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Curves on surfaces

This talk is about some interesting algebraic structure arising
from the topology of curves on surfaces.

Relations to several other fields.
The construction itself is very elementary.

Definition
A marked surface is a pair (Σ,F ) where

1 Σ is a compact oriented surface with nonempty boundary
2 F is a set of 2n ≥ 0 distinct points on ∂Σ, with n points

labelled “in" and n points labelled “out".
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Curves on surfaces

Definition
A string diagram s on (Σ,F ) is an immersed oriented compact
1-manifold in Σ such that ∂s = F, with all self-intersection in the
interior of Σ.

S(Σ,F ) = {homotopy classes of str. diag’s on (Σ,F )}
SC(Σ,F ) = {classes with a contractible closed curve}

Definition

ĈS(Σ,F ) =
Z2〈S(Σ,F )〉
Z2〈SC(Σ,F )〉 .

I.e. Formal sums of string diagrams, setting contractible curves
to zero.
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Curves on surfaces

The differential on ĈS(Σ,F )
resolves intersections:

x

s rx (s)

Definition

∂s =
∑

x crossing of s

rx (s).

Some questions immediately arise:
1 Is ∂ well defined?
2 Is (ĈS(Σ,F ), ∂) a chain complex?
3 If so, what is the string homology

ĤS(Σ,F ) =
ker ∂
Im ∂

?
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2 Is (ĈS(Σ,F ), ∂) a chain complex?
3 If so, what is the string homology
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Well-definition

First show that ∂ is well-defined, i.e. unchanged by “string
Reidemeister moves".

E.g.:

←→ ←→

∂

0 ←→ + 0 ←→ +

This shows why mod 2 is useful...
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Well-definition

Also...

←→

∂

0 ←→

This shows why contractible strings are set to zero.
Once ∂ is well defined, it’s clear ∂2 = 0 (mod 2).
Before discussing homology...

Why this chain complex?
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Teichmüller space

Let Sg = closed oriented genus g surface, π = π1(Sg).

Teichmüller space Tg = space of marked hyperbolic
structures on Sg (∼= R6g−6.)
Tg has a natural symplectic structure ω.
A function F : Tg −→ R gives a Hamiltonian vector field XF .
C∞(Tg ,R) is then a Lie algebra under Poisson bracket.

Theorem (Wolpert 1982, Goldman 1984)
For α ∈ π, let lα : Tg −→ R be the length of geodesic α. Then
Xlα on Tg is the Fenchel-Nielsen twist flow about α.

Length thus gives a map

ζ : π −→ C∞
(
Tg ,R

)
, α 7→ lα.
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Goldman Lie bracket and Turaev cobracket

Theorem (Goldman 1986)

There is a Lie bracket on Zπ̂ so that ζ : Zπ̂ −→ C∞(Tg ,R) is a
Lie algebra homomorphism.

π̂ = {conj. classes in π} = {homotopy classes of loops on S}.
This Lie bracket on Zπ̂ is now known as the Goldman bracket.

[α, β] =
∑

x∈α∩β
sgn (x)rx (α, β) (resolving intersections)

Theorem (Turaev 1991)
There is a cobracket making Zπ̂ into a Lie bialgebra.

The Turaev cobracket ν : Zπ̂ −→ Zπ̂ ⊗ Zπ̂ is defined by

ν(α) =
∑

x crossing of α

βx ⊗ γx − γx ⊗ βx x

α
βx

γx
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Multiple curves and symmetric algebra

From any abelian group g we can form the symmetric algebra

S(g) =
⊕

i≥0

Si(g), Si(g) = i ’th symmetric tensor power of g.

Consider the symmetric algebra S(Zπ̂)

Generated by collections of loops up to homotopy
Multiplication is juxtaposition of loops.

Goldman bracket extends to S(Zπ̂)⊗2 −→ S(Zπ̂) and behaves
like a derivation.

[ab, c] = a[b, c] + [a, c]b

Theorem (Turaev 1991)

S(g) forms a Poisson algebra and there is a Poisson algebra
homomorphism S(Zπ̂) −→ C∞(Tg ,R).
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Back to the chain complex

Return to consider our chain complex on marked (Σ,F ):

ĈS(Σ,F ) =
Z2〈S(Σ,F )〉
Z2〈SC(Σ,F )〉 , ∂s =

∑

x crossing of s

rx (s).

