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Abstract

In previous work with Schoenfeld, we considered a string-type chain complex of curves on
surfaces, with differential given by resolving crossings, and computed the homology of this complex
for discs.

In this paper we consider the corresponding “string homology” of annuli. We find this homology
has a rich algebraic structure which can be described, in various senses, as fermionic. While for
discs we found that an isomorphism between string homology and the sutured Floer homology of
a related 3-manifold, in the case of annuli we find the relationship is more complex, with string
homology containing further higher-order structure.
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1 Introduction

1.1 Overview

This paper considers basic objects of classical topology — namely, curves on surfaces — and some
rich algebraic structure that arises from the simple operation of resolving their crossings. It is a
continuation of previous work of the author with Schoenfeld [19].

A marked surface (Σ, F ) is a compact oriented surface Σ with non-empty boundary, together with
a set F of marked points, which are signed points on ∂Σ. A string diagram on (Σ, F ) is a collection of
oriented curves up to homotopy on Σ, including both closed curves (“closed strings”) and arcs (“open
strings”), with endpoints given by F .

In [19], we introduced a vector space ĈS(Σ, F ) generated by string diagrams on (Σ, F ) (up to
two different types of homotopy). We defined a differential operator ∂ on these vector spaces: given
a string diagram s with transverse intersections, its differential ∂s is the sum, over all intersection
points, of the string diagram obtained by resolving that intersection as in figure 1.

Figure 1: Resolution of a crossing

In [19] we showed that we obtained chain complexes and explicitly computed the resulting “string

homology” ĤS(Σ, F ) in the case where Σ is a disc D2.
In this paper, we extend our results to annuli. In a certain sense, we are able to calculate “string

homology” explicitly in all but one case. We find that the resulting algebraic structure is much more
intricate in the annular than in the disc case. As the title suggests, this algebraic structure is curiously
“fermionic”, in a sense that we can make precise.
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We found in [19] a close connection between our “string homology” for D2, and Floer-theoretic
invariants such as sutured Floer homology and embedded contact homology for D2 × S1. We will
show here that the “string homology” of an annulus A is a more elaborate object than sutured Floer
homology of A×S1, though still clearly closely related. This paper focuses on computations of “string
homology” of annuli and lays a basis for further work examining connections to, and possible extensions
of, Floer theory.

In this introduction, we give a brief overview of our results and an indication of their connections to
other work. Throughout this paper, A denotes an annulus and Σ denotes a general compact oriented
surface with nonempty boundary. We always work over Z2 coefficients.

1.2 Alternating marked surfaces

A marked surface is alternating if its marked points alternate in sign around each boundary component.
In [19] we showed that “string homology” is trivial for many non-alternating marked surfaces, and in
particular for any non-alternating marked disc.

In this paper we show that this result carries over to annuli.

Theorem 1.1. Let (A, F ) be a weakly marked annulus which is not alternating. Then ĤS(A, F ) = 0.

The proof, which appears in section 5, uses some techniques from our previous work [19], and also
some new ideas. After this result, we only need consider alternating (A, F ).

The alternating case is important because a marked alternating surface, also known as a sutured
background ([14, 15], see also [23]), naturally forms a boundary condition for a set of sutures on a
surface. The study of sutures goes back at least to work of Gabai on 3-manifolds and foliations [3];
sutures also play a crucial role as dividing sets in contact geometry [4, 9, 8] and sutured 3-manifolds
are the subject matter of sutured Floer homology (SFH) [12]. In our previous work we have shown
that sutures on surfaces can be used to give insight into contact categories [13].

Moreover, previous work of ourselves and Honda–Kazez–Matić [10, 13, 14, 15, 16, 17, 18] has shown
that SFH of products (Σ × S1, F × S1) is isomorphic, or at least closely related to (depending on
the context) a vector space based on sets of sutures, modulo bypass triples — triples of sutures which
are related by the natural contact-geometric operation of bypass surgery. This vector space is the
Grothendieck group of the contact category of (Σ, F ) (as defined by Honda [7]). As discussed in
[19], such triples naturally arise in our “string homology” as boundaries. Thus our “string homology”
should be strongly related to sutured Floer homology via the construction of the “sutures modulo
bypass triples” Grothendieck group. In [19] we showed a direct isomorphism when Σ is a disc, so
that our elementary “string homology”, based on nothing more than curves and their crossings, is
equivalent to a Floer-theoretic invariant based on symplectic and contact geometry and holomorphic
curves.

In this paper, as discussed below in section 1.6, we show that “string homology” is a richer and
more complicated structure than the contact Grothendieck group or sutured Floer homology (even
with twisted coefficients) of (Σ× S1, F × S1), in the case of annuli.

1.3 No marked points and homology of fermions

After theorem 1.1, we only need consider alternating marked surfaces — hence with an even number
of marked points on each boundary components. We can write F2m,2n for an alternating set of marked
points with 2m and 2n points on the two boundary components of the annulus A. We find a great
deal of interesting — and not yet fully understood — structure in ĤS(A, F2m,2n).

In cases where F is small, we can compute ĤS(A, F ) explicitly; when F is larger, we can still give
some description.

First, consider the case of no marked points: F0,0 = ∅. (In [19] we required marked surfaces to
have marked points on each boundary component; in this paper we relax this requirement and allow
the case of an empty marked point set.) In this case, we show that ĤS(A, ∅) has the structure of
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a (commutative) Z2-algebra, with multiplication corresponding to juxtaposition of curves. A string
which runs k times around the core of the annulus is denoted xk, and its homology class (if it exists)

in ĤS(A, ∅) by x̄k. Throughout we will denote by z̄ the homology class of an element z.

Theorem 1.2. The homology ĤS(A, ∅) is generated as a Z2-algebra by the homology classes x̄k of xk,
over all odd integers k, subject to the relation that each x̄2k = 0. That is,

ĤS(A, ∅) =
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .)

.

In other words, ĤS(A, ∅) has the structure of a polynomial algebra over Z2, in infinitely many
commuting variables x̄2j+1, such that each variable satisfies x̄22j+1 = 0.

This algebra is “fermionic” in two senses:

(i) Only curves with “odd spin” x2j+1 survive in homology: curves which proceed around the annulus
an even number of times are not cycles, and do not even have homology classes.

(ii) Even for the “odd spin” curves x2j+1, which do survive in homology, their square is zero, x̄22j+1 =
0. Two such curves cause a “pair annihilation” and give zero in homology. Thus there is a “Pauli
exclusion principle” for these curves.

This “fermionic polynomial” algebra, which we denote H(X ) as explained in section 2.3, is central to
all further calculations. This is partly because of the technicalities of the algebra, but can be seen
explicitly for example in the following proposition, which will be proved (in greater generality) in
section 2.4.

Proposition 1.3. For any n ≥ 0, ĤS(A, F0,2n) is an H(X )-module.

The computation of ĤS(A, ∅) is rather involved and occupies section 3 of this paper. Along the way
we see an analogy to “decay chains” of particles, with corresponding “decay” and “fusion” operators
(sections 3.3 and 3.4) and Weyl algebra representations (section 3.5).

1.4 Further homology computations: Two and four marked points

We then proceed to annuli with the next smallest set of alternating marked points, namely two marked
points, both on the same boundary component, (A, F0,2). From proposition 1.3, this is a H(X )-module,
i.e. a module over a polynomial ring in infinitely many variables x̄2j+1 where each x̄22j+1 = 0.

A string diagram on (A, F0,2) contains a single open string between the two points of F0,2, as well
as some (possibly none) closed strings.

Theorem 1.4. The homology ĤS(A, F0,2), as an H(X )-module, is given by

ĤS(A, F0,2) ∼= x̄1H(X )⊕ x̄−1H(X )

∼= x̄1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .)

⊕ x̄−1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .)

).

More precise statements are given in proposition 4.12 and theorem 4.14. Thus ĤS(A, F0,2) is natu-
rally a non-free rank-2 module over the “fermionic” polynomial ring H(X ), and “fermionic” behaviour
persists in this case.

As we will see, the two summands correspond to whether the open string in a string diagram on
(A, F0,2) runs around the annulus in a positive or negative direction. In this way, to continue with
loose physical analogies, “open strings with different chirality do not interact”. These computations
occupy sections 4.3 and 4.4 of this paper.
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Next we consider annuli with four marked points, two on each boundary component (A, F2,2).
This is the most difficult case we consider. While we do not have an explicit generators-and-relations
description of homology in this case, we can detail a significant amount of structure. The computations
occupy the longest section of the paper, section 6.

We summarise some of our description of ĤS(A, F2,2) as follows.

Theorem 1.5.

(i) The chain complex ĈS(A, F2,2) naturally splits into two summands

ĈS(A, F2,2) ∼= (A⊗X ⊗ B)⊕ (C ⊗ X ⊗D),

corresponding respectively to “insular” string diagrams in which the open strings begin and end
at the same boundary component, and “traversing” string diagrams in which the open strings run
between distinct boundary components. The first summand is a subcomplex, indeed a differential
X -module; the second is not.

(ii) The subcomplex A ⊗ X ⊗ B naturally splits as a direct sum of four further subcomplexes (also
differential X -submodules), corresponding to the direction of open strings:

A⊗X ⊗ B ∼= (A+ ⊕A−)⊗X ⊗ (B+ ⊕ B−)
∼= (A+ ⊗X ⊗ B+)⊕ (A+ ⊗X ⊗ B−)⊕ (A− ⊗X ⊗ B+)⊕ (A− ⊗X ⊗ B−).

The homology of each subcomplex A± ⊗X ⊗B± is naturally an H(X )-module; they are non-free
H(X )-modules of rank ∞, 1, 1,∞ respectively.

(iii) The summand A ⊗ X ⊗ B contains cycles which are not boundaries in ĈS(A, F2,2), and which
are not homologous to elements of C ⊗ X ⊗D.

(iv) The summand C ⊗ X ⊗ D contains cycles which are not boundaries in ĈS(A, F2,2), and which
are not homologous to elements of A⊗X ⊗ B.

The algebraic objects A,A±,B,B±, C,D,X will be defined in due course. Broadly, these objects
keep track of various topological classes of curves in string diagrams on (A, F2,2). The last two parts

of the theorem show that both the “insular A–B sector” and “traversing C–D sector” of ĤS(A, F2,2)
contribute nontrivially to homology. We shall give such homology classes explicitly.

Note also that, even though ĤS(A, F2,2) is not an H(X )-module, the “A–B sector” is, and the
“fermionic” structure of a module over “fermionic polynomials” H(X ) appears once more.

Part (i) is established in section 6.1, as is the decomposition of part (ii). The calculations of the
H(A± ⊗ X ⊗ B±) are involved and occupy sections 6.3 to 6.6, where precise results are obtained in
theorems 6.13 and 6.20. Parts (iii) and (iv) are elaborated in section 6.7 and shown in sections 6.8
and 6.9. In sections 6.8 to 6.9 we also develop several tools for analysing the C ⊗ X ⊗ D part of the
complex.

1.5 Adding more marked points: creation operators and doubling

As we do not have an explicit description of ĤS(A, F2,2), we cannot expect an explicit description

of ĤS(A, F2m,2n) for larger (2m, 2n). However, we can do the next best thing: we can give a com-

plete description of all ĤS(A, F2m,2n) either explicitly with generators and relations, or in terms of

ĤS(A, F2,2).
Indeed, once we have 2 marked points on a boundary component, as we add more marked points

to that boundary component, we can describe the effect on ĤS explicitly. To this end we will define
creation and annihilation operators, as used in [13, 14, 19], in section 7.1.

In section 7.2 we give explicit isomorphisms on string homology; a precise statement is theorem 7.1
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Theorem 1.6. Let (Σ, F ) be an alternating marked surface and suppose F ′ is an alternating marking
obtained from F by adding two marked points on a boundary component already containing marked
points. Then

ĤS(Σ, F ′) ∼= (Z2 ⊕ Z2)⊗Z2 ĤS(Σ, F )

Repeated use of the above theorem gives a description of these vector spaces for general alternating
(A, F2m,2n), as follows. The precise formulations are propositions 7.3 and 7.4.

Theorem 1.7.

(i) If n ≥ 0 then

ĤS(A, F0,2n+2) ∼= (Z2 ⊕ Z2)
⊗n ⊗Z2 (x̄1H(X )⊕ x̄−1H(X )) .

(ii) If m,n ≥ 0 then

ĤS(A, F2m+2,2n+2) ∼= (Z2 ⊕ Z2)
⊗(m+n) ⊗Z2 ĤS(A, F2,2).

1.6 Relations to Floer-theoretic invariants

As mentioned in section 1.2, there are reasons to expect a connection between the “string homology”
discussed in this paper, and Floer-theoretic invariants such as sutured Floer homology and embedded
contact homology, as well as a contact-topological invariant, namely the Grothendieck group of the
contact category, consisting of “sutures modulo bypass triples”.

In [19] we showed that for an alternating marked disc (D2, F ), our “string homology” ĤS(D2, F ),
the Grothendieck group of “sutures modulo bypasses”, and the sutured Floer homology of (D2 ×
S1, F × S1) are naturally isomorphic:

ĤS(D2, F ) ∼= ĈSsut(D
2,F )

B̂yp(D2,F )
∼= SFH(D2 × S1, F × S1)

String homology Sutures mod bypasses Sutured Floer homology

The computations of this paper, outlined in this introduction, show that such a direct isomorphism
no longer exists for annuli, and the relationship is more complex.

For instance, suppose, following [20, 21], we regard the annulus with no marked points (A, ∅) as
corresponding to the sutured 3-manifold (A× S1,Γ), where Γ consists of a pair of sutures of the form
C×{·}, oppositely oriented, on each boundary component C×S1 of A×S1. Then in fact the sutured
manifold (A × S1,Γ) is homeomorphic to (A × S1, F2,2 × S1) and computations of [11] or [10] give
SFH(A× S1,Γ) ∼= Z4

2. With Z or twisted coefficients SFH(A× S1,Γ) is a free Z or Z[q, q−1]-module

of rank 4 [18]. But on the other hand, ĤS(A, ∅) = H(X ) is the “fermionic polynomial algebra”, which
has infinite rank as a vector space or algebra over Z2.

ĤS(A, ∅) = H(X ) ∼=
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .)

There is a basis of sutured Floer homology in this case consisting of contact elements of contact
structures with dividing sets given by the string diagrams 1, x1, x−1, x1x−1. In some sense, then,

ĤS(A, ∅) gives a vast generalisation of SFH, with higher order structure from the “higher spin” strings

x̄±3 and above. Setting all x̄±3, x̄±5, . . . to 0, ĤS(A, ∅) reduces to SFH(A×S1,Γ) with Z2 coefficients.
Similarly, if we consider the annulus with two marked points on a single boundary component

(A, F0,2), the corresponding sutured manifold (A×S1,Γ) is a basic slice [8], which has SFH isomorphic

to Z4
2 [11]. But again our computation of ĤS is a far richer structure,

ĤS(A, F0,2) ∼= x̄1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .)

⊕ x̄−1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .)

.
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Again setting all x̄3, x̄5, . . . to 0 reduces this homology to Z4
2 in a manner which appears to be consistent

with contact elements generating SFH.
Finally, (A, F2,2) has corresponding sutured manifold (A × S1, F2,2 × S1) which has SFH free of

rank 4 (with Z2, Z or twisted Z[q, q−1] coefficients), as computed in [10, 15, 17]. But ĤS(A, F2,2) is
more complicated. Although we cannot compute the homology explicitly, in section 6.9 we construct
a homomorphism Φ from ĤS(A, F2,2) onto Z4

2, with nonzero kernel.
The constructions of this paper, therefore, give an algebraic object with an elementary definition,

based on curves on surfaces and their intersections, but which may contain strictly more information
than Floer-theoretic invariants of corresponding 3-manifolds. The above remarks suggest that some
subspace, or quotient, of ĤS(Σ, F ) may be isomorphic to the corresponding sutured Floer homology,
or Grothendieck group of “sutures modulo bypass triples”. They also suggest potential “higher order
structure” which may be found in sutured Floer homology, or the equivalent Floer-theoretic invariant
of embedded contact homology, or contact categories.

On a different note, as remarked in our previous work [19], the construction of our differential is
strongly reminiscent of the work of Goldman [5] and Turaev [22]. Goldman defined a Lie bracket on
the abelian group Zπ̂ freely generated by homotopy classes of loops on a surface — the bracket resolves
crossings between two loops, much like our differential. From this bracket, now known as the Goldman
bracket, he defined a Lie algebra homomorphism to the space of smooth real-valued functions on the
Teichmüller space of the surface (and more generally to spaces of flat G-connections). Under this map
the Goldman bracket corresponds to the Poisson bracket on real-valued functions with respect to the
Weil-Petersson symplectic form on Teichmüller space. Turaev went further and defined a cobracket
on the same abelian group Zπ̂, defined by resolving self-intersections of a loop. This cobracket, now
known as the Turaev cobracket, gives Zπ̂ a Lie bialgebra structure and we obtain a Poisson algebra
homomorphism to the space of smooth real-valued functions on Teichmüller space.

Our differential, taking a string diagram and resolving its crossings — both intersections between
distinct strings and self-intersections of each string — thus incorporates both the Goldman bracket
and Turaev cobracket.

A similar combination of both Lie bialgebra operations also arises in the symplectic field the-
ory of Eliashberg–Givental–Hofer [2]. Cieliebak–Latschev in [1] studied symplectic field theory with
Lagrangian boundary conditions, and found that the master equation of symplectic field theory

eF
←−−
H+ −

−−→
H−eF = 0 is generalised in the Lagrangian boundary case to the equation

eF
←−−
H+ −

−−→
H−eF = (∂ + ∆ + ~∇)eL,

where ∇ and ∆ are essentially the Goldman bracket and Turaev cobracket respectively. In other
words, our differential resembles boundary phenomena in symplectic field theory. As discussed in [19],
the relationships known to exist between symplectic field theory, embedded contact homology, and
Heegaard Floer homology suggest that none of these similarities is a coincidence.

For now, however, we leave the pursuit of these connections to subsequent work, and for the
remainder of this paper concentrate on the calculations of various ĤS(A, F ), hoping that the above
considerations provide sufficient motivation to follow them.

1.7 Structure of this paper

We will proceed by first establishing some preliminaries and definitions, in section 2. Much of this
section recalls [19] but there is some significant generalisation of basic notions and re-working of defini-
tions in the present context. For instance, our notion of marked surface in section 2.1 allows boundary
components without marked points. Also in section 2.2 we define the chain complex ĈS(Σ, F ) as a
quotient by contractible loops. And in sections 2.3 and 2.4 we discuss additional algebraic structure.

In section 3 we consider the annulus (A, F0,0 = ∅) with no marked points, and calculate the resulting
homology. The computation is rather long and involves a decomposition over odd integers (section
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3.2), a notion of “decay” and “fusion” operators (sections 3.3–3.4), and Weyl algebra representations
(section 3.5).

In section 4 we turn to annuli with two marked points. There are two cases to consider. In sections
4.1–4.2 we consider the case of one marked point on each boundary component; this is the remaining
case we need, in section 5, to prove homology is zero for non-alternating annuli. Then in sections
4.3–4.4 we consider two marked points on a single boundary component.

Section 6 is by far the longest and most difficult part of the paper; it consists of computations
relating to ĤS(A, F2,2). In sections 6.1–6.2 we describe the chain complex and differential. Then in
sections 6.3–6.6 we present a long argument to calculate the homology of the “insular” part of the chain
complex. Finally in sections 6.7–6.9 we consider the full homology ĤS(A, F2,2), make some general
statements, and develop some tools to analyse it, including a diagonal sum sequence (section 6.8) and
homomorphisms to and from a simpler chain complex (section 6.9).

Finally, in section 7 we consider adding further marked points, defining creation operators (section

7.1) and analysing their effect on ĤS (section 7.2), before giving results for ĤS(A, F0,2n+2) and

ĤS(A, F2m+2,2n+2) (section 7.3).

2 Preliminaries and definitions

2.1 Marked surfaces and string diagrams

Here, as elsewhere, Σ denotes a compact oriented surface with nonempty boundary.

Definition 2.1.

(i) A (weak) marking F on Σ is a set of 2n distinct points on ∂Σ, where n ≥ 0, with n points
Fin labelled “in” and n points Fout labelled “out”. The pair (Σ, F ) is called a (weakly) marked
surface.

(ii) A strong marking F on Σ is a weak marking with at least one point on each component of Σ.
The pair (Σ, F ) is called a strongly marked surface.

Note F = Fin t Fout. The points of F are marked points; the sign of a marked point is “in” or
“out” accordingly as it lies in Fin or Fout. Note that a weakly marked surface may have no marked
points at all. However we always require Σ to have nonempty boundary.

In [19], we only considered strong markings and strongly marked surfaces, referring to them as
“markings” and “marked surfaces”. However in this paper we use the adjectives “strong” and “weak”
to distinguish the two types of markings. When applied without an adjective, by a marking or marked
surface we mean a weak one.

Definition 2.2. A marking (strong or weak) is called alternating if for each component of ∂Σ, the
points of F are alternately labelled (in, out, ..., in, out).

In the weak case, a boundary component with no marked points is alternating (“the null alterna-
tion”). The empty marking F = ∅ is always an alternating weak marking.

An alternating marking (strong or weak) has an even number of points on each boundary compo-
nent. An alternating strong marking has at least 2 points on each boundary component.

An alternating strong marking forms a natural boundary condition for sutures, as discussed in
[14, 17]; see also [23]. Sutures can be regarded as dividing sets on a convex surface in a contact 3-
manifold [4]. A boundary component C is regarded as Legendrian, with Thurston-Bennequin number
− 1

2 |C ∩ F | [8]. However in this paper we only consider sutures in passing.

Definition 2.3. Let (Σ, F ) be a (weakly) marked surface. A string diagram s on (Σ, F ) is an immersed
oriented compact 1-manifold in Σ such that ∂s = F , as signed 0-manifolds, with all self-intersections
in the interior of Σ.
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The components of a string diagram are called strings; arc components are called open strings, and
closed curve components are called closed strings.

By ∂s = F as signed 0-manifolds, we mean that strings point in and out of Σ at Fin and Fout

respectively. Clearly each open string runs from a point of Fin to a point of Fout.
The condition that all self-intersections occur in the interior of Σ avoids unnecessary technicalities.

