◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Strings, fermions and the topology of curves on surfaces

Daniel V. Mathews

Monash University Daniel.Mathews@monash.edu

Algebra/Geometry/Topology Seminar University of Melbourne 24 October 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

- Curves on surfaces
- A chain complex
- 2 Motivations and connections
- The chain complex and its homology

The chain complex and its homology

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Curves on surfaces

This talk is about some interesting algebraic structure arising from the topology of curves on surfaces.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Curves on surfaces

This talk is about some interesting algebraic structure arising from the topology of curves on surfaces.

Related to various other important fields:

- Teichmüller space and surface group representations
- Lie bialgebras and quantization
- String topology topology of loop spaces
- Symplectic/contact geometry symplectic field theory, Floer homology

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Curves on surfaces

This talk is about some interesting algebraic structure arising from the topology of curves on surfaces.

Related to various other important fields:

- Teichmüller space and surface group representations
- Lie bialgebras and quantization
- String topology topology of loop spaces
- Symplectic/contact geometry symplectic field theory, Floer homology
- But the construction itself is very elementary.

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

String diagrams on marked surfaces

Definition

A marked surface is a pair (Σ, F) where

- $\mathbf{0} \, \Sigma$ is a compact oriented surface with nonempty boundary
- **2** *F* is a set of $2n \ge 0$ distinct points on $\partial \Sigma$, with n points labelled "in" and n points labelled "out".

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

String diagrams on marked surfaces

Definition

A marked surface is a pair (Σ, F) where

- \bigcirc Σ is a compact oriented surface with nonempty boundary
- P is a set of 2n ≥ 0 distinct points on ∂Σ, with n points labelled "in" and n points labelled "out".

String diagrams on marked surfaces

Definition

A marked surface is a pair (Σ, F) where

- $\odot \Sigma$ is a compact oriented surface with nonempty boundary
- P is a set of 2n ≥ 0 distinct points on ∂Σ, with n points labelled "in" and n points labelled "out".

Definition

A string diagram s on (Σ, F) is an immersed oriented compact 1-manifold in Σ such that $\partial s = F$, with all self-intersection in the interior of Σ .

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A chain complex

Let $S(\Sigma, F) = \{$ homotopy classes of string diagrams on $(\Sigma, F) \}$ Let $S_C(\Sigma, F) = \{$ those containing a contractible closed curve $\}$

The chain complex and its homology

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

A chain complex

Let $S(\Sigma, F) = \{$ homotopy classes of string diagrams on $(\Sigma, F) \}$ Let $S_C(\Sigma, F) = \{$ those containing a contractible closed curve $\}$

Definition

$$\widehat{CS}(\Sigma,F) = rac{\mathbb{Z}_2 \langle \mathcal{S}(\Sigma,F) \rangle}{\mathbb{Z}_2 \langle \mathcal{S}_C(\Sigma,F) \rangle}.$$

I.e. "set contractible curves to zero".

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A chain complex

Let $S(\Sigma, F) = \{$ homotopy classes of string diagrams on $(\Sigma, F) \}$ Let $S_C(\Sigma, F) = \{$ those containing a contractible closed curve $\}$

Definition

$$\widehat{CS}(\Sigma,F) = rac{\mathbb{Z}_2 \langle \mathcal{S}(\Sigma,F)
angle}{\mathbb{Z}_2 \langle \mathcal{S}_C(\Sigma,F)
angle}.$$

I.e. "set contractible curves to zero". The differential on $\widehat{CS}(\Sigma, F)$ resolves intersections:

The chain complex and its homology

A chain complex

Let $S(\Sigma, F) = \{$ homotopy classes of string diagrams on $(\Sigma, F) \}$ Let $S_C(\Sigma, F) = \{$ those containing a contractible closed curve $\}$

Definition

$$\widehat{CS}(\Sigma,F) = rac{\mathbb{Z}_2 \langle \mathcal{S}(\Sigma,F) \rangle}{\mathbb{Z}_2 \langle \mathcal{S}_C(\Sigma,F) \rangle}.$$

I.e. "set contractible curves to zero". The differential on $\widehat{CS}(\Sigma, F)$ resolves intersections:

Definition

$$\partial s = \sum_{x \text{ crossing of } s} r_x(s).$$

The chain complex and its homology

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Questions

Some questions immediately arise:

• Is ∂ well defined?

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Questions

Some questions immediately arise:

- Is ∂ well defined?
- **2** Is $(\widehat{CS}(\Sigma, F), \partial)$ a chain complex?

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Questions

Some questions immediately arise:

- Is ∂ well defined?
- **2** Is $(\widehat{CS}(\Sigma, F), \partial)$ a chain complex?
- If so, what is the string homology

$$\widehat{HS}(\Sigma,F) = rac{\ker\partial}{\operatorname{Im}\partial}$$
 ?

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Questions

Some questions immediately arise:

- **1** Is ∂ well defined?
- **2** Is $(\widehat{CS}(\Sigma, F), \partial)$ a chain complex?
- If so, what is the string homology

$$\widehat{HS}(\Sigma, F) = rac{\ker \partial}{\operatorname{Im} \partial}$$
 ?

Turns out $\widehat{HS}(\Sigma, F)$ tends to be trivial unless F is alternating.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Questions

Some questions immediately arise:

- **1** Is ∂ well defined?
- **2** Is $(\widehat{CS}(\Sigma, F), \partial)$ a chain complex?
- If so, what is the string homology

$$\widehat{HS}(\Sigma,F) = rac{\ker\partial}{\operatorname{Im}\partial}$$
 ?

Turns out $\widehat{HS}(\Sigma, F)$ tends to be trivial unless F is alternating.

Definition

A marked surface (Σ, F) is alternating if the points of F alternate in, out, in out, ..., around each boundary component.

Questions

Some questions immediately arise:

- **1** Is ∂ well defined?
- Is $(\widehat{CS}(\Sigma, F), \partial)$ a chain complex?
- If so, what is the string homology

$$\widehat{HS}(\Sigma, F) = rac{\ker \partial}{\operatorname{Im} \partial}$$
 ?

Turns out $\widehat{HS}(\Sigma, F)$ tends to be trivial unless F is alternating.

Definition

A marked surface (Σ, F) is alternating if the points of F alternate in, out, in out, ..., around each boundary component.

But first...

- Why this chain complex?
- (... apart from being a natural elementary construction...)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Introduction

2 Motivations and connections

- Goldman bracket, Teichmüller space, and surface group representations
- The Turaev cobracket
- Symplectic field theory
- The chain complex and its homology

The chain complex and its homology

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Teichmüller space and group representations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Teichmüller space and group representations

Goldman in 1984 studied surface group representations and Teichmüller space.

• Let S_g = losed oriented genus g surface, $\pi = \pi_1(S_g)$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Teichmüller space and group representations

- Let S_g = losed oriented genus g surface, $\pi = \pi_1(S_g)$.
- Teichmüller space \mathcal{T}_g = space of marked hyperbolic structures on S_g . (Turns out $\mathcal{T}_g \cong \mathbb{R}^{6g-6}$.)

(ロ) (同) (三) (三) (三) (○) (○)

Teichmüller space and group representations

- Let S_g = losed oriented genus g surface, $\pi = \pi_1(S_g)$.
- Teichmüller space \mathcal{T}_g = space of marked hyperbolic structures on S_g . (Turns out $\mathcal{T}_g \cong \mathbb{R}^{6g-6}$.)
- A (marked) hyperbolic structure gives a holonomy representation

$$\rho: \pi \longrightarrow \mathsf{Isom}^+ \mathbb{H}^2 = \mathsf{PSL}_2 \mathbb{R} = \mathsf{G}.$$

(ロ) (同) (三) (三) (三) (○) (○)

Teichmüller space and group representations

- Let S_g = losed oriented genus g surface, $\pi = \pi_1(S_g)$.
- Teichmüller space *T_g* = space of marked hyperbolic structures on *S_g*. (Turns out *T_g* ≅ ℝ^{6g-6}.)
- A (marked) hyperbolic structure gives a holonomy representation

$$\rho: \pi \longrightarrow \mathsf{Isom}^+ \mathbb{H}^2 = \mathsf{PSL}_2 \mathbb{R} = \mathsf{G}.$$

- Conversely, $\rho: \pi \longrightarrow G$ defines a point in \mathcal{T}_{g} .
- But conjugate representations ρ, AρA⁻¹ give equivalent hyperbolic structures.

Teichmüller space and group representations

Goldman in 1984 studied surface group representations and Teichmüller space.

