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Curves on surfaces

This talk is about some interesting algebraic structure arising
from the topology of curves on surfaces.

Related to various other important fields:
Teichmüller space and surface group representations
Lie bialgebras and quantization
String topology — topology of loop spaces
Symplectic/contact geometry — symplectic field theory,
Floer homology

But the construction itself is very elementary.
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String diagrams on marked surfaces

Definition
A marked surface is a pair (Σ,F ) where

1 Σ is a compact oriented surface with nonempty boundary
2 F is a set of 2n ≥ 0 distinct points on ∂Σ, with n points

labelled “in" and n points labelled “out".

+

-

Definition
A string diagram s on (Σ,F ) is an immersed oriented compact
1-manifold in Σ such that ∂s = F, with all self-intersection in the
interior of Σ.
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A chain complex

Let S(Σ,F ) = {homotopy classes of string diagrams on (Σ,F )}
Let SC(Σ,F ) = {those containing a contractible closed curve}

Definition

ĈS(Σ,F ) =
Z2〈S(Σ,F )〉
Z2〈SC(Σ,F )〉 .

I.e. “set contractible curves to zero".

The differential on ĈS(Σ,F )
resolves intersections:

x

s rx (s)

Definition

∂s =
∑

x crossing of s

rx (s).
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Questions

Some questions immediately arise:
1 Is ∂ well defined?

2 Is (ĈS(Σ,F ), ∂) a chain complex?
3 If so, what is the string homology

ĤS(Σ,F ) =
ker ∂
Im ∂

?

Turns out ĤS(Σ,F ) tends to be trivial unless F is alternating.

Definition
A marked surface (Σ,F ) is alternating if the points of F
alternate in, out, in out, ..., around each boundary component.

But first...
Why this chain complex?

(... apart from being a natural elementary construction...)
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ĤS(Σ,F ) =
ker ∂
Im ∂

?
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ĤS(Σ,F ) =
ker ∂
Im ∂

?
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Teichmüller space and group representations

Goldman in 1984 studied surface group representations and
Teichmüller space.

Let Sg = losed oriented genus g surface, π = π1(Sg).
Teichmüller space Tg = space of marked hyperbolic
structures on Sg . (Turns out Tg ∼= R6g−6.)
A (marked) hyperbolic structure gives a holonomy
representation

ρ : π −→ Isom +H2 = PSL2R = G.

Conversely, ρ : π −→ G defines a point in Tg .
But conjugate representations ρ, AρA−1 give equivalent
hyperbolic structures.
Turns out

Tg ⊂ Hom (π,G)/G (algebraic variety of flat connections).
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Symplectic geometry

This variety Hom (π,G)/G has a natural symplectic structure.
Basic notions of symplectic geometry:

Symplectic: A symplectic form on a 2n-manifold M is a closed
2-form ω such that ωn is a volume form.

Duality: Such ω must be non-degenerate and hence gives an
isomorphism TM −→ T ∗M via v 7→ ω(v , ·).

Hamiltonian dynamics: A smooth function H : M −→ R gives a
1-form dH whose dual is a Hamiltonian vector field XH .
I.e. −dH = ω(XH , ·)

Poisson bracket: Given two functions F ,G : M −→ R we obtain
another function {F ,G} = ω(XF ,XG).
Dual to Lie bracket of vector fields: [XF ,XG] = −X{F ,G}.
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Symplectic geometry of surface group representations

Goldman in 1984 showed that:
T[ρ]Hom (π,G)/G ∼= H1(π; gAd ρ)

Group cohomology of π with coefficients in the Lie algebra
g of G, which is a π-module via π

ρ−→ G Ad−→ g.

Symplectic form ω is given by cup product in cohomology.
Functions F : Tg −→ R give Hamiltonian dynamics XF .

Theorem (Wolpert, 1982)
Let α be a simple loop on Sg and let lα : Tg −→ R be the length
of the geodesic homotopic to α. The corresponding Hamiltonian
vector field Xlα on Tg is the Fenchel-Nielsen twist flow about α.