With no marked points F = ∅, ĈS(Σ, ∅) is a ring. In fact

ĈS(Σ, ∅) =
S(Z2π̂)

{1}S(Z2π̂)
, “∂ = ∂−1 + ∂1 = [·, ·] + ν(·)”.

So ∂:
reduces to Goldman bracket for two simple curves
reduces to Turaev cobracket for a single curve

but generalises to multiple curves and arcs.
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In fact
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Symplectic field theory (SFT)

Studies holomorphic curves in contact and symplectic
manifolds in the spirit of topological quantum field theory.

Consider:
(X , ω) symplectic with contact ends (Y±, λ±).
Holomorphic curves in X with punctures asymptotic to
Reeb orbits in Y±.

Generating functions counting
holomorphic curves:

in R× Y±: Hamiltonian H±

in X : Potential F.

Quantizations of Hamiltonians variables
 partial derivatives,

←−
H :
−→
H .

Theorem (Eliashberg-Givental-Hofer)

Master equation: eF←−H+ −
−→
H−eF = 0.

14

B

W

A

W

Figure 2: A possible splitting of a sequence of holomorphic curves in a completed symplectic
cobordism

talk about convergence of a sequence of curves fk ∈ 1MA
g,r(Γ

−,Γ+;W,J1) (where
the almost complex structure J1 is fixed!) to a 2-story curve (f1, f2), where f1 ∈
1M̃A1

g1,r1(Γ
−,Γ;W1, J1), f2 ∈ 1M̃A2

g2,r2(Γ, Γ̃
+;V ×R, J2)/R, g = g1+g2, r = r1+r2, A =

A1 + A2, and J2 is translationally invariant. It is important to stress the point that
the curve f2 is defined only up to translation.

Theorem 1.6.2 Let fk ∈ 1MA
g (Γ

−,Γ+), k = 1, . . . , be a sequence of stable holo-
morphic curves in a (complete) directed symplectic cobordism W . Then there exists a
chain of directed symplectic cobordisms

A1, . . . , Aa,W,B1, . . . , Bb,

where all cobordisms Ai and Bi are cylindrical, and a stable curve f∞ of height a+b+1
in this chain such that a subsequence of {fi} converges to f∞. See Fig. 2.

Theorem 1.6.3 Let W be a completed directed symplectic cobordism, V ⊂ W a
contact hypersurface, and Jk a sequence of compatible almost complex structures on
W which realizes the splitting of W along V into two directed symplectic cobordisms

(Source: Eliashberg-Givental-Hofer)
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Symplectic field theory (SFT)

Cieliebak–Latschev generalised to curves in (X , ω), now with
boundary on a Lagrangian submanifold.

Theorem (Cieliebak–Latschev (2007))

eL←−H+ −
−→
H−eL = (∂ + ∆ + ~∇) eL.

∆ resolves a crossing at a
boundary self-intersection.
∇ glues two boundary
components at an intersection.

The ĈS differential describes
codimension-1 phenomena in moduli

spaces of holomorphic curves.
Figure 3: Codimension 1 phenomena near the boundary

∇. The third one is the shrinking of a boundary loop to a point, which leads to
a chain with image in constk ⊂ Σk. This part of the boundary is set to zero by
working with relative chains.

We point out that, as an abstract manifold, a moduli space in L has other
codimension 1 boundary components, e.g. breaking off of higher dimensional
moduli spaces in a symplectization R × Y ±. However, under evaluation at
the boundary loops all these moduli spaces lead to degenerate chains in Σk,
i.e. chains that factor through chains of lower dimension, and therefore do not
appear in the master equation.

Technical remarks

Theorem 3.1 is conjectural at this point, as it requires analytic results even beyond
those needed for the discussion of SFT. However, there are clear strategies for attacking
the basic issues.

The discussion of coherent orientations should reduce to a careful combination of the
results in [3] for the SFT case and [19] for the case of disks without punctures. There
is one new phenomenon which has not been described in the literature yet, which
deals with “self-gluing” at a transversal self-intersection of a boundary curve as in the
operation ∆. We expect to treat orientations completely in [9].