- Let S_g = losed oriented genus g surface, $\pi = \pi_1(S_g)$.
- Teichmüller space \mathcal{T}_g = space of marked hyperbolic structures on S_g . (Turns out $\mathcal{T}_g \cong \mathbb{R}^{6g-6}$.)
- A (marked) hyperbolic structure gives a holonomy representation

$$\rho: \pi \longrightarrow \mathsf{Isom}^+ \mathbb{H}^2 = \mathsf{PSL}_2 \mathbb{R} = \mathsf{G}.$$

- Conversely, $\rho: \pi \longrightarrow G$ defines a point in \mathcal{T}_g .
- But conjugate representations ρ, AρA⁻¹ give equivalent hyperbolic structures.
- Turns out

 $\mathcal{T}_{g} \subset \text{Hom}(\pi, G)/G$ (algebraic variety of flat connections).

The chain complex and its homology

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Symplectic geometry

This variety Hom $(\pi, G)/G$ has a natural symplectic structure. Basic notions of symplectic geometry:

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Symplectic geometry

This variety Hom $(\pi, G)/G$ has a natural symplectic structure. Basic notions of symplectic geometry:

Symplectic: A symplectic form on a 2*n*-manifold *M* is a closed 2-form ω such that ω^n is a volume form.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Symplectic geometry

This variety Hom $(\pi, G)/G$ has a natural symplectic structure. Basic notions of symplectic geometry:

Symplectic: A symplectic form on a 2*n*-manifold *M* is a closed 2-form ω such that ω^n is a volume form.

Duality: Such ω must be non-degenerate and hence gives an isomorphism $TM \longrightarrow T^*M$ via $v \mapsto \omega(v, \cdot)$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Symplectic geometry

This variety Hom $(\pi, G)/G$ has a natural symplectic structure. Basic notions of symplectic geometry:

Symplectic: A symplectic form on a 2*n*-manifold *M* is a closed 2-form ω such that ω^n is a volume form.

Duality: Such ω must be non-degenerate and hence gives an isomorphism $TM \longrightarrow T^*M$ via $v \mapsto \omega(v, \cdot)$.

Hamiltonian dynamics: A smooth function $H : M \longrightarrow \mathbb{R}$ gives a 1-form dH whose dual is a Hamiltonian vector field X_H . I.e. $-dH = \omega(X_H, \cdot)$

Symplectic geometry

This variety Hom $(\pi, G)/G$ has a natural symplectic structure. Basic notions of symplectic geometry:

Symplectic: A symplectic form on a 2*n*-manifold *M* is a closed 2-form ω such that ω^n is a volume form.

Duality: Such ω must be non-degenerate and hence gives an isomorphism $TM \longrightarrow T^*M$ via $v \mapsto \omega(v, \cdot)$.

Hamiltonian dynamics: A smooth function $H : M \longrightarrow \mathbb{R}$ gives a 1-form dH whose dual is a Hamiltonian vector field X_H . I.e. $-dH = \omega(X_H, \cdot)$

Poisson bracket: Given two functions $F, G: M \longrightarrow \mathbb{R}$ we obtain another function $\{F, G\} = \omega(X_F, X_G)$. Dual to Lie bracket of vector fields: $[X_F, X_G] = -X_{\{F, G\}}$.

(日)

Symplectic geometry of surface group representations

Goldman in 1984 showed that:

- $T_{[\rho]}$ Hom $(\pi, G)/G \cong H^1(\pi; \mathfrak{g}_{\operatorname{Ad} \rho})$
- Group cohomology of π with coefficients in the Lie algebra g of G, which is a π-module via π → G → G → g.

(日)

Symplectic geometry of surface group representations

Goldman in 1984 showed that:

- $T_{[\rho]}$ Hom $(\pi, G)/G \cong H^1(\pi; \mathfrak{g}_{\operatorname{Ad} \rho})$
- Group cohomology of π with coefficients in the Lie algebra \mathfrak{g} of G, which is a π -module via $\pi \xrightarrow{\rho} G \xrightarrow{\operatorname{Ad}} \mathfrak{g}$.
- Symplectic form ω is given by cup product in cohomology.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Symplectic geometry of surface group representations

Goldman in 1984 showed that:

- $T_{[\rho]}$ Hom $(\pi, G)/G \cong H^1(\pi; \mathfrak{g}_{\operatorname{Ad} \rho})$
- Group cohomology of π with coefficients in the Lie algebra \mathfrak{g} of G, which is a π -module via $\pi \xrightarrow{\rho} G \xrightarrow{\operatorname{Ad}} \mathfrak{g}$.
- Symplectic form ω is given by cup product in cohomology.

Functions $F : \mathcal{T}_g \longrightarrow \mathbb{R}$ give Hamiltonian dynamics X_F .

Symplectic geometry of surface group representations

Goldman in 1984 showed that:

- $T_{[\rho]}$ Hom $(\pi, G)/G \cong H^1(\pi; \mathfrak{g}_{\operatorname{Ad} \rho})$
- Group cohomology of π with coefficients in the Lie algebra \mathfrak{g} of G, which is a π -module via $\pi \xrightarrow{\rho} G \xrightarrow{\operatorname{Ad}} \mathfrak{g}$.
- Symplectic form ω is given by cup product in cohomology. Functions $F : \mathcal{T}_g \longrightarrow \mathbb{R}$ give Hamiltonian dynamics X_F .

Theorem (Wolpert, 1982)

Let α be a simple loop on S_g and let $I_{\alpha} : \mathcal{T}_g \longrightarrow \mathbb{R}$ be the length of the geodesic homotopic to α . The corresponding Hamiltonian vector field $X_{I_{\alpha}}$ on \mathcal{T}_g is the Fenchel-Nielsen twist flow about α .

(Twist flow: Geometry constant on $S \setminus \alpha$; "Chinese burn" on α .)

500

Symplectic geometry of surface group representations

Goldman in 1984 showed that:

- $T_{[\rho]}$ Hom $(\pi, G)/G \cong H^1(\pi; \mathfrak{g}_{\operatorname{Ad} \rho})$
- Group cohomology of π with coefficients in the Lie algebra \mathfrak{g} of G, which is a π -module via $\pi \xrightarrow{\rho} G \xrightarrow{\operatorname{Ad}} \mathfrak{g}$.
- Symplectic form ω is given by cup product in cohomology. Functions $F : \mathcal{T}_q \longrightarrow \mathbb{R}$ give Hamiltonian dynamics X_F .

Theorem (Wolpert, 1982)

Let α be a simple loop on S_g and let $I_{\alpha} : \mathcal{T}_g \longrightarrow \mathbb{R}$ be the length of the geodesic homotopic to α . The corresponding Hamiltonian vector field $X_{I_{\alpha}}$ on \mathcal{T}_g is the Fenchel-Nielsen twist flow about α .

(Twist flow: Geometry constant on $S \setminus \alpha$; "Chinese burn" on α .) Goldman extended this to:

- general Hom $(\pi, G)/G$ and $\alpha \in \pi$ (not just simple)
- general conjugation-invariant $G \longrightarrow \mathbb{R}$ (not just length).

The chain complex and its homology

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Goldman Lie bracket

The results of Wolpert & Goldman thus give maps

 $\zeta:\pi\longrightarrow \mathcal{C}^{\infty}\left(\mathcal{T}_{g},\mathbb{R}
ight),\quad ext{more generally}\longrightarrow \mathcal{C}^{\infty}\left(ext{Hom}\left(\pi,\mathcal{G}
ight)/\mathcal{G},\mathbb{R}
ight).$
The chain complex and its homology

(ロ) (同) (三) (三) (三) (三) (○) (○)

The Goldman Lie bracket

The results of Wolpert & Goldman thus give maps

 $\zeta : \pi \longrightarrow C^{\infty}(\mathcal{T}_g, \mathbb{R})$, more generally $\longrightarrow C^{\infty}(\operatorname{Hom}(\pi, G)/G, \mathbb{R})$. Now $C^{\infty}(\mathcal{T}, \mathbb{R})$ is a Lie algebra under Peisson bracket

Now $C^{\infty}(\mathcal{T}_g, \mathbb{R})$ is a Lie algebra under Poisson bracket.

The chain complex and its homology

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The Goldman Lie bracket

The results of Wolpert & Goldman thus give maps

 $\zeta: \pi \longrightarrow \mathcal{C}^{\infty}\left(\mathcal{T}_{g}, \mathbb{R}\right), \text{ more generally } \longrightarrow \mathcal{C}^{\infty}\left(\operatorname{Hom}\left(\pi, \mathcal{G}\right)/\mathcal{G}, \mathbb{R}\right).$

Now $C^{\infty}(\mathcal{T}_g, \mathbb{R})$ is a Lie algebra under Poisson bracket.

Theorem (Goldman 1986)

There is a Lie bracket on $\mathbb{Z}\hat{\pi}$ such that the map $\zeta : \mathbb{Z}\hat{\pi} \longrightarrow C^{\infty}(Hom(\pi, G)/G, \mathbb{R})$ is a Lie algebra homomorphism.

