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Curves on surfaces

This talk is about some interesting algebraic structure arising
from the topology of curves on surfaces.

Related to various other important fields:
@ Teichmdller space and surface group representations
@ Lie bialgebras and quantization
@ String topology — topology of loop spaces

@ Symplectic/contact geometry — symplectic field theory,
Floer homology

But the construction itself is very elementary.
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String diagrams on marked surfaces

Definition
A marked surface is a pair (X, F) where
@ X is a compact oriented surface with nonempty boundary

© F isasetof2n > 0 distinct points on 9%, with n points
labelled “in" and n points labelled “out".

Definition

A string diagram s on (X, F) is an immersed oriented compact
1-manifold in = such that 0s = F, with all self-intersection in the
interior of *.
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A chain complex

Let S(X, F) = {homotopy classes of string diagrams on (X, F)}
Let S¢(X, F) = {those containing a contractible closed curve}

Definition

Z2(S(%, F))

C8(F) = 7 (se(w, By

l.e. “set contractible curves to zero".

The differential on CS(X, F) x I

resolves intersections:
S x(8)

Definition

0s= > n(s)

X crossing of s
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Questions

Some questions immediately arise:
Q Is 0 well defined?
@ Is (CS(%, F),d) a chain complex?
Q@ If so, what is the string homology

_ k
HS(Z, F) = %g ?

Turns out I-/ITS(Z, F) tends to be trivial unless F is alternating.

Definition

A marked surface (X, F) is alternating if the points of F
alternate in, out, in out, ..., around each boundary component.

But first...
@ Why this chain complex?
(... apart from being a natural elementary construction...)
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Teichmdaller space and group representations

Goldman in 1984 studied surface group representations and
Teichmuller space.
@ Let S; = losed oriented genus g surface, © = m1(Sy).
@ Teichmdiller space 74 = space of marked hyperbolic
structures on Sy. (Turns out 74 = R®9-6))
@ A (marked) hyperbolic structure gives a holonomy
representation

p:m— lsomTH? = PSR = G.

@ Conversely, p : m — G defines a point in 7g.

@ But conjugate representations p, ApA~" give equivalent
hyperbolic structures.

@ Turns out

Tg C Hom (7, G)/G (algebraic variety of flat connections).
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Symplectic geometry

This variety Hom (7, G)/G has a natural symplectic structure.
Basic notions of symplectic geometry:

Symplectic: A symplectic form on a 2n-manifold M is a closed
2-form w such that w" is a volume form.

Duality: Such w must be non-degenerate and hence gives an
isomorphism TM — T*M via v — w(v, ).

Hamiltonian dynamics: A smooth function H: M — R gives a
1-form dH whose dual is a Hamiltonian vector field Xy.
l.e. —dH = w(Xy, )

Poisson bracket: Given two functions F, G: M — R we obtain
another function {F, G} = w(Xr, Xg).
Dual to Lie bracket of vector fields: [Xg, Xg] = —X(F G-
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Symplectic geometry of surface group representations

Goldman in 1984 showed that:
@ T, Hom(r, G)/G= H (; OAd p)
@ Group cohomology of 7 with coefficients in the Lie algebra
g of G, which is a =-module via 7 -2+ G 2% .
@ Symplectic form w is given by cup product in cohomology.
Functions F : 74 — R give Hamiltonian dynamics Xg.

Theorem (Wolpert, 1982)

Let o be a simple loop on Sq and let |, : Tg — R be the length
of the geodesic homotopic to «. The corresponding Hamiltonian
vector field X), onTq is the Fenchel-Nielsen twist flow about .

(Twist flow: Geometry constant on S\«; “Chinese burn" on a.)
Goldman extended this to:

@ general Hom (7, G)/G and « € 7 (not just simple)

@ general conjugation-invariant G — R (not just length).
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The Goldman Lie bracket

The results of Wolpert & Goldman thus give maps
(:m— C®(Tg,R), more generally — C* (Hom (7, G)/G,R).
Now C>°(74,R) is a Lie algebra under Poisson bracket.

Theorem (Goldman 1986)

There is a Lie bracket on Zw such that the map
¢ :Zm — C*°(Hom(w, G)/G,R) is a Lie algebra
homomorphism.

7 = {conj. classes in 7} = {homotopy classes of loops on S}.
This Lie bracket on Z7 is now known as the Goldman bracket.

