Overview Discrete aspects of contact geometry

Combinatorics of surfaces and dividing sets

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Discrete Contact Geometry

Daniel V. Mathews

Monash University Daniel.Mathews@monash.edu

Discrete Mathematics Seminar Monash University 12 May 2014

Overview	Discrete aspects	of	contact	geom

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Overview

- Introduction
- What is contact geometry?

etrv

- History
- Motivation
- 2 Discrete aspects of contact geometry
- Combinatorics of surfaces and dividing sets
- 4 Contact-representable automata

Contact geometry

Contact geometry is a branch of geometry that is closely related to many other fields of mathematics and mathematical physics:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Contact geometry

Contact geometry is a branch of geometry that is closely related to many other fields of mathematics and mathematical physics:

- Much classical physics: e.g. optics, thermodynamics...
- Hamiltonian mechanics / symplectic geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact geometry

Contact geometry is a branch of geometry that is closely related to many other fields of mathematics and mathematical physics:

- Much classical physics: e.g. optics, thermodynamics...
- Hamiltonian mechanics / symplectic geometry
- Complex analysis (and generalisations)
- Knot theory
- Quantum physics:

Topological quantum field theory, string theory

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact geometry

Contact geometry is a branch of geometry that is closely related to many other fields of mathematics and mathematical physics:

- Much classical physics: e.g. optics, thermodynamics...
- Hamiltonian mechanics / symplectic geometry
- Complex analysis (and generalisations)
- Knot theory
- Quantum physics: Topological quantum field theory, string theory
- Parking your car.

Contact geometry

Contact geometry is a branch of geometry that is closely related to many other fields of mathematics and mathematical physics:

- Much classical physics: e.g. optics, thermodynamics...
- Hamiltonian mechanics / symplectic geometry
- Complex analysis (and generalisations)
- Knot theory
- Quantum physics:

Topological quantum field theory, string theory

• Parking your car.

This talk is about some interesting recent applications that are *discrete* and *combinatorial*:

- Arrangements & combinatorics of curves on surfaces
- "Topological computation"
- Finite state automata

Contact-representable automata

イロト イ理ト イヨト イヨト

What is contact geometry?

Definition

A contact structure ξ on a 3-dimensional manifold M is a non-integrable 2-plane field on M.

Contact-representable automata

イロト イ理ト イヨト イヨト

What is contact geometry?

Definition

A contact structure ξ on a 3-dimensional manifold M is a non-integrable 2-plane field on M.

Non-integrable: tangent curves (car-parking) but no tangent surfaces!

Contact-representable automata

What is contact geometry?

Definition

A contact structure ξ on a 3-dimensional manifold M is a non-integrable 2-plane field on M.

Non-integrable: tangent curves (car-parking) but no tangent surfaces!

Such ξ can be given as ker α where α is a differential 1-form satisfying $\alpha \wedge d\alpha \neq 0$ everywhere.

E.g.
$$\mathbb{R}^3$$
 with $\alpha = dz - y dx$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Contact-representable automata

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Flexible vs discrete

The definition of a contact structure is:

• Very *differential-geometric* (non-integrability)

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Flexible vs discrete

The definition of a contact structure is:

- Very *differential-geometric* (non-integrability)
- Very *flexible*: A small perturbation of a contact structure is again a contact structure. (α ∧ dα ≠ 0)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Flexible vs discrete

The definition of a contact structure is:

- Very *differential-geometric* (non-integrability)
- Very *flexible*: A small perturbation of a contact structure is again a contact structure. (α ∧ dα ≠ 0)

But it's also a surprisingly *rigid* type of geometry.

• Any other "nontrivial" contact structure ξ on \mathbb{R}^3 is *isotopic* to the standard one ξ_{std} .

(I.e. ξ can be continuously deformed through contact structures to ξ_{std} .)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Criminally brief history of contact geometry

Origins:

- 18th c: Huygens' principle in optics
- 19th c: Hamiltonian mechanics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Criminally brief history of contact geometry

Origins:

- 18th c: Huygens' principle in optics
- 19th c: Hamiltonian mechanics

Classical period (1900-1980):

- Hamiltonian mechanics, symplectic geometry.
- "Contact geometry = odd-dim symplectic geometry".
- Connections to much geometry and physics.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Criminally brief history of contact geometry

Origins:

- 18th c: Huygens' principle in optics
- 19th c: Hamiltonian mechanics

Classical period (1900-1980):

- Hamiltonian mechanics, symplectic geometry.
- "Contact geometry = odd-dim symplectic geometry".
- Connections to much geometry and physics.
- Arnold: "All geometry is contact geometry".

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Criminally brief history of contact geometry

Origins:

- 18th c: Huygens' principle in optics
- 19th c: Hamiltonian mechanics

Classical period (1900-1980):

- Hamiltonian mechanics, symplectic geometry.
- "Contact geometry = odd-dim symplectic geometry".
- Connections to much geometry and physics.
- Arnold: "All geometry is contact geometry".

