Contact topology and holomorphic invariants via elementary combinatorics

Daniel V. Mathews

Monash University
Daniel.Mathews@monash.edu

Tokyo Institute of Technology 18 Febuary 2015

Outline

- Introduction
- 2 Background
- Quantum Pawn Dynamics (QPD)
- Chord diagrams
- 5 String homology
- 6 Holomorphic invariants

Outline

- IntroductionOverview
- 2 Background
- Quantum Pawn Dynamics (QPD)
- 4 Chord diagrams
- String homology
- 6 Holomorphic invariants

 There's been much progress in the fields of symplectic and contact geometry in recent years.

- There's been much progress in the fields of symplectic and contact geometry in recent years.
- Much of it is quite involved, but in the simplest cases some of this structure reduces to some elementary combinatorics and algebra which is interesting in its own right.

This talk will:

 Give some very brief background on symplectic / contact geometry and holomorphic curves.

This talk will:

- Give some very brief background on symplectic / contact geometry and holomorphic curves.
- Discuss some combinatorial results in their own right.
 (No symplectic/contact geometry or holomorphic curves necessary here!)

This talk will:

- Give some very brief background on symplectic / contact geometry and holomorphic curves.
- Discuss some combinatorial results in their own right.
 (No symplectic/contact geometry or holomorphic curves necessary here!)
 - "Quantum pawn dynamics"
 - Chord diagrams
 - "String homology"

This talk will:

- Give some very brief background on symplectic / contact geometry and holomorphic curves.
- Discuss some combinatorial results in their own right. (No symplectic/contact geometry or holomorphic curves necessary here!)
 - "Quantum pawn dynamics"
 - Chord diagrams
 - "String homology"
- Explain how this elementary combinatorics arises from holomorphic invariants.

Outline

- Introduction
- 2 Background
 - Symplectic geometry
 - Contact geometry
 - Complex structures
 - Holomorphic curves
- Quantum Pawn Dynamics (QPD)
- Chord diagrams
- String homology

Definition

A symplectic manifold is a pair

 (M,ω)

where

- M is a smooth manifold
- ω is a closed 2-form ($d\omega = 0$) which is non-degenerate.

Definition

A symplectic manifold is a pair

$$(M,\omega)$$

where

- M is a smooth manifold
- ω is a closed 2-form (d $\omega=0$) which is non-degenerate.

Non-degeneracy of ω means:

duality between 1-forms and vector fields,

$$V \leftrightarrow \omega(V, \cdot)$$

Definition

A symplectic manifold is a pair

$$(M,\omega)$$

where

- M is a smooth manifold
- ω is a closed 2-form (d ω = 0) which is non-degenerate.

Non-degeneracy of ω means:

duality between 1-forms and vector fields,

$$V \leftrightarrow \omega(V, \cdot)$$

•
$$\omega \wedge \cdots \wedge \omega = \omega^n \neq 0$$

Definition

A symplectic manifold is a pair

$$(M,\omega)$$

where

- M is a smooth manifold
- ω is a closed 2-form (d ω = 0) which is non-degenerate.

Non-degeneracy of ω means:

duality between 1-forms and vector fields,

$$V \leftrightarrow \omega(V, \cdot)$$

•
$$\omega \wedge \cdots \wedge \omega = \omega^n \neq 0$$

Such *M* must be even-dimensional.

Main example:

$$M=\mathbb{R}^{2n}, \quad \omega=\sum_{j=1}^n dx_j\wedge dy_j.$$

Main example:

$$M=\mathbb{R}^{2n}, \quad \omega=\sum_{j=1}^n dx_j\wedge dy_j.$$

Theorem (Darboux's Theorem)

Every symplectic manifold looks locally like $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i)$.

Main example:

$$M=\mathbb{R}^{2n}, \quad \omega=\sum_{j=1}^n dx_j\wedge dy_j.$$

Theorem (Darboux's Theorem)

Every symplectic manifold looks locally like $(\mathbb{R}^{2n}, \sum_{j=1}^{n} dx_j \wedge dy_j)$.