In particular it ensures that precisely one arc of s begins (resp. ends) at each point of Fin (resp. Fout).
Generically a string diagram contains only transverse double self-intersections.

Note compactness implies that a string diagram only has finitely many strings. (In [19] we did
not require string diagrams to be compact; but once contractible curves on a disc are ruled out,
compactness follows for free. Here we require compactness explicitly.)

In [19] we defined several notions of homotopy for string diagrams; in this paper we consider only
homotopy per se (not regular homotopy, spin homotopy, or ambient isotopy). Two string diagrams
s0, s1 on a (weakly) marked surface (Σ, F ) are homotopic if there is a homotopy relative to endpoints
from s0 to s1. (Such a homotopy may introduce or remove self-intersections in the string diagram, it
need not be through immersions, and it may change the writhe of strings.) Although strictly speaking
the string diagram is an explicit immersion of a disjoint union of copies of S1 and [0, 1] into (Σ, F ),
we abuse notation and identify this immersion with its image in Σ.

It is useful to consider various sets of string diagrams on a (weakly) marked surface (Σ, F ).

Definition 2.4.

(i) Let S(Σ, F ) denote the set of homotopy classes of string diagrams on (Σ, F ).

(ii) Let SO(Σ, F ) denote the set of homotopy classes of string diagrams containing only open strings.

(iii) Let SC(Σ, F ) denote the set of homotopy classes of string diagrams containing a contractible
closed curve.

2.2 The chain complex

Following [19] we define a chain complex (ĈS(Σ, F ), ∂) out of homotopy classes of string diagrams.
It is described in terms of free vector spaces over the sets of definition 2.4. For any set S, denote by
Z2〈S〉 the free Z2 vector space on S, i.e. with basis S.

Definition 2.5. Let (Σ, F ) be a (weakly) marked surface. The Z2-vector space ĈS(Σ, F ) is

ĈS(Σ, F ) =
Z2〈S(Σ, F )〉
Z2〈SC(Σ, F )〉

.

As SC(Σ, F ) ⊆ S(Σ, F ), we have a well-defined quotient Z2-vector space. A basis of ĈS(Σ, F ) is
given by homotopy classes of string diagrams on (Σ, F ) which contain no contractible closed curves.

(In fact in [19] we defined ĈS(Σ, F ) this way.) Our definition of ĈS(Σ, F ) as a quotient makes clear
that any string diagram s on (Σ, F ) can (by taking its homotopy class) be regarded as an element of

ĈS(Σ, F ); that element is zero precisely when s contains a contractible closed curve. (In [19] we had
to enforce this condition by fiat.)

Reasons for setting contractible closed curves to zero are given in [19]. Briefly: the triviality
of contractible closed curves is consistent with the nature of overtwisted discs in contact topology;
moreover we find that we may allow contractible curves, but at the cost of restricting to spin homotopy
classes, obtaining a different vector space CS∞(Σ, F ). (In this paper, as we do not consider spin
homotopy, we do not consider CS∞(Σ, F ) either. We can however note that CS∞ may be defined for
weakly marked surfaces.)

We next define the differential on ĈS(Σ, F ). Let s be a string diagram on a marked surface (Σ, F ).
Assuming s is generic, all intersection points of s are transverse double crossings; let x be such an
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intersection point. As the curves of s are oriented, there is a string diagram rx(s) obtained by resolving
s at x, as shown in figure figure 1.

Definition 2.6. Let s be a string diagram. Then

∂s =
∑

x crossing of s

rx(s).

In [19] we showed that ∂ is well-defined on homotopy classes of string diagrams without contractible
loops, so that we obtain an operator

∂ : ĈS(Σ, F ) −→ ĈS(Σ, F ).

Moreover, we showed that ∂2 = 0. The proofs in [19] for strongly marked surfaces extend without
change to the weak case. Essentially, ∂2 = 0 holds since ∂2s consists of a sum of string diagrams, each
obtained by resolving two crossings x and y of a string diagram s; but x and y may be resolved in
either order, so terms come in pairs and mod 2 the result is 0.

Thus for any (weakly) marked surface (Σ, F ) we have a chain complex (ĈS(Σ, F ), ∂).

Definition 2.7. Let (Σ, F ) be a weakly marked surface. The string homology of (Σ, F ) is

ĤS(Σ, F ) =
ker ∂

Im ∂
.

Clearly ĤS(Σ, F ) is a Z2-vector space.

2.3 Algebraic structure

All of the above essentially appears in [19], apart from the extension to weakly marked surfaces. In
this section we introduce some multiplicative structures on the various vector spaces involved, making
them into modules and/or algebras. This material has not appeared before, so far as we are aware.

For a (weakly) marked surface with no marked points, ĈS(Σ, ∅) is naturally a ring, which we denote
X (Σ). Multiplication in this ring is given by disjoint union of string diagrams, which necessarily only

contain closed strings. For a general (weakly) marked surface, ĈS(Σ, F ) is a free X (Σ)-module, with
basis given by SO(Σ, F ), string diagrams containing only open strings. We can describe these structures
formally in terms of the fundamental group and/or loop space of Σ.

Consider the free homotopy classes of closed loops on Σ; these correspond to the connected com-
ponents π0(ΛΣ) of the free loop space ΛΣ. When Σ is connected, these also correspond to conjugacy
classes Conjπ1(Σ) of the fundamental group π1(Σ).

We define the algebra X̃ (Σ) to be the symmetric Z2-algebra on the set π0(ΛΣ). That is, X̃(Σ) =
Z2[π0(ΛΣ)]. Elements of X̃(Σ) can be regarded as polynomials in “variables” given by free homotopy
classes of closed curves on Σ. As a Z2-vector space, X̃ (Σ) has basis given by free homotopy classes
of closed multicurves on Σ. Multiplication in X̃ (Σ) corresponds to disjoint union of (free homotopy
classes of) multicurves. When Σ is connected, X̃(Σ) ∼= Z2[Conjπ1(Σ)].

The ring X̃(Σ) has an ideal π0(Σ)X̃(Σ) generated by the homotopy classes of closed contractible
curves on Σ. (There is one such homotopy class for each connected component of Σ.) The ideal
π0(Σ)X̃(Σ) is a free Z2-vector subspace of X̃(Σ) with basis SC(Σ, ∅), the homotopy classes of closed
multicurves containing a contractible closed curve. When Σ is connected, this ideal is isomorphic to
{1}Z2[Conjπ1(Σ)] ⊂ Z2[Conjπ1(Σ)].

The algebra X (Σ) is then the quotient of X̃ (Σ) by this ideal.

Definition 2.8. The Z2-algebra X (Σ) is

X (Σ) =
X̃ (Σ)

π0(Σ)X̃ (Σ)
=

Z2[π0(ΛΣ)]

π0(Σ)Z2[π0(ΛΣ)]
.

10



As a Z2-algebra, X (Σ) is freely generated by free homotopy classes of non-contractible closed
curves on Σ; contractible curves have been set to zero. As a Z2-vector space, X (Σ) has basis given
by free homotopy classes of closed multicurves on Σ with no contractible components. This means
that despite our algebraic circumvolutions, X (Σ) is just isomorphic to ĈS(Σ, ∅) as a Z2-vector space;

indeed it endows ĈS(Σ, ∅) with the structure of a Z2-algebra.

ĈS(Σ, ∅) ∼= X (Σ).

Turning to a general (possibly nonempty) marking F , it is useful to consider a vector space, like

ĈS, but using SO(Σ, F ) (definition 2.4) rather than S(Σ, F ).

Definition 2.9. For a (weakly) marked surface (Σ, F ), the vector space ĈS
O

(Σ, F ) is the subspace of

ĈS(Σ, F ) generated by homotopy classes of string diagrams with no closed curves.

ĈS
O

(Σ, F ) =
Z2〈SO(Σ, F )〉

Z2〈SC(Σ, F ) ∩ SO(Σ, F )〉
= Z2〈SO(Σ, F )〉

(Note SC(Σ, F ) ∩ SO(Σ, F ) = ∅, giving the equalities above; having no closed curves implies no

contractible closed curves!) Thus, ĈS
O

(Σ, F ) is freely generated a s Z2 vector space by string diagrams
with open strings only.

Now suppose we have a (homotopy class of) string diagram s without contractible curves, so

s is a generator of ĈS(Σ, F ). We can decompose s into its open and closed string components.
Precisely, there exists a (free homotopy class of) closed multicurve without contractible components

x ∈ X (Σ), and a (homotopy class of) open string diagram sO ∈ ĈS
O

(Σ, F ), such that s is the union
of the curves of x and sO. Moreover this x and sO are unique. In keeping with the notion that
multiplication corresponds to disjoint union of string diagrams, we may write s = xsO. Moreover,
this notation is compatible with the multiplication in X (Σ): if x = x1x2 for x1, x2 ∈ X (Σ), we have

xsO = (x1x2)sO = x1(x2s
O). Thus, ĈS(Σ, F ) naturally has the structure of an X (Σ)-module; indeed

it is a free X (Σ)-module with basis SO(Σ, F ). As ĈS
O

(Σ, F ) is freely generated by SO(Σ, F ), we
immediately have the following result.

Lemma 2.10. For any (weakly) marked surface (Σ, F ),

ĈS(Σ, F ) ∼= X (Σ)⊗Z2 ĈS
O

(Σ, F ).

In this paper we only need to take Σ = A. In this case π0(ΛA) ∼= π1(A) ∼= Conjπ1(A) ∼= Z, as the
fundamental group is abelian. For any integer n, let us write xn for the free homotopy class of a closed
curve in A which runs n times around the core of the annulus, i.e. corresponding to n ∈ Z ∼= π1(A).
So X̃ (A) = Z2[. . . , x−2, x−1, x0, x1, x2, . . .] is the free polynomial algebra in xn, over all integers n.

The only homotopy class of closed curve on A which is contractible is x0, corresponding to 0 ∈ Z ∼=
π1(A). So X (A) is the quotient of X̃ (A) by the principal ideal generated by x0; this corresponds to
setting x0 = 0. As a Z2-algebra, we thus have

X (A) ∼= Z2[. . . , x−2, x−1, x1, x2, . . .],

i.e. the free polynomial algebra in the infinitely many indeterminates xn, over all integers n 6= 0. This
ring occurs so frequently in the sequel that we simply write X for X (A).

Applying the above to A, we immediately have the following, for integers m,n ≥ 0.

ĈS(A, ∅) ∼= X ∼= Z2[. . . , x−2, x−1, x1, x2, . . .]

ĈS(A, F2m,2n) ∼= X ⊗Z2 ĈS
O

(A, F2m,2n)

∼= Z2[. . . , x−2, x−1, x1, x2, . . .]⊗Z2
ĈS

O
(A,F2m,2n).
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2.4 Goldman bracket, Leibniz rule and differential algebra

For a marked surface with no marked points (Σ, ∅), we have seen that ĈS(Σ, ∅) ∼= X (Σ) is naturally
both a ring, and a chain complex. Thus it appears to be a differential algebra (indeed, a differential
graded algebra with respect to an intersection grading). However, in general the differential does not
obey the Leibniz rule. We now explain why.

Suppose we have two closed curves on Σ, with homotopy classes x, y ∈ X (Σ) ∼= ĈS(Σ, ∅). Then
xy is the disjoint union of these two curves, and ∂(xy) is obtained by resolving the intersection points
of xy. These intersection points may be of three types: (i) self-intersections of x; (ii) self-intersections
of y; and (iii) intersections of x with y. Resolving the intersections of the first and second types gives
(∂x)y and x(∂y) respectively. So the Leibniz rule ∂(xy) = (∂x)y+ x(∂y) holds if and only if there are
no intersections of the third type, i.e. x and y are disjoint, or at least their resolutions cancel mod 2.

Thus X (Σ) ∼= ĈS(Σ, ∅) is a differential algebra if any closed curve in Σ can be homotoped to be
separate from any other; this occurs precisely when Σ is a union of discs and annuli. In this case the
homology H(X (Σ)) ∼= ĤS(Σ, ∅) has the structure of a Z2-algebra.

The deviation of ∂ from obeying the Leibniz rule is thus measured by the intersection of distinct
closed curves. To this end we recall the Goldman bracket [5], which is in fact part of the original
motivation for our differential.

Definition 2.11. Let s, s′ be two immersed oriented curves on Σ intersecting transversely. Their
Goldman bracket is given by resolving the crossings of s and s′:

[s, s′] =
∑

x∈s∩s′
rx(ss′).

The proofs of lemmas 4.1 and 4.2 of [19] apply immediately to show that the bracket is well-
defined, and the homotopy class of the result depends only on the homotopy class of s and s′. Note
that the Goldman bracket applies to any immersed oriented curves, not just closed curves, and is in
fact well-defined on multicurves.

Restricting to closed multicurves, the Goldman bracket gives an operation

[·, ·] : X (Σ)⊗X (Σ) −→ X (Σ).

Working over Z2, the Goldman bracket is both antisymmetric and symmetric. We have the following
identity, for any multicurves x and y.

∂(xy) = (∂x)y + x(∂y) + [x, y] (1)

This equation expresses precisely that the Goldman bracket is an obstruction to ∂ satisfying the Leibniz
rule.

Turning to nonempty markings F , we have seen that ĈS(Σ, F ) ∼= X (Σ)⊗ĈS
O

(Σ, F ) is a free X (Σ)-
module. We may write a (homotopy class of) string diagram s on (Σ, F ) as xsO, where x ∈ X (Σ) is a
(homotopy class of) closed multicurve and sO ∈ SO(Σ, F ). We have

∂(xsO) = (∂x)sO + x(∂sO) + [x, sO], (2)

where ∂x denotes the differential in X (Σ). Thus, if the Leibniz rule is satisfied, then [x, sO] = 0 for
every closed curve x and every open string diagram sO on (Σ, F ). This implies that for connected
(Σ, F ) we have Σ a disc, or Σ = A and all points of F are on the same boundary component of A. In

fact in these cases X (Σ) is a differential algebra, and the Leibniz rule is satisfied, so that ĈS(Σ, F ) is

a differential X (Σ)-module. It follows that the homology ĤS(Σ, F ) is an H(X (Σ))-module.
When Σ = A, we denote the alternating marking points consisting of 2m, 2n ≥ 0 points on the

respective boundary components by F2m,2n. We then have the following.
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Proposition 2.12. The X -module ĈS(A, F2m,2n) is a differential X -module if and only if m = 0 or

n = 0. In these cases ĤS(A, F2m,2n) is an H(X )-module.

This proves proposition 1.3
In the next section we compute H(X ).

3 Strings on annuli with no marked points

We now turn our attention to the marked surface (A, ∅). From section 2.3 above, we have, as a
Z2-algebra

ĈS(A, ∅) ∼= X ∼= Z2[. . . , x−2, x−1, x1, x2, . . .].

3.1 Description of the differential

We first compute the differential. As discussed in section 2.4, the Goldman bracket vanishes on (A, ∅)
so the Leibniz rule is satisfied and X is a differential algebra.

Lemma 3.1. The differential ∂ on ĈS(A, ∅) satisfies the following properties.

(i) For each integer k 6= 0,
∂x2k = x2k.

(ii) For each integer k,
∂x2k+1 = 0.

These two properties together with the Leibniz rule define ∂ completely. As ∂ is Z2-linear, it suffices
to define it on (homotopy classes of) string diagrams. Individual strings are dealt with by (i) and (ii)
above, and where there are several curves, they are resolved individually via the Leibniz rule.

Proof. Consider a closed string of homotopy class n > 0, represented by xn ∈ X . We may draw this
loop so that it has n − 1 self-intersections. Resolving any of these crossings splits the loop into two
loops whose homotopy classes are positive and sum to n; thus we have

∂xn =

n−1∑
i=1

xixn−i.

When n is odd, the number of terms in this sum is even, and terms cancel in pairs mod 2, so ∂xn = 0.
When n is even, n = 2k, we have an odd number of terms, and again terms cancel in pairs, except for
the “middle” term x2k. A similar argument calculates ∂xn when n < 0.

Thus, computing ĤS(A, ∅) amounts to computing the homology of the polynomial algebra X ∼=
Z2[. . . , x−2, x−1, x1, x2, . . .] with respect to the differential ∂ defined by ∂x2k = x2k, ∂x2k+1 = 0 and
the Leibniz rule.

This description of ∂ alone is enough to understand some aspects of the “fermionic” nature of
ĤS(A, ∅). Firstly, as ∂x2k+1 = 0, but ∂x2k 6= 0, only “odd-spin” strings have homology classes. And
secondly, since ∂x2k = x2j , in homology we have x2j = 0; so a loop which appears twice disappears in
homology — reminiscent of the Pauli exclusion principle.
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3.2 Tensor decomposition over odd integers

Our computation of ĤS(A, ∅) is based on a tensor decomposition of the complex ĈS(A, ∅). We can
partition the nonzero integers into subsets Zj , for each odd integer j, as follows:

Zj = {j, 2j, 4j, . . .} = {j · 2k : 0 ≤ k ∈ Z}.

Obviously any nonzero integer can be written uniquely as j · 2k where j ∈ Z is odd and 0 ≤ k ∈ Z, so

Z\{0} =
⊔

j odd

Zj .

Now X is a free Z2-algebra on the xn over n ∈ Z\{0}. Hence we can define, for each odd j,

Xj = Z2[{xn : n ∈ Zj}] = Z2[xj , x2j , x4j , . . .].

That is, Xj is the polynomial algebra in the xn, over all n ∈ Zj . Corresponding to the decomposition
of Z\{0} into the Zj , we have a tensor decomposition of the Z2-vector space X :

X =
⊗
j odd

Xj .

Further, since the differential acts on generators by x2k 7→ x2k and x2k+1 7→ 0, each Xj is a subcomplex
of X ; indeed, each Xj is a differential sub-algebra of X . Since ∂ obeys the Leibniz rule, we in fact have
a tensor decomposition of chain complexes and differential algebras:

(X , ∂) ∼=
⊗
j odd

(Xj , ∂).

Moreover, all the Xj are all isomorphic differential algebras. We will define a standard differential
algebra Y and show each Xj is isomorphic to Y.

Definition 3.2. The differential algebra Y is the polynomial algebra Z2[y0, y1, . . .] in infinitely many
indeterminates yi, over all integers i ≥ 0. The differential on Y is defined by the Leibniz rule and

∂yi =

{
y2i−1 i ≥ 1
0 i = 0.

Thus, the differential on Y sends each indeterminate yi “down” to yi−1, squared; and sends the
“lowest” indeterminate y0 to 0. Similarly, the differential on Xj sends each indeterminate xj·2k “down”
to xj·2k−1 , squared, and sends xj 7→ 0. The following lemma is then immediate.

Lemma 3.3. For any odd j, xj·2k 7→ yk induces an isomorphism of differential algebras Xj
∼= Y.

The computation of H(X ) ∼= ĤS(A, ∅) is now essentially reduced to computing the homology H(Y)
of Y. In the next sections 3.3–3.5 we compute H(Y) by decomposing Y in various ways.

3.3 Homology as decay chain

For some intuition in computing H(Y), we can think of the indeterminates yk of Y as describing
“particles”, and the differential as describing a “binary decay cascade”

· · · 7→ yk 7→ yk−1 7→ · · · 7→ y1 7→ y0 7→ 0,

where each particle decays into two of the subsequent particle, ∂yk = y2k−1. The differential gives the
possible decays of a collection of particles.

As a Z2-vector space, Y is free with basis the monomials ye00 y
e1
1 · · · y

en−1

n−1 , over all positive integers
n and all n-tuples (e0, e1, . . . , en−1) of integers e1, e2, . . . , en ≥ 0. As a shorthand we can write e =
(e0, e1, . . . , en−1) as the vector of exponents and ye = ye00 · · · y

en−1

n−1 .
We decompose the differential ∂ into “decay” operators αk, which send xk 7→ x2k−1.
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Definition 3.4. For each positive integer k, the k’th decay operator αk : Y −→ Y is defined by
linearity, the Leibniz rule and

αkyk = y2k−1, αkyi = 0 for i 6= k.

We define α0 = 0.

The differential ∂ on Y is then the sum of the αk, ∂ =
∑

k≥0 αk.
We next investigate the αk more closely. For k ≥ 1, the effect of αk on a monomial yeii is given by

αk (yekk ) = eky
2
k−1y

ek−1
k , αk (yeii ) = 0 for i 6= k,

and on a general monomial ye is given by

αky
e = αk

(
n−1∏
i=0

yeii

)
=

∏
i 6=k

yeii

αk (yekk ) =

∏
i 6=k

yeii

 eky
2
k−1y

ek−1
k

= eky
e0
0 · · · y

ek−1+2
k−1 yek−1k · · · yen−1

n−1

Abusing notation, we can write this as

αky
e = eky

2
k−1y

−1
k ye.

Even though y−1k is obviously not in the polynomial ring Y, we note that if yk appears with exponent
ek = 0 then the factor of ek results in 0; and otherwise ek ≥ 1, so that y−1k ye is a monomial in Y. The
exponent of yk is reduced by one, and the exponent of yk−1 is increased by two. We will repeat this
abusive, but well-defined, notation throughout the paper as an efficient shorthand.

Lemma 3.5. For all k, α2
k = 0.

Proof. Obviously α2
0 = 0 since α0 = 0, so assume k ≥ 1. On a monomial ye we have αky

e =
eky

2
k−1y

−1
k ye so (with the same abuse of notation)

α2
ky

e = αk

(
eky

2
k−1y

−1
k ye

)
= ek(ek − 1)y4k−1y

−2
k xe.

When ek = 0 or 1 we have ek = 0 or ek − 1 = 0; if ek ≥ 2 then the above monomial makes sense. In
any case, mod 2 we have ek(ek − 1) = 0 so α2

k = 0.

We can also consider two distinct αi, αj . It is not difficult to show they commute.

Lemma 3.6. Let 0 ≤ i < j be integers. Then αiαj = αjαi.

Proof. When i = 0 we have αi = 0 so the result trivially holds; we thus assume i > 0. We can check
directly on a monomial ye = ye00 · · · y

en−1

n−1 that

αiαjy
e = αjαiy

e = eiejy
2
i−1y

−1
i y2j−1y

−1
j ye.