[, B] = Z sgn (x)rx(a, B) (resolving intersections)

xeang

@ Our C/DTS(Z, F) is a generalisation: multiple curves,
endpoints, resolving self-intersections.
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Lie bialgebras

Lie coalgebras are dual to Lie algebras; bialgebras are both.

Definition (Drinfeld)

A Lie coalgebra is an abelian group g withamapv : g — g® g
such that

ocov=—v, (T2+T+1)O(id®1/)ol/:0

where 1 : g®3 — g®3 and o : g®?> — g®2 are order 3 and 2
permutations.

Definition
A Lie bialgebra is a Lie algebra and coalgebra such that

v ([a, b]) = av(b) — bu(a).

A




Motivations and connections
(o] lo}

The Turaev cobracket

In 1991, Turaey, investigated the relationship between curves
on surfaces and knots and quantization.



Motivations and connections

(o] o}

The Turaev cobracket

In 1991, Turaey, investigated the relationship between curves
on surfaces and knots and quantization.

Definition

The Turaev cobracket on Zr is defined by

v(a) = Z Bx ® Yx — Yx ® Bx X _JI‘YX
(0%

X crossing of a




Motivations and connections

(o] o}

The Turaev cobracket

In 1991, Turaey, investigated the relationship between curves
on surfaces and knots and quantization.

Definition
The Turaev cobracket on Zr is defined by

]“ I x
V(Oé): Z ﬂx®’)/x—7x®5x X Y
X crossing of a o mx

(Note v is designed to be antisymmetric; but we work mod 2, so
we do not need to antisymmetrizel)



Motivations and connections

(o] o}

The Turaev cobracket

In 1991, Turaey, investigated the relationship between curves
on surfaces and knots and quantization.

Definition
The Turaev cobracket on Zr is defined by

]“ Y x
V(Oé): Z ﬂx®’)/x—'7x®5x X Y
X crossing of a o mx

(Note v is designed to be antisymmetric; but we work mod 2, so
we do not need to antisymmetrizel)

Theorem (Turaev 1991)

With the Goldman bracket and Turaev cobracket, Z= is a Lie
bialgebra.
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Multiple curves and symmetric algebra

From any abelian group g we can form the symmetric algebra

=@ S'(s), S'(g) = i'th symmetric tensor power of g.
i>0
Consider the symmetric algebra S(Z7):
@ Generated by collections of loops up to homotopy
@ Multiplication is juxtaposition of loops.
@ Goldman bracket naturally extends over S(Z).
Turns out, the Goldman bracket behaves like a derivation.

[ab,c] = a[b,c] + [a,c]b
S(g) forms a Poisson algebra.
Theorem (Turaev 1991)

There is a Poisson algebra homomorphism
S(Z7w) — C>°(Hom(m, G)/G,R).
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Symplectic field theory

An enormous project initiated by Y. Eliashberg, A. Givental, H.
Hofer in 2000.

@ Foundations still problematic, huge analytic issues.
The essential idea:

Understand contact and symplectic manifolds by studying
holomorphic curves in them, in the spirit of topological quantum
field theory.

@ Study moduli spaces of holomorphic curves in
symplectic/contact manifolds.

@ Develop algebraic machinery encoding structure of moduli
spaces.

Includes Gromov-Witten theory, many previous symplectic
invariants as special cases.
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Basic notions of contact geometry:

Contact structure: A contact form A on a (2n — 1)-manifold Y is
a 1-form such that A A (d)\)"' is a volume form.

Dynamics: ker d\ is 1-dimensional, spanned by a Reeb vector
field Ry. A(R\) =1, d\(Ry,:) =0.

Contact manifolds naturally arise as boundaries or ends of

symplectic manifolds.

Example: Cotangent bundle T*Q of a manifold Q

@ Let g; be coordinates on Q, corresponding fibre
coordinates p;.

@ Tautological 1-form a = ), p;dq;.
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Contact/symplectic notions

Basic notions of contact geometry:

Contact structure: A contact form A on a (2n — 1)-manifold Y is
a 1-form such that A A (d)\)"' is a volume form.

Dynamics: ker d\ is 1-dimensional, spanned by a Reeb vector
field Ry. A(R\) =1, d\(Ry,:) =0.

Contact manifolds naturally arise as boundaries or ends of

symplectic manifolds.

Example: Cotangent bundle T*Q of a manifold Q

@ Let g; be coordinates on Q, corresponding fibre
coordinates p;.

@ Tautological 1-form a = ), pidq;.
@ Symplectic form w = da.