 $\widehat{\pi} = \{ \text{conj. classes in } \pi \} = \{ \text{homotopy classes of loops on } S \}.$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The Goldman Lie bracket

The results of Wolpert & Goldman thus give maps

 $\zeta: \pi \longrightarrow \mathcal{C}^{\infty}\left(\mathcal{T}_{g}, \mathbb{R}\right), \text{ more generally } \longrightarrow \mathcal{C}^{\infty}\left(\operatorname{Hom}\left(\pi, \mathcal{G}\right)/\mathcal{G}, \mathbb{R}\right).$

Now $C^{\infty}(\mathcal{T}_g, \mathbb{R})$ is a Lie algebra under Poisson bracket.

Theorem (Goldman 1986)

There is a Lie bracket on $\mathbb{Z}\hat{\pi}$ such that the map $\zeta : \mathbb{Z}\hat{\pi} \longrightarrow C^{\infty}(Hom(\pi, G)/G, \mathbb{R})$ is a Lie algebra homomorphism.

 $\widehat{\pi} = \{\text{conj. classes in } \pi\} = \{\text{homotopy classes of loops on } S\}.$ This Lie bracket on $\mathbb{Z}\widehat{\pi}$ is now known as the Goldman bracket.

$$[\alpha, \beta] = \sum_{x \in \alpha \cap \beta} \operatorname{sgn}(x) r_x(\alpha, \beta)$$
 (resolving intersections)

The Goldman Lie bracket

The results of Wolpert & Goldman thus give maps

 $\zeta: \pi \longrightarrow \mathcal{C}^{\infty}\left(\mathcal{T}_{g}, \mathbb{R}\right), \quad \text{more generally} \longrightarrow \mathcal{C}^{\infty}\left(\text{Hom}\left(\pi, \mathcal{G}\right)/\mathcal{G}, \mathbb{R}\right).$

Now $C^{\infty}(\mathcal{T}_g, \mathbb{R})$ is a Lie algebra under Poisson bracket.

Theorem (Goldman 1986)

There is a Lie bracket on $\mathbb{Z}\hat{\pi}$ such that the map $\zeta : \mathbb{Z}\hat{\pi} \longrightarrow C^{\infty}(Hom(\pi, G)/G, \mathbb{R})$ is a Lie algebra homomorphism.

 $\widehat{\pi} = \{\text{conj. classes in } \pi\} = \{\text{homotopy classes of loops on } S\}.$ This Lie bracket on $\mathbb{Z}\widehat{\pi}$ is now known as the Goldman bracket.

$$[\alpha, \beta] = \sum_{x \in \alpha \cap \beta} \operatorname{sgn}(x) r_x(\alpha, \beta)$$
 (resolving intersections)

The chain complex and its homology

Lie bialgebras

Lie coalgebras are dual to Lie algebras; bialgebras are both.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lie bialgebras

Lie coalgebras are dual to Lie algebras; bialgebras are both.

Definition (Drinfeld)

A Lie coalgebra is an abelian group \mathfrak{g} with a map $\nu : \mathfrak{g} \longrightarrow \mathfrak{g} \otimes \mathfrak{g}$ such that

$$\sigma \circ \nu = -\nu, \quad (\tau^2 + \tau + 1) \circ (id \otimes \nu) \circ \nu = 0$$

where $\tau : \mathfrak{g}^{\otimes 3} \longrightarrow \mathfrak{g}^{\otimes 3}$ and $\sigma : \mathfrak{g}^{\otimes 2} \longrightarrow \mathfrak{g}^{\otimes 2}$ are order 3 and 2 permutations.

Lie bialgebras

Lie coalgebras are dual to Lie algebras; bialgebras are both.

Definition (Drinfeld)

A Lie coalgebra is an abelian group \mathfrak{g} with a map $\nu : \mathfrak{g} \longrightarrow \mathfrak{g} \otimes \mathfrak{g}$ such that

$$\sigma \circ \nu = -\nu, \quad (\tau^2 + \tau + 1) \circ (\mathit{id} \otimes \nu) \circ \nu = 0$$

where $\tau : \mathfrak{g}^{\otimes 3} \longrightarrow \mathfrak{g}^{\otimes 3}$ and $\sigma : \mathfrak{g}^{\otimes 2} \longrightarrow \mathfrak{g}^{\otimes 2}$ are order 3 and 2 permutations.

Definition

A Lie bialgebra is a Lie algebra and coalgebra such that

$$\nu\left([a,b]\right) = a\nu(b) - b\nu(a).$$

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Turaev cobracket

In 1991, Turaev, investigated the relationship between curves on surfaces and *knots* and *quantization*.

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Turaev cobracket

In 1991, Turaev, investigated the relationship between curves on surfaces and *knots* and *quantization*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Turaev cobracket

In 1991, Turaev, investigated the relationship between curves on surfaces and *knots* and *quantization*.

(Note ν is designed to be antisymmetric; but we work mod 2, so we do not need to antisymmetrize!)

The Turaev cobracket

In 1991, Turaev, investigated the relationship between curves on surfaces and *knots* and *quantization*.

(Note ν is designed to be antisymmetric; but we work mod 2, so we do not need to antisymmetrize!)

Theorem (Turaev 1991)

With the Goldman bracket and Turaev cobracket, $\mathbb{Z}\widehat{\pi}$ is a Lie bialgebra.

The chain complex and its homology

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Multiple curves and symmetric algebra

From any abelian group ${\mathfrak g}$ we can form the symmetric algebra

$$\mathcal{S}(\mathfrak{g}) = igoplus_{i \geq 0} \mathcal{S}^i(\mathfrak{g}), \quad \mathcal{S}^i(\mathfrak{g}) = i$$
'th symmetric tensor power of \mathfrak{g} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Multiple curves and symmetric algebra

From any abelian group ${\mathfrak g}$ we can form the symmetric algebra

$$\mathcal{S}(\mathfrak{g}) = igoplus_{i \geq 0} \mathcal{S}^i(\mathfrak{g}), \quad \mathcal{S}^i(\mathfrak{g}) = i$$
'th symmetric tensor power of \mathfrak{g} .

Consider the symmetric algebra $S(\mathbb{Z}\hat{\pi})$:

- Generated by collections of loops up to homotopy
- Multiplication is juxtaposition of loops.
- Goldman bracket naturally extends over $S(\mathbb{Z}\hat{\pi})$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Multiple curves and symmetric algebra

From any abelian group ${\mathfrak g}$ we can form the symmetric algebra

$$\mathcal{S}(\mathfrak{g}) = igoplus_{i \geq 0} \mathcal{S}^i(\mathfrak{g}), \quad \mathcal{S}^i(\mathfrak{g}) = i$$
'th symmetric tensor power of \mathfrak{g} .

Consider the symmetric algebra $S(\mathbb{Z}\hat{\pi})$:

- Generated by collections of loops up to homotopy
- Multiplication is juxtaposition of loops.
- Goldman bracket naturally extends over $S(\mathbb{Z}\hat{\pi})$.

Turns out, the Goldman bracket behaves like a derivation.

$$[ab,c] = a[b,c] + [a,c]b$$

 $S(\mathfrak{g})$ forms a Poisson algebra.

Multiple curves and symmetric algebra

From any abelian group ${\mathfrak g}$ we can form the symmetric algebra

$$\mathcal{S}(\mathfrak{g}) = igoplus_{i \geq 0} \mathcal{S}^i(\mathfrak{g}), \quad \mathcal{S}^i(\mathfrak{g}) = i$$
'th symmetric tensor power of \mathfrak{g} .

Consider the symmetric algebra $S(\mathbb{Z}\hat{\pi})$:

- Generated by collections of loops up to homotopy
- Multiplication is juxtaposition of loops.
- Goldman bracket naturally extends over $S(\mathbb{Z}\hat{\pi})$.

Turns out, the Goldman bracket behaves like a derivation.

$$[ab, c] = a[b, c] + [a, c]b$$

 $S(\mathfrak{g})$ forms a Poisson algebra.

Theorem (Turaev 1991)

There is a Poisson algebra homomorphism $S(\mathbb{Z}\widehat{\pi}) \longrightarrow C^{\infty}(Hom(\pi, G)/G, \mathbb{R}).$

The chain complex and its homology

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Symplectic field theory

An enormous project initiated by Y. Eliashberg, A. Givental, H. Hofer in 2000.

• Foundations still problematic, huge analytic issues.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Symplectic field theory

An enormous project initiated by Y. Eliashberg, A. Givental, H. Hofer in 2000.

• Foundations still problematic, huge analytic issues. The essential idea:

Understand contact and symplectic manifolds by studying holomorphic curves in them, in the spirit of topological quantum field theory.

Symplectic field theory

An enormous project initiated by Y. Eliashberg, A. Givental, H. Hofer in 2000.