Although we already knew that ∂2 = 0, we can now see it alternatively as follows:

∂2 =

∑
i≥0

αi

2

=
∑
i≥0

α2
i +

∑
0≤i<j

αiαj + αjαi.

The first sum is zero since each α2
i = 0, and the second sum is zero since αi, αj commute.
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3.4 Fusion operators

In order to compute the homology of Y and each Yn, we will define some “fusion operators” α∗k, which
partly undo, or are “adjoint” to, the decay operators αk. A decay operator sends yk 7→ y2k−1; a fusion
puts the two yk−1’s back together into a yk, sending y2k−1 7→ yk.

Definition 3.7. For an integer k ≥ 1 the k’th fusion operator α∗k : Y −→ Y is defined on a monomial
ye = ye00 · · · y

en−1

n−1 by

α∗ky
e =

{
0 ek−1 ≤ 1

ye00 · · · y
ek−1−2
k−1 yek+1

i . . . y
en−1

n−1 = y−2k−1yky
e ek−1 ≥ 2

and extended Z2-linearly over Y. We define α∗0 = 0.

That is, α∗k is multiplication by y−2k−1yk, when this gives a polynomial, and is zero otherwise.
We now check how α∗i interacts with the decay operators.
First, α∗iαi sends yeii via αi to eiy

ei−1
i y2i−1, and then to eiy

ei
i ; this holds even when we multiply by

other powers of other variables yj , which gives

α∗iαi = ei.

Next, αiα
∗
i will map to zero, if ei−1 ≤ 1; if ei−1 ≥ 2 then it sends y

ei−1

i−1 y
ei
i via α∗i to y

ei−1−2
i−1 yei+1

i , and
then via αi to (ei + 1)y

ei−1

i−1 y
ei
i . This holds even when we multiply by other variables, giving

αiα
∗
i =

{
0 ei−1 ≤ 1
ei + 1 ei−1 ≥ 2

Hence we have

[αi, α
∗
i ]ye = (αiα

∗
i − α∗iαi)y

e =

{
eiy

e ei−1 ≤ 1
ye ei−1 ≥ 2

=

{
ye ei−1 ≥ 2 or ei odd
0 ei−1 ≤ 1 and ei even

This last distinction between “ei−1 ≥ 2 or ei odd”, and “ei−1 ≤ 1 and ei even” is clearly mutually
exclusive and covers all possibilities. Though it may seem to be an obscure distinction, it will be
crucial to our computation of homology.

Next we consider the commutativity of α∗i and αj , where i 6= j. When either of i or j is zero, we
have α∗i or αj = 0, so we assume i, j ≥ 1.

Note α∗i only affects the variables yi and yi−1, while αj affects the variables yj and yj−1. If |i−j| ≥ 2
then these four variables are disjoint. So we have

α∗iαjy
e = αjα

∗
i y

e =

{
0 ei−1 ≤ 1
ejy
−2
i−1y

1
i y

2
j−1y

−1
j ye ei−1 ≥ 2

In particular,
[α∗i , αj ] = α∗iαj − αjα

∗
i = 0.

This only leaves the case where i, j differ by 1, and we consider the two cases separately: (i) α∗i
and αi−1; and (ii) α∗i and αi+1.

(i) Consider the effect of α∗iαi−1 on a monomial ye. We first compute αi−1y
e = ei−1y

2
i−2y

−1
i−1y

e,
which has exponent of yi−1 equal to ei−1 − 1. If ei−1 ≤ 2 then applying α∗i to this gives 0; if
ei−1 ≥ 3 then it gives ei−1y

2
i−2y

−3
i−1yiy

e. That is,

α∗iαi−1y
e =

{
0 ei−1 ≤ 2
ei−1y

2
i−2y

−3
i−1yiy

e ei−1 ≥ 3
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Now consider the effect of αi−1α
∗
i on ye. We compute α∗i y

e is zero if ei−1 ≤ 1, and if ei−1 ≥ 2 then
α∗i y

e = y−2i−1yiy
e. Applying αi−1 to this then gives (ei−1 − 2)y2i−2y

−3
i−1yiy

e. Since ei−1 − 2 = ei−1
mod 2, we have

αi−1α
∗
i y

e =

{
0 ei−1 ≤ 1
ei−1y

2
i−2y

−3
i−1yiy

e ei−1 ≥ 2

Putting these together gives

[α∗i , αi−1]ye = (α∗iαi−1 − αi−1α
∗
i )ye =


0 ei−1 ≤ 1
2y2i−2y

−3
i−1yiy

e = 0 ei−1 = 2
0 ei−1 ≥ 3

 = 0

(ii) Consider the effect of α∗iαi+1 on ye. We compute αi+1y
e = ei+1y

2
i y
−1
i+1y

e. Applying α∗i to this,

when ei−1 ≤ 1 we obtain 0; when ei−1 ≥ 2 we obtain ei+1y
−2
i−1y

3
i y
−1
i+1y

e, so

α∗iαi+1y
e =

{
0 ei−1 ≤ 1
ei+1y

−2
i−1y

3
i y
−1
i+1y

e ei−1 ≥ 2

No consider the effect of αi+1α
∗
i on ye. We have α∗i y

e is zero when ei−1 ≤ 1, and when ei−1 ≥ 2
it is y−2i−1yiy

e. Applying αi+1 to this gives ei+1y
−2
i−1y

3
i y
−1
i+1y

e. Thus

αi+1α
∗
i y

e =

{
0 ei−1 ≤ 1
ei+1y

−2
i−1y

3
i y
−1
i+1y

e ei−1 ≥ 2

The results for the operations are the same in any order, and so we conclude

[α∗i , αi+1] = 0.

We summarise the above discussion with the following statement.

Proposition 3.8. If i 6= j then α∗i and αj commute, i.e. [α∗i , αj ] = 0.
On the other hand, for any i ≥ 0, the commutator of α∗i and αi is

[αi, α
∗
i ] =

{
1 ei−1 ≥ 2 or ei odd
0 ei−1 ≤ 1 and ei even

3.5 A hierarchy of Weyl algebra representations

We now extend the distinction in the calculation of [αi, α
∗
i ] to define a hierarchy of levels of monomials

ye in Y, depending on the values of the exponents e0, e1, . . .. The idea is as follows:

• Level 0 consists of monomials such that [α1, α
∗
1] = 1. This means e0 ≥ 2 or e1 is odd.

• Level 1 consists of monomials such that [α1, α
∗
1] = 0 and [α2, α

∗
2] = 1. This means that e0 ≤ 1

and e1 is even and (e1 ≥ 2 or e2 is odd).

• Continuing in this fashion, level i of the hierarchy, for positive integer i, consists of monomials
such that [α1, α

∗
1] = · · · = [αi, α

∗
i ] = 0 but [αi+1, α

∗
i+1] = 1. This means that e0 ≤ 1, e1 = e2 =

· · · = ei−1 = 0, ei is even, and (ei ≥ 2 or ei+1 is odd).

• Level ∞ of the hierarchy consists of the remaining monomials, namely those such that e0 ≤ 1
and e1 = e2 = · · · = 0. These are just the monomials 1 and y0.

More formally, we define levels Yi of Y as follows. They are Z2-vector subspaces but not sub-
algebras; they are not closed under multiplication.
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Definition 3.9. The level i subspace Yi of Y ∼= Z2[y0, y1, . . .], for an integer i ≥ 0 or i = ∞, is
defined as follows.

• Y0 is the subspace generated by monomials ye such that e0 ≥ 2 or e1 is odd.

• For an integer i ≥ 1, Yi is the subspace generated by monomials ye such that e0 ≤ 1, ej = 0 for
all integers j with 1 ≤ j ≤ i− 1, ei is even, and (ei ≥ 2 or ei+1 is odd).

• Y∞ is the subspace generated by {1, y0}.

(Note that in the definition of Y1 the condition on j is vacuous.)

Lemma 3.10. Every monomial in Y lies in precisely one Yi, so

Y =

∞⊕
i=0

Yi

(where the direct sum includes i =∞).

Proof. If ye is not in Y0, then e0 ≤ 1 and e1 is even. We will show that such an ye lies in precisely
one Yi with i > 0.

First, if all e1 = e2 = · · · = 0, then ye = ye00 ; and since e0 ≤ 1, we have ye = 1 or y0. In this case,
ye ∈ Y∞ and clearly ye lies in no other Yi.

We may then assume that there is some smallest positive integer j such that ej > 0, so e1 = · · · =
ej−1 = 0 but ej 6= 0.

Then clearly ye /∈ Yi for any i such that 1 ≤ i ≤ j − 2, since such a Yi requires either ei or ei+1 to
be nonzero, but i + 1 ≤ j − 1 and all of e1 = · · · = ej−1 = 0. Conversely, ye /∈ Yi for any i ≥ j + 1,
since such a Yi requires ej = 0.

If ej is even, then ye ∈ Yj , since ej ≥ 2. But ye /∈ Yj−1, since ej−1 < 2 and ej is not odd. So ye is
in precisely one of the subspaces Yi, namely Yj .

If ej is odd, then ye ∈ Yj−1, since ej−1 = 0 is even, and ej is odd. But ye /∈ Yj , since ej is not
even. So ye lies in precisely one of the subspaces Yi, namely Yj−1.

We note that each Yi can be regarded as a Weyl algebra representation. Recall that the Weyl algebra
(over Z2) on n variables is the Z2-algebra freely generated by commuting variables x1, . . . , xn and
partial derivatives ∂

∂x1
, . . . , ∂

∂xn
, so that they obey commutation relations [xi, xj ] = [ ∂

∂xi
, ∂
∂xj

] = 0 and

[xi,
∂

∂xj
] = δij , the Kronecker delta. The operators αi, α

∗
i we have defined satisfy [αi, αj ] = [α∗i , α

∗
j ] = 0

and [αi, α
∗
j ] = 0 when i 6= j. The algebra of these operators is thus very close to the Weyl algebra.

We do not have [αi, α
∗
i ] = 1 on Y in general, but on Yi we have [αi, α

∗
i ] = 1. (When j > i, on Yi the

commutator [αj , α
∗
j ] is sometimes 1 and sometimes 0.)

Thus each Yi carries a representation of the 1-variable Weyl algebra generated by αi, α
∗
i . As we

will see, this relation will provide a chain homotopy demonstrating trivial homology.
This hierarchy of subspaces behave in a “triangular” way with respect to the decay operators αj .

Lemma 3.11. If j ≤ i then
αjYi = 0.

This includes the case i =∞; any integer is less than ∞.

Proof. When j = 0 the statement is clear, since α0 = 0; we thus only need consider αj with j ≥ 1.
The result holds when i = 0, since then j = 0. So we may assume i ≥ 1.

Consider Yi for i ≥ 1. If 1 ≤ j < i, then the statement follows immediately from the fact that
each monomial generating Yi has ej = 0. For j = i, the statement follows from the fact that each
monomial generating Yi has ei even.

Finally consider i = ∞, i.e. Y∞. For any j ≥ 1, the statement follows since each generating
monomial has ej = 0.
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In fact, in the case i =∞, there are only the two monomials 1, y0 to consider, and it is clear that
every αj annihilates these.

We have just seen that αjYi = 0 when j ≤ i. When j > i the result of applying αj to a monomial
in Yi will not usually be zero, but it does lie in Yi. We will then be able to show that the subspaces
Yi are subcomplexes of Y.

Lemma 3.12. Applying any decay operator to a monomial results in zero, or a monomial of the same
level. In particular, for any i ≥ 0 or i =∞ and any integer j ≥ 0,

αjYi ⊆ Yi.

Proof. Since we know that αjYi = 0 when j ≤ i, it suffices to check the cases j > i. When i = ∞
there are no j > i to check, so we only need check integers i ≥ 0. We consider the cases i = 0 and
i ≥ 1 separately.

First consider Y0, and a monomial generator ye satisfying e0 ≥ 2 or e1 odd. Then α1y
e is zero, if e1

is even; and if e1 is odd then α1y
e = y−11 y20y

e. Thus the result will either be zero or have e0 ≥ 2, and
hence will be a level 0 monomial. Next, α2y

e, if nonzero, will be equal to e2y
−1
2 y21y

e. If the exponent
e0 ≥ 2, then after applying α2, the exponent of y0 remains greater than or equal to 2. If e1 is odd,
then after applying α2, the exponent of y1 is increased by 2 and remains odd. Either way, α2y

e is a
level 0 monomial. For j ≥ 3, αjy

e either produces zero or only changes the exponents of yj and yj−1,
neither of which is e0 or e1; hence the result remains a level 0 monomial.

Now consider Yi, for i ≥ 1, generated by ye satisfying e0 ≤ 1, e1 = · · · = ei−1 = 0, ei even, and
(ei ≥ 2 or ei+1 odd); we consider the effect of αj for j ≥ i + 1. The value of αi+1y

e, if nonzero, is
ei+1y

−1
i+1y

2
i y

e. The only exponents that change are those of yi and yi+1; ei is increased by 2, so remains
even, and becomes ≥ 2. Thus the result is a level i monomial. The effect of αi+2 on ye, if nonzero, is
ei+2y

2
i+1y

−1
i+2y

e, so the only exponents that change are those of yi+1 and yi+2; ei+1 is increased by 2,
so if it was odd it remains odd; hence the result is a level i monomial. The effect of αj , for j ≥ i+ 3,
on ye, if nonzero, only affects exponents of yk with k ≥ i+ 2, hence not those in the defining condition
for Yi, and so results in a level i monomial.

As the differential ∂ =
∑

k≥0 αk is the sum of the decay operators, it follows that ∂ preserves each

level in the hierarchy of Y. That is, for each i ∈ {0, 1, . . . ,∞}, (Yi, α) is a chain complex, a subcomplex
of Y. Slightly abusing notation, we will also write ∂ for the restriction of the differential to each Yi.

Corollary 3.13. As chain complexes,

(Y, ∂) = (Y0, ∂)⊕ (Y1, ∂)⊕ · · · ⊕ (Y∞, ∂).

Referring to proposition 3.8, we now note that the commutation relations between the fusion and
decay operators αi, α

∗
j can be used to provide chain homotopies on these chain complexes.

On Y0, for each generating monomial ye we have e0 ≥ 2 or e1 is odd, so [α1, α
∗
1]ye = ye and

[αj , α
∗
1]ye = 0 for j ≥ 2. That is, on Y0, we have [α1, α

∗
1] = 1 and αj , α

∗
1] = 0 for j ≥ 2. It follows

that, on Y0,

[∂, α∗1] =

∞∑
j=0

[αj , α
∗
1] = [α1, α

∗
1] = 1.

The resulting equation ∂α∗1 + α∗1∂ = 1 says that α∗1 is a chain homotopy from 1 to 0, so that the
homology of the complex is zero, H∗(Y0, ∂) = 0.

Similarly, for each monomial generating Y1 we have e0 ≤ 1, e1 even and (e1 ≥ 2 or e2 is odd).
Thus [α2, α

∗
2] = 1 and

[∂, α∗2] =

∞∑
j=0

[αj , α
∗
2] = [α2, α

∗
2] = 1.

Thus ∂α∗2 + α∗2∂ = 1, so that α∗2 is a chain homotopy from 1 to 0 and the homology H∗(Y1, ∂) = 0.
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Similarly, on each Yi, for i ≥ 1, we consider monomials where ei ≥ 2 or ei+1 is odd, so that
[αi+1, α

∗
i+1] = 1, and hence

[∂, α∗i+1] =

n−1∑
j=0

[αj , α
∗
i+1] = [αi+1, α

∗
i+1] = 1,

so that ∂α∗i+1+α∗i+1∂ = 1, giving a chain homotopy from 1 to 0 and demonstrating that H∗(Yi, α) = 0.
On Y∞, we have that every αj = 0, so ∂ = 0 and hence H∗(Y∞, ∂) = Y∞. This Y∞ is rather

small, generated by 1 and y0.
We have now computed the homology of each summand of (Y, ∂), hence of Y. As Y is a differential

Z2-algebra (even though the Yi are not), the homology H(Y) is a Z2-algebra. Denoting the homology
class of y ∈ Y by ȳ, we have the following.

Theorem 3.14. The homology of (Y, ∂), as a Z2-algebra, is

H(Y) =
Z2[ȳ0]

(ȳ20)
.

Proof. The only summand Yi of Y with nontrivial homology is Y∞, which is 2-dimensional over Z2 with
basis {1, y0} and trivial differential. So as a Z2-vector space, H(Y) has basis {1̄, ȳ0}. As an algebra,
H(Y) must be generated by ȳ0, inheriting multiplication from Y. Since y20 = ∂y1, in homology we
have ȳ20 = 0, and as an algebra the homology is as claimed.

3.6 Putting the chain complexes back together

We now return to the original chain complex ĈS(A, ∅) ∼= X , and reassemble it from the various Xj .
We have the tensor decomposition of differential algebras X ∼=

⊗
j Xj , and each Xj

∼= Y under an
isomorphism which takes the “infinite decay chain” of Y

yk 7→ yk−1 7→ · · · 7→ y1 7→ y0 7→ 0

to the corresponding “decay chain” of Xj

xj·2k 7→ xj·2k−1 7→ · · · 7→ x2j 7→ xj 7→ 0.

We will keep track of how some structure in the Xj translates back into the original X . In particular,
each operator αk on each Xj translates to a corresponding operator α(j,k) on X . As αk has the effect
of sending yk 7→ y2k−1, the corresponding operator α(j,k) has the effect of sending yj·2k 7→ y2j·2k−1 , for
each j and k. Similarly we can define α∗(j,k) to be the operator on X corresponding to the operator α∗k
on Xj .

Definition 3.15. For each odd integer j and each positive integer k, the following operators X −→ X
are defined on monomials as follows, and extended over X by linearity.

(i) The operator α(j,k) is defined by Z2-linearity, the Leibniz rule, and

α(j,k)xj·2k = x2j·2k−1 , α(j,k)xi = 0 for i 6= j · 2k.

(ii) The operator α∗(j,k) is defined on a monomial xe =
∏

i∈Z\{0} x
ei
i by

α∗(j,k)x
e =

{
0 ej·2k−1 ≤ 1
x−2
j·2k−1xj·2k ej·2k−1 ≥ 2
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We then have

∂ =
∑
j odd

∞∑
k=1

α(j,k).

Since α(j,k) and α∗(j,k) mainly affect xi where i = j · 2k or j · 2k−1, we can also write

α(j,k) = αj·2k , α∗(j,k) = α∗j·2k .

With this notation, we have an αi defined on X for each even integer i. (In section 4.1, we will see a
natural definition for odd i, when F is nonempty.)

The commutation relations on the operators αk, α
∗
k on each Xj also translate directly into commu-

tation relations on the α(j,k) and α∗(j,k). From proposition 3.8 we have [α∗k, αl] = 0 when k 6= l, and

[αk, α
∗
k] = 1 or 0 accordingly as (ek−1 ≥ 2 or ek is odd) or (ek−1 ≤ 1 and ek is even). In X , we see that

α(j,k) and α∗(j,k) only affect those xi where i = j · 2k or j · 2k−1; thus we obtain the following lemma.

Lemma 3.16. Let j, j′ be odd integers and k, k′ positive integers.

(i) For j 6= j′ or k 6= k′ we have
[α(j,k), α

∗
(j′,k′)] = 0.

(ii) For a monomial xe ∈ X ,

[α(j,k), α
∗
(j,k)] =

{
1 ej·2k−1 ≥ 2 or ej·2k odd
0 ej·2k−1 ≤ 1 and ej·2k even

3.7 Computing the total homology

We have found that the homology Y is generated as a Z2-algebra by ȳ0, the homology class of y0, with
the relation ȳ20 = 0. Correspondingly, for each odd integer j, the homology of Xj is generated as a
Z2-algebra by the homology class x̄j of xj , whose square is zero.

H(Xj) =
Z2[x̄j ]

(x̄2j )

Calculating the homology of ĈS(A, ∅) ∼= X now amounts to an application of the Künneth theorem.
As usual, write x̄j for the homology class of xj .

Theorem 3.17. As a Z2-algebra, H(X ) is generated by the homology classes x̄j of xj over all odd j,
where each x̄2j = 0.

ĤS(A, ∅) = H(X ) =
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .)

Note that the theorem just asserts that the H(X ) = H(
⊗
Xj) is the tensor product of the H(Xj):⊗

j odd

H(Xj) =
⊗
j odd

Z2[x̄j ]

(x̄2j )
=

Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .)

.

For the purposes of the proof, we will define a differential algebra X≤N , for any odd positive integer
N : it is the tensor product of the Xj with |j| ≤ N ,

X≤N = X−N ⊗ · · · ⊗ X−3 ⊗X−1 ⊗X1 ⊗X3 ⊗ · · · ⊗ XN =

N⊗
j=−N

Xj .
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Note that X is the direct limit of the X≤N :

X≤1 ⊂ X≤3 ⊂ · · · ⊂ X with

∞⋃
N=1

X≤N = X .

Proof. We repeatedly apply the Künneth theorem (for instance as in theorem V.2.1 of [6]), which
implies the following statement: if A,B are chain complexes over Z2, then H(A⊗B) ∼= H(A)⊗H(B).
(Any chain complex over Z2 is a Z2-module, hence Z2-vector space, hence free, hence projective,
hence flat; and its homology is also a Z2-vector space, so Tor(H(A), H(B)) = 0, and hence the map
H(A)⊗H(B) −→ H(A⊗B) is an isomorphism.)

Applying the Künneth theorem to X−N , . . . ,X−1,X1, . . . ,XN gives immediately

H
(
X≤N

)
= H

 N⊗
j=−N

Xj

 ∼= N⊗
j=−N

H (Xj) ∼=
Z2[x̄−N , . . . , x̄−1, x̄1, . . . , x̄N ]

(x̄2−N , . . . , x̄
2
−1, x̄

2
1, . . . , x̄

2
N )

.

Now homology commutes with direct limits, and so the homology of X is the direct limit of the
homologies of the X≤N , hence is as claimed.

Thus, the string homology of (A, ∅) is generated by the homology classes of closed curves xj which
run an odd number j of times around the core of A. As a Z2-module, this homology is generated
by collections of closed curves with distinct odd homotopy classes. The multiplicative structure on
ĤS(A, ∅) can be regarded as arising from disjoint union of curves; or, equivalently, by gluing two string
diagrams in distinct annuli together by gluing the annuli together along their boundaries.