@ One end = UT*Q x [0, 00): unit cotangent bundle is
contact.
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Symplectic cobordisms

Slightly more complicated example: T*Q\Q
This has two ends:
@ A positive end = UT*Q x [0, o0) as before.
@ A negative end = UT*Q x (—o0, 0] asymptotic to Q.

It turns out there are two distinct types of ends:

@ Positive ends = Y x [0, 00), where Y contact

@ Negative ends = Y x (—o0,0]
So we think of symplectic manifolds as directed cobordisms
Y- = YT
(For any contact (Y, \), Y x R has a natural symplectic
structure d(ef)).)
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Holomorphic curves

Symplectic vs complex structures

Almost complex structure: J : TM — TM such that J? = —1.
(Generally non-integrable: (M, J) # (C", i) locally.)
Complex analysis still works: from J can formulate C-R egns:
For a Riemann surface (S,i), u: S — Mis

(pseudo-)holomorphic if Duo i = J o Du.

Thus

Moduli spaces exist : Prescribing sufficient data on
holomorphic curves gives finite-dimensional moduli
spaces, Riemann-Roch holds
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Holomorphic curves in symplectic cobordisms

Consider a symplectic manifold (X, w) of dimension 2n with:
@ positive end (R4 x Y*, A1), negative end (R_ x Y=, A7)
@ (compatible) almost complex structure J.

Consider collections of closed Reeb orbits:

@ st orbitsin Y, I = (+f,...,7%)
@ s orbitsin Y=, T~ = (vy,...,75)

MG(X; T, TH)

is the moduli space of connected genus g
J-holomorphic curves in homology class
A € Ho(M) with st + s~ punctures
asymptotic to the v;*.

(Source; Eliashberg-Givental-Hofer)
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Moduli spaces

Eliashberg-Givental-Hofer considered the compactification of
these moduli spaces: “multi-level" holomorphic curves including
curves in the ends Ry x Y=.

R+X Y+

R_xY~™
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SFT formalism

SFT algebraic formalism encodes holomorphic curve
behaviour. We'll give a technicality-free (wrong) version.
For holomorphic curves in R x Y:
@ to each closed Reeb orbit v associate graded formal
variables p,, g,; let multiplicity be .
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SFT formalism

SFT algebraic formalism encodes holomorphic curve
behaviour. We'll give a technicality-free (wrong) version.
For holomorphic curves in R x Y:
@ to each closed Reeb orbit v associate graded formal
variables p,, g,; let multiplicity be .
@ introduce formal variables p = 3 Kiva, q=>3, ;—qu
@ let ng(F—, ") € Q be the algebraic count of points in
M(R x Y;T~,TT)/R, when it exists
@ define the correlator

—1 . R s
.., qQp..., = ng(r—,r
(@, qp-..Pg= > ngl )9 p

s— st |r+|=s%
@ define the Hamiltonians
_ T _ 1 o
Hy= > o7 (@ 9P P H_h;th ,

§7,st s— st
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NG, gp... Py = ng(r=,rHg" p""
(G qp....Pg= > ngl )q" p

S st ‘ r+ |:si

_ 1 —1 . _1 — g
HQ_ZW Q- q:p.--.,Pgs H—ﬁZHgﬁ-
s—,st s ot g=0

Let W be a Weyl algebra of power series in p,, gy, .
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SFT formalism

g, qp....Pg= ny(r=—,rH)g" p
(G qp....Pg= > ngl )q" p

s~ st ‘ r+ |:si

_ 1 —1 . _ 1 — g
Hg_zm (G- GP- -, P)g, H_ﬁZth'
Si’er S~ st g:0

Let W be a Weyl algebra of power series in p,, g, h. All
variables (super-)commute except p,, g, satisfy

p'y % Q’y _ (_1 )‘vaq"y‘qu * p,y — H'yh-
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SFT formalism

+

“Ng,...,q:p...,P)g = ng(Fr=,THq" p"
(G qp....Pg= > ngl )q" p

s— st [F|=s*
Hy = e : H= 1S Hyne
g_zm <qa---7q,P---aP>g, _ﬁz gh”.
s—,st o V—S+ 9=0

Let W be a Weyl algebra of power series in p,, g, h. All
variables (super-)commute except p,, g, satisfy

p'y % Q’y _ (_1 )‘vaq"y‘qu * p,y — H'yh-

Theorem (Eliashberg—Givental-Hofer)

