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Curves on surfaces

This talk is about some interesting algebraic structure arising
from the topology of curves on surfaces.

@ Relations to several other fields.

@ The construction itself is very elementary.

Definition

A marked surface is a pair (X, F) where
@ X is a compact oriented surface with nonempty boundary

@ F isasetof2n > 0 distinct points on 9%, with n points
labelled “in" and n points labelled “out".
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Curves on surfaces

Definition

A string diagram s on (X, F) is an immersed oriented compact
1-manifold in = such that 0s = F, with all self-intersection in the
interior of X-.

S(X, F) = {homotopy classes of str. diag’s on (X, F)}
Sc(X, F) = {classes with a contractible closed curve}

Definition

Z3(S(%, F))

OS2 F) = 7 (se(s, By

l.e. Formal sums of string diagrams, setting contractible curves
to zero.
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Curves on surfaces

The differential on CS(X, F) x I

resolves intersections:
s x(8)

Definition

os= > n(s)

X crossing of s

Some questions immediately arise:
@ Is 0 well defined?
Qs (éTS(Z, F),d) a chain complex?
© If so, what is the string homology

— k
HS(Z, F) = % ?
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Well-definition

First show that 0 is well-defined, i.e. unchanged by “string
Reidemeister moves". E.Q.:

-y I
L
RS

This shows why mod 2 is useful...
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Well-definition

Also...

R

This shows why contractible strings are set to zero.
Once 0 is well defined, it’s clear 9° = 0 (mod 2).
Before discussing homology...

@ Why this chain complex?
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Teichmdaller space

@ Let S; = closed oriented genus g surface, ™ = m1(Sy).

@ Teichmliller space 74 = space of marked hyperbolic
structures on Sy (=2 R%9-5))

@ 74 has a natural symplectic structure w.
@ Afunction F : 7, — R gives a Hamiltonian vector field Xr.
@ C>(74,R) is then a Lie algebra under Poisson bracket.

Theorem (Wolpert 1982, Goldman 1984)

Fora e, letl, : T¢ — R be the length of geodesic .. Then
X, on T4 is the Fenchel-Nielsen twist flow about c.

Length thus gives a map

C:W—>C°°(7§,]R), a = Iy
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Goldman Lie bracket and Turaev cobracket

Theorem (Goldman 1986)

There is a Lie bracket on Zz so that ¢ : Zx — C>*(Tg,R) is a
Lie algebra homomorphism.

7 = {con;. classes in 7} = {homotopy classes of loops on S}.
This Lie bracket on Z7 is now known as the Goldman bracket.

[, 8] = > sgn(x)rx(e, B) (resolving intersections)

Xxeanp

Theorem (Turaev 1991)
There is a cobracket making 7= into a Lie bialgebra.

The Turaev cobracket v : Z7 — Z7 ® Z7 is defined by

X
v(a) = Z Bx @ 1x — 1x @ Bx X _J
x crossing of a a (_ﬁ)x
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Multiple curves and symmetric algebra

From any abelian group g we can form the symmetric algebra

S(g) =P S'(s), S'(s) = I'th symmetric tensor power of g.
i>0
Consider the symmetric algebra S(Z7)
@ Generated by collections of loops up to homotopy
@ Multiplication is juxtaposition of loops.

Goldman bracket extends to S(Z7)®? — S(Z7) and behaves
like a derivation.

[ab,c] = a[b,c] + [a,c]b

Theorem (Turaev 1991)

S(g) forms a Poisson algebra and there is a Poisson algebra
homomorphism S(Zzw) — C>(7g,R).
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Back to the chain complex

Return to consider our chain complex on marked (X, F):

~ Z2(S(Z, F
CS(Z,F)—Z:ZSC((Z’F)%, os= > (s

x crossing of s

With no marked points F = (), 63(:, () is aring. In fact

S(Zo7)

C5®0) = Ay s(z.7)

0=04+01=[,]+v()".
So 0:
@ reduces to Goldman bracket for two simple curves

@ reduces to Turaev cobracket for a single curve
but generalises to multiple curves and arcs.
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Symplectic field theory (SFT)

Studies holomorphic curves in contact and symplectic
manifolds in the spirit of topological quantum field theory.
Consider:
@ (X,w) symplectic with contact ends (Y*, A\T).
@ Holomorphic curves in X with punctures asymptotic to
Reeb orbits in Y*.

@ Generating functions counting
holomorphic curves:

@ inR x Y*: Hamiltonian H*
e in X: Potential F.