In any case, we have proved theorem 1.2.
It will be useful in the sequel to make various definitions based on various types of monomials and

polynomials in the xi and x̄i that arise in X and H(X ). To this end we make the following definitions.

Definition 3.18.

(i) A fermionic monomial is an element of X of of the form xj1 · · ·xjk where j1, . . . , jk are all odd
and pairwise distinct.

(ii) A (positively) clean monomial is a fermionic monomial not containing x1.

(iii) A negatively clean monomial is a fermionic monomial not containing x−1.

(iv) A totally clean monomial is a fermionic monomial not containing x1 or x−1.

(v) A fermionic polynomial (resp. positively clean, negatively clean, totally clean polynomial) is a
finite sum of fermionic monomials (resp. positively clean, negatively clean, totally clean mono-
mials).

Thus, for instance, a positively clean polynomial is a polynomial in {xj : j odd, j 6= 1}, linear
in each xj . When we refer to a clean monomial or polynomial, by default we mean a positively clean
one. The polynomials are “fermionic” in the sense that only odd variables (“particles”) appear, and
that each variable (“particle”) can only appear once in each monomial, so obeys a “Pauli exclusion
principle”.

Note that any fermionic polynomial p ∈ X satisfies ∂q = 0 (hence also any positively or negatively
or totally clean polynomial). Thus we may speak of fermionic, positive and negatively and totally
clean polynomials in H(X ) as those represented by such polynomials in X . Here the variables have
the further “fermionic” property that x̄2j = 0.

Our computations show that H(X ) is a free Z2-module with basis the fermionic monomials, and
every homology class has a unique fermionic polynomial representative in X . The result in H(X )
of multiplying two fermionic monomials is their usual product, if that product is another fermionic
monomial; otherwise some variable appears twice, and since x̄2j = 0, the product in H(X ) is zero.
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The Z2-submodule of H(X ) generated by (positively) clean monomials is in fact a subring; its
elements are precisely the (positively) clean polynomials. Similarly there are subrings of negatively
clean and totally clean polynomials.

Definition 3.19. The subring of

 (positively) clean
negatively clean

totally clean

 polynomials in H(X ) is denoted

 H(X ) 6=1

H(X )6=−1
H(X ) 6=−1,1

.

Explicitly,

H(X )6=1 =
Z[. . . , x̄−3, x̄−1, x̄3, x̄5, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
3, x̄

2
5, . . .)

, H(X )6=−1 =
Z[. . . , x̄−5, x̄−3, x̄1, x̄3, . . .]

(. . . , x̄2−5, x̄
2
−3, x̄

2
1, x̄

2
3, . . .)

,

H(X )6=−1,1 =
Z[. . . , x̄−5, x̄−3, x̄3, x̄5, . . .]

(. . . , x̄2−5, x̄
2
−3, x̄

2
3, x̄

2
5, . . .)

.

4 Strings on annuli with two marked points

We next turn to marked annuli (A, F ) where |F | = 2, so that |Fin| = |Fout| = 1. A nonzero string

diagram s in ĈS(A, F ) consists of a single open string from Fin to Fout, and some number (possibly
zero) of closed curves, each running some nonzero number of times around the annulus. We again
write xn for the (homotopy class of the) closed curve which runs n times around the annulus.

There are two cases: F either consists of one marked point on each boundary component; or both
marked points are on a single boundary component. We write F = F1,1 and F = F0,2 accordingly. We
consider the first case in sections 4.1 to 4.2; and the second case in sections 4.3 to 4.4.

4.1 Annuli with one marked point on each boundary

When F = F1,1 consists of one point on each boundary component, the arc connecting these two points
runs from one boundary component to the other. There are infinitely many such homotopy classes
(relative to endpoints) of such arcs, each corresponding to running some number of times around the
annulus. We denote (the homotopy classes of) these curves cn, for n ∈ Z, as shown in figure 2; they

form a Z2-basis for ĈS
O

(A, F1,1).

c−1 c0 c1

Figure 2: Open strings on (A, F1,1).

It will be useful later to write C for the free Z2-module on {cn : n ∈ Z}. So C = ĈS
O

(A, F1,1).

From lemma 2.10 we have ĈS(A, F1,1) ∼= X ⊗Z2
ĈS

O
(A, F1,1) = X ⊗Z2

C. Thus so ĈS(A, F1,1) is

a free X -module with basis the cn. As a Z2-module, ĈS(A, F1,1) is free with basis given by elements

cnxk1xk2 · · ·xkm ,
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where n ∈ Z and k1, . . . , km ∈ Z\{0}. We can also use the exponential notation

cnx
e = cn

∏
i∈Z\{0}

xeii

where each ei ≥ 0 and only finitely many ei are nonzero.
We now describe the differential on ĈS(A, F1,1) ∼= X ⊗ C; as the Goldman bracket is nonzero, ∂

does not obey the Leibniz rule and we have (equation 2)

∂(cnx
e) = (∂cn)xe + cn(∂xe) + [cn, x

e].

Here ∂xe is as in X . Just as in the case F = ∅, after a homotopy the closed strings can be made
pairwise disjoint, with each xi having |i| − 1 self-intersection points. The arc cn can be drawn without
self-intersections, intersecting each closed curve xi precisely |i| times. Thus ∂cn = 0. When we resolve
a crossing between a cn and xi, we obtain the open string cn+i; there are |i| such crossings, so (mod
2) [cn, xi] = icn+i.

In general, resolving all the crossings between cn and a closed multicurve xe, we obtain (using our
standard abusive notation) the Goldman bracket as

[cn, x
e] =

∑
i∈Z\{0}

ei[cn, xi]x
−1
i xe =

∑
i∈Z\{0}

ieicn+ix
−1
i xe,

since each xi occurs ei times, and resolving a crossing between cn and an xi leaves the closed multicurve
x−1i xe remaining.

Thus, on a string diagram s = cnx
e, the differential is given as follows.

∂s = ∂ (cnx
e) = cn (∂xe) +

∑
i∈Z\{0}

ieicn+ix
−1
i xe (3)

Recall definition 3.15 of the operators α(j,k) on X , for each odd j and each positive integer k,
which sends xj·2k 7→ x2j·2k−1 ; recall that sum of all the α(j,k) is the differential on X . These operators
extend naturally over X ⊗C, sending each cnx

e 7→ cnα(j,k)x
e. Applied to s, they give the first term of

equation 3.
We alternatively wrote α(j,k) = αj·2k ; with this notation, there is an αi for every nonzero even

integer i. On the other hand, the terms in the second sum of equation 3 are only nonzero when i is
odd, as there is a factor of i (mod 2), corresponding to the number of intersections between the arc cn
and a closed curve in homotopy class i. Hence it is natural to extend the definition of the αi to odd i
to produce the second term of equation 3.

Definition 4.1. For each odd j, define αj = α(j,0) on monomials (extended by linearity) as

α(j,0) (cnx
e) = ejcn+jx

−1
j xe.

Equation 3 then becomes

∂s =
∑
j odd

∞∑
k=1

α(j,k)s+
∑
j odd

α(j,0)s =
∑
j odd

∞∑
k=0

α(i,j)s =
∑

i∈Z\{0}

αis,

so we have a compact description of the chain complex as

ĈS(A, F1,1) = X ⊗ C, ∂ =
∑

i∈Z\{0}

αi.

We compute its homology we will compute in the next section.
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4.2 Source operators

Returning to our particle analogy, the operation of α(j,k) for positive k, which sends xj·2k 7→ x2j·2k−1 ,
can be seen as a “decay”. The new operator α(j,0) corresponds to a “decay” xj 7→ c·+j . We can regard
this as the “end of a decay chain”

xj·2k 7→ xj·2k−1 7→ · · · 7→ x2j 7→ xj 7→ c·,

where the cn terms are “sinks” or “ground states” into which the xi are finally absorbed.
The fusion operators α∗(j,k) = α∗j·2k on X , for positive k, reverse this decay process and send

x2j·2k−1 7→ xj·2k . These operators extend to X ⊗ C, sending cnx
e 7→ cnα

∗
(j,k)x

e. Note an α∗j·2k = α∗i is
defined for all nonzero even i.

We can now extend this definition to α∗i for odd i, reversing the “sinking” of an xi particle into a
cn. Instead, α∗i will “create” an xi out of a cn “source” by sending cn 7→ cn−ixi.

Definition 4.2. For each odd j, define α∗j = α∗(j,0) on monomials (extended by linearity) as

αj (cnx
e) = cn−jxjx

e.

We now investigate the commutativity of the various α(j,k) and α∗(j,k). For k > 0 these were given
in lemma 3.16 and it remains to find commutators involving k = 0; we give these now.

Lemma 4.3. For any odd integer i and any non-negative integers j, k,

[α(i,0), α
∗
(j,k)] = δi,jδk,0

[α(j,k), α
∗
(i,0)] = δi,jδk,0

(Each δ here is a Kronecker delta.)

Proof. We first show that α(i,0), α
∗
(j,k) commute when i 6= j.

α(i,0)α
∗
(j,k)cnx

e = α(i,0)

{
0 ej·2k−1 ≤ 1
cnx
−2
j·2k−1xj·2kx

e ej·2k−1 ≥ 2

=

{
0 ej·2k−1 ≤ 1
eicn+ix

−1
i x−2

j·2k−1xj·2kx
e ej·2k−1 ≥ 2.

α∗(j,k)α(i,0)cnx
e = α∗(j,k)eicn+ix

−1
i xe

=

{
0 ej·2k−1 ≤ 1
eicn+ix

−2
j·2k−1xj·2kx

−1
i xe ej·2k−1 ≥ 2

It is similar to check that α∗(i,0) and α(j,k) commute when i 6= j.
We next consider the commutativity of α(i,0) and α∗(i,k)where k 6= 0.

α(i,0)α
∗
(i,k)cnx

e = α(i,0)

{
0 ei·2k−1 ≤ 1
cnx
−2
i·2k−1xi·2kx

e ei·2k−1 ≥ 2

=

{
0 ei·2k−1 ≤ 1
eicn+ix

−1
i x−2

i·2k−1xi·2kx
e ei·2k−1 ≥ 2

α∗(i,k)α(i,0)cnx
e = α∗(i,k)eicn+ix

−1
i xe

=

{
0 ei·2k−1 ≤ 1
eicn+ix

−2
i·2k−1xi·2kx

−1
i xe ei·2k−1 ≥ 2
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Hence α(i,0) and α∗(i,k) commute for k 6= 0. It is similar to check that α∗(i,0) and α(i,k) commute for
k 6= 0.

Finally we consider the commutativity of α(i,0) and α∗(i,0).

α(i,0)α
∗
(i,0)cnx

e = α(i,0) (cn−ixix
e)

= (ei + 1) cnx
e

α∗(i,0)α(i,0)cnx
e = α∗(i,0)

(
eicn+ix

−1
i xe

)
= eicnx

e

As the differential is the sum of the α(j,k), the commutator of α∗(i,0) with ∂ is now easily given.

Proposition 4.4. For any odd integer i,

[∂, α∗(i,0)] = 1.

Proof. [
∂, α∗(i,0)

]
=

∑
(j,k)

α(j,k), α
∗
(i,0)

 =
∑
(j,k)

[
α(j,k), α

∗
(i,0)

]
=
∑
(j,k)

δj,iδk,0 = 1.

Thus any α∗(i,0) satisfies

∂α∗(i,0) + α∗(i,0)∂ = 1,

and hence is a chain homotopy from 1 to 0. We immediately obtain the homology of the complex.

Theorem 4.5.
ĤS(A, F1,1) = 0.

This is as it should be, since such (A, F1,1) does not correspond to any sutures.

4.3 Annuli with two marked points on single boundary

We now turn to (A, F ) where both marked points lie on the same boundary component, F = F0,2. An
open string runs between the two marked points. With the marked points drawn as in figure 3, the
arc runs an integer and a half n + 1

2 times around the annulus and we denote its homotopy class by
an+ 1

2
, for n ∈ Z, as shown.

It will be useful later to make definitions as follows.

Definition 4.6. Let A = ĈS
O

(A, F0,2) be the free Z2-module with basis {an+ 1
2

: n ∈ Z}.
Let A+ be the free Z2-module on {an+ 1

2
: n ∈ Z≥0}, and A− the free Z2-module on {an− 1

2
: n ∈

Z≤0}.

Lemma 2.10 gives ĈS(A, F0,2) ∼= X ⊗Z2 A, a free X -module with basis the an. A generator s of

ĈS(A, F0,2), i.e. string diagram (up to homotopy) without contractible closed curves, consists of a
single an, together with some (possibly none) closed curves xi, so can be written as anx

e.
We have A = A+ ⊕A−, and moreover

ĈS(A, F0,2) ∼= (X ⊗Z2 A+)⊕ (X ⊗Z2 A−) . (4)
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a− 3
2

a− 1
2

a 1
2

a 3
2

Figure 3: Open strings on (A, F0,2).

As in previous cases, a string diagram on (A, F0,2) can be drawn so that all the closed curves xi
are disjoint from each other. We can also draw any an disjoint from all closed strings. This being
so, the Goldman bracket vanishes, the differential obeys the Leibniz rule, ĈS(A, F0,2) ∼= X ⊗ A is a

differential X -module, and ĤS(A, F0,2) is a H(X )-module, as discussed in section 2.4. As such, ∂ is
determined by its action on X , A and the Leibniz rule.

We thus consider ∂an. We can draw an as in figure 3 so that it has |n| − 1
2 self-intersections, and

resolving each such intersection splits an into an arc ai, where i has the same sign as n and |i| < |n|,
and a closed curve xj where i+ j = n.

Thus

. . . , ∂a− 3
2

= a− 1
2
x−1, a− 1

2
= a 1

2
= 0, ∂a 3

2
= a 1

2
x1, ∂a 5

2
= a 3

2
x1 + a 1

2
x2, . . .

and in general we have, for a positive integer n,

∂an− 1
2

=

n−1∑
i=1

ai− 1
2
xn−i, ∂a−n+ 1

2
=

n−1∑
i=1

a−i+ 1
2
x−n+i,

which can also be written, for any n, as

∂an =
∑

i+j=n, ij>0

aixj .

For a general string diagram s = anx
e we have, by the Leibniz rule,

∂s = (∂an)xe + an (∂xe) =
∑

i+j=n, ij>0

aixjx
e + an (∂xe) ,

with ∂xe given by the differential on X .
A general element of ĈS(A,F ) ∼= X ⊗A can be written as a sum

f =
∑

n∈Z+ 1
2

anpn,

with finitely many nonzero terms, where pn ∈ X is a polynomial in {xn : n ∈ Z\{0}}.
We may split f into terms involving an with positive and negative n respectively, i.e. according to

the decomposition (4). Then f = f+ + f− where

f+ =

∞∑
n=1

an− 1
2
pn− 1

2
, f− =

∞∑
n=1

a−n+ 1
2
p−n+ 1

2

Note that each ∂an only includes terms with am, where m has the same sign as n. Thus the
decomposition (4) is in fact a direct sum of chain complexes and differential X -modules, and we have

ĤS(A, F0,2) = H(X ⊗A+)⊕H(X ⊗A−).
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Moreover the X -linear maps defined by an ↔ a−n give mutually inverse chain maps X ⊗ A+ ↔
X ⊗A−, so the two summands are isomorphic. In the next section we compute H(X ⊗A+) and hence

ĤS(A, F0,2).

4.4 Computing homology by simplifying cycles

The main idea of our computation of H(X ⊗A+) is to successively simplify cycles of X ⊗A+, showing
that a cycle is homologous to an element of smaller “degree” in the an+ 1

2
. This technique will also be

employed subsequently, in a more involved way, to compute homology in (A, F2,2).
Throughout this section we use the notions of fermionic and (positively) clean polynomials from

definition 3.18.

Definition 4.7. A general element f of A+ ⊗X has the form

f = a 1
2
p 1

2
+ a 3

2
p 3

2
+ · · ·+ an+ 1

2
pn+ 1

2
,

where each pi+ 1
2
∈ X , for some positive integer n such that pn+ 1

2
6= 0. This n is the degree of f .

We write O(am) to denote an element of A+ ⊗X of degree ≤ m.

Note that as ∂an only involves terms with aj with 1
2 ≤ j ≤ n− 1, ∂ lowers degree by at least 1.

Lemma 4.8. If f ∈ A+⊗X satisfies f = O(an), ∂f = 0 and n ≥ 3
2 , then f = ∂g+O(an−1) for some

g ∈ A+ ⊗X .

Proof. Let the an and an−1 terms of f be anpn and an−1pn−1 respectively, so

f = anpn + an−1pn−1 +O(an−2).

(If n = 3/2 then O(an−2) = 0.) We examine the highest order terms of ∂f , namely the an and an−1
terms.

∂f = (∂an)pn + an(∂pn) + (∂an−1)pn−1 + an−1(∂pn−1) +O(an−2)

= (an−1x1 +O(an−2)) pn + an∂pn +O(an−2)pn−1 + an−1∂pn−1 +O(an−2)

= an∂pn + an−1 (x1pn + ∂pn−1) +O(an−2)

Now as ∂f = 0, then the polynomials which are coefficients of each ai must be zero. Considering the
coefficients of an and an−1 then gives

∂pn = 0, x1pn = ∂pn−1.

Thus pn is a cycle in X but x1pn is a boundary. From our computation of H(X ), we know pn = r+∂u,
where r, u ∈ X and r is a fermionic polynomial. We can further decompose r as s + x1t, where x1
does not occur in s or t, i.e. s, t are clean polynomials. (Note ∂r = ∂s = ∂t = 0.) We then have
pn = s+ x1t+ ∂u so

∂pn−1 = x1pn = x1s+ x21t+ x1∂u = x1s+ ∂(x2t+ x1u)

Thus x1s is a boundary in X . But as s is clean, x1s is fermionic; so if s 6= 0 then x1s is nonzero in
H(X ). Thus s = 0 and we have

pn = x1t+ ∂u so f = an (x1t+ ∂u) + an−1pn−1 +O(an−2).

Now we note that there is an element whose differential has the same an term:

∂(an+1t+ anu) = an (x1t+ ∂u) + an−1 (x2t+ x1u) +O(an−2).
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(Here we used ∂t = 0.) It follows that

f = an (x1t+ ∂u) + an−1pn−1 +O(an−2)

= ∂(an+1t+ anu) + an−1(pn−1 + x2t+ x1u) +O(an−2)

so f = ∂g +O(an−1) where g = an+1t+ anu, as desired.

Successively applying this lemma, we may reduce any cycle f ∈ A+ ⊗ X to a homologous cycle of
degree 1/2, so f = ∂g + a 1

2
p where g ∈ A+ ⊗X and p ∈ X . And we may use our knowledge of H(X )

to say a little more.

Proposition 4.9. Suppose f ∈ A+ ⊗X satisfies ∂f = 0. Then f = ∂g + a 1
2
p where g ∈ A+ ⊗X and

p ∈ X is a clean polynomial.

Proof. From above we have f = ∂g0 + a 1
2
p0 with g0 ∈ A+ ⊗ X and p0 ∈ X . Differentiating gives

0 = ∂f = a 1
2
∂p0. Thus ∂p0 = 0, so p0 represents a homology class in X , and hence, up to a boundary,

is a fermionic polynomial. Thus p0 = q + ∂r where q, r ∈ X and q is fermionic. We can further split
q into terms which contain x1 and those which do not: q = p+ x1u, where p, u are clean polynomials.
(Note ∂q = ∂p = ∂u = 0.) We then have

f + ∂g0 = a 1
2
p0 = a 1

2
(q + ∂r) = a 1

2
(p+ x1u+ ∂r) = a 1

2
p+ ∂(a 3

2
u+ a 1

2
r).

(Here we have used the fact that ∂(a 3
2
u) = (∂a 3

2
)u = a 1

2
x1u.) Thus f has the desired form, with

g = g0 + a 3
2
u+ a 1

2
r.

Roughly then, the homology of A+ ⊗ X behaves something like {a 1
2
} ⊗ X , and indeed rather like

X . We will in fact give a chain map A+ ⊗X −→ X .

Definition 4.10. The map Φ : A+ ⊗ X −→ X sends an− 1
2
p 7→ xnp, for each positive integer n and

p ∈ X , and extends linearly over A+ ⊗X .

The map Φ is in fact an X -module homomorphism; we now show it is a chain map, hence a homo-
morphism of differential X -modules and descends to homology as an H(X )-module homomorphism.

Lemma 4.11. The map Φ commutes with ∂.

Geometrically, Φ “closes off” the endpoints of an− 1
2

by gluing an annulus to the boundary of A,
joining the two marked points by an arc which turns an− 1

2
into xn. This lemma is an instance of a

more general result about gluing string diagrams together.
Essentially this lemma holds because the rule ∂an− 1

2
=
∑n−1

i=1 ai− 1
2
xn−i becomes, after applying

Φ, the rule ∂xn =
∑n−1

i=1 xixn−i.

Proof. Using linearity and the Leibniz rule, it is sufficient to check that Φ∂an− 1
2

= ∂Φan− 1
2
, for

n ∈ Z>0:

Φ∂an− 1
2

= Φ

n−1∑
i=1

ai− 1
2
xn−i =

n−1∑
i=1

xixn−i = ∂xn = ∂Φan− 1
2
.

As in section 3.7, we write f̄ for the homology class of f ∈ A+ ⊗ X . We have seen in proposition
4.9 that a cycle f ∈ A+ ⊗ X is homologous to some a 1

2
p where p is a clean polynomial. Thus

Φf̄ = Φa 1
2
p = x̄1p̄. It follows that on homology, Φ has image in x̄1H(X ).

Proposition 4.12. The map Φ : H(A+ ⊗X ) −→ H(X ) is an isomorphism onto x̄1H(X ).
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Proof. We have shown Im Φ ⊆ x̄1H(X ). For the reverse inclusion, take x̄1p̄ ∈ x̄1H(X ), where p is a
fermionic polynomial. Splitting p into terms with and without x1, we may write p = x1q + r, where
q, r ∈ X are both clean polynomials. Then x̄1p̄ = x̄21q̄ + x̄1r̄ = x̄1r̄ as x̄21 = 0 in homology.

