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Contact geometry

Contact geometry is a branch of geometry that is closely related
to many other fields of mathematics and mathematical physics:

Much classical physics: e.g. optics, thermodynamics...
Hamiltonian mechanics / symplectic geometry
Complex analysis (and generalisations)
Knot theory
Quantum physics:
Topological quantum field theory, string theory
Parking your car.

This talk is about some interesting recent applications that are
discrete and combinatorial:

Arrangements & combinatorics of curves on surfaces
“Topological computation"
Finite state automata
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What is contact geometry?

Definition
A contact structure ξ on a 3-dimensional manifold M is a
non-integrable 2-plane field on M.

Non-integrable: tangent curves (car-parking) but no tangent
surfaces!
Such ξ can be given as kerα where α is a differential 1-form
satisfying α ∧ dα 6= 0 everywhere.
E.g. R3 with α = dz − y dx .
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Flexible vs discrete

The definition of a contact structure is:
Very differential-geometric (non-integrability)

Very flexible: A small perturbation of a contact structure is
again a contact structure. (α ∧ dα 6= 0)

But it’s also a surprisingly rigid type of geometry.
Any other “nontrivial" contact structure ξ on R3 is isotopic
to the standard one ξstd .
(I.e. ξ can be continuously deformed through contact
structures to ξstd .)
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Criminally brief history of contact geometry

Origins:
18th c: Huygens’ principle in optics
19th c: Hamiltonian mechanics

Classical period (1900-1980):
Hamiltonian mechanics, symplectic geometry.
“Contact geometry = odd-dim symplectic geometry".
Connections to much geometry and physics.
Arnold: “All geometry is contact geometry".

Modern period:
Eliashberg (1989): Distinction — tight (non-trivial) and
overtwisted (trivial) contact structures.
Giroux (1991): Convex surfaces and dividing sets.
Gromov (1986), Eliashberg (1990s), ...:
Development of pseudoholomorphic curve methods.
Ozsváth-Szabó (2004), many others... :
Development of Floer homology methods.
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Why we contactify

Some motivations for the study of contact geometry:
Topology: One way to understand the topology of a
manifold is to study the contact structures on it.
Dynamics: There are natural vector fields on contact
manifolds and their dynamics have important applications
to classical mechanics.

Physics: Many recent developments run parallel with
physics — Gromov-Witten theory, string theory, etc.
Pure mathematical / Structural: Mathematical structures
found in contact geometry connect to other fields...

Combinatorics
Information theory
Discrete mathematics



Overview Discrete aspects of contact geometry Combinatorics of surfaces and dividing sets Contact-representable automata

Why we contactify

Some motivations for the study of contact geometry:
Topology: One way to understand the topology of a
manifold is to study the contact structures on it.
Dynamics: There are natural vector fields on contact
manifolds and their dynamics have important applications
to classical mechanics.
Physics: Many recent developments run parallel with
physics — Gromov-Witten theory, string theory, etc.

Pure mathematical / Structural: Mathematical structures
found in contact geometry connect to other fields...

Combinatorics
Information theory
Discrete mathematics



Overview Discrete aspects of contact geometry Combinatorics of surfaces and dividing sets Contact-representable automata

Why we contactify

Some motivations for the study of contact geometry:
Topology: One way to understand the topology of a
manifold is to study the contact structures on it.
Dynamics: There are natural vector fields on contact
manifolds and their dynamics have important applications
to classical mechanics.
Physics: Many recent developments run parallel with
physics — Gromov-Witten theory, string theory, etc.
Pure mathematical / Structural: Mathematical structures
found in contact geometry connect to other fields...

Combinatorics
Information theory
Discrete mathematics



Overview Discrete aspects of contact geometry Combinatorics of surfaces and dividing sets Contact-representable automata

Outline

1 Overview

2 Discrete aspects of contact geometry
4 discrete facts about contact geometry

3 Combinatorics of surfaces and dividing sets

4 Contact-representable automata



Overview Discrete aspects of contact geometry Combinatorics of surfaces and dividing sets Contact-representable automata

Fact #1: Dividing sets

Consider a generic surface S in a contact 3-manifold M,
possibly with boundary ∂S. (In this talk, S = disc or annulus.)