Modern period:

 Eliashberg (1989): Distinction — *tight* (non-trivial) and overtwisted (trivial) contact structures.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Criminally brief history of contact geometry

Origins:

- 18th c: Huygens' principle in optics
- 19th c: Hamiltonian mechanics

Classical period (1900-1980):

- Hamiltonian mechanics, symplectic geometry.
- "Contact geometry = odd-dim symplectic geometry".
- Connections to much geometry and physics.
- Arnold: "All geometry is contact geometry".

Modern period:

- Eliashberg (1989): Distinction *tight* (non-trivial) and overtwisted (trivial) contact structures.
- Giroux (1991): *Convex surfaces* and *dividing sets*.

Criminally brief history of contact geometry

Origins:

- 18th c: Huygens' principle in optics
- 19th c: Hamiltonian mechanics

Classical period (1900-1980):

- Hamiltonian mechanics, symplectic geometry.
- "Contact geometry = odd-dim symplectic geometry".
- Connections to much geometry and physics.
- Arnold: "All geometry is contact geometry".

Modern period:

- Eliashberg (1989): Distinction *tight* (non-trivial) and overtwisted (trivial) contact structures.
- Giroux (1991): Convex surfaces and dividing sets.
- Gromov (1986), Eliashberg (1990s), ...:
 Development of *pseudoholomorphic curve* methods.
- Ozsváth-Szabó (2004), many others... : Development of *Floer homology* methods.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Why we contactify

Some motivations for the study of contact geometry:

- *Topology:* One way to understand the topology of a manifold is to study the contact structures on it.
- Dynamics: There are natural vector fields on contact manifolds and their dynamics have important applications to classical mechanics.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Why we contactify

Some motivations for the study of contact geometry:

- *Topology:* One way to understand the topology of a manifold is to study the contact structures on it.
- *Dynamics:* There are natural *vector fields* on contact manifolds and their dynamics have important applications to classical mechanics.
- *Physics:* Many recent developments run parallel with physics — Gromov-Witten theory, string theory, etc.

Why we contactify

Some motivations for the study of contact geometry:

- *Topology:* One way to understand the topology of a manifold is to study the contact structures on it.
- *Dynamics:* There are natural *vector fields* on contact manifolds and their dynamics have important applications to classical mechanics.
- *Physics:* Many recent developments run parallel with physics Gromov-Witten theory, string theory, etc.
- *Pure mathematical / Structural:* Mathematical structures found in contact geometry connect to other fields...
 - Combinatorics
 - Information theory
 - Discrete mathematics

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

- Discrete aspects of contact geometry
 - 4 discrete facts about contact geometry
- 3 Combinatorics of surfaces and dividing sets
- 4 Contact-representable automata

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fact #1: Dividing sets

Consider a generic *surface S* in a contact 3-manifold *M*, possibly with boundary ∂S . (In this talk, *S* = disc or annulus.)

Fact #1 (Giroux, 1991)

A contact structure ξ near *S* is described exactly by a finite set Γ of non-intersecting smooth curves on *S*, called its *dividing set*.

Contact-representable automata

Fact #1: Dividing sets

Consider a generic *surface S* in a contact 3-manifold *M*, possibly with boundary ∂S . (In this talk, *S* = disc or annulus.)

Fact #1 (Giroux, 1991)

A contact structure ξ near *S* is described exactly by a finite set Γ of non-intersecting smooth curves on *S*, called its *dividing set*.

・ロ・・ 中下・ ・ 川・・ ・ 日・

Fact #1: Dividing sets

Consider a generic *surface S* in a contact 3-manifold *M*, possibly with boundary ∂S . (In this talk, *S* = disc or annulus.)

Fact #1 (Giroux, 1991)

A contact structure ξ near *S* is described exactly by a finite set Γ of non-intersecting smooth curves on *S*, called its *dividing set*.

Roughly speaking, the contact planes are

- Tangent to ∂S
- "Perpendicular" to S precisely along F

Fact #1: Dividing sets

Consider a generic *surface S* in a contact 3-manifold *M*, possibly with boundary ∂S . (In this talk, *S* = disc or annulus.)

Fact #1 (Giroux, 1991)

A contact structure ξ near *S* is described exactly by a finite set Γ of non-intersecting smooth curves on *S*, called its *dividing set*.

Roughly speaking, the contact planes are

- Tangent to ∂S

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Chord diagrams

Moreover, *isotopy* (continuous deformation) of contact structures near S corresponds to *isotopy* of dividing sets Γ .

• Interested in the *combinatorial/topological arrangement* of the curves Γ.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Chord diagrams

Moreover, *isotopy* (continuous deformation) of contact structures near S corresponds to *isotopy* of dividing sets Γ .

 Interested in the combinatorial/topological arrangement of the curves Γ.

Consider a disc *D* with some points *F* marked on ∂D . A *chord diagram* is a pairing of the points of *F* by

non-intersecting curves on *D*.

E.g.

Chord diagrams

Moreover, *isotopy* (continuous deformation) of contact structures near S corresponds to *isotopy* of dividing sets Γ .