Structure of Hamiltonian classical mechanics:

• Given a smooth function $H: M \longrightarrow \mathbb{R}$ (Hamiltonian) we obtain a 1-form dH and a dual vector field X_H via

$$\omega(X_H,\cdot)=dH$$

"The odd-dimensional sibling of symplectic geometry"

"The odd-dimensional sibling of symplectic geometry"

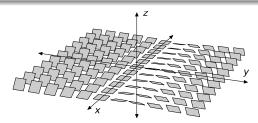
Definition

A contact structure ξ on a (2n+1)-dimensional manifold M is a totally non-integrable co-dimension-1 hyperplane field on M.

"The odd-dimensional sibling of symplectic geometry"

Definition

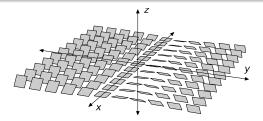
A contact structure ξ on a (2n+1)-dimensional manifold M is a totally non-integrable co-dimension-1 hyperplane field on M.



"The odd-dimensional sibling of symplectic geometry"

Definition

A contact structure ξ on a (2n+1)-dimensional manifold M is a totally non-integrable co-dimension-1 hyperplane field on M.



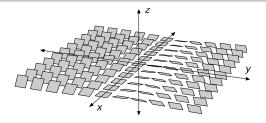
A contact structure is locally the kernel of a *contact 1-form* α .

• Non-integrability means $\alpha \wedge (d\alpha)^n \neq 0$ everywhere.

"The odd-dimensional sibling of symplectic geometry"

Definition

A contact structure ξ on a (2n+1)-dimensional manifold M is a totally non-integrable co-dimension-1 hyperplane field on M.



A contact structure is locally the kernel of a *contact 1-form* α .

- Non-integrability means $\alpha \wedge (d\alpha)^n \neq 0$ everywhere.
- (So $\alpha|_{\mathcal{E}}$ is a symplectic form at each point.)

Main example of contact manifold:

$$M = \mathbb{R}^{2n+1}, \quad \alpha = dz - \sum_{i=1}^{n} y_i \ dx_i, \quad \xi = \ker \alpha.$$

Main example of contact manifold:

$$M = \mathbb{R}^{2n+1}, \quad \alpha = dz - \sum_{i=1}^{n} y_i \ dx_i, \quad \xi = \ker \alpha.$$

Theorem (Darboux's Theorem)

Every contact manifold looks locally like $(\mathbb{R}^{2n+1}, \ker (dz - \sum_{i=1}^{n} y_i \wedge dx_i)).$

Main example of contact manifold:

$$M = \mathbb{R}^{2n+1}, \quad \alpha = dz - \sum_{i=1}^{n} y_i \ dx_i, \quad \xi = \ker \alpha.$$

Theorem (Darboux's Theorem)

Every contact manifold looks locally like $(\mathbb{R}^{2n+1}, \ker(dz - \sum_{i=1}^{n} y_i \wedge dx_i)).$

Today: n = 1, 3-dimensional contact geometry.

 Much of 3-dimensional contact geometry can be described combinatorially.

Symplectic vs complex geometry

- Complex geometry also only exists in even number of dimensions.
- Gromov (1985): Consider almost complex structures on symplectic manifolds.

Symplectic vs complex geometry

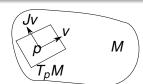
- Complex geometry also only exists in even number of dimensions.
- Gromov (1985): Consider almost complex structures on symplectic manifolds.

Definition

An almost complex structure on a smooth manifold is a map

$$J:TM\longrightarrow TM$$

preserving each fibre T_pM and satisfying $J^2 = -1$.



Almost complex vs complex

- Almost complex structure is a pointwise definition.
- A complex structure requires much more:
 - local charts to \mathbb{C}^n with holomorphic transition maps.