Thus, any element of x̄1H(X ) is of the form x̄1r̄ where r is a clean polynomial. Such an element
is certainly in the image of Φ, as Φ(a 1

2
r) = x1r. Thus Im Φ = x̄1H(X ).

To see Φ is injective, take a homology class f̄ ∈ ker Φ. By proposition 4.9 we have f̄ = ā 1
2
p̄ where

p ∈ X is a clean polynomial. Then 0 = Φf̄ = x̄1p̄. But as p is clean, x1p is fermionic, hence nonzero
in homology unless p = 0. Thus f̄ = 0 and Φ is injective.

This result allows us to strengthen proposition 4.9. There we showed any cycle in A+ ⊗ X is
homologous to an element a 1

2
p, where p ∈ X is a clean polynomial. We can now show this p is unique:

if a 1
2
p and a 1

2
p′ are homologous, then x1p and x1p

′ are homologous in X , so x̄1(p̄− p̄′) = 0 in H(X ).

It follows that p̄ = p̄′ and hence p = p′.

Proposition 4.13. Suppose f ∈ A+ ⊗ X satisfies ∂f = 0. Then f = a 1
2
p + ∂g, where g ∈ A+ ⊗ X

and p ∈ X is a unique clean polynomial.

By proposition 4.12 we now have H(A+⊗X ) ∼= x̄1H(X ); as Φ is an H(X )-module homomorphism,
this is an isomorphism of H(X )-modules. Replacing A+, an, xn with A−, a−n, x−n we similarly obtain
an H(X )-module isomorphism H(A− ⊗X ) ∼= x̄−1H(X ).

Theorem 4.14. There are isomorphisms of H(X )-modules

H(A+ ⊗X ) ∼= x̄1H(X ) = x̄1
Z[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .),

H(A− ⊗X ) ∼= x̄−1H(X ) = x̄−1
Z[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .)

.

An explicit isomorphism is given by ā± 1
2
p̄ 7→ x̄±1p̄.

Since ĈS(Σ, F ) is the direct sum of the A± ⊗ X , we have now proved theorem 1.4 and have an
H(X )-module isomorphism

ĤS(Σ, F ) ∼= x̄1H(X )⊕ x̄−1H(X ) = (x̄1, x̄−1)
Z[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .)

.

5 Non-alternating annuli

In this section we prove theorem 1.1 that for any non-alternating weakly marked annulus (A, F ), its
string homology is zero. In [19] we proved such a result for discs; and as we will see, the methods used
there apply immediately here, for all cases except one, with which we have already dealt.

In section 5 of [19] we introduced a switching operation W on a string diagram s on a disc; we now
define it more generally. Let (Σ, F ) be a weakly marked surface. Suppose that there are two distinct
points p, q of F , on the same boundary component of Σ, of the same sign; suppose p, q ∈ Fin (resp.
Fout). The switching operation W alters s near p and q, so that the strand which began (resp. ended)
at p now begins (resp. ends) at q; and the strand which began (resp. ended) at q now begins (resp.
ends) at p. In the process we introduce precisely one new crossing. The switching operation extends

linearly to a Z2-linear map W : ĈS(Σ, F ) −→ ĈS(Σ, F ). See figure 4.
Resolving crossings in Ws we obtain ∂Ws = s+w∂s, as shown in figure 5. So ∂W +W∂ = 1, and

W is a chain homotopy between the chain maps 1 and 0 on ĈS(Σ, F ).
Clearly a similar argument applies if the two adjacent points p, q lie in Fout rather than Fin. We

immediately obtain the following result.
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p

q W

p

q

Figure 4: Switching operation.

∂ s = s + ∂s

∂Ws = s + W∂s

Figure 5: The switching operation W is a chain homotopy.

Proposition 5.1 ([19]). If (Σ, F ) is a weakly marked surface such that some boundary component of

Σ contains two adjacent distinct points of F of the same sign, then ĤS(Σ, F ) = 0.

Proof of theorem 1.1. Let (A, F ) be a non-alternating weakly marked annulus. If F has two distinct
consecutive points of the same sign on some boundary component of A, then by proposition 5.1
ĤS(A, F ) = 0; so now assume this is not the case. Then each boundary component either contains an
even number of points of F alternating in sign, or contains a single point of F . As F is not alternating,
the only possibility is F = F1,1, and each boundary component of A contains precisely one point of F .

But by theorem 4.5 ĤS(A, F1,1) = 0.

6 Annuli with two marked points on both boundaries

We now turn to (A, F2,2), the annulus with two alternating marked points on each boundary component.
As noted in the introduction, this is the most difficult case, and our results are partial.

6.1 Description and decomposition of the chain complex

Denote the two components of ∂Σ by C0 and C1. Let Fi = F∩Ci and Fi,in = Fin∩Ci, Fi,out = Fout∩Ci

so |F0| = |F1| = 2 and |F0,in| = |F0,out| = |F1,in| = |F1,out| = 1. We will draw annuli so that C0 is
the “outside” and C1 the “inside”. We will draw marked points with F0,in, F1,out at the bottom and
F0,out, F1,in at the top. See figure 6

Homotopy classes of closed curves on A are again denoted by xn. Homotopy classes of open strings
on (A, F2,2) can be classified as follows.

Definition 6.1.

(i) An open string which begins and ends on the same Fi is called insular.

(a) An insular string joining the two points of F0 runs n + 1
2 times around the core of the

annulus, for some n ∈ Z. We denote the homotopy class of this curve by an+ 1
2
.
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F0,in

F1,out

F1,in

F0,out

C1 C0

Figure 6: Boundary components and marked points on (A, F2,2).

Let A,A+,A− be free Z2-modules on {an : n ∈ Z + 1
2}, and the positive and negative

subsets thereof respectively.

(b) An insular string which joins the two points of F1 also runs n+ 1
2 times around the core of

the annulus for some n ∈ Z, and we denote its homotopy class by bn+ 1
2
.

Let B,B+,B− be free Z2-modules on {bn : n ∈ Z+ 1
2}, and the positive and negative subsets

thereof respectively.

(ii) An open string which begins on Fi and ends on Fj for i 6= j is called traversing.

(a) A traversing string which joins F1,in to F0,out runs n times around the core of the annulus,
for some n ∈ Z, and we denote its homotopy class by cn.

Let C be the free Z2-module on {cn : n ∈ Z}.
(b) A traversing string which joins F0,in to F1,out runs n times around the core of the annulus,

for some n ∈ Z, and we denote its homotopy class by dn.

Let D be the free Z2-module on {dn : n ∈ Z}.

Note the definition of an+ 1
2

and A,A± follows the notation of section 4.3, and the an are as shown
in figure 3. The B,B± are defined in a similar vein. The cn follow the notation of section 4.1, and are
as shown in figure 2. The dn are defined similarly. Some further examples are shown in figure 7.

a 1
2
b 1

2
c0d1 c1d−1 a 1

2
b 1

2
x−1

Figure 7: Some string diagrams on (A, F2,2).

The two open strings in a string diagram on (A, F2,2) are either both insular or both traversing;
we call the string diagram insular or traversing accordingly.

The (homotopy classes of) purely open string diagrams on (A, F2,2) are thus precisely given by aibj

and cmdn, over all i, j ∈ Z+ 1
2 and m,n ∈ Z. Thus ĈS

O
(A, F2,2) ∼= (A⊗Z2 B)⊕ (C ⊗Z2 D). Note that
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monomials from A,B, C or D alone do not describe string diagrams: we require an am together with
a bn, or a cm together with a dn, to provide the required open strings. By lemma 2.10 then

ĈS(A, F2,2) ∼= X ⊗ ((A⊗ B)⊕ (C ⊗ D))
∼= (A⊗X ⊗ B)⊕ (C ⊗ X ⊗D)

where all tensor products are over Z2. In particular, an insular string diagram on (A, F2,2) can be
written as aibjx

e, and a traversing string diagram on (A, F2,2) as cmdnx
e, up to homotopy.

For the purposes of algebraic computations, it can be useful to think of elements of C ⊗ X ⊗ D
as elements of X spaced on a Z × Z lattice: a general element of C ⊗ X ⊗ D can be given in the
form

∑
m,n cmdnpm,n, where each pi,j ∈ X , and we can think of the pm,n at the point (i, j) ∈ Z × Z.

Similarly, we can think of elements of A ⊗ X ⊗ B, given in the form
∑

i,j aibjpi,j , as elements of X
spaced on a (Z + 1

2 )× (Z + 1
2 ) lattice, placing pi,j at (i, j).

6.2 Description of differential

Consider an insular string diagram, of homotopy class s = aibjx
e. By a homotopy relative to endpoints,

we can separate the strings, i.e. make the strings pairwise disjoint. Thus on A⊗X ⊗B, the Goldman
bracket vanishes and the differential obeys the Leibniz rule.

Since the open strings ai arose previously in considering (A, F0,2), ∂ai is as described in section
4.3: for any n ∈ Z + 1

2 we have

∂ai =
∑

k+l=i, kl>0

akxl.

The calculation of ∂bj is similar; indeed bj is obtained from aj by a symmetry of the annulus, and
there is an isomorphism of X -modules, A⊗X ∼= B ⊗ X induced by aj ↔ bj , which commutes with ∂.

∂bn =
∑

i+j=n, ij>0

bixj .

By the Leibniz rule then we have, for a general insular string diagram s = aibjx
e),

∂s = (∂ai) bjx
e + ai (∂bj)x

e + aibj (∂xe)

=
∑

k+l=i, kl>0

akbjxlx
e +

∑
k+l=j, kl>0

aibkxlx
e + aibj(∂x

e),

where ∂xe is given by the differential on X .
Note that the differential maps A⊗X ⊗ B into itself, so it is a subcomplex of ĈS(A, F2,2); as the

Leibniz rule is satisfied, A⊗X ⊗B is a differential X -module and the homology ĤS(A⊗X ⊗B) is an
H(X )-module.

Now consider a traversing string diagram, of homotopy class s = cidjx
e = cidj

∏
k∈Z\{0} x

ek
k . The

situation here is more complicated than the insular case. The ci and dj sometimes intersect each other
and always intersect each xk, so the Goldman bracket does not vanish and the Leibniz rule is not
obeyed.

After a homotopy relative to endpoints, we may draw the string diagram so that all the curves
intersect minimally. Then ci has no self-intersections; nor does dj ; and the intersection points are
precisely as follows.

(i) Each xk has self-intersections; resolving them gives ∂xk.

(ii) Each xk intersects ci in |k| points; resolving them gives [ci, xk].

(iii) Each xk intersects dj in |k| points; resolving them gives [dj , xk].
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(iv) The open strings ci and dj intersect in |i+ j| points; ;resolving them gives [ci, dj ].

To see that |ci ∩ dj | = |i + j|, first note that |c0 ∩ dj | = |j| for any integer j. Then note that under
a Dehn twist on the annulus, ci 7→ ci±1 and dj 7→ dj∓1; hence some number of Dehn twists takes
cidj 7→ c0dj+i, so |ci ∩ dj | = |c0 ∩ di+j | = |i+ j|.

For a general string diagram with homotopy class cidjx
e, we can then write

∂ (cidjx
e) = cidj(∂x

e) +
∑
k∈Z

ek[ci, xk]djx
−1
k xe +

∑
k∈Z

ekci[dj , xk]x−1k xe + [ci, dj ]x
e,

where the four terms correspond to the four types of intersections listed above. It remains to compute
the Goldman brackets in the above.

Resolving an intersection point of ci and xk, we obtain an open string running from F1,in to F0,out,
hence one of the cn. As ci, xk respectively run i, k times around the annulus, we obtain ci+k. Resolving
all |k| such crossings (mod 2) gives

[ci, xk] = kci+k.

Similarly, resolving the |k| intersections of xk and dj gives

[dj , xk] = kdj+k.

As for [ci, dj ], we have the following lemma.

Lemma 6.2. Resolving an intersection between ci and dj produces a string diagram of the form ai′bj′ ,
where i′, j′ both have the same sign as i+ j, and i′+ j′ = i+ j. There are |i+ j| diagrams of this form
and each appears precisely once as we resolve the |i+ j| crossings between ci and dj. That is,

[ci, dj ] =


a 1

2
bi+j− 1

2
+ a 3

2
bi+j− 3

2
+ · · ·+ ai+j− 1

2
b 1

2
i+ j > 0

0 i+ j = 0
a− 1

2
bi+j+ 1

2
+ a− 3

2
bi+j+ 3

2
+ · · ·+ ai+j+ 1

2
b− 1

2
i+ j < 0

 =
∑

k+l=i+j, kl>0

akbl

The expressions arising as [ci, dj ] appear frequently in the sequel; we call them sn.

Definition 6.3. For an integer n, let sn ∈ A⊗ X ⊗ B be

sn =


a 1

2
bn− 1

2
+ a 3

2
bn− 3

2
+ · · ·+ an− 1

2
b 1

2
n > 0

0 n = 0
a− 1

2
bn+ 1

2
+ a− 3

2
bn+ 3

2
+ · · ·+ an+ 1

2
b− 1

2
n < 0

 =
∑

k+l=n, kl>0

akbl

Note sn contains precisely |n| nonzero terms in the sum; if we regard elements
∑

i,j aibjpi,j of

A⊗X ⊗B as polynomials pi,j ∈ X placed at (i, j) on the lattice (Z+ 1
2 )× (Z+ 1

2 ), then sn consists of
1s placed along the “diagonal” i+ j = n, at points (i, j) where i, j have the same sign as n. That is,

. . . , s−1 = a− 1
2
b− 1

2
, s0 = 0, s1 = a 1

2
b 1

2
, s2 = a 1

2
b 3

2
+ a 3

2
b 1

2
, . . .

Thus lemma 6.2, which we now prove, states that

[ci, dj ] = si+j .

Proof. First consider resolving one of the |j| crossings of c0 and dj . This gives two open strings: one
starting along c0 at F1,in and ending along dj at F1,out; and one starting along dj at F0,in and ending
along c0 at F0,out; the resulting open strings are therefore of the form ambn. Now we note that m,n
both have the same sign as j, and m+ n = j. As we resolve the |j| crossings we obtain all such ambn.
This gives [c0, dj ] = sj as desired.

Now a general pair of open strings ci, dj can be taken by some Dehn twists to the pair c0, di+j .
We know [c0, di+j ] = si+j , which has every term of the form am, bn. But the boundary-parallel open
strings am, bn are invariant under Dehn twists; thus [ci, dj ] = si+j as well.
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We have now explicitly computed the differential on ĈS(A, F2,2) ∼= (A⊗X ⊗ B)⊕ (C ⊗ X ⊗D).

Proposition 6.4. The differential ∂ on ĈS(A,F ) is given by

∂ (aibjx
e) = (∂ai)bjx

e + ai(∂bj)x
e + aibj(∂x

e)

=
∑

i′+k′=i, i′k′>0

ai′bjxk′x
e +

∑
j′+k′=j, j′k′>0

aibj′xk′x
e + aibj(∂x

e)

∂ (cidjx
e) = cidj(∂x

e) + si+jx
e +

∑
k∈Z

kek (ci+kdj + cidj+k)x−1k xe.

We next turn to the homology of ĈS(Σ, F ). In sections 6.3–6.6 we compute the homology of the
subcomplex A⊗X ⊗ B; in sections 6.7–6.9 we consider the homology of the entire complex.

6.3 Homology of insular string diagrams I: simplifying cycles

We focus on the subcomplex A⊗X ⊗ B of ĈS(Σ, F ), generated by insular string diagrams.
We have defined A±,B± so that A = A+⊕A− and B = B+⊕B−. From proposition 6.4, ∂(aibjx

e)

is a sum of terms ai′bj′x
e′ where i, i′ have the same sign, and j, j′ have the same sign. Thus A⊗X ⊗B

splits as a direct sum of four differential X -submodules:

A⊗X ⊗ B = (A+ ⊗X ⊗ B+)⊕ (A+ ⊗X ⊗ B−)⊕ (A− ⊗X ⊗ B+)⊕ (A− ⊗X ⊗ B−) .

We will deal with these submodules separately. We shall find that the modules A± ⊗X ⊗ B± behave
rather differently from the modules A± ⊗X ⊗ B∓.

We will first compute the homology of A+ ⊗X ⊗B+. The argument is quite long and takes up to
the end of section 6.5. The method is similar to section 4.4, simplifying cycles to have lower “degree”.

Definition 6.5. A general element f of A+ ⊗X ⊗ B has the form

f = a 1
2
p 1

2
+ a 3

2
p 3

2
+ · · ·+ an+ 1

2
pn+ 1

2
,

where each pi+ 1
2
∈ X ⊗ B, and pn+ 1

2
6= 0. The a-degree of f is n+ 1

2 .

We write O(am) to denote an element of A+ ⊗X ⊗ B of a-degree ≤ m.

(We could equally define a b-degree; however we will not need it.) Note that this definition applies
to both A+ ⊗X ⊗ B+ and A+ ⊗X ⊗ B−.

Each pi ∈ X ⊗ B+ is a “polynomial” in the bj and xk, with each term containing precisely one bj
factor. By the Leibniz rule, for an f of degree n− 1

2 we can write

f =

n∑
i=1

ai− 1
2
pi− 1

2
so ∂f =

n∑
i=1

(
∂ai− 1

2

)
pi− 1

2
+ ai− 1

2

(
∂pi− 1

2

)
.

The key to the computation of H(A+ ⊗ X ⊗ B+) is the following lemma. Analogously to lemma
4.8, it shows how to simplify a given cycle f ∈ A+⊗X ⊗B+ to a homologous one of smaller a-degree.
Recall definition 6.3 of sn.

Lemma 6.6. Suppose f ∈ A+ ⊗X ⊗ B+ has a-degree n− 1
2 and satisfies ∂f = 0. Then

f =
(
a 1

2
b 1

2

)
q1 +

(
a 1

2
b 3

2
+ a 3

2
b 1

2

)
q2 + · · ·+

(
a 1

2
bn− 1

2
+ a 3

2
bn−1 + · · ·+ an− 1

2
b 1

2

)
qn + ∂g

= s1q1 + s2q2 + · · ·+ snqn + ∂g,

for some g = O(an− 1
2
) ∈ A+⊗X ⊗B+ and qj ∈ X , for 1 ≤ j ≤ n, where each qj is a clean polynomial.
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Before commencing the proof, recall our computation of H(A+ ⊗X ). We have

H(A+ ⊗X ) ∼= x̄1H(X ) = x̄1
Z[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .)

,

with the isomorphism induced at the chain level by an− 1
2
xe 7→ xnx

e. In particular (proposition 4.9),
if f ∈ A+ ⊗X has ∂f = 0, then f = a 1

2
p+ ∂g, where g ∈ A+ ⊗X and p is a clean polynomial.

The chain complex B+ ⊗ X is isomorphic to A+ ⊗ X via bi 7→ ai. Then, similarly, H(B+ ⊗ X ) ∼=
x̄1H(X ). Moreover, if f ∈ B+ ⊗ X and ∂f = 0 then f = b 1

2
p+ ∂g, where g ∈ B+ ⊗ X and p ∈ X is a

clean polynomial.
As a preliminary, we demonstrate lemma 6.6 when n − 1

2 = 1
2 , i.e. n = 1. In this case f = a 1

2
p 1

2

with p 1
2
∈ X ⊗ B+, so 0 = ∂f = a 1

2
∂p 1

2
. Hence p 1

2
∈ B+ ⊗ X satisfies ∂p 1

2
= 0, so the previous

paragraph gives p 1
2

= b 1
2
q1 + ∂r, where q1 is a clean polynomial. We then have

f = a 1
2
p 1

2
= a 1

2
b 1

2
q1 + a 1

2
∂r = s1q1 + ∂

(
a 1

2
r
)

as desired. The result for general n, though technically complicated, is based on a repetition of this
argument.

Proof. As f has a-degree n− 1
2 ,

f = an− 1
2
pn− 1

2
+ an− 3

2
pn− 3

2
+ · · ·+ a 1

2
p 1

2
where each pi ∈ X ⊗ B+.

Differentiating f gives

0 = ∂f = an− 1
2

(
∂pn− 1

2

)
+
(
∂an− 1

2

)
pn− 1

2
+ an− 3

2

(
∂pn− 3

2

)
+ +O(an− 5

2
)

= an− 1
2

(
∂pn− 1

2

)
+ an− 3

2

(
x1pn− 1

2
+ ∂pn− 3

2

)
+O(an− 5

2
).

Equating coefficients of an− 1
2

and an− 3
2

gives

∂pn− 1
2

= 0 and x1pn− 1
2

= ∂pn− 3
2
.

Using proposition 4.9 on pn− 1
2
∈ B+ ⊗X , we have pn− 1

2
= b 1

2
qn + ∂r, where qn is a clean polynomial,

and r ∈ B+ ⊗X . We then have

f = an− 1
2
b 1

2
qn + an− 1

2
∂r + an− 3

2
pn− 3

2
+ · · ·+ a 1

2
p 1

2
.

Noting that ∂
(
an− 1

2
r
)

= an− 1
2
∂r +O(an− 3

2
) produces a term an− 1

2
∂r as in the above, we have

f = an− 1
2
b 1

2
qn + ∂

(
an− 1

2
r
)

+O(an− 3
2
)

= an− 1
2
b 1

2
qn + fn−1 + ∂gn−1,

where fn−1, gn−1 ∈ A+ ⊗ X ⊗ B+, fn−1 = O(an− 3
2
) and gn−1 = an− 1

2
r = O(an− 1

2
). (When n = 1,

this is just the preliminary demonstration given above.)
We claim now that, for each integer i with 0 ≤ i ≤ n− 1, we can write

f = an− 1
2
b 1

2
qn + an− 3

2

(
b 3

2
qn + b 1

2
qn−1

)
+ an− 5

2

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ an−i− 1

2

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 1

2
qn−i

)
+ fn−i−1 + ∂gn−i−1

=

i∑
k=0

an−k− 1
2

k∑
l=0

bl+ 1
2
qn−k+l + fn−i−1 + ∂gn−i−1,
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where qn, qn−1, . . . qn−i ∈ X are clean polynomials, and fn−i−1, gn−i−1 ∈ A+⊗X⊗B+, where fn−i−1 =
O(an−i− 3

2
) and gn−i−1 = O(an− 1

2
). We have just shown this claim for i = 0. So suppose that the

claim holds for a particular value of i, where 0 ≤ i ≤ n− 2; we shall show it holds for i+ 1.
Let then f be given as claimed. Consider differentiating f ; we have ∂f = 0; moreover, differentiating

the last two terms gives ∂ (fn−i−1 + ∂gn−i−1) = O
(
an−i− 3

2

)
. From the other terms of f , we then

obtain

∂

 an− 1
2
b 1

2
qn + an− 3

2

(
b 3

2
qn + b 1

2
qn−1

)
+ an− 5

2

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ an−i− 1

2

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 1

2
qn−i

)  = O(an−i− 3
2
).