 Interested in the combinatorial/topological arrangement of the curves Γ.

Consider a disc *D* with some points *F* marked on ∂D . A *chord diagram* is a pairing of the points of *F* by

non-intersecting curves on D.

E.g.

Note: We can shade alternating regions of a chord diagram.

• Colour = visible side of contact plane.

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure contains an object called an *overtwisted disc*, it is "trivial". (Reduces to study of plane fields in general.)

Contact-representable automata

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure contains an object called an *overtwisted disc*, it is "trivial". (Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact-representable automata

Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure contains an object called an *overtwisted disc*, it is "trivial". (Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called *tight*.

Contact-representable automata

Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure contains an object called an *overtwisted disc*, it is "trivial". (Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called *tight*.

Fact #2 (Giroux's criterion)

Dividing sets detect trivial contact structures (OT discs).

Contact-representable automata

Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure contains an object called an *overtwisted disc*, it is "trivial". (Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called *tight*.

Fact #2 (Giroux's criterion)

Dividing sets detect trivial contact structures (OT discs).

• On a *disc D*, via a *closed dividing curve*.

Contact-representable automata

Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure contains an object called an *overtwisted disc*, it is "trivial". (Reduces to study of plane fields in general.)

An overtwisted disc is:

ヘロト 人間 とくほ とくほう

Contact structures without OT discs are called *tight*.

Fact #2 (Giroux's criterion)

Dividing sets detect trivial contact structures (OT discs).

- On a disc D, via a closed dividing curve.
- On a *sphere*, when there is *more than one* dividing curve.
Contact-representable automata

Boundary conditions

Examine what contact planes look like near boundary ∂S :

Contact-representable automata

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Boundary conditions

Examine what contact planes look like near boundary ∂S :

- Always tangent to ∂S
- Perpendicular to S along Γ.

Contact-representable automata

Boundary conditions

Examine what contact planes look like near boundary ∂S :

- Always tangent to ∂S
- Perpendicular to S along Γ.

・ コット (雪) (小田) (コット 日)

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Boundary conditions

Examine what contact planes look like near boundary ∂S :

- Always tangent to ∂S
- Perpendicular to S along Γ.
- Planes of ξ spin 180° between each point of F = Γ ∩ ∂S.

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Boundary conditions

Examine what contact planes look like near boundary ∂S :

- Always tangent to ∂S
- Perpendicular to S along Γ.
- Planes of ξ spin 180° between each point of F = Γ ∩ ∂S.

Fixing points of *F* fixes boundary conditions for ξ .

Contact-representable automata

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Boundary conditions

Examine what contact planes look like near boundary ∂S :

- Always tangent to ∂S
- Perpendicular to S along Γ .
- Planes of ξ spin 180° between each point of F = Γ ∩ ∂S.

Fixing points of *F* fixes boundary conditions for ξ .

E.g.: Consider contact structures ξ near a disc *D*. Fix boundary conditions *F* with |F| = 2n.

Contact-representable automata

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Boundary conditions

Examine what contact planes look like near boundary ∂S :

- Always tangent to ∂S
- Perpendicular to S along Γ .
- Planes of ξ spin 180° between each point of F = Γ ∩ ∂S.

Fixing points of *F* fixes boundary conditions for ξ .

E.g.: Consider contact structures ξ near a disc *D*. Fix boundary conditions *F* with |F| = 2n.

(isotopy classes of) (tight) contact structures on $D = C_n$. Here C_n is the *n*'th *Catalan number* = $\frac{1}{n+1} {\binom{2n}{n}}$.

Contact-representable automata

Boundary conditions

Examine what contact planes look like near boundary ∂S :

E.g. *n* = 3:

- Always tangent to ∂S
- Perpendicular to S along Γ .
- Planes of ξ spin 180° between each point of F = Γ ∩ ∂S.

Fixing points of *F* fixes boundary conditions for ξ .

E.g.: Consider contact structures ξ near a disc *D*. Fix boundary conditions *F* with |F| = 2n.

(isotopy classes of) (tight) contact structures on $D = C_n$. Here C_n is the *n*'th *Catalan number* = $\frac{1}{n+1} {\binom{2n}{n}}$.

Contact-representable automata

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Fact #3: Two surfaces intersecting

Now consider *two surfaces* intersecting transversely along a common boundary.

Contact-representable automata

Fact #3: Two surfaces intersecting

Now consider *two surfaces* intersecting transversely along a common boundary.

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Fact #3: Two surfaces intersecting

Now consider *two surfaces* intersecting transversely along a common boundary.

• Dividing sets must *interleave*.

Contact-representable automata

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fact #3: Two surfaces intersecting

Now consider *two surfaces* intersecting transversely along a common boundary.

- Dividing sets must interleave.
- We can *round the corner* in a well-defined way.

Contact-representable automata

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fact #3: Two surfaces intersecting

Now consider *two surfaces* intersecting transversely along a common boundary.

- Dividing sets must interleave.
- We can *round the corner* in a well-defined way.
- When rounded, dividing sets behave as shown.