• Foundations still problematic, huge analytic issues. The essential idea:

Understand contact and symplectic manifolds by studying holomorphic curves in them, in the spirit of topological quantum field theory.

- Study moduli spaces of holomorphic curves in symplectic/contact manifolds.
- Develop algebraic machinery encoding structure of moduli spaces.

Includes Gromov-Witten theory, many previous symplectic invariants as special cases.

The chain complex and its homology

Contact/symplectic notions

Basic notions of contact geometry:

The chain complex and its homology

Contact/symplectic notions

Basic notions of contact geometry:

Contact structure: A contact form λ on a (2n - 1)-manifold *Y* is a 1-form such that $\lambda \wedge (d\lambda)^{n-1}$ is a volume form.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact/symplectic notions

Basic notions of contact geometry:

Contact structure: A contact form λ on a (2n - 1)-manifold *Y* is a 1-form such that $\lambda \wedge (d\lambda)^{n-1}$ is a volume form. Dynamics: ker $d\lambda$ is 1-dimensional, spanned by a Reeb vector

field R_{λ} . $\lambda(R_{\lambda}) = 1$, $d\lambda(R_{\lambda}, \cdot) = 0$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact/symplectic notions

Basic notions of contact geometry:

Contact structure: A contact form λ on a (2n - 1)-manifold *Y* is a 1-form such that $\lambda \wedge (d\lambda)^{n-1}$ is a volume form.

Dynamics: ker $d\lambda$ is 1-dimensional, spanned by a Reeb vector field R_{λ} . $\lambda(R_{\lambda}) = 1$, $d\lambda(R_{\lambda}, \cdot) = 0$.

Contact manifolds naturally arise as boundaries or ends of symplectic manifolds.

Contact/symplectic notions

Basic notions of contact geometry:

Contact structure: A contact form λ on a (2n - 1)-manifold *Y* is a 1-form such that $\lambda \wedge (d\lambda)^{n-1}$ is a volume form.

Dynamics: ker $d\lambda$ is 1-dimensional, spanned by a Reeb vector field R_{λ} . $\lambda(R_{\lambda}) = 1$, $d\lambda(R_{\lambda}, \cdot) = 0$.

Contact manifolds naturally arise as boundaries or ends of symplectic manifolds.

Example: Cotangent bundle T^*Q of a manifold Q

- Let q_i be coordinates on Q, corresponding fibre coordinates p_i.
- Tautological 1-form $\alpha = \sum_i p_i dq_i$.

Contact/symplectic notions

Basic notions of contact geometry:

Contact structure: A contact form λ on a (2n - 1)-manifold Y is a 1-form such that $\lambda \wedge (d\lambda)^{n-1}$ is a volume form.

Dynamics: ker $d\lambda$ is 1-dimensional, spanned by a Reeb vector field R_{λ} . $\lambda(R_{\lambda}) = 1$, $d\lambda(R_{\lambda}, \cdot) = 0$.

Contact manifolds naturally arise as boundaries or ends of symplectic manifolds.

Example: Cotangent bundle T^*Q of a manifold Q

- Let *q_i* be coordinates on *Q*, corresponding fibre coordinates *p_i*.
- Tautological 1-form $\alpha = \sum_i p_i dq_i$.
- Symplectic form $\omega = d\alpha$.
- One end ≃ UT*Q × [0,∞): unit cotangent bundle is contact.

Introduction 0000 Motivations and connections

The chain complex and its homology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Symplectic cobordisms

Slightly more complicated example: $T^*Q \setminus Q$

This has two ends:

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Symplectic cobordisms

Slightly more complicated example: $T^*Q \setminus Q$

This has two ends:

- A positive end $\cong UT^*Q \times [0,\infty)$ as before.
- A negative end $\cong UT^*Q \times (-\infty, 0]$ asymptotic to Q.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Symplectic cobordisms

Slightly more complicated example: $T^*Q \setminus Q$

This has two ends:

- A positive end $\cong UT^*Q \times [0,\infty)$ as before.
- A negative end ≅ UT*Q × (−∞, 0] asymptotic to Q.

It turns out there are two distinct types of ends:

- Positive ends $\cong Y \times [0, \infty)$, where Y contact
- Negative ends $\cong Y \times (-\infty, 0]$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Symplectic cobordisms

Slightly more complicated example: $T^*Q \setminus Q$

This has two ends:

- A positive end $\cong UT^*Q \times [0,\infty)$ as before.
- A negative end ≅ UT*Q × (−∞, 0] asymptotic to Q.

It turns out there are two distinct types of ends:

- Positive ends \cong *Y* \times [0, ∞), where *Y* contact
- Negative ends $\cong Y \times (-\infty, 0]$

So we think of symplectic manifolds as directed cobordisms $Y^- \rightarrow Y^+$.

(日) (日) (日) (日) (日) (日) (日)

Symplectic cobordisms

Slightly more complicated example: $T^*Q \setminus Q$

This has two ends:

- A positive end $\cong UT^*Q \times [0,\infty)$ as before.
- A negative end ≅ UT*Q × (−∞, 0] asymptotic to Q.

It turns out there are two distinct types of ends:

- Positive ends $\cong Y \times [0, \infty)$, where Y contact
- Negative ends $\cong Y \times (-\infty, 0]$

So we think of symplectic manifolds as directed cobordisms $Y^- \rightarrow Y^+$.

(For any contact (Y, λ) , $Y \times \mathbb{R}$ has a natural symplectic structure $d(e^t \lambda)$.)

Introduction

Motivations and connections

The chain complex and its homology

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Holomorphic curves

Symplectic vs complex structures

The chain complex and its homology

(日) (日) (日) (日) (日) (日) (日)

Holomorphic curves

Symplectic vs complex structures

Almost complex structure: $J : TM \longrightarrow TM$ such that $J^2 = -1$. (Generally non-integrable: $(M, J) \neq (\mathbb{C}^n, i)$ locally.)

(日) (日) (日) (日) (日) (日) (日)

Holomorphic curves

Symplectic vs complex structures

Almost complex structure: $J: TM \longrightarrow TM$ such that $J^2 = -1$. (Generally non-integrable: $(M, J) \neq (\mathbb{C}^n, i)$ locally.) Complex analysis still works: from J can formulate C-R eqns:

For a Riemann surface $(S, i), u : S \longrightarrow M$ is (pseudo-)holomorphic if $Du \circ i = J \circ Du$.

(日) (日) (日) (日) (日) (日) (日)

Holomorphic curves

Symplectic vs complex structures

Almost complex structure: $J : TM \longrightarrow TM$ such that $J^2 = -1$. (Generally non-integrable: $(M, J) \neq (\mathbb{C}^n, i)$ locally.)

Complex analysis still works: from *J* can formulate C-R eqns: For a Riemann surface $(S, i), u : S \longrightarrow M$ is (pseudo-)holomorphic if $Du \circ i = J \circ Du$.

Thus

Moduli spaces exist : Prescribing sufficient data on holomorphic curves gives finite-dimensional moduli spaces, Riemann-Roch holds

Holomorphic curves in symplectic cobordisms

Consider a symplectic manifold (X, ω) of dimension 2*n* with:

- positive end $(\mathbb{R}_+ \times Y^+, \lambda^+)$, negative end $(\mathbb{R}_- \times Y^-, \lambda^-)$
- (compatible) almost complex structure J.

Holomorphic curves in symplectic cobordisms

Consider a symplectic manifold (X, ω) of dimension 2n with:

- positive end $(\mathbb{R}_+ \times Y^+, \lambda^+)$, negative end $(\mathbb{R}_- \times Y^-, \lambda^-)$
- (compatible) almost complex structure *J*.

Consider collections of closed Reeb orbits:

•
$$s^+$$
 orbits in Y^+ , $\Gamma^+ = (\gamma_1^+, \ldots, \gamma_{s^+}^+)$

•
$$s^-$$
 orbits in Y^- , $\Gamma^- = (\gamma_1^-, \ldots, \gamma_{s^-}^-)$

Holomorphic curves in symplectic cobordisms

Consider a symplectic manifold (X, ω) of dimension 2n with:

- positive end $(\mathbb{R}_+ \times Y^+, \lambda^+)$, negative end $(\mathbb{R}_- \times Y^-, \lambda^-)$
- (compatible) almost complex structure *J*.

Consider collections of closed Reeb orbits:

•
$$s^+$$
 orbits in Y^+ , $\Gamma^+ = (\gamma_1^+, \ldots, \gamma_{s^+}^+)$

•
$$s^-$$
 orbits in Y^- , $\Gamma^- = (\gamma_1^-, \ldots, \gamma_{s^-}^-)$

Definition

$$\mathcal{M}_{g}^{A}(X;\Gamma^{-},\Gamma^{+})$$

is the moduli space of connected genus g J-holomorphic curves in homology class $A \in H_2(M)$ with $s^+ + s^-$ punctures asymptotic to the γ_i^{\pm} .