Fact #1 (Giroux, 1991)
A contact structure ξ near S is described exactly by a finite set
Γ of non-intersecting smooth curves on S, called its dividing set.

Roughly speaking, the contact planes are
Tangent to ∂S
“Perpendicular” to S precisely along Γ
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Chord diagrams

Moreover, isotopy (continuous deformation) of contact
structures near S corresponds to isotopy of dividing sets Γ.

Interested in the combinatorial/topological arrangement of
the curves Γ.

Consider a disc D with some points F marked on ∂D.
A chord diagram is a pairing of the points of F by
non-intersecting curves on D.
E.g.

Note: We can shade alternating regions of a chord diagram.
Colour = visible side of contact plane.
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Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure
contains an object called an overtwisted disc, it is “trivial".
(Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called tight.

Fact #2 (Giroux’s criterion)
Dividing sets detect trivial contact structures (OT discs).

On a disc D, via a closed dividing curve.
On a sphere, when there is more than one dividing curve.



Overview Discrete aspects of contact geometry Combinatorics of surfaces and dividing sets Contact-representable automata

Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure
contains an object called an overtwisted disc, it is “trivial".
(Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called tight.

Fact #2 (Giroux’s criterion)
Dividing sets detect trivial contact structures (OT discs).

On a disc D, via a closed dividing curve.
On a sphere, when there is more than one dividing curve.



Overview Discrete aspects of contact geometry Combinatorics of surfaces and dividing sets Contact-representable automata

Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure
contains an object called an overtwisted disc, it is “trivial".
(Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called tight.

Fact #2 (Giroux’s criterion)
Dividing sets detect trivial contact structures (OT discs).

On a disc D, via a closed dividing curve.
On a sphere, when there is more than one dividing curve.



Overview Discrete aspects of contact geometry Combinatorics of surfaces and dividing sets Contact-representable automata

Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure
contains an object called an overtwisted disc, it is “trivial".
(Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called tight.

Fact #2 (Giroux’s criterion)
Dividing sets detect trivial contact structures (OT discs).

On a disc D, via a closed dividing curve.
On a sphere, when there is more than one dividing curve.



Overview Discrete aspects of contact geometry Combinatorics of surfaces and dividing sets Contact-representable automata

Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure
contains an object called an overtwisted disc, it is “trivial".
(Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called tight.

Fact #2 (Giroux’s criterion)
Dividing sets detect trivial contact structures (OT discs).

On a disc D, via a closed dividing curve.

On a sphere, when there is more than one dividing curve.



Overview Discrete aspects of contact geometry Combinatorics of surfaces and dividing sets Contact-representable automata

Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure
contains an object called an overtwisted disc, it is “trivial".
(Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called tight.

Fact #2 (Giroux’s criterion)
Dividing sets detect trivial contact structures (OT discs).

On a disc D, via a closed dividing curve.
On a sphere, when there is more than one dividing curve.



Overview Discrete aspects of contact geometry Combinatorics of surfaces and dividing sets Contact-representable automata

Boundary conditions

Examine what contact planes look like near boundary ∂S:

Always tangent to ∂S
Perpendicular to S along Γ.
Planes of ξ spin 180◦ between
each point of F = Γ ∩ ∂S.

Fixing points of F fixes boundary
conditions for ξ.

E.g.: Consider contact structures ξ near a disc D. Fix boundary
conditions F with |F | = 2n.
# (isotopy classes of) (tight) contact structures on D = Cn.
Here Cn is the n’th Catalan number = 1

n+1

(2n
n

)
.

E.g. n = 3:
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Fact #3: Two surfaces intersecting

Now consider two surfaces intersecting transversely along a
common boundary.