We thus consider the terms of a-degree n− i− 3
2 in ∂f . Note that in any differential ∂(aibjqk), there

is a unique term with a-degree al− 1
2
, for a positive integer l < i, namely albjqkxi−l. Further, since by

assumption fn−i−1 = O
(
an−i− 3

2

)
, let fn−i−1 = an−i− 3

2
pn−i− 3

2
+O(an−i− 5

2
) where pn−i− 3

2
∈ B+⊗X .

We obtain

0 = ∂f = an−i− 3
2

[
xi+1b 1

2
qn + xi

(
b 3

2
qn + b 1

2
qn−1

)
+ xi−1

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ x1

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 1

2
qn−i

)
+ ∂pn−i− 3

2

]
+O(an−i− 5

2
).

The coefficient of an−i− 3
2

must be zero, hence

∂pn−i− 3
2

= xi+1b 1
2
qn + xi

(
b 3

2
qn + b 1

2
qn−1

)
+ xi−1

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ x1

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 1

2
qn−i

)
=
(
b 1

2
xi+1 + b 3

2
xi + · · ·+ bi+ 1

2
x1

)
qn +

(
b 1

2
xi + b 3

2
xi−1 + · · ·+ bi− 1

2
x1

)
qn−1 + · · ·+

(
b 1

2
x1

)
qn−i

=
(
∂bi+ 3

2

)
qn +

(
∂bi+ 1

2

)
qn−1 + · · ·+

(
∂b 3

2

)
qn−i

= ∂
(
bi+ 3

2
qn + bi+ 1

2
qn−1 + · · ·+ b 3

2
qn−i

)
In the second line we regrouped; in the third line used the formula for ∂bj ; and in the last line used
∂qj = 0, which follows from our assumptions on the qj .

Thus we have a cycle pn−i− 3
2

+ bi+ 3
2
qn + bi+ 1

2
qn−1 + · · · + b 3

2
qn−i in B+ ⊗ X , and by proposition

4.9 this is homologous to b 1
2
qn−i−1, where qn−i−1 is a clean polynomial. This gives

pn−i− 3
2

= bi+ 3
2
qn + bi+ 1

2
qn−1 + · · ·+ b 3

2
qn−i + b 1

2
qn−i−1 + ∂r,

for some r ∈ B+ ⊗X .
Returning to f and substituting this expression for pn−i− 3

2
, we have

f = an− 1
2
b 1

2
qn + an− 3

2

(
b 3

2
qn + b 1

2
qn−1

)
+ an− 5

2

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ an−i− 1

2

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 1

2
qn−i

)
+

an−i− 3
2

(
bi+ 3

2
qn + bi+ 1

2
qn−1 + · · ·+ b 3

2
qn−i + b 1

2
qn−i−1 + ∂r

)
+O(an−i− 5

2
) + ∂gn−i−1

Finally, using an−i− 3
2
∂r = ∂

(
an−i− 3

2
r
)

+O(an−i− 5
2
), we have

f = an− 1
2
b 1

2
qn + an− 3

2

(
b 3

2
qn + b 1

2
qn−1

)
+ an− 5

2

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ an−i− 1

2

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 1

2
qn−i

)
+ an−i− 3

2

(
bi+ 3

2
qn + bi+ 1

2
qn−1 + · · ·+ b 3

2
qn−i + b 1

2
qn−i−1

)
+ fn−i−2 + ∂gn−i−2
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where fn−i−2 = O(an−i− 5
2
), and gn−i−2 = an−i− 3

2
r + gn−i−1 = O(an− 1

2
). This puts f in the desired

form for i+ 1, proving the claim.
Now consider the claim with i = n− 1. It says that

f = an− 1
2
b 1

2
qn + an− 3

2

(
b 3

2
qn + b 1

2
qn−1

)
+ an− 5

2

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ a 1

2

(
bn− 1

2
qn + bn− 3

2
qn−1 + · · ·+ b 1

2
q1

)
+ f0 + ∂g0,

where f0 = O(a− 1
2
), hence f0 = 0, and g0 = O(an− 1

2
). Writing g = g0 this rearranges as

f = snqn + sn−1qn−1 + · · ·+ s1q1 + ∂g

as desired.

This technical lemma shows that any cycle in A+ ⊗ X ⊗ B+ is homologous to an element in the
standard form s1q1 + · · · + snqn. It is clear that, since ∂si = ∂qi = 0, any element of this form is a
cycle. We will next show that such representatives are unique, proving an analogy of proposition 4.13.
This will give us an explicit description of H(A+ ⊗X ⊗ B+).

For this uniqueness result, however, we work in a truncated complex, and then take a direct limit.

6.4 Homology of insular string diagrams II: truncated complex

We now restrict to those elements of A+ ⊗ X ⊗ B+ which have bounded a-degree. (We could equally
well truncate with respect to b-degree, but we do not need it.)

Definition 6.7. Let N be a positive integer. The Z2-module A<N
+ is the submodule of A generated by

an with 0 < n < N .

Note A<N
+ has Z2-rank N , with basis {a 1

2
, a 3

2
, . . . , aN− 1

2
}. Our strategy is to consider the homology

in the ascending sequence
A<1

+ ⊗X ⊗ B+ ⊂ A<2
+ ⊗X ⊗ B+ ⊂ · · · ,

whose direct limit is A+ ⊗ X ⊗ B+. As the differential on A+ ⊗ X ⊗ B+ lowers a-degree (or keeps
it constant, proposition 6.4), this is an ascending sequence of subcomplexes. As homology computes
with direct limits, we will the homology of A+ ⊗X ⊗B+ is the direct limit of the H(A<N

+ ⊗X ⊗B+).
We first restate lemma 6.6 in the truncated case.

Lemma 6.8. Suppose f ∈ A<n
+ ⊗X ⊗ B+ and satisfies ∂f = 0. Then

f = s1q1 + s2q2 + · · ·+ snqn + ∂g,

for some g ∈ A<n
+ ⊗X ⊗ B+ and qj ∈ X , for 1 ≤ j ≤ n, where each qj is a clean polynomial.

(Note that s1, s2, . . . , sn are precisely the si which lie in A<n
+ ⊗X ⊗ B+.)

Proof. Let the given f have a-degree m − 1
2 , for some integer m, 1 ≤ m ≤ n. Lemma 6.6 shows

how to write f in the form s1q1 + · · · + smqm + ∂g, where the si and qi have the desired form, and
g ∈ A+ ⊗X ⊗ B+ has a-degree ≤ m− 1

2 ≤ n−
1
2 , hence g ∈ A<n

+ ⊗X ⊗ B+.

Thus every homology class of A<n
+ ⊗ X ⊗ B+ has a representative in the “standard form” s1q1 +

· · ·+ snqn. Since ∂si = ∂qi = 0, every such element is a cycle and represents some homology class. We
will show that each homology class has precisely one representative in this standard form; equivalently,
as the next proposition shows, the only “standard form” element which is a boundary is 0.

Proposition 6.9. Let n ∈ Z>0, and suppose q1, . . . , qn ∈ X are clean polynomials such that

s1q1 + s2q2 + · · ·+ snqn = ∂r

for some r ∈ A<n
+ ⊗X ⊗ B+. Then q1 = q2 = · · · = qn = 0.
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Proof. Let f = s1q1 + · · ·+ snqn. As r ∈ A<n
+ ⊗X ⊗ B+, we can write

r = an− 1
2
rn + an− 3

2
rn−1 + an− 5

2
rn−2 + · · ·+ a 3

2
r2 + a 1

2
r1,

where each r1, r2, . . . , rn ∈ B+ ⊗X . Differentiating gives

∂r = an− 1
2

(∂rn) + an− 3
2

(x1rn + ∂rn−1) + an− 5
2

(x2rn + x1rn−1 + ∂rn−2)

+ · · ·+ an−i− 1
2

(xirn + xi−1rn−1 + · · ·+ x1rn−i+1 + ∂rn−i) + · · ·

+ a 1
2

(xn−1rn + xn−2rn−1 + · · ·+ x1r2 + ∂r1)

On the other hand, we can write out the terms of f by a-degree as follows.

f = an− 1
2

(
b 1

2
qn

)
+ an− 3

2

(
b 3

2
qn + b 1

2
qn−1

)
+ an− 5

2

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ an−i− 1

2

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 3

2
qn−i+1 + b 1

2
qn−i

)
+ · · ·

+ a 1
2

(
bn− 1

2
qn + bn− 3

2
qn−1 + · · ·+ b 3

2
q2 + b 1

2
q1

)
Equating coefficients of an− 1

2
in f = ∂r gives

b 1
2
qn = ∂rn,

so that b 1
2
qn is a boundary in B+⊗X . But by our computation of H(A+⊗X ) ∼= H(B+⊗X ) of section

4.4 (specifically proposition 4.13) then qn = 0. Equating coefficients of an− 3
2

then gives

b 1
2
qn−1 = x1rn + ∂rn−1. (5)

We note that x1(∂rn) = ∂(x1rn) = ∂(∂rn−1 + b 1
2
qn−1) = 0 (as ∂b 1

2
= ∂qn−1 = 0), so rn is a cycle

in B+ ⊗X . Writing rn homologous to its standard form, we have

rn = b 1
2
tn + ∂un,

where tn ∈ X is a clean polynomial, and un ∈ B+ ⊗X . Substituting this expression into (5) gives

b 1
2
qn−1 = b 1

2
x1tn + x1∂un + ∂rn−1 = ∂

(
b 3

2
tn + x1un + rn−1

)
,

so b 1
2
qn−1 is a boundary. Applying proposition 4.13 again we have qn−1 = 0.

Returning to equation (5), we now have

∂rn−1 = x1rn = x1

(
b 1

2
tn + ∂un

)
= ∂

(
b 3

2
tn + x1un

)
so that rn−1 + b 3

2
tn + x1un is a cycle, hence homologous to a standard form element

rn−1 + b 3
2
tn + x1un = b 1

2
tn−1 + ∂un−1,

where tn−1 ∈ X is a clean polynomial and un ∈ B+ ⊗X .
We claim now inductively that qn = qn−1 = · · · = qn−i+1 = 0, for all 1 ≤ i ≤ n. We also claim

that each of rn, rn−1, . . . , rn−i+1 satisfies

rn = b 1
2
tn + ∂un

rn−1 = b 3
2
tn + b 1

2
tn−1 + x1un + ∂un−1

rn−2 = b 5
2
tn + b 3

2
tn−1 + b 1

2
tn−2 + x2un + x1un−1 + ∂un−2

· · ·
rn−i+1 = bi− 1

2
tn + bi− 3

2
tn−1 + · · ·+ b 3

2
tn−i+2 + b 1

2
tn−i+1

+ xi−1un + xi−2un−1 + · · ·+ x2un−i+3 + x1un−i+2 + ∂un−i+1,
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where each of tn, tn−1, . . . , tn−i+1 ∈ X is a clean polynomial, and each of un, un−1, . . . , un−i+1 ∈
B+ ⊗X . We have these claims for for i = 1, 2; now suppose they are true for i with 2 ≤ i ≤ n, and we
show they are true for i+ 1.

Equating coefficients of an−i− 1
2

in f = ∂r, and noting qn = · · · = qn−i+1 = 0, we obtain

b 1
2
qn−i = xirn + xi−1rn−1 + · · ·+ x2rn−i+2 + x1rn−i+1 + ∂rn−i.

Then, as we have each of rn, . . . , rn−i+1 in terms of t’s and u’s, we have

b 1
2
qn−i = xi

(
b 1

2
tn + ∂un

)
+ xi−1

(
b 3

2
tn + b 1

2
tn−1 + x1un + ∂un−1

)
+ · · ·+ x1

(
bi− 1

2
tn + bi− 3

2
tn−1 + · · ·+ b 3

2
tn−i+2 + b 1

2
tn−i+1

+ xi−1un + xi−2un−1 + · · ·+ x2un−i+3 + x1un−i+2 + ∂un−i+1

)
+ ∂rn−i.

We may regroup according to the tn terms:

b 1
2
qn−i =

(
b 1

2
xi + b 3

2
xi−1 + · · ·+ bi− 3

2
x2 + bi− 1

2
x1

)
tn +

(
b 1

2
xi−1 + b 3

2
xi−2 + · · ·+ bi− 5

2
x2 + bi− 3

2
x1

)
tn−1

+ · · ·+
(
b 1

2
x2 + b 3

2
x1

)
tn−i+2 +

(
b 1

2
x1

)
tn−i+1

+ (xi−1x1 + xi−2x2 + · · ·+ x2xi−2 + x1xi−1)un + (xi−2x1 + · · ·+ x1xi−2)un−1

+ · · ·+ (x2x1 + x1x2)un−i+3 + (x1x1)un−i+2

+ xi∂un + xi−1∂un−1 + · · ·+ x2∂un−i+2 + x1∂un−i+1 + ∂rn−i

We now recognise this as a boundary:

b 1
2
qn−i = ∂

(
bi+ 1

2
tn + bi− 1

2
tn−1 + · · ·+ b 3

2
tn−i+1

+xiun + xi−1un−1 + · · ·+ x3un−i+3 + x2un−i+2 + x1un−i+1 + rn−i) .

Thus qn−i = 0. Moreover we obtain a cycle, whose homology class has a standard form:

bi+ 1
2
tn+bi− 1

2
tn−1+· · ·+b 3

2
tn−i+1+xiun+xi−1un−1+· · ·+x2un−i+2+x1un−i+1+rn−i = b 1

2
tn−i+∂un−i,

for some clean polynomial tn−i ∈ X and some un−i ∈ B+ ⊗X . Rearranging this gives

rn−i = bi+ 1
2
tn + · · ·+ +b 3

2
tn−i+1 + b 1

2
tn−i + xiun + · · ·+ x1un−i+1 + ∂un−i.

Thus the claims are proved for i+ 1.; by induction it is true for all i up to n. With i = n then we have
qn = qn−1 = · · · = q1 = 0 as desired.

Now we can write downH(A<n
+ ⊗X⊗B+). By lemma 6.8, any cycle f inA<n

+ ⊗X⊗B+ is homologous
to one of the form s1q1 + · · · snqn, where qi are clean polynomials. Conversely, as ∂si = ∂qi = 0 every
element of the form s1q1 + · · ·+ snqn is a cycle. Moreover, proposition 6.9 says that any boundary of
the form s1q1 + · · · + snqn must be zero. Writing s̄iq̄ for the homology classes of each siq, we have
obtained the following.

Proposition 6.10. Let n be a positive integer. As a Z2-module, H(A<n
+ ⊗X ⊗B+) is freely generated

by the elements s̄iq̄, over all integers i satisfying 1 ≤ i ≤ n, and all clean monomials q̄ in H(X ).

6.5 Homology of insular string diagrams III: direct limit and module struc-
ture

We have now down the hard work in computing the homology of A+ ⊗ X ⊗ B+, the subcomplex of

ĈS(A,F ) consisting of insular string diagrams. For the chain complex A+⊗X ⊗B+ is the direct limit
of the A<n

+ ⊗X ⊗B+, and direct limits commute with homology. Thus H(A+⊗X ⊗B+) is the direct
limit of the H(A<n

+ ⊗X ⊗ B+). From proposition 6.10, we immediately obtain the following.
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Proposition 6.11. As a Z2-module, H(A+ ⊗ X ⊗ B+) is freely generated by the elements s̄iq̄, over
all positive integers i and all clean monomials q̄.

Thus, as Z2-modules at least,

H(A+ ⊗X ⊗ B+) =
Z[. . . , x̄−3, x̄−1, x̄3, x̄5, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
3, x̄

2
5, . . .)

〈s1, s2, . . .〉 = H(X )6=1〈s1, s2, . . .〉. (6)

Note the absence of x̄1; recall definition 3.19 of H(X )6=1.
We would like to explain the module structure in H(A+ ⊗ X ⊗ B+), as well as the anomalous

behaviour of x̄1. We have seen that A+ ⊗ X ⊗ B+ is a differential X -module, so H(A+ ⊗ X ⊗ B+) is
an H(X )-module; and we computed H(X ) in theorem 3.17 as

Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .)

,

Now the H(X )-module structure on H(A+ ⊗ X ⊗ B+) is inherited from the X -module structure on
A+⊗X ⊗B+; multiplication by xj on A+⊗X ⊗B+ becomes multiplication by x̄j in H(A+⊗X ⊗B+).
The multiplication by each x̄j , for j odd and j 6= 1, is clear enough, since multiplication by xj sends
each clean monomial either to another clean monomial, or to a monomial with a x2j factor, which
becomes zero in H(X ). For j even, xj does not appear in homology, so there is no x̄j by which to
multiply!

As H(X )6=1 is a subring of H(X ), H(A+ ⊗ X ⊗ B+) has the structure of a H(X )6=1-module. In
fact we have now shown it is a free H(X )6=1-module with basis {si}∞i=1, as equation (6) suggests.

To understand the H(X )-module structure, it remains only to understand the action of multipli-
cation by x̄1; we claim this action is as follows on the s̄i.

x̄1s̄1 = 0, x̄1s̄2 = 0, x̄1s̄3 = x̄3s̄1, x̄1s̄4 = x̄3s̄2,

x̄1s̄5 = x̄3s̄3 + x̄5s̄1, x̄1s̄6 = x̄3s̄4 + x̄5s̄2, . . .

In general, the pattern continues as specified in the following lemma.

Lemma 6.12. In H(A+ ⊗X ⊗ B+) we have

x̄1s̄n = x̄3s̄n−2 + x̄5s̄n−4 + · · · =
∑

j≥3 odd,
j+k=n+1

x̄j s̄k =

bn−1
2 c∑

k=1

x̄2k+1s̄n−2k.

The last two equalities above are just ways of rewriting the sum. These sums are linear combinations
of clean monomials times s̄i, so are in standard form.

Proof. Consider the element h ∈ A+ ⊗X ⊗ B+ consisting of every second term in sn+1 as shown:

h = a 1
2
bn+ 1

2
+ a 5

2
bn− 3

2
+ a 9

2
bn− 7

2
+ · · · =

∑
pos.

a 1
2+2mbn+ 1

2−2m
.

This h consists of every second term in sn+1; the “pos” in the sum indicates to sum over integers m
such that the indices are positive, i.e. 12 + 2m > 0 and n+ 1

2 − 2m > 0.
When we take ∂ of h, we obtain a sum of terms of the form ai+ 1

2
bj+ 1

2
xk, where i, j, k are positive

integers, and i+ j + k = n.
Now for each pair i, j of positive integers with i+ j ≤ n− 1, the term ai+ 1

2
bj+ 1

2
xn−i−j appears in

the differential of two terms of sn+1, namely ai+ 1
2
bn+ 1

2−i
and an+ 1

2−j
bj . These two terms may or may

not appear in h. However, if (i+ 1
2 )− (n+ 1

2 − j) = i+ j −n is even, then they either both appear, or
both do not appear, in h. And if i+j−n is odd, then precisely one of them appears. Since i+j−n ≡ k
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mod 2, we see that ∂h is precisely a sum of these ai+ 1
2
bj+ 1

2
xk where k is odd, and i, j, k are positive

integers, with i+ j+ k = n. These are precisely the terms appearing in x1sn +x3sn−2 +x5sn−4 + · · · .
We conclude that

∂h = x1sn + x3sn−2 + x5sn−4 + · · · ,

giving the desired result upon passing to homology.

We now have a complete description of H(A+ ⊗X ⊗ B+). To summarise:

Theorem 6.13. The homology H(A+ ⊗X ⊗ B+), is:

(i) a free Z2-module with basis s̄iq̄, over all positive integers i and clean monomials q̄;

(ii) a free H(X ) 6=1-module with basis s̄i, over all positive integers i;

(iii) an H(X )-module generated by the elements s̄i, over all positive integers i, where for any odd
integer j 6= 1, x̄j acts by polynomial multiplication, and x̄1 acts by

x̄1s̄n = x̄3s̄n−2 + x̄5s̄n−4 + · · · .

6.6 Homology of insular string diagrams IV: completing the calculation

We have now computed the homology of A+ ⊗ X ⊗ B+. But recall from section 6.3 that this is just
one of four summands of A⊗X ⊗ B:

A⊗X ⊗ B ∼= (A+ ⊗X ⊗ B+)⊕ (A+ ⊗X ⊗ B−)⊕ (A− ⊗X ⊗ B+)⊕ (A− ⊗X ⊗ B−) ,

where A±,B± are freely generated by the ai, bj with i, j positive and negative respectively.
After dealing with A+ ⊗ X ⊗ B+ the other three summands are easier. In fact, the homology of

A− ⊗X ⊗ B− is now immediately isomorphic to A+ ⊗X ⊗ B+.

Proposition 6.14. The map ι : A⊗X ⊗B −→ A⊗X ⊗B defined by ai 7→ a−i, bj 7→ b−j, xk 7→ x−k
and extended linearly, gives isomorphisms of chain complexes

A+ ⊗X ⊗ B+ ∼= A− ⊗X ⊗ B−, A+ ⊗X ⊗ B− ∼= A− ⊗X ⊗ B+.

Proof. It is clear that ι is an isomorphism of Z2-modules, and is an involution sending A+⊗X ⊗B+ ↔
A− ⊗X ⊗ B− and A+ ⊗X ⊗ B− ↔ A− ⊗X ⊗ B+; we check it commutes with ∂.

We first consider ι on A+: explicitly, for a non-negative integer n,

ι∂an+ 1
2

= ι
∑

i,j>0,i+j=n

ai+ 1
2
xj =

∑
i,j>0,i+j=n

a−i− 1
2
x−j =

∑
i,j<0,i+j=−n

ai− 1
2
xj = ∂a−n− 1

2
= ∂ιan+ 1

2
.