Contact-representable automata

Fact #3: Two surfaces intersecting

Now consider *two surfaces* intersecting transversely along a common boundary.

- Dividing sets must interleave.
- We can *round the corner* in a well-defined way.
- When rounded, dividing sets behave as shown.

Fact # 3 (Honda 2000)

When surfaces intersect transversely, dividing sets interleave. Rounding corners, "turn right to dive" and "turn left to climb".

This leads to interesting combinatorics of curves...

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fact #4: Bypasses

There's an *operation* on dividing sets called *bypass surgery*. ("Changing contact structure in the simplest possible way".)

Contact-representable automata

Fact #4: Bypasses

There's an *operation* on dividing sets called *bypass surgery*. ("Changing contact structure in the simplest possible way".)

Consider a sub-disc *B* of a surface with dividing set as shown:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fact #4: Bypasses

There's an *operation* on dividing sets called *bypass surgery*. ("Changing contact structure in the simplest possible way".)

Consider a sub-disc *B* of a surface with dividing set as shown:

 \bigcirc

くしゃ 人間 そう キャット マックタイ

Two natural ways to adjust this chord diagram, consistent with the colours: *bypass surgeries*.

Contact-representable automata

Fact #4: Bypasses

There's an *operation* on dividing sets called *bypass surgery*. ("Changing contact structure in the simplest possible way".)

Consider a sub-disc *B* of a surface with dividing set as shown:

Two natural ways to adjust this chord diagram, consistent with the colours: *bypass surgeries*.

Naturally obtain *bypass triples* of dividing sets.

Fact #4: Bypasses

There's an *operation* on dividing sets called *bypass surgery*. ("Changing contact structure in the simplest possible way".)

Consider a sub-disc *B* of a surface with dividing set as shown:

Two natural ways to adjust this chord diagram, consistent with the colours: *bypass surgeries*.

Naturally obtain *bypass triples* of dividing sets.

Fact # 4 (Honda 2000)

Bypass surgery is a natural order-3 operation on dividing sets.

Summary

Fact #1: Dividing sets (Giroux, 1991)

A contact structure ξ near *S* is described exactly by a finite set Γ of non-intersecting smooth curves on *S*, called its *dividing set*.

Fact #2: Giroux's criterion

Dividing sets detect trivial contact structures (OT discs).

- On a disc D, via a closed dividing curve.
- On a *sphere*, when there is *more than one* dividing curve.

Fact #3: Edge rounding (Honda 2000)

When surfaces intersect transversely, dividing sets interleave. Rounding edges, "turn right to dive" and "turn left to climb".

Fact #4: Bypass surgery (Honda 2000)

Bypass surgery is a natural order-3 operation on dividing sets.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

- 2 Discrete aspects of contact geometry
- Combinatorics of surfaces and dividing sets
 - Chord diagrams and cylinders
 - A vector space of chord diagrams
 - Slalom basis
 - A partial order on binary strings

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Cylinders

A combinatorial construction using dividing sets (fact #1), edge rounding (#3) and Giroux's criterion (#2):

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Cylinders

A combinatorial construction using dividing sets (fact #1), edge rounding (#3) and Giroux's criterion (#2):

Insert chord diagrams into the two ends of a cylinder... ...and round corners to obtain a dividing set on S^2 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Cylinders

A combinatorial construction using dividing sets (fact #1), edge rounding (#3) and Giroux's criterion (#2):

Insert chord diagrams into the two ends of a cylinder... ...and round corners to obtain a dividing set on S^2 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Cylinders

A combinatorial construction using dividing sets (fact #1), edge rounding (#3) and Giroux's criterion (#2):

Insert chord diagrams into the two ends of a cylinder... ...and round corners to obtain a dividing set on S².

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Cylinders

A combinatorial construction using dividing sets (fact #1), edge rounding (#3) and Giroux's criterion (#2):

Insert chord diagrams into the two ends of a cylinder... ...and round corners to obtain a dividing set on S².

Cylinders

A combinatorial construction using dividing sets (fact #1), edge rounding (#3) and Giroux's criterion (#2):

Insert chord diagrams into the two ends of a cylinder... ...and round corners to obtain a dividing set on S².

By Giroux's criterion, the contact structure obtained on S^2 is:

- *Trivial* (OT) if it is disconnected, i.e. contains > 1 curve.
- Nontrivial (tight) if it is connected, i.e. contains 1 curve.

Combinatorics of surfaces and dividing sets $0 \bullet 000000$

Contact-representable automata

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

An "inner product" on chord diagrams

Define an "inner product" function based on this construction.

Definition

 $\langle \cdot | \cdot \rangle \ : \ \{ \textit{Div sets on } D^2 \} \times \{ \textit{Div sets on } D^2 \} \longrightarrow \mathbb{Z}_2$

Combinatorics of surfaces and dividing sets $0 \bullet 000000$

Contact-representable automata

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

An "inner product" on chord diagrams

Define an "inner product" function based on this construction.