(Twist flow: Geometry constant on S\α; “Chinese burn" on α.)
Goldman extended this to:

general Hom (π,G)/G and α ∈ π (not just simple)
general conjugation-invariant G −→ R (not just length).
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The Goldman Lie bracket

The results of Wolpert & Goldman thus give maps

ζ : π −→ C∞
(
Tg ,R

)
, more generally −→ C∞ (Hom (π,G)/G,R) .

Now C∞(Tg ,R) is a Lie algebra under Poisson bracket.

Theorem (Goldman 1986)
There is a Lie bracket on Zπ̂ such that the map
ζ : Zπ̂ −→ C∞(Hom (π,G)/G,R) is a Lie algebra
homomorphism.

π̂ = {conj. classes in π} = {homotopy classes of loops on S}.
This Lie bracket on Zπ̂ is now known as the Goldman bracket.

[α, β] =
∑

x∈α∩β
sgn (x)rx (α, β) (resolving intersections)

Our ĈS(Σ,F ) is a generalisation: multiple curves,
endpoints, resolving self-intersections.
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Our ĈS(Σ,F ) is a generalisation: multiple curves,
endpoints, resolving self-intersections.



Introduction Motivations and connections The chain complex and its homology

Lie bialgebras

Lie coalgebras are dual to Lie algebras; bialgebras are both.

Definition (Drinfeld)
A Lie coalgebra is an abelian group g with a map ν : g −→ g⊗ g
such that

σ ◦ ν = −ν, (τ2 + τ + 1) ◦ (id⊗ ν) ◦ ν = 0

where τ : g⊗3 −→ g⊗3 and σ : g⊗2 −→ g⊗2 are order 3 and 2
permutations.

Definition
A Lie bialgebra is a Lie algebra and coalgebra such that

ν ([a,b]) = aν(b)− bν(a).
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The Turaev cobracket

In 1991, Turaev, investigated the relationship between curves
on surfaces and knots and quantization.

Definition
The Turaev cobracket on Zπ̂ is defined by

ν(α) =
∑

x crossing of α

βx ⊗ γx − γx ⊗ βx x

α
βx

γx

(Note ν is designed to be antisymmetric; but we work mod 2, so
we do not need to antisymmetrize!)

Theorem (Turaev 1991)
With the Goldman bracket and Turaev cobracket, Zπ̂ is a Lie
bialgebra.
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Multiple curves and symmetric algebra

From any abelian group g we can form the symmetric algebra

S(g) =
⊕

i≥0

Si(g), Si(g) = i ’th symmetric tensor power of g.

Consider the symmetric algebra S(Zπ̂):
Generated by collections of loops up to homotopy
Multiplication is juxtaposition of loops.
Goldman bracket naturally extends over S(Zπ̂).

Turns out, the Goldman bracket behaves like a derivation.

[ab, c] = a[b, c] + [a, c]b

S(g) forms a Poisson algebra.

Theorem (Turaev 1991)
There is a Poisson algebra homomorphism
S(Zπ̂) −→ C∞(Hom (π,G)/G,R).
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Symplectic field theory

An enormous project initiated by Y. Eliashberg, A. Givental, H.
Hofer in 2000.

Foundations still problematic, huge analytic issues.

The essential idea:

Understand contact and symplectic manifolds by studying
holomorphic curves in them, in the spirit of topological quantum

field theory.

Study moduli spaces of holomorphic curves in
symplectic/contact manifolds.
Develop algebraic machinery encoding structure of moduli
spaces.

Includes Gromov-Witten theory, many previous symplectic
invariants as special cases.
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Contact/symplectic notions

Basic notions of contact geometry:

Contact structure: A contact form λ on a (2n − 1)-manifold Y is
a 1-form such that λ ∧ (dλ)n−1 is a volume form.

Dynamics: ker dλ is 1-dimensional, spanned by a Reeb vector
field Rλ. λ(Rλ) = 1, dλ(Rλ, ·) = 0.

Contact manifolds naturally arise as boundaries or ends of
symplectic manifolds.

