot $J(k, l)$, at left, is given by drawing k and l right-handed half twists in the boxes as shown. The twist knot K_{n}, shown right, with n full twists, is equal to $J(2,2 n)$.

In this short note we give an explicit, non-recursive formula for the twist knots. Let $J(k, l)$ be the family of knots illustrated in Fig. 1; the twist knots are obtained when $k= \pm 2$. Note that $J(-k,-l)$ is the mirror image of $J(k, l)$, so its A-polynomial is obtained by replacing M with M^{-1} (and normalizing appropriately). Further, $J(2,2 n+1)=J(-2,2 n)$. So it is sufficient to consider the knots $J(2,2 n)$; we write K_{n} for $J(2,2 n)$.

Let $A_{n}(L, M)$ be the A-polynomial of K_{n}.
Theorem 1.1. When $n>0$, we have

$$
\begin{aligned}
A_{n}(L, M)= & M^{2 n}\left(L+M^{2}\right)^{2 n-1} \sum_{i=0}^{2 n-1}\binom{n+\left\lfloor\frac{i-1}{2}\right\rfloor}{ i}\left(\frac{M^{2}-1}{L+M^{2}}\right)^{i} \\
& \times(1-L)^{\left\lfloor\frac{i}{2}\right\rfloor}\left(M^{2}-L M^{-2}\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor} .
\end{aligned}
$$

When $n \leq 0$, we have

$$
\begin{aligned}
A_{n}(L, M)= & M^{-2 n}\left(L+M^{2}\right)^{-2 n} \sum_{i=0}^{-2 n}\binom{-n+\left\lfloor\frac{i}{2}\right\rfloor}{ i}\left(\frac{M^{2}-1}{L+M^{2}}\right)^{i} \\
& \times(1-L)^{\left\lfloor\frac{i}{2}\right\rfloor}\left(M^{2}-L M^{-2}\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor} .
\end{aligned}
$$

The proof is very direct and based on the methods of Hoste-Shanahan [3].

2. Proof of Theorem

We follow Hoste-Shanahan's notation for convenience and refer there for further details. The relevant fundamental group is

$$
\pi_{1}\left(S^{3} \backslash K_{n}\right)=\left\langle a, b \mid a\left(a b^{-1} a^{-1} b\right)^{n}=\left(a b^{-1} a^{-1} b\right)^{n} b\right\rangle=\left\langle a, b \mid a w^{n}=w^{n} b\right\rangle
$$

where $w=a b^{-1} a^{-1} b$. Both a, b are meridians. A general irreducible representation $\rho: \pi_{1}\left(S^{3} \backslash J(2,2 n)\right) \rightarrow S L(2, \mathbb{C})$ may be conjugated to be of the form

$$
\rho(a)=\left(\begin{array}{cc}
M & 1 \\
0 & M^{-1}
\end{array}\right), \quad \rho(b)=\left(\begin{array}{cc}
M & 0 \\
Z & M^{-1}
\end{array}\right)
$$

where M, Z are both nonzero. (Our Z is $-z$ in [3].) The equation $\rho\left(a w^{n}\right)=\rho\left(w^{n} b\right)$ gives four polynomial relations in M and Z, which as discussed in [3] reduces to a single one $r_{n}=0$. Writing

$$
\rho\left(w^{n}\right)=\left(\begin{array}{ll}
w_{11}^{n} & w_{12}^{n} \\
w_{21}^{n} & w_{22}^{n}
\end{array}\right) \quad \text { we have } r_{n}=\left(M-M^{-1}\right) w_{12}^{n}+w_{22}^{n} .
$$

We compute

$$
\begin{aligned}
\rho(w) & =\rho\left(a b^{-1} a^{-1} b\right)=\left(\begin{array}{ll}
w_{11}^{1} & w_{12}^{1} \\
w_{21}^{1} & w_{22}^{1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
M^{2} Z+(1-Z)^{2} & M-M^{-1}+Z M^{-1} \\
-Z M^{-1}+Z M+Z^{2} M^{-1} & 1+1 Z M^{-2}
\end{array}\right)
\end{aligned}
$$

so that, by the Cayley-Hamilton identity (noting the above matrix has determinant 1)

$$
\rho\left(w^{n}\right)=\chi \rho\left(w^{n-1}\right)-\rho\left(w^{n-2}\right) \quad \text { where } \chi=\operatorname{Tr} \rho(w)=Z^{2}+\left(M-M^{-1}\right)^{2} Z+2 .
$$