The Hamiltonian H € 1w satisfies

HxH=0.
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%g,....q;p..., = ng(X;T=,rHg" p"
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I =s

N
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SFT formalism

Develop a similar formalism for a general symplectic cobordism
X with ends (Ry x Y£ A\F):
@ algebraic counts ng(X;F~,I") € Q of Mg(X;T~,TT)
@ correlators
%g,....q;p..., = ng(X;T=,rHg" p"
(@ qp--Pg= Y Nyl )" p

I =s

+
s~ st

@ the potentials

1 . IS g
S_,S+ s— st g:0
Consider space D of power series in h, pj, q, -
Weyl algebras W* act as differential operators on D via

— —

+
— kyh—r,
% T opT
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SFT formalism

1 —1 . _1 = g
HQZZW (G- QP P)g, H_th;th.

s~ st

1, | R
Fg: Z s—1st! <\_q"“’q,’\p""p>gv F—hgz_:oth .

Theorem (Eliashberg-Givental-Hofer)

The potential F € 1D satisfies the master equation

— —
eFHT —H ef = 0.
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curves in (X,w) between (Y*, \*) with k boundary
components on a Lagrangian submanifold Q.
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Cieliebak—Latschev in 2007 generalised to consider
curves in (X,w) between (Y*, \*) with k boundary

components on a Lagrangian submanifold Q.
@ cy4k(X;I~,I'T) the sequence of loops in Q traced out by

boundaries. (In fact lies in C.({loops}, consty).)

@ correlators
. X,Q _ B e o S B
N o T = Cok(X;T7,T

@ qp.Pae= . Cokl )d" p

r=s

+

s~ st
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Curves with boundary

Cieliebak—Latschev in 2007 generalised to consider
curves in (X,w) between (Y*, \*) with k boundary

components on a Lagrangian submanifold Q.
@ cy4k(X;I~,I'T) the sequence of loops in Q traced out by

boundaries. (In fact lies in C.({loops}, consty).)

@ correlators
. X,Q _ B e o S B
N o T = Cok(X;T7,T

@ qp.Pae= . Cokl )d" p

r=s

4
s~ st

@ Potentials

1 . X,Q 1 &
Lg= >, m(m--,q,p-..,mg,k, L:hZ%Lgng.
g:

s—,stk e s+
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SFT formalism meets string topology

Theorem (Cieliebak—Latschev)
The potential L satisfies the generalised master equation

(0+A+nhv)et —eH H et

Here A,V are string operations.

@ A resolves a string at a
self-intersection.

@ V glues two strings at an
intersection.

Codimension-1 phenomena at the
boundary of holomorphic curves
are Goldman bracket and Turaev

cobracket.

(Source: Cieliebak-Latschev)
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X crossing of s
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Back to curves on surfaces

Recall our marked surfaces (X, F), string diagrams, and the
chain complex:

Definition

CS(Z,F) = 2??;@:’2%, Is= > rnl(s)

X crossing of s

We see that 0:

@ reduces to the Goldman bracket [«, 3] for two simple
curves

@ reduces to and Turaev cobracket v(«) for a single curve

@ allows multiple curves: incorporates symmetric algebra of
loops S(Z7) in Turaev’s Poisson algebra homomorphism

@ describes holomorphic curve boundary phenomena, as in
Cieliebak—Latschev generalised master equation.
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Well-definition

First show that chain complex is well-defined.
Checking this amounts to showing 9 unchanged by “string
Reidemeister moves". E.g.:

-y I
RS

This shows why mod 2 is so useful...
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Well-definition

And also...

-k

This shows why contractible strings must be set to zero.
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Calculations of homology

Some results are known for discs and annuli:
@ Turns out that whether points F are alternating is
important.

Theorem (M.)
If F is not alternating and

@ there are two non-alternating points on a single boundary
component, or

Q X isanannulus
then HS(X, F) = 0.
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Calculations of homology

Some results are known for discs and annuli:
@ Turns out that whether points F are alternating is
important.

Theorem (M.)
If F is not alternating and

@ there are two non-alternating points on a single boundary
component, or

Q X isanannulus
then HS(X, F) = 0.

v

For any non-alternating F, is lfl\S(Z, F)=07?
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Proposition

If F has two consecutive points of the same sign, then
HS(Z, F) = 0.
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Non-alternating marked points

Proposition

If F has two consecutive points of the same sign, then
HS(Z, F) = 0.