Example: Cotangent bundle T ∗Q of a manifold Q

Let qi be coordinates on Q, corresponding fibre
coordinates pi .
Tautological 1-form α =

∑
i pidqi .

Symplectic form ω = dα.
One end ∼= UT ∗Q × [0,∞): unit cotangent bundle is
contact.
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Symplectic cobordisms

Slightly more complicated example: T ∗Q\Q
This has two ends:

A positive end ∼= UT ∗Q × [0,∞) as before.
A negative end ∼= UT ∗Q × (−∞,0] asymptotic to Q.

It turns out there are two distinct types of ends:
Positive ends ∼= Y × [0,∞), where Y contact
Negative ends ∼= Y × (−∞,0]

So we think of symplectic manifolds as directed cobordisms
Y− → Y +.
(For any contact (Y , λ), Y × R has a natural symplectic
structure d(etλ).)
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Holomorphic curves

Symplectic vs complex structures

Almost complex structure: J : TM −→ TM such that J2 = −1.
(Generally non-integrable: (M, J) 6= (Cn, i) locally.)

Complex analysis still works: from J can formulate C-R eqns:
For a Riemann surface (S, i), u : S −→ M is
(pseudo-)holomorphic if Du ◦ i = J ◦ Du.

Thus
Moduli spaces exist : Prescribing sufficient data on

holomorphic curves gives finite-dimensional moduli
spaces, Riemann-Roch holds

M
v

Jv

p

TpM
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Holomorphic curves in symplectic cobordisms

Consider a symplectic manifold (X , ω) of dimension 2n with:
positive end (R+ × Y +, λ+), negative end (R− × Y−, λ−)
(compatible) almost complex structure J.

Consider collections of closed Reeb orbits:
s+ orbits in Y +, Γ+ = (γ+

1 , . . . , γ
+
s+)

s− orbits in Y−, Γ− = (γ−1 , . . . , γ
−
s−)

Definition

MA
g (X ; Γ−, Γ+)

is the moduli space of connected genus g
J-holomorphic curves in homology class
A ∈ H2(M) with s+ + s− punctures
asymptotic to the γ±i .

14

B

W

A

W

Figure 2: A possible splitting of a sequence of holomorphic curves in a completed symplectic
cobordism

talk about convergence of a sequence of curves fk ∈ 1MA
g,r(Γ

−,Γ+;W,J1) (where
the almost complex structure J1 is fixed!) to a 2-story curve (f1, f2), where f1 ∈
1M̃A1

g1,r1(Γ
−,Γ;W1, J1), f2 ∈ 1M̃A2

g2,r2(Γ, Γ̃
+;V ×R, J2)/R, g = g1+g2, r = r1+r2, A =

A1 + A2, and J2 is translationally invariant. It is important to stress the point that
the curve f2 is defined only up to translation.

Theorem 1.6.2 Let fk ∈ 1MA
g (Γ

−,Γ+), k = 1, . . . , be a sequence of stable holo-
morphic curves in a (complete) directed symplectic cobordism W . Then there exists a
chain of directed symplectic cobordisms

A1, . . . , Aa,W,B1, . . . , Bb,

where all cobordisms Ai and Bi are cylindrical, and a stable curve f∞ of height a+b+1
in this chain such that a subsequence of {fi} converges to f∞. See Fig. 2.

Theorem 1.6.3 Let W be a completed directed symplectic cobordism, V ⊂ W a
contact hypersurface, and Jk a sequence of compatible almost complex structures on
W which realizes the splitting of W along V into two directed symplectic cobordisms

(Source: Eliashberg-Givental-Hofer)
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Moduli spaces

Eliashberg-Givental-Hofer considered the compactification of
these moduli spaces: “multi-level" holomorphic curves including
curves in the ends R± × Y±. 14
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SFT formalism

SFT algebraic formalism encodes holomorphic curve
behaviour. We’ll give a technicality-free (wrong) version.