The chain complex and its homology

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Moduli spaces

Eliashberg-Givental-Hofer considered the compactification of these moduli spaces: "multi-level" holomorphic curves including curves in the ends $\mathbb{R}_{\pm} \times Y^{\pm}$.

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

SFT formalism

SFT algebraic formalism encodes holomorphic curve behaviour. We'll give a technicality-free (wrong) version.

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

SFT formalism

The chain complex and its homology

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SFT formalism

SFT algebraic formalism encodes holomorphic curve behaviour. We'll give a technicality-free (wrong) version. For holomorphic curves in $\mathbb{R} \times Y$:

to each closed Reeb orbit *γ* associate graded formal variables *p_γ*, *q_γ*; let multiplicity be *κ_γ*

(日) (日) (日) (日) (日) (日) (日)

SFT formalism

- to each closed Reeb orbit *γ* associate graded formal variables *p_γ*, *q_γ*; let multiplicity be *κ_γ*
- introduce formal variables $p = \sum_{\gamma} \frac{1}{\kappa_{\gamma}} p_{\gamma} \gamma$, $q = \sum_{\gamma} \frac{1}{\kappa_{\gamma}} q_{\gamma} \gamma$

(日) (日) (日) (日) (日) (日) (日)

SFT formalism

- to each closed Reeb orbit *γ* associate graded formal variables *p_γ*, *q_γ*; let multiplicity be *κ_γ*
- introduce formal variables $p = \sum_{\gamma} \frac{1}{\kappa_{\gamma}} p_{\gamma} \gamma$, $q = \sum_{\gamma} \frac{1}{\kappa_{\gamma}} q_{\gamma} \gamma$
- let n_g(Γ⁻, Γ⁺) ∈ Q be the algebraic count of points in *M*(ℝ × Y; Γ⁻, Γ⁺)/ℝ, when it exists

(日) (日) (日) (日) (日) (日) (日)

SFT formalism

- to each closed Reeb orbit *γ* associate graded formal variables *p_γ*, *q_γ*; let multiplicity be *κ_γ*
- introduce formal variables $p = \sum_{\gamma} \frac{1}{\kappa_{\gamma}} p_{\gamma} \gamma$, $q = \sum_{\gamma} \frac{1}{\kappa_{\gamma}} q_{\gamma} \gamma$
- let n_g(Γ⁻, Γ⁺) ∈ Q be the algebraic count of points in *M*(ℝ × Y; Γ⁻, Γ⁺)/ℝ, when it exists
- define the correlator

$${}^{-1}\langle \underbrace{q,\ldots,q}_{s^-}; \underbrace{p\ldots,p}_{s^+} \rangle_g = \sum_{|\Gamma^{\pm}|=s^{\pm}} n_g(\Gamma^-,\Gamma^+)q^{\Gamma^-}p^{\Gamma^+}$$

SFT formalism

SFT algebraic formalism encodes holomorphic curve behaviour. We'll give a technicality-free (wrong) version. For holomorphic curves in $\mathbb{R} \times Y$:

- to each closed Reeb orbit *γ* associate graded formal variables *p_γ*, *q_γ*; let multiplicity be *κ_γ*
- introduce formal variables $p = \sum_{\gamma} \frac{1}{\kappa_{\gamma}} p_{\gamma} \gamma$, $q = \sum_{\gamma} \frac{1}{\kappa_{\gamma}} q_{\gamma} \gamma$
- let n_g(Γ⁻, Γ⁺) ∈ Q be the algebraic count of points in *M*(ℝ × Y; Γ⁻, Γ⁺)/ℝ, when it exists
- define the correlator

$${}^{-1}\langle \underbrace{q,\ldots,q}_{s^-}; \underbrace{p\ldots,p}_{s^+}
angle_g = \sum_{|\Gamma^{\pm}|=s^{\pm}} n_g(\Gamma^-,\Gamma^+)q^{\Gamma^-}p^{\Gamma^+}$$

• define the Hamiltonians

$$\mathbf{H}_{g} = \sum_{s^{-}, s^{+}} \frac{1}{s^{-}! s^{+}!} {}^{-1} \langle \underbrace{q, \ldots, q}_{s^{-}}; \underbrace{p \ldots, p}_{s^{+}} \rangle_{g}, \qquad \mathbf{H} = \frac{1}{\hbar} \sum_{g=0}^{\infty} \mathbf{H}_{g} \hbar^{g}.$$

Introduction

The chain complex and its homology

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SFT formalism

Let W be a Weyl algebra of power series in $p_{\gamma}, q_{\gamma}, \hbar$.

The chain complex and its homology

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SFT formalism

$$\langle \underbrace{q,\ldots,q}_{s^-}; \underbrace{p\ldots,p}_{s^+}
angle_g = \sum_{|\Gamma^{\pm}|=s^{\pm}} n_g(\Gamma^-,\Gamma^+) q^{\Gamma^-} p^{\Gamma^+}$$

Let W be a Weyl algebra of power series in p_{γ} , q_{γ} , \hbar . All variables (super-)commute except p_{γ} , q_{γ} satisfy

$$p_\gamma * q_\gamma - (-1)^{|p_\gamma||q_\gamma|} q_\gamma * p_\gamma = \kappa_\gamma \hbar.$$

The chain complex and its homology

SFT formalism

$$(\underline{q},\ldots,\underline{q};\underbrace{p\ldots,p}_{s^-};\underbrace{p\ldots,p}_{s^+})_g = \sum_{|\Gamma^{\pm}|=s^{\pm}} n_g(\Gamma^-,\Gamma^+)q^{\Gamma^-}p^{\Gamma^+}$$

Let W be a Weyl algebra of power series in p_{γ} , q_{γ} , \hbar . All variables (super-)commute except p_{γ} , q_{γ} satisfy

$$p_{\gamma}*q_{\gamma}-(-1)^{|p_{\gamma}||q_{\gamma}|}q_{\gamma}*p_{\gamma}=\kappa_{\gamma}\hbar.$$

Theorem (Eliashberg–Givental–Hofer)

The Hamiltonian $\mathbf{H} \in \frac{1}{\hbar} \mathcal{W}$ satisfies

 $\mathbf{H} \ast \mathbf{H} = \mathbf{0}.$

The chain complex and its homology

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

SFT formalism

Develop a similar formalism for a general symplectic cobordism *X* with ends $(\mathbb{R}_{\pm} \times Y^{\pm}, \lambda^{\pm})$:

The chain complex and its homology

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SFT formalism

Develop a similar formalism for a general symplectic cobordism *X* with ends $(\mathbb{R}_{\pm} \times Y^{\pm}, \lambda^{\pm})$:

• algebraic counts $n_g(X; \Gamma^-, \Gamma^+) \in \mathbb{Q}$ of $\mathcal{M}_g(X; \Gamma^-, \Gamma^+)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SFT formalism

Develop a similar formalism for a general symplectic cobordism *X* with ends $(\mathbb{R}_{\pm} \times Y^{\pm}, \lambda^{\pm})$:

- algebraic counts $n_g(X; \Gamma^-, \Gamma^+) \in \mathbb{Q}$ of $\mathcal{M}_g(X; \Gamma^-, \Gamma^+)$
- correlators

$${}^0\langle \underbrace{q,\ldots,q}_{s^-}, \underbrace{p\ldots,p}_{s^+}
angle_g = \sum_{|\Gamma^\pm|=s^\pm} n_g(X;\Gamma^-,\Gamma^+)q^{\Gamma^-}p^{\Gamma^+}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SFT formalism

Develop a similar formalism for a general symplectic cobordism *X* with ends $(\mathbb{R}_{\pm} \times Y^{\pm}, \lambda^{\pm})$:

- algebraic counts $n_g(X; \Gamma^-, \Gamma^+) \in \mathbb{Q}$ of $\mathcal{M}_g(X; \Gamma^-, \Gamma^+)$
- correlators

$$p_{Q}(\underbrace{q,\ldots,q}_{s^-};\underbrace{p\ldots,p}_{s^+})_g = \sum_{|\Gamma^{\pm}|=s^{\pm}} n_g(X;\Gamma^-,\Gamma^+)q^{\Gamma^-}p^{\Gamma^+})$$

the potentials

(日) (日) (日) (日) (日) (日) (日)

SFT formalism

Develop a similar formalism for a general symplectic cobordism *X* with ends $(\mathbb{R}_{\pm} \times Y^{\pm}, \lambda^{\pm})$:

- algebraic counts $n_g(X; \Gamma^-, \Gamma^+) \in \mathbb{Q}$ of $\mathcal{M}_g(X; \Gamma^-, \Gamma^+)$
- correlators

$$p_{\langle \underbrace{q,\ldots,q}_{s^-}; \underbrace{p\ldots,p}_{s^+} \rangle_g} = \sum_{|\Gamma^{\pm}|=s^{\pm}} n_g(X;\Gamma^-,\Gamma^+)q^{\Gamma^-}p^{\Gamma^+}$$

the potentials

Consider space \mathcal{D} of power series in \hbar , p_{γ}^+ , q_{γ}^- .

