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What is topology?
“The study of the shape of things".

Take a geometric object. Say, a cube. Now forget its geometry.

Source: Ágnes Szilárd

An inflated cube is a sphere... but still essentially cube-ish
A donut is “similar" to a coffee cup... a coffee cup is donut-ish.

Source: XKCD Source: Wikipedia

“Rubber sheet geometry." Animate!
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What is topology?

Take it back to basics: 1 dimension! Let’s consider curves.

Horizontal line segment
1 m long

Non-horizontal line segment
1 m long Wiggly line Horizontal line segment

1 ly long

These are all “different", but also, somehow similar...
“essentially line-ish."

Here is another curve:

Circle

Somehow, the circle is “different" from the others... not line-ish.
“More different" from “lines" than lines are among themselves.
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All are 1-dimensional curves in the plane.

I What makes the first four curves “different" from the last?
I What does that even mean?

Think like a mathematician!
I What kind of functions are there between these curves?
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What is topology?
We’ve found 3 useful types of functions.

1. Functions which preserve distances: isometries.
2. Functions which preserve angles: conformal maps.
3. Functions which are continuous

Or... continuous functions with continuous inverses!
Homeomorphisms.

{Isometries} ⊂ {Conformal maps} ⊂ {Homeomorphisms}
“Rigid" “Flexible"
“Metal" ←→ “Rubber"

The study of properties of objects which are preserved under
1. isometries is called geometry!
2. conformal maps is called conformal geometry!
3. continuous maps or homeomorphisms is called...

... Topology!
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“More flexible than geometry, but not as flexible as topology."

I Dilations preserve angles but not lengths...

I Are there other conformal maps?

Yes!!

MC Escher painted it: Picture gallery.

Zoom in! Animate!
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1-dimensional Topology
Can we write down all possible 1-dimensional spaces?

Line Circle

That’s it.
What about 2-dimensional objects?

Sphere
Genus 0

Torus
Genus 1

Double torus
Genus 2

· · ·

But wait!
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2-dimensional topology
There’s more! For instance, the Möbius strip.

Non-orientable.

Escher: Now animated!

Why did the chicken cross the Mobius strip?
From now on, only consider surfaces without boundary...
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Felix Klein, 1882

Klein bottle for rent – inquire within!
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Wraparound: a gameplay variation on video games...

Pac Man & Ms. Pac Man

Edges are glued together... What is the topology of Pac Man
games?
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Idealised Pac Man: exit the screen at any point & re-enter
opposite...

Opposite edges are identified, so should be glued together.

Pac man & Ms. Pac man live on a torus.
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Pac Man von Klein!



Topological video games
Pac man variant: after exiting top, re-enter bottom differently...

What surface is this?

Pac Man von Klein!



Topological video games
Pac man variant: after exiting top, re-enter bottom differently...

What surface is this?

Pac Man von Klein!



Topological video games
Pac man variant: after exiting top, re-enter bottom differently...

What surface is this?

Pac Man von Klein!



Topological video games
Pac man variant: after exiting top, re-enter bottom differently...

What surface is this?

Pac Man von Klein!



Topological video games
Pac man variant: after exiting top, re-enter bottom differently...

What surface is this?

Pac Man von Klein!



Video games classify surfaces
In fact, any surface can be expressed as a video game with
boundary entries & exits specified.

=

Using this idea, you can give a complete list of topological
types of surfaces... the classification theorem for surfaces.

Orientable:

Non-orientable:

· · ·

· · · · · ·

Proved late 19th / early 20th century.
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Aside: Dimension?
There are also curves which fill up 3-dimensional space!

Continuous surjective functions (0,1)→ (0,1)2 and (0,1)3.
Is all dimension subjective, relative?
NO! Brouwer to the rescue!

Invariance of dimension theorem (1912):
If f : Rm → Rn is a homeomorphism (continuous
bijection w/ continuous inverse) then m = n.
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I What are the possible shapes of 3-dimensional spaces?
An important question, as (actual) space looks 3-dimensional!

One way to build 3-dimensional spaces: 3-D pac man!

The 3-torus.
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Shape of space: Large version
I The mathematical questions are very difficult, actively

researched.

Most basic mathematical conjecture in 3-dimensional topology:

Conjecture (Poincaré 1904)
If a 3-dimensional topological space looks trivial, it is trivial.

Proved by Grigori Perelman, 2003.

I Fields Medal, 2006.
I Declined.
I Clay Millennium Prize, 2010 ($1,000,000).
I Declined.

“I’m not interested in money or fame; I don’t want
to be on display like an animal in a zoo."
“[T]he main reason is my disagreement with the
organized mathematical community... I don’t like
their decisions, I consider them unjust."
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Shape of space: Small version
At the other end of the length scale... Superstring theory.

I Speculative physical theory
I Matter ultimately made of strings
I Requires universe to be 10-dimensional

I We see 3 space and 1 time dimension...
So the universe could be of the form

R3 × R × X
space time

with X 6-dimensional and small!
z5

0 + z5
1 + z5

2 + z5
3 + z5

4 = 0

Calabi-Yau quintic.

X must be a Calabi-Yau 3-fold.

I (3-fold = 3-(complex-)dim manifold = 6 (real-)dimensional space.)

Topology of X determines particle interactions, etc...
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Space of shapes
Useful to understand all possible shapes of a space:

I the space of shapes.

The path integral formulation of quantum mechanics:

amplitude for event
x leading to event y =

∫
“scenarios φ from x to y"

e
i
~S[φ]Dφ

String from x to y describes a surface — string worldsheet.

amplitude for string
going from x to y =

∫
“worldsheets φ from x to y"

e
i
~S[φ]Dφ

Integral over space of shapes of surfaces — Moduli space.
I Impossible! Too hard! Simplify!
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Space of shapes
Simplify “shapes of surfaces" to consider only

I Conformal geometry:

I Conformal field theory

I Topology:

I Topological quantum field
theory

The moduli space of conformal geometries on a surface turns
out to have amazing properties.

I Has dimension 6× (genus)− 6
I Has its own geometry. (Geometry of the space of

geometries on a surface.)
Recent amazing progress:

I Maryam Mirzkhani.
I Computed volumes of all

conformal moduli spaces
I Fields medal last week.
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Thanks for listening!

Daniel.Mathews@monash.edu
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