For holomorphic curves in R× Y :
to each closed Reeb orbit γ associate graded formal
variables pγ ,qγ ; let multiplicity be κγ
introduce formal variables p =

∑
γ

1
κγ

pγγ, q =
∑

γ
1
κγ

qγγ
let ng(Γ−, Γ+) ∈ Q be the algebraic count of points in
M(R× Y ; Γ−, Γ+)/R, when it exists
define the correlator

−1〈q, . . . ,q︸ ︷︷ ︸
s−

; p . . . ,p︸ ︷︷ ︸
s+

〉g =
∑

|Γ±|=s±
ng(Γ−, Γ+)qΓ−

pΓ+

define the Hamiltonians

Hg =
∑

s−,s+

1
s−!s+!

−1〈q, . . . ,q︸ ︷︷ ︸
s−

; p . . . ,p︸ ︷︷ ︸
s+

〉g , H =
1
~

∞∑

g=0

Hg~g .
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introduce formal variables p =
∑

γ
1
κγ

pγγ, q =
∑

γ
1
κγ

qγγ
let ng(Γ−, Γ+) ∈ Q be the algebraic count of points in
M(R× Y ; Γ−, Γ+)/R, when it exists
define the correlator

−1〈q, . . . ,q︸ ︷︷ ︸
s−

; p . . . ,p︸ ︷︷ ︸
s+

〉g =
∑

|Γ±|=s±
ng(Γ−, Γ+)qΓ−

pΓ+

define the Hamiltonians

Hg =
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s−,s+

1
s−!s+!
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〉g , H =
1
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LetW be a Weyl algebra of power series in pγ ,qγ , ~.

All
variables (super-)commute except pγ ,qγ satisfy

pγ ∗ qγ − (−1)|pγ ||qγ |qγ ∗ pγ = κγ~.

Theorem (Eliashberg–Givental–Hofer)

The Hamiltonian H ∈ 1
~W satisfies

H ∗ H = 0.
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SFT formalism

Develop a similar formalism for a general symplectic cobordism
X with ends (R± × Y±, λ±):

algebraic counts ng(X ; Γ−, Γ+) ∈ Q ofMg(X ; Γ−, Γ+)
correlators

0〈q, . . . ,q︸ ︷︷ ︸
s−

; p . . . ,p︸ ︷︷ ︸
s+

〉g =
∑

|Γ±|=s±
ng(X ; Γ−, Γ+)qΓ−

pΓ+

the potentials

Fg =
∑

s−,s+

1
s−!s+!

0〈q, . . . ,q︸ ︷︷ ︸
s−

; p . . . ,p︸ ︷︷ ︸
s+

〉g , F =
1
~

∞∑

g=0

Fg~g .

Consider space D of power series in ~,p+
γ ,q−γ .

Weyl algebrasW± act as differential operators on D via

q+
γ 7→ κγ~

←−−
∂

∂p+
γ
, p−γ 7→ κγ~

−−→
∂

∂q−γ
.
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SFT formalism

Hg =
∑

s−,s+

1
s−!s+!

−1〈q, . . . ,q︸ ︷︷ ︸
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s+
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1
~
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Fg =
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1
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~
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Theorem (Eliashberg-Givental-Hofer)

The potential F ∈ 1
~D satisfies the master equation

eF←−H+ −
−→
H−eF = 0.
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Curves with boundary

Cieliebak–Latschev in 2007 generalised to consider

Mg,k (X ,Q; Γ−, Γ+)

curves in (X , ω) between (Y±, λ±) with k boundary
components on a Lagrangian submanifold Q.

cg,k (X ; Γ−, Γ+) the sequence of loops in Q traced out by
boundaries. (In fact lies in C∗({loops}, constk ).)
correlators

〈q, . . . ,q︸ ︷︷ ︸
s−

; p . . . ,p︸ ︷︷ ︸
s+

〉X ,Qg,k =
∑

|Γ±|=s±
cg,k (X ; Γ−, Γ+)qΓ−

pΓ+

Potentials

Lg =
∑

s−,s+,k

1
s−!s+!k !