SFT formalism

Develop a similar formalism for a general symplectic cobordism *X* with ends $(\mathbb{R}_{\pm} \times Y^{\pm}, \lambda^{\pm})$:

- algebraic counts $n_g(X; \Gamma^-, \Gamma^+) \in \mathbb{Q}$ of $\mathcal{M}_g(X; \Gamma^-, \Gamma^+)$
- correlators

$$p_{\langle \underbrace{q,\ldots,q}_{s^-}; \underbrace{p\ldots,p}_{s^+} \rangle_g} = \sum_{|\Gamma^{\pm}|=s^{\pm}} n_g(X;\Gamma^-,\Gamma^+) q^{\Gamma^-} p^{\Gamma^+}$$

the potentials

$$\mathbf{F}_{g} = \sum_{s^{-},s^{+}} \frac{1}{s^{-}!s^{+}!} {}^{0} \langle \underbrace{q,\ldots,q}_{s^{-}}; \underbrace{p\ldots,p}_{s^{+}} \rangle_{g}, \qquad \mathbf{F} = \frac{1}{\hbar} \sum_{g=0}^{\infty} \mathbf{F}_{g} \hbar^{g}.$$

Consider space \mathcal{D} of power series in \hbar , p_{γ}^+ , q_{γ}^- . Weyl algebras \mathcal{W}^{\pm} act as differential operators on \mathcal{D} via

$$\boldsymbol{p}_{\gamma}^{+} \mapsto \kappa_{\gamma} \hbar \overleftarrow{\frac{\partial}{\partial \boldsymbol{p}_{\gamma}^{+}}}, \quad \boldsymbol{p}_{\gamma}^{-} \mapsto \kappa_{\gamma} \hbar \overrightarrow{\frac{\partial}{\partial \boldsymbol{q}_{\gamma}^{-}}}, \quad \boldsymbol{p}_{\gamma}^{-} \mapsto \kappa_{\gamma} \hbar \overrightarrow{\frac{\partial}{\partial \boldsymbol{q}_{\gamma}^{-}$$

The chain complex and its homology

SFT formalism

$$\mathbf{F}_g = \sum_{s^-, s^+} \frac{\mathbf{I}}{s^{-1} s^{+1}} \langle \underbrace{q, \ldots, q}_{s^-}; \underbrace{p \ldots, p}_{s^+} \rangle_g, \qquad \mathbf{F} = \frac{\mathbf{I}}{\hbar} \sum_{g=0} \mathbf{F}_g \hbar^g.$$

Theorem (Eliashberg-Givental-Hofer)

The potential $\mathbf{F} \in \frac{1}{\hbar}\mathcal{D}$ satisfies the master equation

$$e^{\mathsf{F}} \overleftarrow{\mathsf{H}^+} - \overrightarrow{\mathsf{H}^-} e^{\mathsf{F}} = 0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Curves with boundary

Cieliebak–Latschev in 2007 generalised to consider

$$\mathcal{M}_{g,k}(X,Q;\Gamma^-,\Gamma^+)$$

curves in (X, ω) between (Y^{\pm}, λ^{\pm}) with *k* boundary components on a Lagrangian submanifold *Q*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Curves with boundary

Cieliebak–Latschev in 2007 generalised to consider

$$\mathcal{M}_{g,k}(X,Q;\Gamma^{-},\Gamma^{+})$$

curves in (X, ω) between (Y^{\pm}, λ^{\pm}) with *k* boundary components on a Lagrangian submanifold *Q*.

c_{g,k}(X; Γ⁻, Γ⁺) the sequence of loops in Q traced out by boundaries. (In fact lies in C_{*}({loops}, const_k).)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Curves with boundary

Cieliebak–Latschev in 2007 generalised to consider

$$\mathcal{M}_{g,k}(X,Q;\Gamma^-,\Gamma^+)$$

curves in (X, ω) between (Y^{\pm}, λ^{\pm}) with *k* boundary components on a Lagrangian submanifold *Q*.

- c_{g,k}(X; Γ⁻, Γ⁺) the sequence of loops in Q traced out by boundaries. (In fact lies in C_{*}({loops}, const_k).)
- correlators

$$\langle \underbrace{q,\ldots,q}_{s^-}; \underbrace{p\ldots,p}_{g^+} \rangle_{g,k}^{X,Q} = \sum_{|\Gamma^{\pm}|=s^{\pm}} c_{g,k}(X;\Gamma^-,\Gamma^+)q^{\Gamma^-}p^{\Gamma^+}$$

Curves with boundary

Cieliebak–Latschev in 2007 generalised to consider

$$\mathcal{M}_{g,k}(X,Q;\Gamma^-,\Gamma^+)$$

curves in (X, ω) between (Y^{\pm}, λ^{\pm}) with *k* boundary components on a Lagrangian submanifold *Q*.

- c_{g,k}(X; Γ⁻, Γ⁺) the sequence of loops in Q traced out by boundaries. (In fact lies in C_{*}({loops}, const_k).)
- correlators

$$\langle \underbrace{q,\ldots,q}_{s^-}; \underbrace{p\ldots,p}_{s^+} \rangle_{g,k}^{X,Q} = \sum_{|\Gamma^{\pm}|=s^{\pm}} c_{g,k}(X;\Gamma^-,\Gamma^+)q^{\Gamma^-}p^{\Gamma^+}$$

Potentials

$$\mathbf{L}_{g} = \sum_{s^{-}, s^{+}, k} \frac{1}{s^{-}! s^{+}! k!} \langle \underbrace{q, \ldots, q}_{s^{-}}; \underbrace{p \ldots, p}_{s^{+}} \rangle_{g, k}^{X, Q}, \qquad \mathbf{L} = \frac{1}{\hbar} \sum_{g=0}^{\infty} \mathbf{L}_{g} \hbar^{g}.$$

The chain complex and its homology

SFT formalism meets string topology

Theorem (Cieliebak–Latschev)

The potential L satisfies the generalised master equation

$$(\partial + \Delta + \hbar \nabla) e^{\mathsf{L}} = e^{\mathsf{L}} \overleftarrow{\mathsf{H}^+} - \overrightarrow{\mathsf{H}^-} e^{\mathsf{L}}$$

Here Δ, ∇ are string operations.

- ∆ resolves a string at a self-intersection.
- ∇ glues two strings at an intersection.

Codimension-1 phenomena at the boundary of holomorphic curves are Goldman bracket and Turaev cobracket.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

2 Motivations and connections

The chain complex and its homology

- Back to curves on surfaces
- Well-definition
- Results and calculations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Back to curves on surfaces

Recall our marked surfaces (Σ, F) , string diagrams, and the chain complex:

Definition

$$\widehat{CS}(\Sigma, F) = \frac{\mathbb{Z}_2 \langle \mathcal{S}(\Sigma, F) \rangle}{\mathbb{Z}_2 \langle \mathcal{S}_C(\Sigma, F) \rangle}, \quad \partial s = \sum_{\substack{x \text{ crossing of } s}} r_x(s).$$

Back to curves on surfaces

Recall our marked surfaces (Σ, F) , string diagrams, and the chain complex:

Definition

$$\widehat{CS}(\Sigma, F) = \frac{\mathbb{Z}_2 \langle \mathcal{S}(\Sigma, F) \rangle}{\mathbb{Z}_2 \langle \mathcal{S}_C(\Sigma, F) \rangle}, \quad \partial s = \sum_{x \text{ crossing of } s} r_x(s).$$

We see that ∂ :

- reduces to the Goldman bracket [α, β] for two simple curves
- reduces to and Turaev cobracket $\nu(\alpha)$ for a single curve
- allows multiple curves: incorporates symmetric algebra of loops S(Zπ̂) in Turaev's Poisson algebra homomorphism
- describes holomorphic curve boundary phenomena, as in Cieliebak–Latschev generalised master equation.

The chain complex and its homology

Well-definition

First show that chain complex is well-defined.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Well-definition

First show that chain complex is well-defined. Checking this amounts to showing ∂ unchanged by "string Reidemeister moves".

Well-definition

First show that chain complex is well-defined. Checking this amounts to showing ∂ unchanged by "string Reidemeister moves". E.g.:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Well-definition

First show that chain complex is well-defined. Checking this amounts to showing ∂ unchanged by "string Reidemeister moves". E.g.:

This shows why mod 2 is so useful...

The chain complex and its homology

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

And also...

Well-definition

The chain complex and its homology

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Well-definition

And also...

This shows why contractible strings must be set to zero.