Definition

$$\begin{split} \langle \cdot | \cdot \rangle \ : \ \{ \textit{Div sets on } D^2 \} \times \{ \textit{Div sets on } D^2 \} &\longrightarrow \mathbb{Z}_2 \\ \langle \Gamma_0 | \Gamma_1 \rangle = \left\{ \begin{array}{ll} 1 & \textit{if the resulting curves on the cylinder} \\ & \textit{form a single connected curve;} \\ 0 & \textit{if the result is disconnected.} \end{array} \right. \end{split}$$

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

An "inner product" on chord diagrams

Define an "inner product" function based on this construction.

Definition

$$\begin{split} \langle \cdot | \cdot \rangle \ : \ \{ \textit{Div sets on } D^2 \} \times \{ \textit{Div sets on } D^2 \} &\longrightarrow \mathbb{Z}_2 \\ \langle \Gamma_0 | \Gamma_1 \rangle = \left\{ \begin{array}{ll} 1 & \textit{if the resulting curves on the cylinder} \\ & \textit{form a single connected curve;} \\ 0 & \textit{if the result is disconnected.} \end{array} \right. \end{split}$$

This function has a nice relationship with *bypasses*. Contact-representable automata

An "inner product" on chord diagrams

Define an "inner product" function based on this construction.

Definition

$$\begin{split} \langle \cdot | \cdot \rangle \ : \ \{ \textit{Div sets on } D^2 \} \times \{ \textit{Div sets on } D^2 \} &\longrightarrow \mathbb{Z}_2 \\ \langle \Gamma_0 | \Gamma_1 \rangle = \left\{ \begin{array}{ll} 1 & \textit{if the resulting curves on the cylinder} \\ & \textit{form a single connected curve;} \\ 0 & \textit{if the result is disconnected.} \end{array} \right. \end{split}$$

This function has a nice relationship with *bypasses*. Suppose Γ , Γ' , Γ'' form a bypass triple.

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

Combinatorics of surfaces and dividing sets $0 \bullet 000000$

Contact-representable automata

An "inner product" on chord diagrams

Define an "inner product" function based on this construction.

Definition

$$\begin{split} \langle \cdot | \cdot \rangle \ : \ \{ \textit{Div sets on } D^2 \} \times \{ \textit{Div sets on } D^2 \} &\longrightarrow \mathbb{Z}_2 \\ \langle \Gamma_0 | \Gamma_1 \rangle = \left\{ \begin{array}{ll} 1 & \textit{if the resulting curves on the cylinder} \\ & \textit{form a single connected curve;} \\ 0 & \textit{if the result is disconnected.} \end{array} \right. \end{split}$$

This function has a nice relationship with *bypasses*. Suppose Γ , Γ' , Γ'' form a bypass triple.

Proposition (M.)

For any $\Gamma, \Gamma', \Gamma''$ as above and any $\Gamma_1,$

 $\langle \Gamma | \Gamma_1 \rangle + \langle \Gamma' | \Gamma_1 \rangle + \langle \Gamma'' | \Gamma_1 \rangle = 0.$

Overview Discrete aspects of contact geometry

Combinatorics of surfaces and dividing sets

Contact-representable automata

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A vector space of chord diagrams

Idea of proof:

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A vector space of chord diagrams

Idea of proof:

These ideas lead us to define a *relation* on chord diagrams: three chord diagrams forming a bypass triple sum to 0.

$$\bigcirc$$
 + \bigcirc + \bigcirc = 0

Contact-representable automata

A vector space of chord diagrams

Idea of proof:

These ideas lead us to define a *relation* on chord diagrams: three chord diagrams forming a bypass triple sum to 0.

$$\bigcirc$$
 + \bigcirc + \bigcirc = 0

Leads to the definition of a *vector space* (over \mathbb{Z}_2).

Definition $V_n = \frac{\mathbb{Z}_2 \langle Chord \ diagrams \ with \ n \ chords \rangle}{Bypass \ relation}$

(One can show V_n is a rudimentary form of *Floer homology*...)

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A vector space of chord diagrams

Theorem (M.)

- V_n has dimension 2^{n-1} , with natural bases indexed by binary strings of length n - 1.
Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A vector space of chord diagrams

Theorem (M.)

- V_n has dimension 2^{n-1} , with natural bases indexed by binary strings of length n 1.
- **2** $\langle \cdot | \cdot \rangle$ is a nondegenerate bilinear form on V_n .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A vector space of chord diagrams

Theorem (M.)

- V_n has dimension 2^{n-1} , with natural bases indexed by binary strings of length n 1.
- **2** $\langle \cdot | \cdot \rangle$ is a nondegenerate bilinear form on V_n .

The C_n chord diagrams are distributed in a combinatorially interesting way in a vector space with $2^{2^{n-1}}$ elements.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

A vector space of chord diagrams

Theorem (M.)

- V_n has dimension 2^{n-1} , with natural bases indexed by binary strings of length n 1.
- **2** $\langle \cdot | \cdot \rangle$ is a nondegenerate bilinear form on V_n .