Dividing sets must interleave.
We can round the corner in a
well-defined way.
When rounded, dividing sets
behave as shown.

Fact # 3 (Honda 2000)
When surfaces intersect transversely,
dividing sets interleave.
Rounding corners, “turn right to dive"
and “turn left to climb".

This leads to interesting combinatorics
of curves...
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Fact #4: Bypasses

There’s an operation on dividing sets called bypass surgery.
(“Changing contact structure in the simplest possible way".)

Consider a sub-disc B of a surface with di-
viding set as shown:

Two natural ways to adjust this chord diagram, consistent with
the colours: bypass surgeries.

Naturally obtain bypass
triples of dividing sets.

Fact # 4 (Honda 2000)
Bypass surgery is a natural order-3 operation on dividing sets.
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Summary

Fact #1: Dividing sets (Giroux, 1991)

A contact structure ξ near S is described exactly by a finite set
Γ of non-intersecting smooth curves on S, called its dividing set.

Fact #2: Giroux’s criterion
Dividing sets detect trivial contact structures (OT discs).

On a disc D, via a closed dividing curve.
On a sphere, when there is more than one dividing curve.

Fact #3: Edge rounding (Honda 2000)

When surfaces intersect transversely, dividing sets interleave.
Rounding edges, “turn right to dive" and “turn left to climb".

Fact #4: Bypass surgery (Honda 2000)
Bypass surgery is a natural order-3 operation on dividing sets.
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Cylinders

A combinatorial construction using dividing sets (fact #1), edge
rounding (#3) and Giroux’s criterion (#2):

Insert chord diagrams into the two ends of a cylinder...
...and round corners to obtain a dividing set on S2.

Γ1

Γ0

  

By Giroux’s criterion, the contact structure obtained on S2 is:
Trivial (OT) if it is disconnected, i.e. contains > 1 curve.
Nontrivial (tight) if it is connected, i.e. contains 1 curve.
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An “inner product" on chord diagrams

Define an “inner product" function based on this construction.

Definition

〈·|·〉 : {Div sets on D2} × {Div sets on D2} −→ Z2

〈Γ0|Γ1〉 =


1 if the resulting curves on the cylinder

form a single connected curve;
0 if the result is disconnected.

This function has a nice relation-
ship with bypasses. Suppose Γ,
Γ′, Γ′′ form a bypass triple. Γ′ Γ Γ′′

Proposition (M.)

For any Γ, Γ′, Γ′′ as above and any Γ1,

〈Γ|Γ1〉+ 〈Γ′|Γ1〉+ 〈Γ′′|Γ1〉 = 0.
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A vector space of chord diagrams

Idea of proof:

= 1 + 0 + 1 = 0

These ideas lead us to define a relation on chord diagrams:
three chord diagrams forming a bypass triple sum to 0.

+ + = 0

Leads to the definition of a vector space (over Z2).

Definition

Vn =
Z2〈Chord diagrams with n chords〉

Bypass relation

(One can show Vn is a rudimentary form of Floer homology...)
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A vector space of chord diagrams

Theorem (M.)
1 Vn has dimension 2n−1, with natural bases indexed by

binary strings of length n − 1.

2 〈·|·〉 is a nondegenerate bilinear form on Vn.

The Cn chord diagrams are distributed in a combinatorially
interesting way in a vector space with 22n−1

elements.
We’ll describe two separate combinatorially interesting bases of
Vn, indexed by b ∈ Bn−1, where

Bn = {binary strings of length n}.

1 The Slalom basis {Sb}b∈Bn−1

2 The Turing tape basis {Tb}b∈Bn−1
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The slalom basis

Construction of the slalom chord diagram of a binary string.

1011 ↔

0
1

2

−1

−2

3

4

5

6
7

↔ = S1011

In this basis, the bilinear form 〈·|·〉 has a simple description:

Theorem (M.)