〈q, . . . ,q︸ ︷︷ ︸
s−

; p . . . ,p︸ ︷︷ ︸
s+

〉X ,Qg,k , L =
1
~

∞∑

g=0

Lg~g .
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SFT formalism meets string topology

Theorem (Cieliebak–Latschev)
The potential L satisfies the generalised master equation

(∂ + ∆ + ~∇) eL = eL←−H+ −
−→
H−eL,

Here ∆,∇ are string operations.
∆ resolves a string at a
self-intersection.
∇ glues two strings at an
intersection.

Codimension-1 phenomena at the
boundary of holomorphic curves
are Goldman bracket and Turaev

cobracket. Figure 3: Codimension 1 phenomena near the boundary

∇. The third one is the shrinking of a boundary loop to a point, which leads to
a chain with image in constk ⊂ Σk. This part of the boundary is set to zero by
working with relative chains.

We point out that, as an abstract manifold, a moduli space in L has other
codimension 1 boundary components, e.g. breaking off of higher dimensional
moduli spaces in a symplectization R × Y ±. However, under evaluation at
the boundary loops all these moduli spaces lead to degenerate chains in Σk,
i.e. chains that factor through chains of lower dimension, and therefore do not
appear in the master equation.

Technical remarks

Theorem 3.1 is conjectural at this point, as it requires analytic results even beyond
those needed for the discussion of SFT. However, there are clear strategies for attacking
the basic issues.

The discussion of coherent orientations should reduce to a careful combination of the
results in [3] for the SFT case and [19] for the case of disks without punctures. There
is one new phenomenon which has not been described in the literature yet, which
deals with “self-gluing” at a transversal self-intersection of a boundary curve as in the
operation ∆. We expect to treat orientations completely in [9].

The necessary compactness results essentially reduce to a combination of standard SFT
compactness [2] and the observation that our exactness assumption rules out bubbling

11

(Source: Cieliebak-Latschev)
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Back to curves on surfaces

Recall our marked surfaces (Σ,F ), string diagrams, and the
chain complex:

Definition

ĈS(Σ,F ) =
Z2〈S(Σ,F )〉
Z2〈SC(Σ,F )〉 , ∂s =

∑

x crossing of s

rx (s).

We see that ∂:
reduces to the Goldman bracket [α, β] for two simple
curves
reduces to and Turaev cobracket ν(α) for a single curve
allows multiple curves: incorporates symmetric algebra of
loops S(Zπ̂) in Turaev’s Poisson algebra homomorphism
describes holomorphic curve boundary phenomena, as in
Cieliebak–Latschev generalised master equation.
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Well-definition

First show that chain complex is well-defined.

Checking this amounts to showing ∂ unchanged by “string
Reidemeister moves". E.g.:

←→ ←→

∂

0 ←→ + 0 ←→ +

This shows why mod 2 is so useful...
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Well-definition

And also...

←→

s0 s1

∂

0 ←→

This shows why contractible strings must be set to zero.
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Calculations of homology

Some results are known for discs and annuli:

Turns out that whether points F are alternating is
important.

Theorem (M.)
If F is not alternating and

1 there are two non-alternating points on a single boundary
component, or

2 Σ is an annulus
then ĤS(Σ,F ) = 0.

Question

For any non-alternating F , is ĤS(Σ,F ) = 0?
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Non-alternating marked points

Proposition
If F has two consecutive points of the same sign, then
ĤS(Σ,F ) = 0.

Proof
Consider the switching operation on string diagrams

W : ĈS(Σ,F ) −→ ĈS(Σ,F ).

W : ĈS(Σ,F )

−→ ĈS(Σ,F ) p

q W

p

q
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Non-alternating marked points

Proof.

W : ĈS(Σ,F )

−→ ĈS(Σ,F ) p

q W

p

q

Now consider ∂Ws:

∂ s = s + ∂s

∂Ws = s + W∂s

Thus W is a chain homotopy from 1 to 0, and ĤS(Σ,F ) = 0.
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String homology of discs

Theorem (M.–Schoenfeld)
For alternating F ,

ĤS(D2,F ) ∼= Z2〈Sutures on (Σ,F )〉
Bypass relation

Definition
A set of sutures Γ on (Σ,F ) is an embedded string diagram that
splits Σ into alternating positive and negative regions.