@ Quantizations of Hamiltoniﬁns variables
~ partial derivatives, H:

Theorem (Eliashberg-Givental-Hofer)

—
Master equation: e"H* —H-eF = 0.

(Source:, Eliashberg-Givental-Hofer)
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Symplectic field theory (SFT)

Cieliebak—Latschev generalised to curves in (X, w), now with
boundary on a Lagrangian submanifold.

Theorem (Cieliebak—Latschev (2007))

— —
e'tH* —H et = (0 + A +hV) et

@ A resolves a crossing at a
boundary self-intersection.

@ V glues two boundary
components at an intersection.

The CS differential describes
codimension-1 phenomena in moduli
spaces of holomorphic curves.

(Source: Cieliebak-L atschev)
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Return to the chain complex

CS(X,F)= 225, ds= Y n(s)
Z2(Sc(x, F)) x crossing of s
What is the homology?
@ Some results are known for discs and annuli:
@ Whether points of F alternate is important.



Calculations of homology
0000000

Calculations of homology

Return to the chain complex

CS(x, F) = Zz<g3((z£7,2)>>7 os= > (s

X crossing of s
What is the homology?

@ Some results are known for discs and annuli:
@ Whether points of F alternate is important.

Definition

(X, F) is alternating if the points of F alternate in, out, in out, ...,
around each boundary component.
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Calculations of homology

Return to the chain complex

CS(x. F):Zz<fc(é?)>>, bs= S nls).

X crossing of s

What is the homology?
@ Some results are known for discs and annuli:
@ Whether points of F alternate is important.

Definition

(X, F) is alternating if the points of F alternate in, out, in out, ...,
around each boundary component.

<

Proposition (M.)

If F has two consecutive points of the same sign, then

—

HS(x, F) = 0.

A\
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Proof
Consider the switching operation on string diagrams

W : CS(%, F) —s CS(Z, F).

W:CS(z,F) 49fp—— w q

ANNNNAN—

L+ CS(L,F) P }—— p

Now consider 0Ws:

—
8><s: s+><83
—
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Proof
Consider the switching operation on string diagrams

W : CS(T, F) — CS(, F).

W:CS(z,F) 49 |——
— CS(%,F) P |——

Now consider 0Ws:
—

0 >< S = S -+ >< 0s
—

oWs = S + Wos
Thus W is a chain homotopy from 1 to 0, and I-/ITS(Z, F)=0.
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String homology of discs

Definition
A set of sutures T on (X, F) is an embedded string diagram that
splits ¥ into alternating positive and negative regions.

Sets of sutures only exist for alternating (X, F).
If a set of sutures contains a disc which looks like

SR DEISE:

there are two natural ways to adjust it, giving a bypass triple.
The bypass relation says bypass triples sumto zero.
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String homology of discs

Theorem (M.—Schoenfeld)

For alternating F, HS(D?, F) = ZZ%%;: on (%, F)

A “reason" why the theorem is plausible:

Also... another relationship to holomorphic curves...

Theorem (M.—Schoenfeld)
HS(D?, F) = SFH(D? x S',F x S")

SFH = sutured Floer homology, an invariant of sutured
3-manifolds defined by counting holomorphic curves.
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String homology of annuli

Consider now an annulus A with no marked points.

@ For each n € Z, xp is the string which traverses the
annulus n times.

© © ©

X_1 X1 Xo
We see .
CS(A, @) = Zg[. oy X9, X4, X1, X0, .. ]
OXn = X1 Xp—1 + XeXp_2 + -+ + Xp_1X1.

and Leibniz rule holds.
Over Z»> most terms cancel:

2
OXok = Xi, OXoky1 = 0.
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String homology of annuli

Zg[...,)_(,3,)_(,1,)_(1,)_(3,...]
(.32, X2, 2R,

HS(A, D) =

This ring is very “fermionic":

@ only “odd spin" strings survive in homology

@ two odd strings annihilate, )'(2'%’1.+1 = 0 (“Pauli exclusion™)
Setting xx = 0 for |k| > 2 reduces to SFH:

@ A vast generalisation of holomorphic invariants.
Let Fomon = 2m, 2n alternating marked points on A.

HS(A, Famy2.0ni2) = (Zo @ Z2)®™ " @4, HS(A, F22).

@ Adding alternating marked points corresponds to tensor
product with (Z»> @ Z-).
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Thanks for listening!
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