The necessary compactness results essentially reduce to a combination of standard SFT
compactness [2] and the observation that our exactness assumption rules out bubbling

11

(Source: Cieliebak-Latschev)
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Calculations of homology

Return to the chain complex

ĈS(Σ,F ) =
Z2〈S(Σ,F )〉
Z2〈SC(Σ,F )〉 , ∂s =

∑

x crossing of s

rx (s).

What is the homology?

Some results are known for discs and annuli:
Whether points of F alternate is important.

Definition
(Σ,F ) is alternating if the points of F alternate in, out, in out, ...,
around each boundary component.

Proposition (M.)
If F has two consecutive points of the same sign, then
ĤS(Σ,F ) = 0.
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Proof
Consider the switching operation on string diagrams

W : ĈS(Σ,F ) −→ ĈS(Σ,F ).

W : ĈS(Σ,F )

−→ ĈS(Σ,F ) p

q W

p

q

Now consider ∂Ws:

∂ s = s + ∂s

∂Ws = s + W∂s

Thus W is a chain homotopy from 1 to 0, and ĤS(Σ,F ) = 0.



Introduction Motivations and connections Calculations of homology

Proof
Consider the switching operation on string diagrams
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String homology of discs

Definition
A set of sutures Γ on (Σ,F ) is an embedded string diagram that
splits Σ into alternating positive and negative regions.

+
-

- +
+???

Sets of sutures only exist for alternating (Σ,F ).
If a set of sutures contains a disc which looks like

+ + = 0

there are two natural ways to adjust it, giving a bypass triple.
The bypass relation says bypass triples sum to zero.
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String homology of discs

Theorem (M.–Schoenfeld)

For alternating F , ĤS(D2,F ) ∼= Z2〈Sutures on (D2,F )〉
Bypass relation

A “reason" why the theorem is plausible:

∂ = + +

Also... another relationship to holomorphic curves...

Theorem (M.–Schoenfeld)

ĤS(D2,F ) ∼= SFH(D2 × S1,F × S1)

SFH = sutured Floer homology, an invariant of sutured
3-manifolds defined by counting holomorphic curves.
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ĤS(D2,F ) ∼= SFH(D2 × S1,F × S1)

SFH = sutured Floer homology, an invariant of sutured
3-manifolds defined by counting holomorphic curves.



Introduction Motivations and connections Calculations of homology

String homology of annuli

Consider now an annulus A with no marked points.

For each n ∈ Z, xn is the string which traverses the
annulus n times.

x−1 x1 x2

We see
ĈS(A, ∅) = Z2[. . . , x−2, x−1, x1, x2, . . .]

∂xn = x1xn−1 + x2xn−2 + · · ·+ xn−1x1.

and Leibniz rule holds.
Over Z2 most terms cancel:

∂x2k = x2
k , ∂x2k+1 = 0.
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String homology of annuli

Theorem (M.)

ĤS(A, ∅) =
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2
−3, x̄

2
−1, x̄

2
1 , x̄

2
3 , . . .)

.

This ring is very “fermionic":
only “odd spin" strings survive in homology
two odd strings annihilate, x̄2

2j+1 = 0 (“Pauli exclusion")
Setting x̄k = 0 for |k | > 2 reduces to SFH:

A vast generalisation of holomorphic invariants.
Let F2m,2n = 2m,2n alternating marked points on A.

Theorem (M.)

ĤS(A,F2m+2,2n+2) ∼= (Z2 ⊕ Z2)⊗(m+n) ⊗Z2 ĤS(A,F2,2).

Adding alternating marked points corresponds to tensor
product with (Z2 ⊕ Z2).
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ĤS(A,F2m+2,2n+2) ∼= (Z2 ⊕ Z2)⊗(m+n) ⊗Z2 ĤS(A,F2,2).
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ĤS(A, ∅) =
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]

(. . . , x̄2
−3, x̄

2
−1, x̄

2
1 , x̄

2
3 , . . .)

.

This ring is very “fermionic":
only “odd spin" strings survive in homology
two odd strings annihilate, x̄2

2j+1 = 0 (“Pauli exclusion")
Setting x̄k = 0 for |k | > 2 reduces to SFH:

A vast generalisation of holomorphic invariants.

Let F2m,2n = 2m,2n alternating marked points on A.

Theorem (M.)
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Adding alternating marked points corresponds to tensor
product with (Z2 ⊕ Z2).
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Thanks for listening!
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