The C_n chord diagrams are distributed in a combinatorially interesting way in a vector space with $2^{2^{n-1}}$ elements. We'll describe two separate combinatorially interesting bases of V_n , indexed by $b \in B_{n-1}$, where

 $B_n = \{ \text{binary strings of length } n \}.$

A vector space of chord diagrams

Theorem (M.)

- V_n has dimension 2^{n-1} , with natural bases indexed by binary strings of length n 1.
- **2** $\langle \cdot | \cdot \rangle$ is a nondegenerate bilinear form on V_n .

The C_n chord diagrams are distributed in a combinatorially interesting way in a vector space with $2^{2^{n-1}}$ elements. We'll describe two separate combinatorially interesting bases of V_n , indexed by $b \in B_{n-1}$, where

 $B_n = \{ \text{binary strings of length } n \}.$

- The *Slalom basis* $\{S_b\}_{b \in B_{n-1}}$
- 2 The Turing tape basis $\{T_b\}_{b \in B_{n-1}}$

Contact-representable automata

The slalom basis

Construction of the *slalom* chord diagram of a binary string.

Contact-representable automata

The slalom basis

Construction of the *slalom* chord diagram of a binary string.

1011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣・のへ⊙

Contact-representable automata

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The slalom basis

Construction of the *slalom* chord diagram of a binary string.

Contact-representable automata

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The slalom basis

Construction of the *slalom* chord diagram of a binary string.

Contact-representable automata

The slalom basis

Construction of the *slalom* chord diagram of a binary string.

In this basis, the bilinear form $\langle\cdot|\cdot\rangle$ has a simple description:

Theorem (M.)

$$\langle S_{a}|S_{b}
angle = \left\{egin{array}{cc} 1 & ext{if } a \preceq b \ 0 & ext{otherwise}, \end{array}
ight.$$

where \leq is a certain partial order on binary strings.

Combinatorics of surfaces and dividing sets $\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A partial order on binary strings

Definition

For two binary strings a, b, the relation $a \leq b$ holds if

a and b both contain the same number of 0s and 1s

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A partial order on binary strings

Definition

For two binary strings a, b, the relation $a \leq b$ holds if

- a and b both contain the same number of 0s and 1s
- Each 0 in a occurs to the left of, or same position as, the corresponding 0 in b.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A partial order on binary strings

Definition

For two binary strings a, b, the relation $a \leq b$ holds if

- a and b both contain the same number of 0s and 1s
- Each 0 in a occurs to the left of, or same position as, the corresponding 0 in b.

E.g.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A partial order on binary strings

Definition

For two binary strings a, b, the relation $a \leq b$ holds if

- a and b both contain the same number of 0s and 1s
- Each 0 in a occurs to the left of, or same position as, the corresponding 0 in b.

E.g.

but 1001,0110 are not comparable with respect to \leq .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A partial order on binary strings

Definition

For two binary strings a, b, the relation $a \leq b$ holds if

- a and b both contain the same number of 0s and 1s
- Each 0 in a occurs to the left of, or same position as, the corresponding 0 in b.

E.g.

but 1001, 0110 are not comparable with respect to \leq . Note \leq is a *sub-order* of the lexicographic/numerical order \leq .

A partial order on binary strings

Definition

For two binary strings a, b, the relation $a \leq b$ holds if

- a and b both contain the same number of 0s and 1s
- Each 0 in a occurs to the left of, or same position as, the corresponding 0 in b.

E.g.

but 1001, 0110 are not comparable with respect to \leq . Note \leq is a *sub-order* of the lexicographic/numerical order \leq .

Inserting chord diagrams into a cylinder is a "topological machine" for comparing binary strings with respect to \leq .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Properties of \leq

Recall we said the slalom chord diagrams form a basis for V_n .

E.g.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Properties of \leq

Recall we said the slalom chord diagrams form a *basis* for V_n .

E.g.

Combinatorics of surfaces and dividing sets $\circ \circ \circ \circ \circ \circ \circ \circ \circ$

Contact-representable automata

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Properties of \leq

Recall we said the slalom chord diagrams form a *basis* for V_n .

Combinatorics of surfaces and dividing sets $\circ \circ \circ \circ \circ \circ \circ \circ \circ$

Contact-representable automata

Properties of \leq

Recall we said the slalom chord diagrams form a *basis* for V_n .

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Properties of \prec

Recall we said the slalom chord diagrams form a *basis* for V_n .

 $= S_{0011} + S_{0110} + S_{1001} + S_{1010}$

- We say the *component strings* of Γ are 0011, 0110, 1001, 1010.
- Given a chord diagram Γ , let $b_{-}(\Gamma)$ denote the numerically least, and $b_{+}(\Gamma)$ the numerically greatest, component string.

So for the example Γ above, $b_{-}(\Gamma) = 0011$ and $b_{+}(\Gamma) = 1010$.

Contact-representable automata

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Partial order \leq and Catalan numbers

The partial order \leq has interesting combinatorics...

Combinatorics of surfaces and dividing sets $\circ\circ\circ\circ\circ\circ\circ\bullet$

Contact-representable automata

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Partial order \leq and Catalan numbers

The partial order \leq has interesting combinatorics...