By a similar calculation we have ι∂ = ∂ι on A−,B+,B−. We also have, by a similar argument,
ι∂xk = ∂ιxe for monomials xe ∈ X . By the Leibniz rule then ι commutes with ∂ on A⊗X ⊗B. Thus
ι gives an involution on homology which induces the desired isomorphisms.

Thus, our description of H(A+⊗X ⊗B+) in theorem 6.13 is also a description of H(A−⊗X ⊗B−),
upon exchanging each ai, bj , xk with a−i, b−j , x−k. It is a free Z2-module with basis s̄iq̄, over all
negative integers i and negatively clean monomials q. It is also a freeH(X ) 6=−1-module (recall definition
3.19) with basis s̄i, over all negative integers i. And it is finally a H(X )-module generated by the
elements s̄i, over all negative integers i, where for any odd negative integer j ≤ −1, x̄j acts by
polynomial multiplication, and x̄−1 acts on s̄−n, for −n < 0, by x̄−1s̄−n = x̄−3s̄−n+2+ x̄−5s̄−n+4+ · · · .

It remains to consider A+ ⊗X ⊗ B−; from above, A− ⊗X ⊗ B+ is similar. This complex behaves
more simply than A+ ⊗ X ⊗ B+. In particular, the presence of both positive and negative indices in
aibj allows us to simplify cycles into a considerably more straightforward standard form, more like
A+ ⊗ X (section 4.4) than A+ ⊗ X ⊗ B+. As in previous computations, the first and main step is a
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technical lemma (similar to lemma 4.8) which, given a cycle in A+ ⊗ X ⊗ B−, reduces it modulo a
boundary to one of lower a-degree. (Note that definition 6.5 of a-degree applies to A+ ⊗X ⊗ B−.)

We start with a an element f ∈ A+ ⊗X ⊗ B− of a-degree n− 1
2 , so

f = a 1
2
p 1

2
+ a 3

2
p 3

2
+ · · ·+ an− 1

2
pn− 1

2
=

n∑
i=1

ai− 1
2
pi− 1

2
,

where each p1, . . . , pn ∈ B− ⊗X . The reduction is as follows.

Lemma 6.15. If f ∈ A+⊗X⊗B− has a-degree n− 1
2 ≥

3
2 and satisfies ∂f = 0, then f = ∂g+O(an− 3

2
)

for some g ∈ A+ ⊗X ⊗ B−.

Proof. Let f = an− 1
2
pn− 1

2
+ an− 3

2
pn− 3

2
+O(an− 5

2
), where pn− 1

2
, pn− 3

2
∈ B− ⊗X . Then

0 = ∂f = an− 1
2
∂pn− 1

2
+ an− 3

2

(
x1pn− 1

2
+ ∂pn− 3

2

)
+O(an− 5

2
)

Equating coefficients of an− 1
2

and an− 3
2

gives

∂pn− 1
2

= 0, x1pn− 1
2

= ∂pn− 3
2
.

Thus pn− 1
2

is a cycle in B−⊗X and x1pn− 1
2

is a boundary. As remarked in section 6.2, B⊗X ∼= A⊗X
as differential X -modules, and indeed B− ⊗ X ∼= A+ ⊗ X under the isomorphism bixk ↔ a−ix−k. So
by proposition 4.9 applied to B− ⊗X , ∂pn− 1

2
= 0 implies

pn− 1
2

= b− 1
2
q + ∂r

where q ∈ X is a negatively clean polynomial and r ∈ B− ⊗X .
We claim that q is divisible by x1. To see this, split q into terms which do and do not contain x1,

i.e. q = t+ x1u where t, u are totally clean polynomials (definition 3.18). Then we have

x1pn− 1
2

= b− 1
2
x1 (t+ x1u) + x1∂r = b− 1

2
x1t+ ∂

(
b− 1

2
x2u+ x1r

)
,

expressing x1pn− 1
2

in standard form, which by by proposition 4.13 is unique. As x1pn− 1
2

is a boundary
we must have b− 1

2
x1t = 0, so t = 0. Hence q = x1u and q is indeed divisible by x1.

From q = x1u, we now have pn− 1
2

= b− 1
2
x1u+ ∂r. This gives our original f as

f = an− 1
2

(
b− 1

2
x1u+ ∂r

)
+O(an− 3

2
) = an− 1

2
b− 1

2
x1u+ an− 1

2
∂r +O

(
an− 3

2

)
.

Now note ∂
(
an+ 1

2
b− 1

2
u
)

= an− 1
2
b− 1

2
x1u+O(an− 3

2
) (here we used ∂b− 1

2
= ∂u = 0) and ∂

(
an− 1

2
r
)

=

an− 1
2
∂r +O(an− 3

2
). Thus we have

f = ∂
(
an+ 1

2
b− 1

2
u+ an− 1

2
r
)

+O
(
an− 3

2

)
,

giving the desired form for f , with g = an+ 1
2
b− 1

2
u+ an− 1

2
r.

Repeated use of this result allows us to reduce any cycle f ∈ A+⊗X ⊗B− to one of a-degree 1
2 , so

f = a 1
2
p′ + ∂g′,

where p′ ∈ B− ⊗ X and g′ ∈ A+ ⊗ X ⊗ B−. We can then simplify further, “reducing” (actually,
increasing) the b-degree of p′. Since f is a cycle, 0 = ∂f = a 1

2
∂p′, so ∂p′ = 0. But now p′ ∈ B− ⊗X is

a cycle, and proposition 4.13 puts p′ in a standard form,

p′ = b− 1
2
q + ∂g′′,
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where q is a negatively clean polynomial, and g′′ ∈ B− ⊗X . We then have f in the form

f = a 1
2
b− 1

2
q + a 1

2
∂g′′ + ∂g′ = a 1

2
b− 1

2
q + ∂g′′′,

where g′′′ = a 1
2
g′′+g′ ∈ A+⊗X ⊗B−. The following proposition further improves f , removing factors

of x1 and providing a standard form for cycles in A+ ⊗X ⊗ B−.

Proposition 6.16. Suppose f ∈ A+ ⊗X ⊗ B− satisfies ∂f = 0. Then

f = a 1
2
b− 1

2
p+ ∂g,

where p ∈ X is a totally clean polynomial, and g ∈ A+ ⊗X ⊗ B−.

Proof. From above, we have f = a 1
2
b− 1

2
q+∂g′′′, where q ∈ X is negatively clean and g′′′ ∈ A+⊗X⊗B−.

We may separate the terms of q which do and do not contain x1, to write q = p+ x1u, where p, u are
totally clean. We then have

f = a 1
2
b− 1

2
p+ a 1

2
b− 1

2
x1u+ ∂g′′′ = a 1

2
b− 1

2
p+ ∂

(
a 3

2
b− 1

2
u+ g′′′

)
so, taking g = a 3

2
b− 1

2
u+ g′′′, we have the desired result.

Thus, every cycle in A+⊗X ⊗B− is homologous to the standard form a 1
2
b− 1

2
p, with p totally clean.

We can easily check that each such a 1
2
b− 1

2
p is a cycle. Thus every homology class in H(A+⊗X ⊗B−)

has a representative of the form a 1
2
b− 1

2
p, and every a 1

2
b− 1

2
p represents some homology class. We will

show that these representatives are unique. We will do this by use of a map to the simpler chain
complex X .

Definition 6.17. The map Ψ : A+ ⊗X ⊗ B− −→ X is defined by

ai− 1
2
b−j+ 1

2
p 7→ xipx−j ,

for positive integers i, j and p ∈ X , and extended by Z2-linearity.

Geometrically, Ψ corresponds to gluing annuli to each boundary of the annulus (A, F2,2) with
string diagrams closing off ai− 1

2
and b−j+ 1

2
into closed curves xi, x−j respectively. This gives a map

ĈS(A, F2,2) −→ ĈS(A, ∅). Since there are no crossings in the glued-on annuli, Ψ is a chain map. We
can also prove the result we need on the subcomplex A+ ⊗X ⊗ B− purely algebraically.

Lemma 6.18. The map Ψ is a chain map: Ψ∂ = ∂Ψ.

Proof. It suffices to show that the result holds on generators ai− 1
2
b−j+ 1

2
p, where i, j are positive

integers and p ∈ X . We have

Ψ∂
(
ai− 1

2
b−j+ 1

2
p
)

= Ψ
[(
∂ai− 1

2

)
b−j+ 1

2
p+ ai− 1

2

(
∂b−j+ 1

2

)
p+ ai− 1

2
b−j+ 1

2
(∂p)

]
= Ψ

[(
i−1∑
k=1

ak− 1
2
xi−k

)
b−j+ 1

2
p+ ai− 1

2

(
j−1∑
k=1

b−k+ 1
2
x−j+k

)
p+ ai− 1

2
b−j+ 1

2
(∂p)

]

=

(
i−1∑
k=1

xkxi−k

)
x−jp+ ai− 1

2

(
j−1∑
k=1

x−kx−j+k

)
p+ ai− 1

2
x−j (∂p)

= (∂xi)x−jp+ ai− 1
2

(∂x−j) p+ ai− 1
2
x−j (∂p)

= ∂ (xix−jp) = ∂Ψ
(
ai− 1

2
b−j+ 1

2
p
)
.
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Thus, Ψ gives a map on homology, which by abuse of notation we also call Ψ.

Proposition 6.19. The map Ψ : H(A+⊗X ⊗B−) −→ H(X ) is injective and has image x̄1x̄−1H(X ).

Proof. By proposition 6.16, a nonzero homology class in H(A+ ⊗X ⊗B−) has a representative of the
form a 1

2
b− 1

2
p, where p 6= 0 is totally clean.

Under Ψ this homology class ā 1
2
b̄− 1

2
p̄ maps to x̄1x̄−1p̄, which is a fermionic polynomial, hence

nonzero in H(X ). Thus Ψ is injective. Moreover any element x̄1x̄−1p̄ ∈ x̄1x̄−1H(X ) is the image of
ā 1

2
b̄− 1

2
p̄.

In fact, Ψ is actually an X -module homomorphism and gives an H(X )-module homomorphism on
homology. Thus we obtain an an explicit description of the homology as an H(X )-module.

Theorem 6.20. The homology H(A+ ⊗ X ⊗ B−) is isomorphic to x̄−1x̄1H(X ) as an H(X )-module
via Ψ. Every homology class has a unique representative of the form a 1

2
b− 1

2
p, where p ∈ X is totally

clean.

Thus H(A+ ⊗ X ⊗ B−) is a free H(X )−1,1-module (definition 3.19) with basis 1 (isomorphic to
H(X )−1,1 as a module over itself). As a Z2-module, H(A+ ⊗X ⊗B−) is free with basis ā 1

2
b̄− 1

2
q̄, over

all totally clean monomials q̄.
To summarise:

H(A+⊗X⊗B−) = ā 1
2
b̄− 1

2
H(X )6=−1,1 ∼= H(X ) 6=−1,1 ∼= x̄−1x̄1H(X ) ∼= x̄1x̄−1

Z[. . . , x−3, x−1, x1, x3, . . .](
. . . , x2−3, x

2
−1, x

2
1, x

2
3, . . .

)
Using the isomorphism A+ ⊗ X ⊗ B− ∼= A− ⊗ X ⊗ B+ we immediately also have the homology of

A−⊗X ⊗B+: it is isomorphic to x̄−1x̄1H(X ) as an H(X )-module; every homology class has a unique
representative a− 1

2
b 1

2
p, where p ∈ X is totally clean; and as a Z2-module it is free with basis ā− 1

2
b 1

2
q̄

over all totally clean monomials q̄.

6.7 Full homology

Let us now return to the sutured background (A,F2,2), and recall that

ĈS(A,F ) ∼= (A⊗X ⊗ B)⊕ (C ⊗ X ⊗D)

where A ⊗ X ⊗ B, describing insular string diagrams, is a subcomplex; while C ⊗ X ⊗ D, describing
traversing string diagrams, is not. We have the further decomposition into subcomplexes

A⊗X ⊗ B ∼= (A+ ⊗X ⊗ B+)⊕ (A+ ⊗X ⊗ B−)⊕ (A− ⊗X ⊗ B+)⊕ (A− ⊗X ⊗ B−) .

After sections 6.3 to 6.6, specifically theorems 6.13 and 6.20, we know the homology of these complexes
explicitly. Over Z2 they have bases, respectively

(i) H(A+ ⊗X ⊗ B+): basis s̄iq̄, over all positive integers i and positively clean monomials q̄;

(ii) H(A+ ⊗X ⊗ B−): basis ā 1
2
b̄− 1

2
q̄, over all totally clean monomials q̄;

(iii) H(A− ⊗X ⊗ B+): basis ā− 1
2
b̄ 1

2
q̄, over all totally clean monomials q̄.

(iv) H(A− ⊗X ⊗ B−): basis s̄iq̄, over all negative integers i and negatively clean monomials q̄.

Over H(X ), these modules are non-free, with rank ∞, 1, 1,∞ respectively. We have now proved parts
(i) and (ii) of theorem 1.5.

Unfortunately, the situation becomes more difficult when we extend to the full chain complex
(A ⊗ X ⊗ B) ⊕ (C ⊗ X ⊗ D). We are unable to give a complete description of its homology. The
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differential on C ⊗ X ⊗ D, as we saw in section 6.2, does not obey a Leibniz rule, and the differential
of a term cidjx

e will in general include terms of both types cidjx
e and aibjx

e. So the full homology

ĤS(A, F2,2) has the structure of a Z2-module, but not an H(X )-module.
We will however give some partial results regarding the full complex.
First, the homology H(A⊗X ⊗B) does not escape unscathed from the effect of the differential on

C ⊗ X ⊗ D: for instance, for any integer n 6= 0, the element sn ∈ A ⊗ X ⊗ B has nonzero homology
class s̄n ∈ H(A ⊗ X ⊗ B), but is a boundary in ĤS(A,F2,2) since ∂c0dn = sn. There are certainly

however elements of H(A⊗X ⊗B) that do survive in ĤS(A,F2,2); and there are cycles in A⊗X ⊗B
not homologous to any elements of C ⊗ X ⊗ D . Indeed, as the differential ∂cmdnx

e of a generator of
C ⊗ X ⊗ D only involves terms of the form cm′dn′x

e′ and aibjx
e with i, j of the same sign, we have a

decomposition

ĈS(A, F2,2) ∼= [A+ ⊗X ⊗ B−]⊕ [A− ⊗X ⊗ B+]⊕ [X ⊗ ((A+ ⊗ B+)⊕ (A− ⊗ B−)⊕ (C ⊗ D))] .

into three chain complexes, the first two of which are differential X -modules. Thus H(A+ ⊗X ⊗ B−)

and H(A− ⊗ X ⊗ B+) are summands of ĤS(A, F2,2). In particular, ā 1
2
b̄− 1

2
q̄ and ā− 1

2
b̄ 1

2
q̄, for any

totally clean polynomial q̄, is nonzero in ĤS(A, F2,2). This proves theorem 1.5(iii).
We will also show (proposition 6.34) that any āib̄j x̄−i−j , for i, j ∈ Z+ 1

2 of the same sign, is nonzero

in ĤS(A, F2,2).
On the other hand, C ⊗ X ⊗D certainly contributes some homology on its own account: there are

cycles in C ⊗X ⊗D which are nonzero in ĤS(A, F2,2). For instance, we shall show below (propositions
6.25 and 6.34) that the elements

cnd−n, c0d0 + c1d−1
c0d0x3 + (c2d0 + c1d1 + c0d2)x1 + a 7

2
b 1

2
+ a 3

2
b 5

2

for any n ∈ Z, are all cycles, but not boundaries, in ĤS(A, F2,2). We will also see (proposition 6.25)
that cnd−n is not homologous to any element of A⊗X ⊗ B.

We will demonstrate these nonzero elements using two tools: firstly, in section 6.8, the diagonal sum
sequence; and secondly, in section 6.9, by finding a (Z2-module) homomorphism Φ from ĤS(A,F2,2)
to a Z2-module H(E). But neither of these tools is complete; for instance the diagonal sum sequence

cannot detect that c̄0d̄0 + c̄1d̄−1 is nonzero in ĤS(A, F2,2); and the homomorphism Φ cannot detect
that c̄0d̄0x̄3 +

(
c̄2d̄0 + c̄1d̄1 + c̄0d̄2

)
x̄1 + ā 7

2
b̄ 1

2
+ ā 3

2
b̄ 5

2
is nonzero.

6.8 Properties of full string homology; diagonal sums

We will attempt to gain some insight into C ⊗X ⊗D by considering the “diagonals” cidj , over i, j such
that i+ j is constant.

Lemma 6.21. For all integers i, j:

(i) cidj and ci+2dj−2 differ by a boundary;

(ii) if i+ j is odd, then cidj and ci+1dj−1 differ by a boundary.

Recall (section 6.1) that cidjp, for p ∈ X , can be considered as p ∈ X placed at (i, j) ∈ Z×Z. Part
(i) of this lemma says that along a diagonal i+ j = constant in this lattice, a 1 at each second point
is equal, up to a boundary. Part (ii) says that along an odd diagonal i+ j = odd constant, a 1 at any
point is equal to any other, up to boundaries. Note however, that cidj are not generally cycles, so do
not generally have homology classes.

Proof. The first part is immediate from

∂(cidj−1x1 + ci+1dj−2x1) = cidj + ci+2dj−2
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(the two si+j−1x1 terms in the differential cancel). If m is an odd integer then we have

∂(c0d0xm) = c0dm + cmd0,

so two terms cidj on the diagonal i+j = m, spaced an odd distance apart, are equal, up to a boundary.
Combining this with (i) gives that all cidj on the diagonal are equal up to boundaries.

Definition 6.22. Given n ∈ Z and f ∈ ĈS(A, F2,2) with C ⊗ X ⊗ D component
∑

(i,j)∈Z×Z cidjpi,j,

where each pi,j ∈ X , the n’th diagonal sum map σn : ĈS(A, F2,2) −→ X is defined by

σnf =
∑

i+j=n

pi,j ∈ X .

The diagonal sum sequence of f is the sequence (σnf)n∈Z.

Thus each σn takes the sum of the coefficients of f in the diagonal i+j = n of the “(ci, dj)-lattice”.
Clearly σn is a Z2-module homomorphism; we now show it is a chain map.

Lemma 6.23. For each n, σn∂ = ∂σn.

Proof. Each term cidjpi,j of f contributes pi,j to the diagonal sum σi+j . Now ∂f has C ⊗ X ⊗ D
component given by cidj∂pi,j , plus some terms (possibly none) of the form (ci+kdj + cidj+k)x−1k pi,j .
The term cidj∂pi,j contributes ∂pi,j to the (i + j)’th diagonal sum of ∂f . Any terms of the form
(ci+kdj + cidj+k)x−1k pi,j give the same coefficient x−1k pi,j occurring in two locations (i+k, j), (i, j+k)
on the same diagonal. Hence they cancel and contribute zero to the diagonal sums of ∂f . Terms of
the form aibjp contribute neither to σnf nor σn∂f . So the diagonal sum sequence of ∂f is (∂σn)n∈Z
as desired.

It follows that, for any f ∈ ĈS(A, F2,2), ∂f has diagonal sum sequence (∂σnf)n∈Z, giving the
following proposition immediately.

Proposition 6.24. If f is a cycle in ĈS(A, F2,2), then every σnf is a cycle in X . If f is a boundary

in ĈS(A, F2,2), then every σnf is a boundary in X .

We can now show that two of our claimed elements are nonzero in ĤS(Σ, F ).

Proposition 6.25. The elements

cmd−m and c0d0x3 + (c2d0 + c1d1 + c0d2)x1 + a 7
2
b 1

2
+ a 3

2
b 5

2

for any m ∈ Z, are cycles in ĈS(A, F2,2), but not boundaries, and are not homologous to any element
of A⊗X ⊗ B.

Proof. Direct computation shows that these elements are cycles. For any m, cmd−m has diagonal sum
σ0 = 1, which is not a boundary in X . The second element has diagonal sums σ0 = x3, σ1 = x1, which
are also not boundaries. Two cycles which differ by a boundary map under σn to cycles in X which
differ by boundaries, i.e. to homologous elements of X . An element A⊗X ⊗B maps under any σn to
zero, hence is not homologous to any of the elements stated here.

The proves theorem 1.5(iv).
Note that c0d0 + c1d−1 is a cycle with zero diagonal sequence, but (as we will see in proposition

6.34) is nonzero in ĤS(A, F2,2); the diagonal sequence cannot distinguish this element from 0.
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6.9 Homomorphism from a disc

We will define a chain complex E , and chain maps ĈS(A, F2,2)↔ E . The chain complex E is motivated
by considering string diagrams on the disc with 6 alternating endpoints, glued into (A, F2,2). Drawing
the disc as a rectangle, up to homotopy relative to endpoints there are precisely 6 diagrams without
contractible loops on the disc, which we label as A+, A−, B, T0, T1, U as shown in figure 8. Gluing left
and right sides together, we respectively obtain string diagrams a 1

2
b− 1

2
, a− 1

2
b 1

2
, a 1

2
b 1

2
x−1, c0d0, c−1d1

and c0d1x−1 on (A, F2,2).

A+ A− B T0 T1 U

Figure 8: Diagrams motivating E .

Definition 6.26. The Z2-module E is freely generated by {A+, A−, B, T0, T1, U}, and ∂ : E −→ E is
defined on generators and extended linearly as

∂A+ = ∂A− = ∂B = ∂T0 = ∂T1 = 0,
∂U = B + T0 + T1.

Definition 6.27. The map Ψ : E −→ ĈS(A, F2,2) is defined on generators, extended linearly, by

A+ 7→ a 1
2
b− 1

2
, A− 7→ a− 1

2
b 1

2
, B 7→ a 1

2
b 1

2
x−1

T0 7→ c0d0, T1 7→ c−1d1, U = c0d1x−1.

It’s clear that ∂2 = 0 on E , so E is a chain complex. Its homology is easily computed: H(E) ∼= Z4
2,

with free basis given by the homology classes of A+, A−, T0 and T1.

Lemma 6.28. Ψ is a chain map.

Proof. We check explicitly on generators. Since ∂A+ = ∂A− = ∂B = ∂T0 = ∂T1 = 0, for these
generators it is sufficient to check that Ψ maps them to cycles, which is clear. For the remaining
generator U we have ∂ΨU = ∂(c0d1x−1) = c0d0 + c−1d1 + a 1

2
b 1

2
x−1 = Ψ (T0 + T1 +B) = Ψ∂U .