Almost complex vs complex

- Almost complex structure is a pointwise definition.
- A complex structure requires much more:
 - local charts to \mathbb{C}^n with holomorphic transition maps.

Existence:

• Not every symplectic manifold has a complex structure...

Almost complex vs complex

- Almost complex structure is a pointwise definition.
- A complex structure requires much more:
 - local charts to \mathbb{C}^n with holomorphic transition maps.

Existence:

- Not every symplectic manifold has a complex structure...
- ... but every symplectic manifold has a compatible almost complex structure J, and all choices of J are homotopic.

(Compatible: J and ω behave in linear algebra like i and $dx \wedge dy$. $\omega(v, w) = \omega(Jv, Jw)$ and $\omega(v, Jv) > 0$)

Holomorphic curves

 Gromov (1985): Consider holomorphic curves in almost complex manifolds.

Holomorphic curves

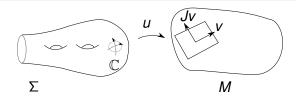
 Gromov (1985): Consider holomorphic curves in almost complex manifolds.

Given symplectic (M, ω) and compatible almost complex J...

Definition

A holomorphic curve is a map $u:\Sigma\longrightarrow M$, where Σ is a Riemann surface, satisfying the Cauchy-Riemann equations

$$Du \circ i = J \circ Du$$
.



Holomorphic curves

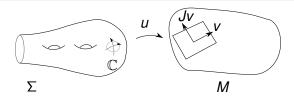
 Gromov (1985): Consider holomorphic curves in almost complex manifolds.

Given symplectic (M, ω) and compatible almost complex J...

Definition

A holomorphic curve is a map $u:\Sigma\longrightarrow M,$ where Σ is a Riemann surface, satisfying the Cauchy-Riemann equations

$$Du \circ i = J \circ Du$$
.



An almost complex structure is sufficient for the C-R equations.

Moduli spaces

 Given appropriate constraints (marked points, boundary conditions) and transversality, the space of holomorphic curves is a finite-dimensional orbifold: moduli space M.

Moduli spaces

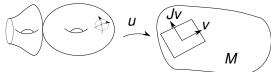
- Given appropriate constraints (marked points, boundary conditions) and transversality, the space of holomorphic curves is a finite-dimensional orbifold: moduli space M.
- Index theory (Riemann–Roch etc.) gives dimension of \mathcal{M} .

Moduli spaces

- Given appropriate constraints (marked points, boundary conditions) and transversality, the space of holomorphic curves is a finite-dimensional orbifold: moduli space M.
- Index theory (Riemann–Roch etc.) gives dimension of \mathcal{M} .
- \mathcal{M} compactified to $\overline{\mathcal{M}}$: Gromov compactness theorem.

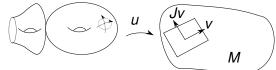
Moduli spaces

- Given appropriate constraints (marked points, boundary conditions) and transversality, the space of holomorphic curves is a finite-dimensional orbifold: moduli space M.
- Index theory (Riemann–Roch etc.) gives dimension of \mathcal{M} .
- \mathcal{M} compactified to $\overline{\mathcal{M}}$: Gromov compactness theorem.
- Boundary of $\overline{\mathcal{M}}$ is stratified: boundary strata are moduli spaces for "degenerate" holomorphic curves (nodal surfaces, etc.)



Moduli spaces

- Given appropriate constraints (marked points, boundary conditions) and transversality, the space of holomorphic curves is a finite-dimensional orbifold: moduli space M.
- Index theory (Riemann–Roch etc.) gives dimension of \mathcal{M} .
- \mathcal{M} compactified to $\overline{\mathcal{M}}$: Gromov compactness theorem.
- Boundary of $\overline{\mathcal{M}}$ is stratified: boundary strata are moduli spaces for "degenerate" holomorphic curves (nodal surfaces, etc.)