+
-

- +
+???

Sets of sutures only exist for alternating (Σ,F ).
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Bypass relation

If a set of sutures contains a disc which looks like

there are two natural ways to adjust it, giving a bypass triple.

Γ′ Γ Γ′′

The bypass relation says bypass triples sum to zero.

Γ′ + Γ + Γ′′ = 0.

So ĤS(D2,F ) is generated by string diagrams of sutures,
modulo this relation.



Introduction Motivations and connections The chain complex and its homology

Bypass relation

If a set of sutures contains a disc which looks like

there are two natural ways to adjust it, giving a bypass triple.

Γ′ Γ Γ′′

The bypass relation says bypass triples sum to zero.

Γ′ + Γ + Γ′′ = 0.
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Bypass relation as a boundary

A “reason" why the theorem is plausible:

∂ = + +

Hence relations in ĤS(Σ,F ) are like the bypass relation.
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Another relationship to holomorphic curves

Theorem (M.–Schoenfeld)

ĤS(D2,F ) ∼= SFH(D2×S1,F×S1)

(
∼= Z2〈Sutures on (Σ,F )〉

Bypass relation

)

SFH = sutured Floer homology, an invariant of sutured
3-manifolds.

Defined by counting holomorphic curves in a space related
to Heegaard decomposition

The isomorphism is explicit:
Sutures on (D2,F ) give a contact structure on
(D2 × S1,F × S1)

Contact structures give elements of SFH.
So ĤS(Σ,F ) directly encodes contact geometry.
(SFH(D2 × S1,F × S1) ∼= sutures

bypasses was known earlier.)
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Results for annuli

Recent work has given some calculations for annuli.

Theorem (M.)

For a marked annulus (A, ∅) with no marked points

ĤS(A, ∅) =
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2
−3, x̄

2
−1, x̄

2
1 , x̄

2
3 , . . .)

= H(X ).

I.e. a polynomial ring in infinitely many variables squaring to 0.
For each n ∈ Z, xn is the string which traverses the annulus n
times; x̄n its homology class.

x−1 x1 x2
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Reduction to algebra

It’s not too difficult to see that

ĈS(A, ∅) = Z2[. . . , x−2, x−1, x1, x2, . . .] = X
a polynomial algebra,

and upon resolving intersections, (n > 0)

∂xn = x1xn−1 + x2xn−2 + · · ·+ xn−1x1.

Variables commute, so over Z2 most terms cancel:
for even variables, ∂x2k = x2

k
for odd variables, ∂x2k+1 = 0.

Calculation of ĤS(A, ∅) reduces to the computation of
homology H(X ) of the algebra X .
The result H(X ) =

Z2[...,x̄−3,x̄−1,x̄1,x̄3,...]

(...,x̄2
−3,x̄

2
−1,x̄

2
1 ,x̄

2
3 ,...)

is very “fermionic":

only “odd spin" strings survive in homology
in homology, two odd strings annihilate each other,
x̄2

2j+1 = 0 (“Pauli exclusion principle")
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Further computations

Computations with nonempty sets of marked points:
F2m,2n = 2m,2n alternating points on boundaries of A

Theorem (M.)

ĤS(A,F0,2) is a non-free rank 2 H(X )-module isomorphic to

x̄1H(X )⊕x̄−1H(X ) ∼= x̄1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2
−3, x̄

2
−1, x̄

2
1 , x̄

2
3 , . . .)

⊕x̄−1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2
−3, x̄

2
−1, x̄

2
1 , x̄

2
3 , . . .)

).

Theorem (M.)

(Roughly) M = ĤS(A,F2,2) is complicated but has much
explicitly calculated structure.

Question
Can M be given an explicit presentation?
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Adding more marked points is easy

While the (2,2) case is complicated, it never gets more
complicated!

Theorem
For any m,n ≥ 0,

ĤS(A,F2m+2,2n+2) ∼= (Z2 ⊕ Z2)⊗(m+n) ⊗Z2 M.

More work to be done... and connections to be drawn.
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Thanks for listening!
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