Hence each entry $w_{i j}^{n}$ satisfies $w_{i j}^{n}=\chi w_{i j}^{n-1}-w_{i j}^{n-2}$. As $r_{n}=\left(M-M^{-1}\right) w_{12}^{n}+w_{22}^{n}$, we also have a recurrence relation

$$
\begin{equation*}
r_{n}=\chi r_{n-1}-r_{n-2} . \tag{2.1}
\end{equation*}
$$

On the other hand, a longitude is given by $\lambda=w^{n} \bar{w}^{n}$, where $\bar{w}=b a^{-1} b^{-1} a$. We have

$$
\rho(\lambda)=\left(\begin{array}{cc}
L & * \\
0 & L^{-1}
\end{array}\right)
$$

where $L=w_{11}^{n} \bar{w}_{22}^{n}+Z w_{12}^{n} \bar{w}_{12}^{n}$. Here $\bar{w}_{i j}^{n}$ is obtained from $w_{i j}^{n}$ by replacing M with M^{-1}. We then have the relation $s_{n}=0$, where

$$
s_{n}=w_{12}^{n} L+\bar{w}_{12}^{n} .
$$

Note r_{n} is a polynomial satisfied by M and Z, while s_{n} is a polynomial satisfied by L, M and Z. Eliminating Z from $r_{n}=0$ and $s_{n}=0$ gives the A-polynomial of $J(2,2 n)$.

We may simplify $s_{n}=0$ to the relation $s_{n}^{\prime}=0$ where

$$
s_{n}^{\prime}=w_{12}^{1} L+\bar{w}_{12}^{1}=\left(M-M^{-1}+Z M^{-1}\right) L+M^{-1}-M+Z M
$$

Thus $s_{n}^{\prime}=0$ is equivalent to

$$
\begin{equation*}
Z=\frac{\left(M-M^{-1}\right)(1-L)}{M+L M^{-1}} . \tag{2.2}
\end{equation*}
$$

All of the above is in [3]. Our strategy is simply to find an explicit formula for r_{n} in terms of M, Z, and then substitute Z for the expression above in terms of L and M.

Inspection of the r_{n} reveals that these expressions simplify when written in terms of Z and $\left(M-M^{-1}\right)^{2}$, rather than Z and M; and the resulting coefficients are products of binomial coefficients. This leads to the formulas for r_{n} in the following lemma.

Lemma 2.1.

$$
\begin{align*}
r_{n} & =\sum_{i=0}^{2 n-1}\binom{n+\left\lfloor\frac{i-1}{2}\right\rfloor}{ i} Z^{i}\left(1+Z^{-1}\left(M-M^{-1}\right)^{2}\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor} \text { when } n>0 \tag{2.3}\\
& =\sum_{i=0}^{-2 n}\binom{-n+\left\lfloor\frac{i}{2}\right\rfloor}{ i}(-Z)^{i}\left(1+Z^{-1}\left(M-M^{-1}\right)^{2}\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor} \quad \text { when } n \leq 0 . \tag{2.4}
\end{align*}
$$

Proof. Write f_{n} for the claimed formula above; we show $f_{n}=r_{n}$. We give the proof for $n>0$; for $n \leq 0$ the method is similar. Note that the range $0 \leq i \leq 2 n-1$ is precisely the range of integers for which $0 \leq i \leq n+\left\lfloor\frac{i-1}{2}\right\rfloor$, so we can regard the sum as an infinite one, with all undefined binomial coefficients as zero.

We compute r_{0}, r_{1} directly. As $\rho\left(w^{0}\right)$ is the identity, $r_{0}=\left(M-M^{-1}\right) w_{12}^{0}+w_{22}^{0}=$ $1=f_{0}$. Noting the computation of $w_{i j}^{1}$ above, we have $r_{1}=\left(M-M^{-1}\right) w_{12}^{1}+w_{22}^{1}=$ $\left(M-M^{-1}\right)\left(M-M^{-1}+Z M^{-1}\right)+1+Z M^{-2}=1+Z+\left(M-M^{-1}\right)^{2}=f_{1}$. For convenience write $U=\left(M-M^{-1}\right)^{2}$, so $\chi=Z^{2}+U Z+2=\left(1+Z^{-1} U\right) Z^{2}+2$. We now show that f_{n} satisfies the recurrence (2.1).