- \mathcal{M} and $\overline{\mathcal{M}}$ encode a great deal of information about M.
- Some powerful invariants use only the *codimension-1* boundary of $\overline{\mathcal{M}}$.

Floer Homology theories (e.g. contact homology, Heegaard Floer homology), roughly...

Floer Homology theories (e.g. contact homology, Heegaard Floer homology), roughly...

 Define a chain complex generated by boundary conditions for holomorphic curves...

Floer Homology theories (e.g. contact homology, Heegaard Floer homology), roughly...

- Define a chain complex generated by boundary conditions for holomorphic curves...
- with a differential counting 0-dimensional families of holomorphic curves between boundary conditions.

Floer Homology theories (e.g. contact homology, Heegaard Floer homology), roughly...

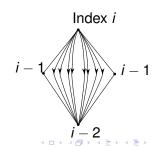
- Define a chain complex generated by boundary conditions for holomorphic curves...
- with a differential counting 0-dimensional families of holomorphic curves between boundary conditions.
- Boundary structure of moduli space gives $\partial^2 = 0$.

Floer Homology theories (e.g. contact homology, Heegaard Floer homology), roughly...

- Define a chain complex generated by boundary conditions for holomorphic curves...
- with a differential counting 0-dimensional families of holomorphic curves between boundary conditions.
- Boundary structure of moduli space gives $\partial^2 = 0$.

Analogy: singular homology via Morse complex.

- Complex generated by critical points of Morse function f.
- ∂ counts 0-dimensional families of trajectories of ∇f.



The power of holomorphic invariants

Floer homology theories give very powerful invariants of 3-manifolds, knots, etc...

- Related to Seiberg–Witten theory, Donaldson–Thomas theory, etc...
- E.g., knot Floer homology can compute the genus of a knot.

The power of holomorphic invariants

Floer homology theories give very powerful invariants of 3-manifolds, knots, etc...

- Related to Seiberg–Witten theory, Donaldson–Thomas theory, etc...
- E.g., knot Floer homology can compute the genus of a knot.
- For a less complicated variant called sutured Floer homology, and a simple class of manifolds $M = \Sigma \times S^1$, we obtain all the combinatorial structure we are about to see, and more...

Outline

- Introduction
- 2 Background
- Quantum Pawn Dynamics (QPD)
 - Quantum Pawn Dynamics
 - Pawns and anti-pawns
 - Creation and annihilation operators
 - Adjoints
- Chord diagrams
- 5 String homology

- Pawns on a finite 1-dimensional chessboard.
- A state of the QPD universe:

$$w = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$$

Pawns move from left to right, one square at a time.
 (No capturing, no en passant, no double first moves.)

Introduction

antum r awn Dynamics

- Pawns on a finite 1-dimensional chessboard.
- A state of the QPD universe:

$$w = \begin{bmatrix} \triangle & \triangle & \triangle \end{bmatrix}$$

Pawns move from left to right, one square at a time.
 (No capturing, no en passant, no double first moves.)

Quantum pawns: "Inner product" $\langle \cdot | \cdot \rangle$ describes the possibility of pawn moves from one state to another.

• Valued in \mathbb{Z}_2 .

Definition (Pawn "inner product")

$$\langle w_0 | w_1 \rangle = \left\{ egin{array}{ll} 1 & \emph{if it is possible for pawns to move from } w_0 \ \emph{(this includes the case } w_0 = w_1); \\ 0 & \emph{if not.} \end{array} \right.$$

E.g.

E.g.

E.g.

$$\langle egin{bmatrix} \hat{\mathbb{A}} & \hat{\mathbb{A}}$$

E.g.

$$\langle egin{bmatrix} \hat{\mathbb{A}} & \hat{\mathbb{A}}$$

E.g.

$$\langle egin{bmatrix} \mathring{\mathbb{A}} & \mathring{\mathbb{A}}$$

E.g.

$$\langle egin{bmatrix} \mathring{a} & \mathring{a} & \mathring{a} & & & & & \end{pmatrix} | egin{bmatrix} \mathring{a} & \mathring{a} & \mathring{a} & \mathring{a} & & & & \end{pmatrix}
angle = 1$$

Also, entangled chessboards.