Proof
Consider the switching operation on string diagrams

W : CS(Z, F) —s CS(Z, F).

W:CS(z,F) 49 |—— w q

— CS(Z,F) P I— p
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Non-alternating marked points

Proof.
W:CS(z,F) 49 |—— w q
— CS(Z,F) P I— p

Now consider 0Ws:
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Non-alternating marked points

Proof.
W:CS(z,F) 49 |—— w q
— CS(Z,F) P I— p

Now consider 0Ws:
—

0 >< S = S + >< 0s
—

oWs = S + Wos
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Non-alternating marked points

Proof.

W:CS(z,F) 49 |—— w q
— CS(Z,F) P I— p

Now consider 0Ws:
—

0 >< S = S + >< 0s
—

oWs = S + Wos
Thus W is a chain homotopy from 1 to 0, and l-TS(Z, F)=0.

Ol
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String homology of discs

Theorem (M.—Schoenfeld)
For alternating F,

Sutures on (X, F))
Bypass relation

H8(D?, F) = 22!
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Theorem (M.—Schoenfeld)
For alternating F,

Zp(Sutures on (X, F))

o2 e o
HS(D% F) = Bypass relation

A\

Definition
A set of sutures T on (£, F) is an embedded string diagram that
splits ¥ into alternating positive and negative regions.

A
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String homology of discs

Theorem (M.—Schoenfeld)
For alternating F,

Zp(Sutures on (X, F))

o2 e
HS(D% F) = Bypass relation

A\

Definition
A set of sutures I on (£, F) is an embedded string diagram that
splits ¥ into alternating positive and negative regions.

A

Sets of sutures only exist for alternating (X, F).
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Bypass relation

If a set of sutures contains a disc which looks like

D

there are two natural ways to adjust it, giving a bypass triple.
r r r

The bypass relation says bypass triples sum to zero.
M+r+r"=0.

So I:I?S‘(DZ, F) is generated by string diagrams of sutures,
modulo this relation.
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Bypass relation as a boundary

A “reason" why the theorem is plausible:

LRSS e

Hence relations in HS Y., F) are like the bypass relation.
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Another relationship to holomorphic curves

Theorem (M.—Schoenfeld)

Zo(Sutures on (X, F))
Bypass relation

1

HS(D?, F) =~ SFH(D?xS', Fx S") (




The chain complex and its homology
00000800000

Another relationship to holomorphic curves

Theorem (M.—Schoenfeld)

~. Lo(Sutures on (X, F))
- Bypass relation

HS(D?, F) =~ SFH(D?xS', Fx S") (

SFH = sutured Floer homology, an invariant of sutured
3-manifolds.
@ Defined by counting holomorphic curves in a space related
to Heegaard decomposition
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@ Defined by counting holomorphic curves in a space related
to Heegaard decomposition
The isomorphism is explicit:
@ Sutures on (D?, F) give a contact structure on
(D? x S',F x 8"
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Theorem (M.—Schoenfeld)

~. Lo(Sutures on (X, F))
- Bypass relation

HS(D?, F) =~ SFH(D?xS', Fx S") (

SFH = sutured Floer homology, an invariant of sutured
3-manifolds.
@ Defined by counting holomorphic curves in a space related
to Heegaard decomposition
The isomorphism is explicit:
@ Sutures on (D?, F) give a contact structure on
(D? x S',F x 8"
@ Contact structures give elements of SFH.
So I%(Z, F) directly encodes contact geometry.
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Another relationship to holomorphic curves

Theorem (M.—Schoenfeld)

~. Lo(Sutures on (X, F))
- Bypass relation

HS(D?, F) =~ SFH(D?xS', Fx S") (

SFH = sutured Floer homology, an invariant of sutured
3-manifolds.
@ Defined by counting holomorphic curves in a space related
to Heegaard decomposition
The isomorphism is explicit:
@ Sutures on (D?, F) give a contact structure on
(D? x S',F x 8"
@ Contact structures give elements of SFH.
So I%(Z, F) directly encodes contact geometry.

(SFH(D? x S',F x 8') = riess was known earlier.)
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Results for annuli

Recent work has given some calculations for annuli.

For a marked annulus (A, () with no marked points

_ Zg[...,)_(,3,)_(,1,)_(1,)_(3,...]

HS(A, 0) R L
(.., X35, X2, X2, X2, ..)

= H(X).

l.e. a polynomial ring in infinitely many variables squaring to 0.
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Results for annuli

Recent work has given some calculations for annuli.