The chain complex and its homology

Calculations of homology

Some results are known for discs and annuli:

The chain complex and its homology

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Calculations of homology

Some results are known for discs and annuli:

• Turns out that whether points *F* are *alternating* is important.

Theorem (M.)

- If F is not alternating and
 - there are two non-alternating points on a single boundary component, or

then $\widehat{HS}(\Sigma, F) = 0$.

The chain complex and its homology

Calculations of homology

Some results are known for discs and annuli:

• Turns out that whether points *F* are *alternating* is important.

Theorem (M.)

- If F is not alternating and
 - there are two non-alternating points on a single boundary component, or

2
$$\Sigma$$
 is an annulus

then $\widehat{HS}(\Sigma, F) = 0$.

Question

For any non-alternating F, is $\widehat{HS}(\Sigma, F) = 0$?

The chain complex and its homology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Non-alternating marked points

Proposition

If F has two consecutive points of the same sign, then $\widehat{HS}(\Sigma, F) = 0$.
The chain complex and its homology

Non-alternating marked points

Proposition

If F has two consecutive points of the same sign, then $\widehat{HS}(\Sigma, F) = 0$.

Proof

Consider the switching operation on string diagrams

The chain complex and its homology

Non-alternating marked points

The chain complex and its homology

Non-alternating marked points

The chain complex and its homology

Non-alternating marked points

The chain complex and its homology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

String homology of discs

Theorem (M.-Schoenfeld)

For alternating F,

$$\widehat{HS}(D^2, F) \cong rac{\mathbb{Z}_2 \langle Sutures \text{ on } (\Sigma, F) \rangle}{Bypass \text{ relation}}$$

The chain complex and its homology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

String homology of discs

Theorem (M.–Schoenfeld)

For alternating F,

$$\widehat{HS}(D^2, F) \cong rac{\mathbb{Z}_2 \langle Sutures \text{ on } (\Sigma, F) \rangle}{Bypass \text{ relation}}$$

Definition

A set of sutures Γ on (Σ, F) is an embedded string diagram that splits Σ into alternating positive and negative regions.

The chain complex and its homology

String homology of discs

Theorem (M.–Schoenfeld)

For alternating F,

$$\widehat{HS}(D^2, F) \cong rac{\mathbb{Z}_2 \langle Sutures \text{ on } (\Sigma, F) \rangle}{Bypass \text{ relation}}$$

Definition

A set of sutures Γ on (Σ, F) is an embedded string diagram that splits Σ into alternating positive and negative regions.

Sets of sutures only exist for *alternating* (Σ, F_{a}) .

The chain complex and its homology

Bypass relation

If a set of sutures contains a disc which looks like

The chain complex and its homology

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bypass relation

If a set of sutures contains a disc which looks like

there are two natural ways to adjust it, giving a bypass triple.

The chain complex and its homology

Bypass relation

If a set of sutures contains a disc which looks like

there are two natural ways to adjust it, giving a bypass triple.

The bypass relation says bypass triples sum to zero.

$$\Gamma' + \Gamma + \Gamma'' = 0.$$

So $\widehat{HS}(D^2, F)$ is generated by string diagrams of sutures, modulo this relation.

The chain complex and its homology

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Bypass relation as a boundary

A "reason" why the theorem is plausible:

Hence relations in $\widehat{HS}(\Sigma, F)$ are like the bypass relation.

The chain complex and its homology

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Another relationship to holomorphic curves

Theorem (M.-Schoenfeld)

$$\widehat{HS}(D^2, F) \cong SFH(D^2 \times S^1, F \times S^1) \quad \left(\cong \frac{\mathbb{Z}_2 \langle Sutures \text{ on } (\Sigma, F) \rangle}{Bypass \text{ relation}} \right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Another relationship to holomorphic curves

Theorem (M.-Schoenfeld)

$$\widehat{HS}(D^2, F) \cong SFH(D^2 \times S^1, F \times S^1) \quad \left(\cong \frac{\mathbb{Z}_2 \langle Sutures \text{ on } (\Sigma, F) \rangle}{Bypass \text{ relation}} \right)$$

SFH = sutured Floer homology, an invariant of sutured 3-manifolds.

• Defined by counting holomorphic curves in a space related to Heegaard decomposition

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Another relationship to holomorphic curves

Theorem (M.–Schoenfeld)

$$\widehat{HS}(D^2, F) \cong SFH(D^2 \times S^1, F \times S^1) \quad \left(\cong \frac{\mathbb{Z}_2 \langle Sutures \text{ on } (\Sigma, F) \rangle}{Bypass \text{ relation}} \right)$$

SFH = sutured Floer homology, an invariant of sutured 3-manifolds.

• Defined by counting holomorphic curves in a space related to Heegaard decomposition

The isomorphism is explicit:

Sutures on (D², F) give a contact structure on (D² × S¹, F × S¹)

Another relationship to holomorphic curves

Theorem (M.–Schoenfeld)

$$\widehat{HS}(D^2, F) \cong SFH(D^2 \times S^1, F \times S^1) \quad \left(\cong \frac{\mathbb{Z}_2 \langle Sutures \text{ on } (\Sigma, F) \rangle}{Bypass \text{ relation}} \right)$$

SFH = sutured Floer homology, an invariant of sutured 3-manifolds.

• Defined by counting holomorphic curves in a space related to Heegaard decomposition

The isomorphism is explicit:

- Sutures on (D², F) give a contact structure on (D² × S¹, F × S¹)
- Contact structures give elements of SFH.

So $\widehat{HS}(\Sigma, F)$ directly encodes contact geometry.

Another relationship to holomorphic curves

Theorem (M.-Schoenfeld)

$$\widehat{HS}(D^2, F) \cong SFH(D^2 \times S^1, F \times S^1) \quad \left(\cong \frac{\mathbb{Z}_2 \langle Sutures \text{ on } (\Sigma, F) \rangle}{Bypass \text{ relation}} \right)$$

SFH = sutured Floer homology, an invariant of sutured 3-manifolds.

• Defined by counting holomorphic curves in a space related to Heegaard decomposition

The isomorphism is explicit:

- Sutures on (D², F) give a contact structure on (D² × S¹, F × S¹)
- Contact structures give elements of SFH.

So $\widehat{HS}(\Sigma, F)$ directly encodes contact geometry. (SFH($D^2 \times S^1, F \times S^1$) $\cong \frac{\text{sutures}}{\text{bypasses}}$ was known earlier.)

The chain complex and its homology

Results for annuli

Recent work has given some calculations for annuli.

The chain complex and its homology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Results for annuli

Recent work has given some calculations for annuli.

Theorem (M.)

For a marked annulus (\mathbb{A}, \emptyset) with no marked points

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Results for annuli

Recent work has given some calculations for annuli.

Theorem (M.)

For a marked annulus (\mathbb{A}, \emptyset) with no marked points

$$\widehat{HS}(\mathbb{A},\emptyset) = \frac{\mathbb{Z}_2[\ldots,\bar{x}_{-3},\bar{x}_{-1},\bar{x}_1,\bar{x}_3,\ldots]}{(\ldots,\bar{x}_{-3}^2,\bar{x}_{-1}^2,\bar{x}_1^2,\bar{x}_3^2,\ldots)} = H(\mathcal{X}).$$

I.e. a polynomial ring in infinitely many variables squaring to 0.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Results for annuli

Recent work has given some calculations for annuli.

Theorem (M.)

For a marked annulus (\mathbb{A}, \emptyset) with no marked points

$$\widehat{HS}(\mathbb{A},\emptyset) = \frac{\mathbb{Z}_2[\ldots,\bar{x}_{-3},\bar{x}_{-1},\bar{x}_1,\bar{x}_3,\ldots]}{(\ldots,\bar{x}_{-3}^2,\bar{x}_{-1}^2,\bar{x}_1^2,\bar{x}_3^2,\ldots)} = H(\mathcal{X}).$$

I.e. a polynomial ring in infinitely many variables squaring to 0. For each $n \in \mathbb{Z}$, x_n is the string which traverses the annulus n times; \bar{x}_n its homology class.

The chain complex and its homology

Reduction to algebra

It's not too difficult to see that

$$\widehat{CS}(\mathbb{A}, \emptyset) = \mathbb{Z}_2[\dots, x_{-2}, x_{-1}, x_1, x_2, \dots] = \mathcal{X}$$

a polynomial algebra,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Reduction to algebra

It's not too difficult to see that

$$\widehat{CS}(\mathbb{A}, \emptyset) = \mathbb{Z}_2[\dots, x_{-2}, x_{-1}, x_1, x_2, \dots] = \mathcal{X}$$

a polynomial algebra, and upon resolving intersections, (n > 0)

$$\partial x_n = x_1 x_{n-1} + x_2 x_{n-2} + \cdots + x_{n-1} x_1.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reduction to algebra

It's not too difficult to see that

$$\widehat{CS}(\mathbb{A}, \emptyset) = \mathbb{Z}_2[\dots, x_{-2}, x_{-1}, x_1, x_2, \dots] = \mathcal{X}$$

a polynomial algebra, and upon resolving intersections, (n > 0)

$$\partial x_n = x_1 x_{n-1} + x_2 x_{n-2} + \cdots + x_{n-1} x_1.$$

Variables commute, so over \mathbb{Z}_2 most terms cancel:

- for even variables, $\partial x_{2k} = x_k^2$
- for odd variables, $\partial x_{2k+1} = 0$.