Note asymmetry of $\langle \cdot | \cdot \rangle$.

A "booleanized" partial order. (Complete lattice.)

• Introduce the *anti-pawn* = *absence of pawn*.

Introduce the anti-pawn = absence of pawn.
 "Dirac sea": an "empty" chessboard is full of anti-pawns.

Å	å	å		=	Å	À	Å	Å	*	*

Introduce the anti-pawn = absence of pawn.
 "Dirac sea": an "empty" chessboard is full of anti-pawns.

 A pawn moving right is equivalent to an anti-pawn moving left.

Introduce the anti-pawn = absence of pawn.
 "Dirac sea": an "empty" chessboard is full of anti-pawns.

- A pawn moving right is equivalent to an anti-pawn moving left.
- Let
 - n_p = number of pawns
 - $n_a =$ numbers of anti-pawns
 - n = number of squares on board = $n_p + n_q$

The *initial pawn creation operator* $a_{p,0}^*$ adjoins a new *initial* (leftmost) square to the chessboard, containing a pawn.

The *initial pawn creation operator* $a_{p,0}^*$ adjoins a new *initial* (leftmost) square to the chessboard, containing a pawn.

$$a_{p,0}^*$$
 $\stackrel{\triangle}{}$ $\stackrel{\triangle}{}$

The *initial pawn annihilation operator* $a_{p,0}$ deletes the leftmost square from the chessboard, and a pawn on it.

$$a_{p,0}$$
 $\stackrel{\triangle}{|}$ $\stackrel{\triangle}{|}$ $\stackrel{\triangle}{|}$ $\stackrel{\triangle}{|}$ $\stackrel{\triangle}{|}$ $\stackrel{\triangle}{|}$ $\stackrel{\triangle}{|}$ $\stackrel{\triangle}{|}$ $\stackrel{\triangle}{|}$ $\stackrel{\triangle}{|}$

The *initial pawn creation operator* $a_{p,0}^*$ adjoins a new *initial* (leftmost) square to the chessboard, containing a pawn.

$$a_{
ho,0}^*$$
 $\stackrel{\triangle}{}$ $\stackrel{\triangle}{}$

The *initial pawn annihilation operator* $a_{p,0}$ deletes the leftmost square from the chessboard, and a pawn on it.

$$a_{p,0}$$
 $\stackrel{\triangle}{}$ $\stackrel{\triangle}{}$

If no pawn (anti-pawn) in the leftmost square, try to delete...

The *initial pawn creation operator* $a_{p,0}^*$ adjoins a new *initial* (leftmost) square to the chessboard, containing a pawn.

$$a_{p,0}^*$$
 $\stackrel{\triangle}{}$ $\stackrel{\triangle}{}$

The *initial pawn annihilation operator* $a_{p,0}$ deletes the leftmost square from the chessboard, and a pawn on it.

$$a_{p,0}$$
 $\stackrel{\triangle}{}$ $\stackrel{\triangle}{}$

If no pawn (anti-pawn) in the leftmost square, try to delete...

"error 404 universe not found" mod 2 = 0.

$$a_{p,0}$$
 \triangle \triangle \triangle \triangle \triangle

The *initial pawn creation operator* $a_{p,0}^*$ adjoins a new *initial* (leftmost) square to the chessboard, containing a pawn.

The *initial pawn annihilation operator* $a_{p,0}$ deletes the leftmost square from the chessboard, and a pawn on it.

$$a_{p,0}$$
 $\stackrel{\triangle}{\triangle}$ $\stackrel{\triangle}{\triangle}$ $\stackrel{\triangle}{\triangle}$ $\stackrel{\triangle}{\triangle}$ $\stackrel{\triangle}{\triangle}$ $\stackrel{\triangle}{\triangle}$ $\stackrel{\triangle}{\triangle}$ $\stackrel{\triangle}{\triangle}$

If no pawn (anti-pawn) in the leftmost square, try to delete...