〈Sa|Sb〉 =

{
1 if a � b
0 otherwise,

where � is a certain partial order on binary strings.
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A partial order on binary strings

Definition
For two binary strings a,b, the relation a � b holds if

1 a and b both contain the same number of 0s and 1s

2 Each 0 in a occurs to the left of, or same position as, the
corresponding 0 in b.

E.g.
0011 � 1001 � 1010 � 1100

� 0110 �

but 1001,0110 are not comparable with respect to �.
Note � is a sub-order of the lexicographic/numerical order ≤.

Inserting chord diagrams into a cylinder is a “topological
machine" for comparing binary strings with respect to �.
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Properties of �

Recall we said the slalom chord diagrams form a basis for Vn.
E.g.

= +

= + + +

= S0011 + S0110 + S1001 + S1010

We say the component strings of Γ are 0011, 0110, 1001,
1010.
Given a chord diagram Γ, let b−(Γ) denote the numerically
least, and b+(Γ) the numerically greatest, component
string.

So for the example Γ above, b−(Γ) = 0011 and b+(Γ) = 1010.
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Partial order � and Catalan numbers

The partial order � has interesting combinatorics...

Theorem (M.)
1 For any chord diagram Γ, b−(Γ) � b+(Γ).

2 For any pair of strings s−, s+ satisfying s− � s+, there
exists a unique chord diagram Γ such that b−(Γ) = s− and
b+(Γ) = s+.

... and produces the Catalan numbers again.

Corollary
The number of pairs of strings s−, s+ of length n such that
s− � s+ is Cn+1.
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The Turing tape basis

Divide the disc with |F | = 2n into n − 1 squares:

On each square there are two “basic" possible sets of sutures

0:
,

1:

Draw them according to a string b to obtain Turing tape basis
diagrams Tb — another basis for Vn.
E.g.

T1011 =
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diagrams Tb — another basis for Vn.
E.g.

T1011 =
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Cubulated inner product

With chord diagrams are drawn in “Turing tape" form, the inner
product 〈·|·〉 becomes “cubulated"...

E.g. 〈T1011|T1000〉 =
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Cubulation, step by step

Draw curves curvier, and analyse this computation in
step-by-step fashion.

 

A
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0
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0
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0
1 B
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Cubulation, step by step

A 11 00 10 10 B
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A finite state automaton

We can consider this process as a finite state automaton.

3 states: A: B: ⊥:
(or anything with
a closed curve)

4 inputs:

00 01 10 11Transitions e.g.:

 B A
10
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A finite state automaton

Can check that the calculation of the inner product on the
“cubulated cylinder" on the “Turing tape basis" computes the
finite state automaton:

A B

⊥ = 0

00,11 10

01 00,11,01

10

start

1

final B final B
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Contact-representable automata

Definition
A finite state automaton is contact-representable if:

To every state s ∈ S is associated a dividing set Γs on a
disc with 2n fixed boundary points.
To each input σ ∈ Σ is associated a dividing set Γσ on an
annulus with 2n fixed points on each boundary circle.

The transition function S × Σ −→ S is achieved by gluing
annuli to discs: if (s, σ) 7→ s′ then Γs ∪ Γσ = Γs′ .

E.g. for the previous example n = 2,
3 states:

ΓA = ΓB = Γ⊥:
(or anything with
a closed curve)

4 inputs:
Γ00 = Γ01 = . . .
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Quantum information theory and computation

Question
Which finite state automata can be represented by contact
geometry in this way?

Various applications:
These constructions give linear maps Vn −→ Vn which
form a Topological quantum field theory.
The above is a toy model of a quantum theory which
explicitly encodes information: “it from bit".
Moreover, this is a TQFT which explicitly encodes
computation.
Quantum states based on curves on surfaces and topology
are considered in the physical theory of “anyons".
A very combinatorial, geometric way of performing certain
computations.
A reversible / conservative type of computation.
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Thanks for listening!
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