$$
\begin{aligned}
\chi f_{n-1}-f_{n-2}= & \left(\left(1+Z^{-1} U\right) Z^{2}+2\right) \sum_{i}\binom{n-1+\left\lfloor\frac{i-1}{2}\right\rfloor}{ i} Z^{i}\left(1+Z^{-1} U\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor} \\
& -\sum_{i}\binom{n-2+\left\lfloor\frac{i-1}{2}\right\rfloor}{ i} Z^{i}\left(1+Z^{-1} U\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor} \\
= & \sum_{i}\left[2\binom{n-1+\left\lfloor\frac{i-1}{2}\right\rfloor}{ i}+\binom{n-2+\left\lfloor\frac{i-1}{2}\right\rfloor}{ i-2}\right. \\
& \left.-\binom{n-2+\left\lfloor\frac{i-1}{2}\right\rfloor}{ i}\right] Z^{i}\left(1+Z^{-1} U\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor} \\
= & \sum_{i}\binom{n+\left\lfloor\frac{i-1}{2}\right\rfloor}{ i} Z^{i}\left(1+Z^{-1} U\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor}=f_{n}
\end{aligned}
$$

In the second line we collect the sums together, shifting i to make a sum over $Z^{i}\left(1+Z^{-1} U\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor}$. In the last line we apply the binomial relation $\binom{a}{b}+\binom{a}{b+1}=\binom{a+1}{b+1}$ three times.

Now substituting (2.2) for Z into r_{n}, for $n>0$, gives

$$
\sum_{i=0}^{2 n-1}\binom{n+\left\lfloor\frac{i-1}{2}\right\rfloor}{ i}\left(\frac{\left(M^{2}-1\right)(1-L)}{L+M^{2}}\right)^{i}\left(1+\frac{\left(M+L M^{-1}\right)\left(M-M^{-1}\right)}{1-L}\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor}
$$

We observe that

$$
1+\frac{\left(M+L M^{-1}\right)\left(M-M^{-1}\right)}{1-L}=\frac{M^{2}-L M^{-2}}{1-L}
$$

and $\left\lfloor\frac{i}{2}\right\rfloor+\left\lfloor\frac{i+1}{2}\right\rfloor=i$ for all integers i. The resulting expression,

$$
\sum_{i=1}^{2 n-1}\binom{n+\left\lfloor\frac{i-1}{2}\right\rfloor}{ i}\left(\frac{M^{2}-1}{M^{2}+L}\right)^{i}(1-L)^{\left\lfloor\frac{i}{2}\right\rfloor}\left(M^{2}-L M^{-2}\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor},
$$

once denominators are cleared to give a polynomial, gives the A-polynomial $A_{n}(L, M)$. As explained in [3], we multiply by $M^{2 n}\left(L+M^{2}\right)^{2 n-1}$. Similarly, for $n \leq 0$, we multiply by $M^{-2 n}\left(L+M^{2}\right)^{-2 n}$. This gives the desired formula, proving the theorem.

References

[1] D. Cooper, M. Culler, H. Gillet, D. D. Long and P. B. Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118(1) (1994) 47-84, MR MR1288467 (95g:57029).
[2] S. Garoufalidis and T. W. Mattman, The A-polynomial of the $(-2,3,3+2 n)$ pretzel knots, New York J. Math. 17 (2011) 269-279, MR 2811064 (2012f:57026).
[3] J. Hoste and P. D. Shanahan, A formula for the A-polynomial of twist knots, J. Knot Theory Ramifications 13(2) (2004) 193-209, MR 2047468 (2005c:57006).
[4] K. L. Petersen, A-polynomials of a family of two-bridge knots, http://www.math.fsu. edu/ ${ }^{\text {p }}$ petersen/apoly.pdf.
[5] P. D. Shanahan, Cyclic Dehn surgery and the A-polynomial of a knot, Ph.D. thesis, University of California, Santa Barbara (1996), MR 2694853.
[6] N. Tamura and Y. Yokota, A formula for the A-polynomials of ($-2,3,1+2 n$)-pretzel knots, Tokyo J. Math. 27(1) (2004) 263-273, MR 2060090 (2005e:57033).