"error 404 universe not found" mod 2 = 0.

$$a_{p,0}$$
 \triangle \triangle \triangle \triangle

Similar initial anti-pawn annihilation $a_{q,0}$ and creation $a_{q,0}^{\dagger}$.

Creation of chessboards

• The *vacuum* state of the QPD universe is the null chessboard \emptyset . (Note $\emptyset \neq 0$.)

Creation of chessboards

- The *vacuum* state of the QPD universe is the null chessboard \emptyset . (Note $\emptyset \neq 0$.)
- Applying initial creation operators to the vacuum can create any chessboard.

Creation of chessboards

- The *vacuum* state of the QPD universe is the null chessboard \emptyset . (Note $\emptyset \neq 0$.)
- Applying initial creation operators to the vacuum can create any chessboard.

 The * and † refer to adjoints — just as in quantum field theory.
 (Actually they form a Galois connection on partial orders.)

Adjoints

• Recall an adjoint f^* of an operator f usually means that

$$\langle fx|y\rangle = \langle x|f^*y\rangle, \quad \langle x|fy\rangle = \langle f^*x|y\rangle.$$

Adjoints

• Recall an adjoint f^* of an operator f usually means that

$$\langle fx|y\rangle = \langle x|f^*y\rangle, \quad \langle x|fy\rangle = \langle f^*x|y\rangle.$$

 As our "inner product" is asymmetric, we have two distinct adjoints f*, f† of an operator f.

$$\langle fx|y\rangle = \langle x|f^*y\rangle, \quad \langle x|fy\rangle = \langle f^{\dagger}x|y\rangle.$$

So
$$f^{*\dagger} = f^{\dagger *} = f$$
.

Proposition

$$\langle a_{p,0}x|y\rangle = \langle x|a_{p,0}^*y\rangle$$

Proposition

$$\langle a_{p,0}x|y\rangle = \langle x|a_{p,0}^*y\rangle$$

Proof.

 $a_{p,0}^*y$ begins with a pawn.

Proposition

$$\langle a_{p,0}x|y\rangle = \langle x|a_{p,0}^*y\rangle$$

Proof.

 $a_{p,0}^*y$ begins with a pawn. If x begins with an anti-pawn, both sides are 0.

_

Proposition

$$\langle a_{p,0}x|y\rangle = \langle x|a_{p,0}^*y\rangle$$

Proof.

 $a_{p,0}^*y$ begins with a pawn.

If x begins with an anti-pawn, both sides are 0.

If x begins with a pawn, $\langle x|a_{p,0}^*y\rangle\neq 0$ compares two chessboards with initial pawns.

Initial creation and annihilation are adjoint

Proposition

$$\langle a_{p,0}x|y\rangle = \langle x|a_{p,0}^*y\rangle$$

Proof.

 $a_{p,0}^*y$ begins with a pawn.

If x begins with an anti-pawn, both sides are 0.

If *x* begins with a pawn, $\langle x|a_{p,0}^*y\rangle\neq 0$ compares two chessboards with initial pawns.

 $a_{p,0}$ removes an initial pawn so $\langle a_{p,0}x|y\rangle$ gives the same result.

Initial creation and annihilation are adjoint

Proposition

$$\langle a_{p,0}x|y\rangle = \langle x|a_{p,0}^*y\rangle$$

Proof.

 $a_{p,0}^*y$ begins with a pawn.

If \dot{x} begins with an anti-pawn, both sides are 0.

If *x* begins with a pawn, $\langle x|a_{p,0}^*y\rangle\neq 0$ compares two chessboards with initial pawns.

 $a_{p,0}$ removes an initial pawn so $\langle a_{p,0}x|y\rangle$ gives the same result.