Reduction to algebra

It's not too difficult to see that

$$\widehat{CS}(\mathbb{A},\emptyset) = \mathbb{Z}_2[\ldots, x_{-2}, x_{-1}, x_1, x_2, \ldots] = \mathcal{X}$$

a polynomial algebra, and upon resolving intersections, (n > 0)

$$\partial x_n = x_1 x_{n-1} + x_2 x_{n-2} + \cdots + x_{n-1} x_1.$$

Variables commute, so over \mathbb{Z}_2 most terms cancel:

- for even variables, $\partial x_{2k} = x_k^2$
- for odd variables, $\partial x_{2k+1} = 0$.

Calculation of $\widehat{HS}(\mathbb{A}, \emptyset)$ reduces to the computation of homology $H(\mathcal{X})$ of the algebra \mathcal{X} .

Reduction to algebra

It's not too difficult to see that

$$\widehat{CS}(\mathbb{A},\emptyset) = \mathbb{Z}_2[\ldots, x_{-2}, x_{-1}, x_1, x_2, \ldots] = \mathcal{X}$$

a polynomial algebra, and upon resolving intersections, (n > 0)

$$\partial x_n = x_1 x_{n-1} + x_2 x_{n-2} + \cdots + x_{n-1} x_1.$$

Variables commute, so over \mathbb{Z}_2 most terms cancel:

- for even variables, $\partial x_{2k} = x_k^2$
- for odd variables, $\partial x_{2k+1} = 0$.

Calculation of $\widehat{HS}(\mathbb{A}, \emptyset)$ reduces to the computation of homology $H(\mathcal{X})$ of the algebra \mathcal{X} .

The result $H(\mathcal{X}) = \frac{\mathbb{Z}_2[...,\bar{x}_{-3},\bar{x}_{-1},\bar{x}_1,\bar{x}_3,...]}{(...,\bar{x}_{-3}^2,\bar{x}_{-1}^2,\bar{x}_1^2,\bar{x}_3^2,...)}$ is very "fermionic":

- only "odd spin" strings survive in homology
- in homology, two odd strings annihilate each other, $\bar{x}_{2j+1}^2 = 0$ ("Pauli exclusion principle")

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Further computations

Computations with nonempty sets of marked points:

• $F_{2m,2n} = 2m, 2n$ alternating points on boundaries of A

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Further computations

Computations with nonempty sets of marked points:

• $F_{2m,2n} = 2m, 2n$ alternating points on boundaries of A

Theorem (M.)

 $\widehat{HS}(\mathbb{A}, F_{0,2})$ is a non-free rank 2 $H(\mathcal{X})$ -module isomorphic to

$$\bar{x}_{1}H(\mathcal{X})\oplus\bar{x}_{-1}H(\mathcal{X})\cong\bar{x}_{1}\frac{\mathbb{Z}_{2}[\dots,\bar{x}_{-3},\bar{x}_{-1},\bar{x}_{1},\bar{x}_{3},\dots]}{(\dots,\bar{x}_{-3}^{2},\bar{x}_{-1}^{2},\bar{x}_{1}^{2},\bar{x}_{3}^{2},\dots)}\oplus\bar{x}_{-1}\frac{\mathbb{Z}_{2}[\dots,\bar{x}_{-3},\bar{x}_$$

(日) (日) (日) (日) (日) (日) (日)

Further computations

Computations with nonempty sets of marked points:

• $F_{2m,2n} = 2m, 2n$ alternating points on boundaries of A

Theorem (M.)

 $\widehat{HS}(\mathbb{A}, F_{0,2})$ is a non-free rank 2 $H(\mathcal{X})$ -module isomorphic to

$$\bar{x}_{1}H(\mathcal{X})\oplus\bar{x}_{-1}H(\mathcal{X})\cong\bar{x}_{1}\frac{\mathbb{Z}_{2}[\dots,\bar{x}_{-3},\bar{x}_{-1},\bar{x}_{1},\bar{x}_{3},\dots]}{(\dots,\bar{x}_{-3}^{2},\bar{x}_{-1}^{2},\bar{x}_{1}^{2},\bar{x}_{3}^{2},\dots)}\oplus\bar{x}_{-1}\frac{\mathbb{Z}_{2}[\dots,\bar{x}_{-3},\bar{x}_$$

Theorem (M.)

(Roughly) $\mathbb{M} = \widehat{HS}(\mathbb{A}, F_{2,2})$ is

Further computations

Computations with nonempty sets of marked points:

• $F_{2m,2n} = 2m, 2n$ alternating points on boundaries of A

Theorem (M.)

 $\widehat{HS}(\mathbb{A}, F_{0,2})$ is a non-free rank 2 $H(\mathcal{X})$ -module isomorphic to

$$\bar{x}_{1}H(\mathcal{X})\oplus\bar{x}_{-1}H(\mathcal{X})\cong\bar{x}_{1}\frac{\mathbb{Z}_{2}[\dots,\bar{x}_{-3},\bar{x}_{-1},\bar{x}_{1},\bar{x}_{3},\dots]}{(\dots,\bar{x}_{-3}^{2},\bar{x}_{-1}^{2},\bar{x}_{1}^{2},\bar{x}_{3}^{2},\dots)}\oplus\bar{x}_{-1}\frac{\mathbb{Z}_{2}[\dots,\bar{x}_{-3},\bar{x}_$$

Theorem (M.)

(Roughly) $\mathbb{M} = \widehat{HS}(\mathbb{A}, F_{2,2})$ is complicated but has much explicitly calculated structure.

・ロト・西ト・西ト・西ト・日・

Further computations

Computations with nonempty sets of marked points:

• $F_{2m,2n} = 2m, 2n$ alternating points on boundaries of A

Theorem (M.)

 $\widehat{HS}(\mathbb{A}, F_{0,2})$ is a non-free rank 2 $H(\mathcal{X})$ -module isomorphic to

$$\bar{x}_{1}H(\mathcal{X})\oplus\bar{x}_{-1}H(\mathcal{X})\cong\bar{x}_{1}\frac{\mathbb{Z}_{2}[\dots,\bar{x}_{-3},\bar{x}_{-1},\bar{x}_{1},\bar{x}_{3},\dots]}{(\dots,\bar{x}_{-3}^{2},\bar{x}_{-1}^{2},\bar{x}_{1}^{2},\bar{x}_{3}^{2},\dots)}\oplus\bar{x}_{-1}\frac{\mathbb{Z}_{2}[\dots,\bar{x}_{-3},\bar{x}_$$

Theorem (M.)

(Roughly) $\mathbb{M} = \widehat{HS}(\mathbb{A}, F_{2,2})$ is complicated but has much explicitly calculated structure.

Question

Can \mathbb{M} be given an explicit presentation?

The chain complex and its homology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Adding more marked points is easy

While the (2, 2) case is complicated, it never gets more complicated!

Theorem

For any $m, n \ge 0$,

$$\widehat{HS}(\mathbb{A}, F_{2m+2,2n+2}) \cong (\mathbb{Z}_2 \oplus \mathbb{Z}_2)^{\otimes (m+n)} \otimes_{\mathbb{Z}_2} \mathbb{M}.$$

More work to be done... and connections to be drawn.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Thanks for listening!

References:

- K. Cieliebak and J. Latschev, The role of string topology in symplectic field theory, in "New perspectives and challenges in symplectic field theory", 113–146.
- W. Goldman, The symplectic nature of fundamental groups of surface, Adv. Math. 54 (1984) 200–225.
- W. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. (1986) 263–302.
- D. Mathews, Chord diagrams, contact-topological quantum field theory, and contact categories, Alg. & Geom. Top. 10 (2010) 2091–2189
- D. Mathews, Itsy bitsy topological field theory (2012) arXiv 1201.4584.
- D. Mathews and E. Schoenfeld, Dimensionally-reduced sutured Floer homology as a string homology (2012) arXiv 1210.7394.
- D. Mathews, Contact topology and holomorphic invariants via elementary combinatorics, (2012) arXiv 1212.1759.
- D. Mathews, Strings, fermions and the topology of curves on annuli, (2014) arXiv 1410.2141
- V. Turaev, Skein quantization of Poisson algebras of loops on surfaces, Annales scientifiques de l'E.N.S. 24 (1991) 635–704.