The key to making deductions about ĤS(A, F2,2) is to have a homomorphism in the other direction

Φ : ĈS(A, F2,2) −→ E , which we now define. We define Φ on the Z2-basis of ĈS(A,F2,2), which consists
of elements of the form aibjx

e and ckdlx
e, over all i, j ∈ Z + 1

2 , all k, l ∈ Z and all monomials xe ∈ X .

Definition 6.29. The map Φ : ĈS(Σ, F2,2) −→ E is defined on generators and extended linearly by

Φa 1
2
b− 1

2
= A+

Φa− 1
2
b 1

2
= A−

Φaibjx−i−j = B for all i, j of the same sign

Φaibjp = 0 for any i, j and monomial p not covered by the previous cases

Φc2nd−2n = T0 for all integers n

Φc2n−1d1−2n = T1 for all integers n

Φcidjx−i−j = U for all pairs of integers (i, j) such that i+ j is odd

Φcidjp = 0 for any i, j and monomial p not covered by the previous cases.
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It is clear from the definition that Φ and Ψ are partial inverses:

Φ ◦Ψ = 1. (7)

In order to prove that Φ is a chain map, we develop some lemmas. The first lemma is about two
elements cidjp and ci+ndj−np in the same diagonal.

Lemma 6.30. Suppose i, j ∈ Z such that i+ j 6= 0, and p ∈ X is any monomial. Then for any n ∈ Z,

Φ ((cidj + ci+ndj−n) p) = 0.

Proof. If i + j is even or p 6= x−i−j then Φcidjp = Φci+ndj−np = 0 and the result holds. Otherwise
i+ j 6= 0 and p = x−i−j , in which case Φcidjp = Φci+ndj−np = U , so Φ(cidjp+ ci+ndj−np) = 0.

The second lemma concerns Φ applied to sn, which (definition 6.3) is a linear combination of the
aibj along the diagonal i+ j = n.

Lemma 6.31. Let n be an integer, and p ∈ X a monomial. Then

Φ (snp) =

{
B n odd and p = x−n
0 otherwise.

Proof. The element snp is the sum of all aibjp, over i, j with the same sign as n and i + j = n. If
p 6= x−n = x−i−j , then the image under Φ of each aibjp is zero, giving the result.

We may now assume p = x−n = x−i−j . In this case each aibjp maps to B under Φ. There are |n|
such terms, so Φ(snp) is 0 if n is even, and B if n is odd.

The third lemma shows that Φ∂ = 0 for many elements.

Lemma 6.32. For any i, j and any monomial p ∈ X :

(i) Φ∂ (aibjp) = 0.

(ii) Φ (cidj(∂p)) = 0

Proof. First consider ∂(aibjp) = (∂ai)bjp + ai(∂bj)p + aibj(∂p). Every term in ∂ai or ∂bj contains a
factor akxl where k, l are of the same sign; and hence very term of (∂ai)bjp or ai(∂bj)p also contains
a factor akxl where k, l are of the same sign. On all such terms Φ = 0.

Thus it remains to show Φ(aibj(∂p)) = Φ(cidj(∂p)) = 0. Now any term of ∂p (if there is any such
term) is a product of at least two xk. Thus every term of aibj(∂p) or cidj(∂p) has at least two xk
factors, and on any such term Φ = 0.

Proposition 6.33. Φ is a chain map.

Proof. We check on the Z2-basis of ĈS(Σ, F2,2) that ∂Φ = Φ∂.
First, take aibjp where p is a monomial. By lemma 6.32, we have Φ∂ (aibjp) = 0. And Φ(aibjp) is

either A+, A− or B, all of which map to 0 under ∂.
Next, take cidjp, where p is a monomial. We have Φ(cidjp) is either T0, T1 U or 0, depending on

i, j and p. However ∂T0 = ∂T1 = 0. So ∂Φ(cidjp) is nonzero precisely when Φ(cidjp) = U , in which
case i+ j is odd, p = x−i−j and ∂Φ(cidjp) = T0 + T1 +B. Thus, we must show Φ∂(cidjp) is nonzero
precisely when i+ j is odd and p = x−i−j , in which case Φ∂(cidjp) = T0 + T1 +B.

So, consider ∂(cidjp). Let p = xe =
∏

k∈Z\{0} x
ek
k . Then

∂ (cidjp) = cidj(∂p) + si+jp+
∑

k∈Z\{0}

kek (ci+kdj + cidj+k)x−1k p.
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Applying Φ to this expression, the first term maps to 0 by lemma 6.32, and the second term, by lemma
6.31, maps to B when i+ j is odd and p = x−i−j , otherwise maps to 0. So it remains to show that

Φ

 ∑
k∈Z\{0}

kek (ci+kdj + cidj+k)x−1k p

 =

{
T0 + T1 i+ j odd and p = x−i=j

0 otherwise.

Now by lemma 6.30, when k 6= −i− j, we have Φ((ci+kdj + cidj+k)q) = 0 for any monomial q. Thus
we only need consider the terms with k = −i− j. In this case the expression above reduces (mod 2) to

(i+ j)e−i−j Φ
(
(c−jdj + cid−i)x

−1
−i−jp

)
.

If i+ j is even then we obtain 0 mod 2, so we may assume i+ j is odd. By definition, Φ(cld−lq) = 0
for any integer l and any monomial q 6= 1; so we may assume p = x−i−j . Then e−i−j = 1 so the
above expression becomes Φ(c−jdj + cid−i). With i + j odd, one of i, j is even and other is odd, so
Φ(c−jdj + cid−i) = T0 + T1 as desired.

As a chain map, Φ descends to homology and we obtain a map ĤS(A, F2,2) −→ H(E), also denoted
Φ. Thus Φ and Ψ are partial inverses on homology, Φ ◦ Ψ = 1. In particular, Ψ is injective and Φ is
surjective on homology.

Proposition 6.34. The elements
āib̄j x̄−i−j , c̄nd̄−n,

for any i, j ∈ Z + 1
2 of the same sign, and any n ∈ Z, are nonzero in ĤS(A, F2,2). The elements

c̄0d̄0, c̄1d̄−1, c̄0d̄0 + c̄1d̄−1 = ā 1
2
b̄ 1

2
x̄−1, ā 1

2
b̄− 1

2
, ā− 1

2
b̄ 1

2
,

are all distinct nonzero elements of ĤS(A,F2,2).

Proof. We first verify that the corresponding elements of ĈS(A,F2,2) are cycles, hence represent
homology classes; and ∂(c1d0x−1) = c0d0 + c1d−1 + a 1

2
b 1

2
x−1 explains the claimed equality.

Under Φ, aibjx−i−j 7→ B for any i, j of the same sign, and cnd−n 7→ T0 or T1 depending on the
parity of n. As the homology classes of B, T0, T1 are all nonzero in H(E), the homology classes of

aibjx−i−j and cnd−n must be nonzero in ĤS(A, F2,2).
Under the injective map Ψ, the elements T0, T1, T0 + T1, A+, A−, which represent distinct nonzero

homology classes of E , map to the second list of elements of H(ĤS(A, F2,2), which must therefore be
nonzero and distinct.

Note that Φ certainly has nonzero kernel; for instance, for any totally clean monomial other than 1,
a 1

2
b− 1

2
q and a− 1

2
b 1

2
q map to zero under Φ, but are nonzero in ĤS(A, F2,2) as discussed in section 6.7.

Also, the element c0d0x3 +(c2d0 + c1d1 + c0d2)x1 +a 7
2
b 1

2
+a 3

2
b 5

2
, shown to be nonzero in ĤS(A, F2,2)

in proposition 6.25, maps to zero under Φ.

7 Adding marked points

We now show how to extend our results to weakly marked annuli with more fixed points. Having
proved theorem 1.1 in section 5, we restrict our attention to alternating weakly marked annuli.

We will show how, in favourable circumstances, we can add marked points to a boundary compo-
nent, and keep track of the effect on ĤS. In fact our main result in this regard (theorem 7.1) applies
not just to annuli, but to general alternating weakly marked surfaces.

We will show that once there are two marked points on a boundary component C of an alternating
weakly marked surface (Σ, F ), we can add two more marked points to C (keeping the points alternat-
ing), and the effect on string homology is to tensor (over Z2) with Z2

2. In fact the results to show this
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essentially appeared in our previous paper [19], although in that paper the result was stated only for
discs.

To this end, we recall the constructions and results of sections 7–8 of [19], but in a more general
context. In section 7.1 we will recall the notions of creation and annihilation operators defined there.
Then in section 7.2 we will use them to prove the main proposition in this section, and in section 7.3
deduce results for annuli.

7.1 Creation and annihilation operators

Let (Σ, F ) be an alternating weakly marked surface. Let C be a boundary component of Σ which
contains at least one (hence at least two) marked points.

Suppose we add two new adjacent marked points fin, fout on C, labelled “in” and “out” respec-
tively, to obtain a new alternating weakly marked surface (Σ, F ′). A creation operator ĈS(Σ, F ) −→
ĈS(Σ, F ′) takes a (homotopy class of) string diagram and inserts an extra boundary-parallel open
string from fin to fout, not intersecting itself or any other strings. Since there are pre-existing points
of F on C, the homotopy class of this newly “created” boundary-parallel string is unique.

(Note that if F has no marked points on C, then there are two choices for the new non-intersecting
boundary-parallel open string from fin to fout, proceeding around C in either direction. The require-
ment of marked points on C is essential for a well-defined creation operator.)

Similarly, suppose (Σ, F ) contains at least four points on the boundary component C, and let
(Σ, F ′) be an alternating weakly marked surface obtained from F by removing two adjacent marked

points fin ∈ Fin ∩ C, fout ∈ Fout ∩ C. An annihilation operator ĈS(Σ, F ) −→ ĈS(Σ, F ′) takes
a (homotopy class of) string diagram and joins the strings previously ending at fin, fout, without
introducing any new intersections of strings. The other points of F on C constrain the homotopy class
of the new string diagram to be unique. The “annihilation” closes off the strings at fin, fout by a small
arc.

(Note again that if |F ∩ C| = 2, then there are two choices for the new arc, proceeding either
direction around C. Again, marked points on C are essential for a well-defined annihilation operator.)

Suppose one of the “in” marked points on F ∩ C is chosen as a basepoint f0 ∈ Fin ∩ C. Then
we consider two specific creation operators on (Σ, F ), creating new strings in two sites adjacent to
the basepoint, which we call a∗−, a

∗
+; and we consider two specific annihilation operators, annihilating

strings at the two possible sites including the basepoint. These operators are defined explicitly in
figure 9. After creating or annihilating we choose a new basepoint in the resulting diagram, adjacent
to the original location. Basepoints are shown with a dot. (We use the orientation on Σ to orient C
and obtain well-defined maps.)

Thus, given an alternating weakly marked surface (Σ, F ), once we chose a boundary component
C with at least two marked points, and a basepoint f0 ∈ Fin ∩ C, we have two well-defined creation
operators

a∗± : ĈS(Σ, F ) −→ ĈS(Σ, F ′),

where F ′ is obtained from F by adding two adjacent marked points on C, and (Σ, F ′) has a well-defined
basepoint in F ′in ∩ C.

Similarly, given an alternating weakly marked (Σ, F ), once we choose a boundary component C
with at least four marked points, and a basepoint f0 ∈ Fin ∩C, we have two well-defined annihilation
operators

a± : ĈS(Σ, F ) −→ ĈS(Σ, F ′),

where F ′ is obtained from F by deleting two marked points on C, and (Σ, F ′) has a well-defined
basepoint in F ′in ∩ C.

Thus, starting from an alternating weakly marked (Σ, F ) and a choice of basepoint as above, we can
compose a∗±, a± operators, applied to the resulting chain complexes, as long as our basepoint continues
to share its boundary component with a sufficient number of marked points.
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a∗+

a+

a∗−

a−

Figure 9: Creation/annihilation operators. We only show the boundary component C of (Σ, F ); Σ in
general has more topology than shown.

The four maps â∗±, â± satisfy various relations, including the following.

a−a
∗
− = a+a

∗
+ = 1, a−a

∗
+ = a+a−∗ = 0

Identity maps arise as a “±-creation” followed by “±-annihilation” result in a string diagram homotopic
to the original; and zeroes arise as a “±-creation” followed by “∓-annihilation” produce a closed
contractible string.

As neither creation nor annihilation operators create any new crossings in a string diagram, they
commute with the differential and hence give maps on homology, also denoted a∗±, a±. The above
identities also hold on homology. In particular, creation operators are injective on both the chain level
and on homology.

7.2 Effect of creation on string homology

We now use the creation and annihilation operators described above to give an explicit result about
string homology. When we add two marked points to F to obtain F ′, with creation operators as
described above, it turns out we can describe ĤS(Σ, F ′) rather simply and explicitly in terms of

ĤS(Σ, F ).

Theorem 7.1. Let (Σ, F ) be an alternating weakly marked surface, and C a boundary component
of Σ with F ∩ C 6= ∅. Let f0 ∈ Fin ∩ C be a basepoint, and (Σ, F ′) an alternating weakly marked
surface obtained from (Σ, F ) by adding two marked points on C. Let a∗± be the corresponding creation
operators. Then (as a Z2-module)

ĤS(Σ, F ′) = a∗+ĤS(Σ, F )⊕ a∗−ĤS(Σ, F )

∼= ĤS(Σ, F )⊕ ĤS(Σ, F )

∼= (Z2 ⊕ Z2)⊗Z2
ĤS(Σ, F ).

To prove this theorem, we need the following “crossed wires lemma”. On discs, it is stated as
lemma 8.4 of [19]; the same methods establish the result in our more general setting.

Lemma 7.2. Let Σ, F, F ′ and a∗± be as above. Suppose x ∈ ĈS(Σ, F ′) satisfies ∂x = 0. Then there

exist y, z ∈ ĈS(Σ, F ) and u ∈ ĈS(Σ, F ′) such that

∂y = ∂z = 0 and x = a∗−y + a∗+z + ∂u.
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Proof of theorem 7.1. The ideas of the proof are contained in [19]. Take x̄ ∈ ĤS(Σ, F ′), represented

by x ∈ ĈS(Σ, F ′). Then ∂x = 0, so by the crossed wires lemma we have y, z ∈ ĈS(Σ, F ) and

u ∈ ĈS(Σ, F ′) such that x = a∗−y + a∗+z + ∂u. In homology then we have x̄ = a∗−ȳ + a∗+z̄. Thus

a∗−ĤS(Σ, F ) and a∗+ĤS(Σ, F ) span ĤS(Σ, F ′).

Now suppose we have an element t in the intersection a∗+ĤS(Σ, F ) ∩ a∗−ĤS(Σ, F ). So there exist

p, q ∈ ĤS(Σ, F ) such that
t = a∗−p = a∗+q.

Now applying a− and a+ respectively, we obtain

a−t = p = 0 and a+t = 0 = q.

Here we have used the relations a−a
∗
− = a+a

∗
+ = 1 and a−a

∗
+ = a+a

∗
− = 0. Since p = q = 0

we have t = 0, so a∗+ĤS(Σ, F ) ∩ a∗−ĤS(Σ, F ) = 0 and we have the first direct sum claimed. As
creation operators are injective, we have the first claimed isomorphism, and the final isomorphism
then follows.

We have now proved theorem 1.6.
It follows from this proposition that if {vi : i ∈ I} is a basis for ĤS(Σ, F ), then all a∗−vi, a

∗
+vi are

distinct and {a∗−vi, a∗+vi : i ∈ I} forms a basis for ĤS(Σ, F ′).

7.3 Results for annuli with more marked points

For present purposes, we only need theorem 7.1 in so far as it relates to annuli. We can use it to
immediately deduce the string homology of (A, F0,2n+2) from that of (A, F0,2); and to deduce the
string homology of (A, F2m+2,2n+2) from that of (A, F2,2).

We will need to apply creation operators a∗± repeatedly. Following notation of [13], for any word
w on the symbols {−,+}, we define a∗w to be the corresponding composition of a∗− and a∗+. Thus for
instance a∗−++ = a∗−a

∗
+a
∗
+. We denote the set of such words of length n by {−,+}n.

First consider (A, F0,2n+2), which by proposition 1.3 is an H(X )-module. When n = 0 we have
(theorem 1.4), as an H(X )-module,

ĤS(A,F0,2) = H(A⊗X ) = x̄1H(X )⊕ x̄−1H(X )

where

H(X ) =
Z[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

. . . , x̄2−3, x̄
2
−1, x̄

2
1, x̄

2
3, . . .

.

We note that, on an annulus (A, F0,2n+2), a creation operator is compatible with the differential X -
module structure: each creation operator inserts an arc and commutes with inserting closed curves,
without introducing any new intersections. Thus the operators

a∗± : ĈS(A, F0,2n+2) −→ ĈS(A, F0,2n+4)

are in fact differential X -module homomorphisms.
Repeatedly applying proposition 7.1 gives the following.
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Proposition 7.3. Let n ≥ 0. Then as H(X )-module,

ĤS(A,F0,2n+2) =
⊕

w∈{−,+}n
a∗wĤS(A,F0,2)

=
⊕

w∈{−,+}n
a∗w (x̄1H(X )⊕ x̄−1H(X ))

∼= (x̄1H(X )⊕ x̄−1H(X ))
⊕2n

∼= (Z2 ⊕ Z2)
⊗n ⊗Z2 ĤS(A,F0,2).

Proof. As a Z2-module, the first equality follows immediately from repeatedly applying proposition
7.1. The second equality then follows from theorem 1.4. As each a∗± is injective, so too is each a∗w, so
each a∗w(x̄1H(X )⊕ x̄−1H(X )) ∼= x̄1H(X )⊕ x̄−1H(X ), giving direct sum in the third isomorphism. As
(Z2 ⊕ Z2)⊗n is a free Z2-module of rank 2n, we then have the final isomorphism.

The operators a∗± are compatible with the X -module structure on each ĈS(A,F0,2n), so we have
isomorphisms of of H(X )-modules.

Next consider alternating marked annuli of the form (A, F2m+2,2n+2). Although the computation

of ĤS(A, F2,2) in the foregoing presents various difficulties and we have not completed it, we know

explicitly how to go from (A, F2,2) to a higher number of marked points. Recall that ĈS(A, F2,2) is

not an X -module, so ĤS(A, F2,2) is only a Z2-module, not an H(X )-module.
To increase the number of marked points on both boundary components of A, we consider creation

operators on each boundary. Choosing a basepoint on each boundary component we obtain creation
operators

a0∗± : ĈS(A, F2m+2,2n+2) −→ ĈS(A, F2m+4,2n+4),

a1∗± : ĈS(A, F2m+2,2n+2) −→ ĈS(A, F2m+2,2n+4).

Applying proposition 7.1 repeatedly to both boundary components gives the following.

Proposition 7.4. Let m,n ≥ 0. Then as a Z2-module,

ĤS(A, F2m+2,2n+2) =
⊕

w0∈{−,+}m

⊕
w1∈{−,+}n

a0∗w0
a1∗w1

ĤS(A, F2,2)

∼=
(
ĤS(A, F2,2)

)⊕2m+n

∼= (Z2 ⊕ Z2)
⊗(m+n) ⊗Z2

ĤS(A, F2,2)

Proof. The first equality follows immediately from applying proposition 7.1 m times to one boundary
component and n times to the other. The next isomorphism follows since creation operators are
injective and the set of pairs of creation operators (w0, w1) with w0 ∈ {−,+}m and w1 ∈ {−,+}n
has cardinality 2m+n. The final isomorphism follows since (Z2 ⊕ Z2)⊗(m+n) is free over Z2 of rank
2m+n.

Having proved propositions 7.3 and 7.4, we have proved theorem 1.7.
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[18] , Twisty itsy bitsy topological field theory, http://arxiv.org/abs/1401.6263, accepted for publi-
cation, 2014.

[19] Daniel V. Mathews and Eric Schoenfeld, Dimensionally-reduced sutured floer homology as a string homol-
ogy, http://arxiv.org/abs/1210.7394, submitted for publication, 2012.

[20] Yin Tian, A categorification of Uqsl(1, 1) as an algebra, http://arxiv.org/abs/120.5680, 2012.

[21] , A categorification of UT (sl(1|1)) and its tensor product representations, Geom. Topol. 18 (2014),
no. 3, 1635–1717. MR 3228460

[22] V. G.. Turaev, Skein quantization of poisson algebras of loops on surfaces, Ann. Sci. Ecole Norm. Sup. 4
(1991), no. 24, 635–704.

[23] Rumen Zarev, Bordered floer homology for sutured manifolds, http://arxiv.org/abs/0908.1106, 2009.

55

http://arxiv.org/abs/0807.2431
http://arxiv.org/abs/1401.6263
http://arxiv.org/abs/1210.7394
http://arxiv.org/abs/120.5680
http://arxiv.org/abs/0908.1106

	Introduction
	Overview
	Alternating marked surfaces
	No marked points and homology of fermions
	Further homology computations: Two and four marked points
	Adding more marked points: creation operators and doubling
	Relations to Floer-theoretic invariants
	Structure of this paper

	Preliminaries and definitions
	Marked surfaces and string diagrams
	The chain complex
	Algebraic structure
	Goldman bracket, Leibniz rule and differential algebra

	Strings on annuli with no marked points
	Description of the differential
	Tensor decomposition over odd integers
	Homology as decay chain
	Fusion operators
	A hierarchy of Weyl algebra representations
	Putting the chain complexes back together
	Computing the total homology

	Strings on annuli with two marked points
	Annuli with one marked point on each boundary
	Source operators
	Annuli with two marked points on single boundary
	Computing homology by simplifying cycles

	Non-alternating annuli
	Annuli with two marked points on both boundaries
	Description and decomposition of the chain complex
	Description of differential
	Homology of insular string diagrams I: simplifying cycles
	Homology of insular string diagrams II: truncated complex
	Homology of insular string diagrams III: direct limit and module structure
	Homology of insular string diagrams IV: completing the calculation
	Full homology
	Properties of full string homology; diagonal sums
	Homomorphism from a disc

	Adding marked points
	Creation and annihilation operators
	Effect of creation on string homology
	Results for annuli with more marked points

	References