For a marked annulus (A, () with no marked points

_ Zg[...,)_(,3,)_(,1,)_(1,)_(3,...]
(.32, X2, 2R,

HS(A, 0) = H(X).

l.e. a polynomial ring in infinitely many variables squaring to 0.
For each n € Z, x, is the string which traverses the annulus n
times; X, its homology class.

© ©@ ©

X_1 Xq Xo
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Reduction to algebra

It's not too difficult to see that
aS(A,@) = Zg[ X2, X1, X1, X0, .. ] =X
a polynomial algebra, and upon resolving intersections, (n > 0)

OXn = X1 Xp—1 + XeXp_2 + -+ + Xp_1X1.
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a polynomial algebra, and upon resolving intersections, (n > 0)
OXn = X{Xp_1 + XoXn_o + -+ + Xn_1X1.

Variables commute, so over Z»> most terms cancel:
e for even variables, dxpx = X2
@ for odd variables, Oxo411 = 0.
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Reduction to algebra

It's not too difficult to see that
aS(A,Q)) =Zol. .. X2, X4, X1, X2, ... ] = X
a polynomial algebra, and upon resolving intersections, (n > 0)
OXn = X{Xp_1 + XoXn_o + -+ + Xn_1X1.

Variables commute, so over Z»> most terms cancel:
e for even variables, dxpx = X2
@ for odd variables, Oxo411 = 0.
Calculation of I—TS(A, () reduces to the computation of
homology H(X) of the algebra X'.

The result H(X) = %2[25;;;(;};‘};3)] is very “fermionic":

@ only “odd spin" strings survive in homology
@ in homology, two odd strings annihilate each other,
)'(22j+1 = 0 (“Pauli exclusion principle")
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@ Fomon = 2m,2n alternating points on boundaries of A
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Further computations

Computations with nonempty sets of marked points:
@ Fomon = 2m,2n alternating points on boundaries of A

—

HS(A, Fo2) is a non-free rank 2 H(X')-module isomorphic to

Zg[...,)_(_g,)_(_1,)_(1,)_(3,...]@)_( 1Z2[...,)_( 3, X_
(o X254, X2, X2,%2,..) (...,)‘(24,3(31
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Further computations

Computations with nonempty sets of marked points:

@ Fomon = 2m,2n alternating points on boundaries of A
Theorem (M.)

I-/I\S(A, Fo2) is a non-free rank 2 H(X')-module isomorphic to

_ i} _ Zo|...,X_3,X_1, %, Xa,
X1 H(X)®X_1 H(X) = % 2l 3 X1 X1, X, ]

X

1 . Zo.
— — === DX_1
(.., X35, X%, X2,X5,...) (.

..y

Theorem (M.)

(Roughly) M = HS(A, Fy.5) is

X2

A0,

N,
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Computations with nonempty sets of marked points:

@ Fomon = 2m,2n alternating points on boundaries of A
Theorem (M.)

I-/I\S(A, Fo2) is a non-free rank 2 H(X')-module isomorphic to

_ i} _ Zo|...,X_3,X_1, %, Xa,
X1 H(X)®X_1 H(X) = % 2l 3 X1 X1, X, ]

X

1 . Zol.
— — === DX_1
(.., X35, X%, X2,X5,...) (.

..y

Theorem (M.)

(Roughly) M = I—IAS(A, F>5) is complicated but has much
explicitly calculated structure.

X2

A0,

N,
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Further computations

Computations with nonempty sets of marked points:

@ Fomon = 2m,2n alternating points on boundaries of A
Theorem (M.)

I-/I\S(A, Fo2) is a non-free rank 2 H(X')-module isomorphic to

_ i} _ Zo|...,X_3,X_1, %, Xa,
X1 H(X)®X_1 H(X) = % 2l 3 X1 X1, X, ]

d - Zs|... X
®X_ 2[ 9

=T ot o 1
(.., X35, X%, X2,X5,...) (.

..y

X2
Theorem (M.)

A0,

(Roughly) M = I—IAS(A, F>5) is complicated but has much
explicitly calculated structure.

Can M be given an explicit presentation?
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Adding more marked points is easy

While the (2,2) case is complicated, it never gets more
complicated!

Forany m,n > 0,

HS(A, Fomizoni2) = (Zo ® Z2)®™™ @z, ML

More work to be done... and connections to be drawn.
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Thanks for listening!
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