Theorem (M.)

• For any chord diagram Γ , $b_{-}(\Gamma) \leq b_{+}(\Gamma)$.

Combinatorics of surfaces and dividing sets $\circ\circ\circ\circ\circ\circ\circ\bullet$

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Partial order \leq and Catalan numbers

The partial order \leq has interesting combinatorics...

Theorem (M.)

- For any chord diagram Γ , $b_{-}(\Gamma) \leq b_{+}(\Gamma)$.
- Por any pair of strings s₋, s₊ satisfying s₋ ≤ s₊, there exists a unique chord diagram Γ such that b₋(Γ) = s₋ and b₊(Γ) = s₊.

Combinatorics of surfaces and dividing sets $\circ\circ\circ\circ\circ\circ\circ\bullet$

Contact-representable automata

Partial order \leq and Catalan numbers

The partial order \leq has interesting combinatorics...

Theorem (M.)

- For any chord diagram Γ , $b_{-}(\Gamma) \leq b_{+}(\Gamma)$.
- Por any pair of strings s₋, s₊ satisfying s₋ ≤ s₊, there exists a unique chord diagram Γ such that b₋(Γ) = s₋ and b₊(Γ) = s₊.

... and produces the Catalan numbers again.

Corollary

The number of pairs of strings s_-, s_+ of length n such that $s_- \leq s_+$ is C_{n+1} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

- Discrete aspects of contact geometry
- Combinatorics of surfaces and dividing sets
- 4 Contact-representable automata
 - Turing tape basis
 - Cubulated inner product
 - Finite state automata

Overview Discrete aspects of contact geometry

Combinatorics of surfaces and dividing sets

Contact-representable automata

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Turing tape basis

Divide the disc with |F| = 2n into n - 1 squares:

Overview Discrete aspects of contact geometry

Combinatorics of surfaces and dividing sets

Contact-representable automata

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Turing tape basis

Divide the disc with |F| = 2n into n - 1 squares:

On each square there are two "basic" possible sets of sutures

Contact-representable automata

(日) (日) (日) (日) (日) (日) (日)

The Turing tape basis

Divide the disc with |F| = 2n into n - 1 squares:

On each square there are two "basic" possible sets of sutures

Draw them according to a string *b* to obtain Turing tape basis diagrams T_b — another basis for V_n . E.g.

Contact-representable automata

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Cubulated inner product

With chord diagrams are drawn in "Turing tape" form, the inner product $\langle\cdot|\cdot\rangle$ becomes "cubulated"...

Contact-representable automata

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cubulated inner product

With chord diagrams are drawn in "Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes "cubulated"...

$$\exists .g. \ \langle T_{1011} | T_{1000} \rangle =$$

Contact-representable automata

Cubulated inner product

With chord diagrams are drawn in "Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes "cubulated"...

E.g.
$$\langle T_{1011} | T_{1000} \rangle =$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Contact-representable automata

Cubulated inner product

With chord diagrams are drawn in "Turing tape" form, the inner product $\langle\cdot|\cdot\rangle$ becomes "cubulated"...

E.g.
$$\langle T_{1011} | T_{1000} \rangle =$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Contact-representable automata

Cubulated inner product

With chord diagrams are drawn in "Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes "cubulated"...

E.g.
$$\langle T_{1011} | T_{1000} \rangle =$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Contact-representable automata

Cubulated inner product

With chord diagrams are drawn in "Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes "cubulated"...

E.g.
$$\langle T_{1011} | T_{1000} \rangle =$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Contact-representable automata

Cubulated inner product

With chord diagrams are drawn in "Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes "cubulated"...

E.g.
$$\langle T_{1011} | T_{1000} \rangle =$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Contact-representable automata

Cubulated inner product

With chord diagrams are drawn in "Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes "cubulated"...

E.g.
$$\langle T_{1011} | T_{1000} \rangle =$$

Contact-representable automata

Cubulated inner product

With chord diagrams are drawn in "Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes "cubulated"...

E.g.
$$\langle T_{1011} | T_{1000} \rangle =$$

ş

Contact-representable automata

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cubulation, step by step

Draw curves curvier, and analyse this computation in step-by-step fashion.

Contact-representable automata

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cubulation, step by step

Draw curves curvier, and analyse this computation in step-by-step fashion.

Contact-representable automata

Cubulation, step by step

Draw curves curvier, and analyse this computation in step-by-step fashion.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

Contact-representable automata

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cubulation, step by step

Draw curves curvier, and analyse this computation in step-by-step fashion.

Contact-representable automata

Cubulation, step by step

Draw curves curvier, and analyse this computation in step-by-step fashion.

(日)

Contact-representable automata

Cubulation, step by step

Draw curves curvier, and analyse this computation in step-by-step fashion.

Overview Discrete aspects of contact geometry

Combinatorics of surfaces and dividing sets

Contact-representable automata

ヘロン 人間 とくほど 人ほど 一日

Overview Discrete aspects of contact geometry

Combinatorics of surfaces and dividing sets

Contact-representable automata

ヘロト 人間 とくほとくほとう

æ

Contact-representable automata

Contact-representable automata

Contact-representable automata

A finite state automaton

We can consider this process as a *finite state automaton*.

Contact-representable automata

A finite state automaton

A:

We can consider this process as a *finite state automaton*.

(or anything with a closed curve)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A finite state automaton

We can consider this process as a *finite state automaton*.

Contact-representable automata

A finite state automaton

We can consider this process as a *finite state automaton*.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A finite state automaton

Can check that the calculation of the inner product on the "cubulated cylinder" on the "Turing tape basis" computes the finite state automaton:

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A finite state automaton

Can check that the calculation of the inner product on the "cubulated cylinder" on the "Turing tape basis" computes the finite state automaton:

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A finite state automaton

Can check that the calculation of the inner product on the "cubulated cylinder" on the "Turing tape basis" computes the finite state automaton:

・ コット (雪) (小田) (コット 日)

Contact-representable automata

Definition

A finite state automaton is contact-representable if:

- To every state s ∈ S is associated a dividing set Γ_s on a disc with 2n fixed boundary points.
- To each input σ ∈ Σ is associated a dividing set Γ_σ on an annulus with 2n fixed points on each boundary circle.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact-representable automata

Definition

A finite state automaton is contact-representable if:

- To every state s ∈ S is associated a dividing set Γ_s on a disc with 2n fixed boundary points.
- To each input σ ∈ Σ is associated a dividing set Γ_σ on an annulus with 2n fixed points on each boundary circle.
- The transition function S × Σ → S is achieved by gluing annuli to discs: if (s, σ) → s' then Γ_s ∪ Γ_σ = Γ_{s'}.

Definition

A finite state automaton is contact-representable if:

- To every state s ∈ S is associated a dividing set Γ_s on a disc with 2n fixed boundary points.
- To each input σ ∈ Σ is associated a dividing set Γ_σ on an annulus with 2n fixed points on each boundary circle.
- The transition function S × Σ → S is achieved by gluing annuli to discs: if (s, σ) → s' then Γ_s ∪ Γ_σ = Γ_{s'}.

E.g. for the previous example n = 2, 3 states: $\Gamma_A = \bigcap \Gamma_B = \bigcap \Gamma_{\perp}$: (or anything with a closed curve)

Definition

A finite state automaton is contact-representable if:

- To every state s ∈ S is associated a dividing set Γ_s on a disc with 2n fixed boundary points.
- To each input σ ∈ Σ is associated a dividing set Γ_σ on an annulus with 2n fixed points on each boundary circle.
- The transition function S × Σ → S is achieved by gluing annuli to discs: if (s, σ) → s' then Γ_s ∪ Γ_σ = Γ_{s'}.

Contact-representable automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?

Various applications:

• These constructions give linear maps $V_n \longrightarrow V_n$ which form a Topological quantum field theory.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?

- These constructions give linear maps $V_n \longrightarrow V_n$ which form a Topological quantum field theory.
- The above is a toy model of a quantum theory which explicitly encodes information: "it from bit".

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?

- These constructions give linear maps $V_n \longrightarrow V_n$ which form a Topological quantum field theory.
- The above is a toy model of a quantum theory which explicitly encodes information: "it from bit".
- Moreover, this is a TQFT which explicitly encodes computation.

Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?

- These constructions give linear maps $V_n \longrightarrow V_n$ which form a Topological quantum field theory.
- The above is a toy model of a quantum theory which explicitly encodes information: "it from bit".
- Moreover, this is a TQFT which explicitly encodes computation.
- Quantum states based on curves on surfaces and topology are considered in the physical theory of "anyons".

Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?

- These constructions give linear maps $V_n \longrightarrow V_n$ which form a Topological quantum field theory.
- The above is a toy model of a quantum theory which explicitly encodes information: "it from bit".
- Moreover, this is a TQFT which explicitly encodes computation.
- Quantum states based on curves on surfaces and topology are considered in the physical theory of "anyons".
- A very combinatorial, geometric way of performing certain computations.

Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?

- These constructions give linear maps $V_n \longrightarrow V_n$ which form a Topological quantum field theory.
- The above is a toy model of a quantum theory which explicitly encodes information: "it from bit".
- Moreover, this is a TQFT which explicitly encodes computation.
- Quantum states based on curves on surfaces and topology are considered in the physical theory of "anyons".
- A very combinatorial, geometric way of performing certain computations.
- A reversible / conservative type of computation.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Thanks for listening!

References:

- D. Mathews, Chord diagrams, contact-topological quantum field theory, and contact categories, Alg. & Geom. Top. 10 (2010) 2091–2189
- D. Mathews, *Itsy bitsy topological field theory* Annales Henri Poincaré (2013) DOI 10.1007/s00023-013-0286-0
- D. Mathews, Contact topology and holomorphic invariants via elementary combinatorics, Expos. Math. (2013) DOI 10.1016/j.exmath.2013.09.002