Similarly, initial anti-pawn creation/annihilation †-adjoint.

What is $a_{p,0}^{**}$? What operator f satisfies

$$\langle a_{p,0}^* x | y \rangle = \langle x | f y \rangle$$
?

What is $a_{p,0}^{**}$? What operator f satisfies

$$\langle a_{p,0}^* x | y \rangle = \langle x | f y \rangle$$
?

Answer: the operator which deletes the first pawn from the left on a chessboard.

What is $a_{p,0}^{**}$? What operator f satisfies

$$\langle a_{p,0}^* x | y \rangle = \langle x | f y \rangle$$
?

Answer: the operator which deletes the first pawn from the left on a chessboard.

$$\left\langle a_{p,0}^{*} \right.$$

What is $a_{p,0}^{**}$? What operator f satisfies

$$\langle a_{p,0}^* x | y \rangle = \langle x | f y \rangle$$
?

Answer: the operator which deletes the first pawn from the left on a chessboard.

$$\left\langle a_{p,0}^{st}
ight.$$

What is $a_{p,0}^{**}$? What operator f satisfies

$$\langle a_{p,0}^* x | y \rangle = \langle x | f y \rangle$$
?

Answer: the operator which deletes the first pawn from the left on a chessboard.

$$\left\langle a_{p,0}^{*} \right| \left\langle a_{p,0}$$

Call this operator $a_{p,1}$.

Keep going. What is $a_{p,0}^{***}=a_{p,1}^*$? What operator g satisfies $\langle a_{p,1}x|y\rangle=\langle x|gy\rangle$?

Keep going. What is $a_{p,0}^{***} = a_{p,1}^{*}$? What operator g satisfies

$$\langle a_{p,1}x|y\rangle = \langle x|gy\rangle$$
?

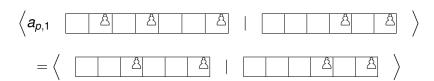
Answer: the operator which doubles the first pawn on a chessboard.

Keep going. What is $a_{p,0}^{***} = a_{p,1}^{*}$? What operator g satisfies $\langle a_{p,1}x|y\rangle = \langle x|gy\rangle$?

Answer: the operator which doubles the first pawn on a chessboard.

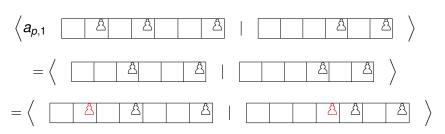
Keep going. What is $a_{p,0}^{***} = a_{p,1}^{*}$? What operator g satisfies $\langle a_{p,1}x|y\rangle = \langle x|gy\rangle$?

Answer: the operator which doubles the first pawn on a chessboard.



Keep going. What is $a_{p,0}^{***} = a_{p,1}^{*}$? What operator g satisfies $\langle a_{p,1}x|y\rangle = \langle x|gy\rangle$?

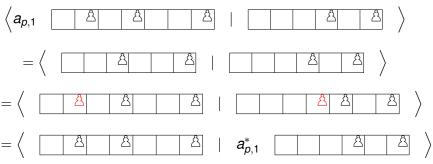
Answer: the operator which doubles the first pawn on a chessboard.



Keep going. What is $a_{p,0}^{***} = a_{p,1}^{*}$? What operator g satisfies

$$\langle a_{p,1}x|y\rangle = \langle x|gy\rangle$$
?

Answer: the operator which doubles the first pawn on a chessboard.



Proposition

The iterated adjoints of $a_{p,0}$ are

Proposition

The iterated adjoints of $a_{p,0}$ are

where:

 $a_{p,i}$ deletes the i'th pawn $a_{p,i}^*$ doubles the i'th pawn

Proposition

The iterated adjoints of $a_{p,0}$ are

where:

 $a_{p,i}$ deletes the i'th pawn $a_{p,i}^*$ doubles the i'th pawn $a_{p,\Omega}$, $a_{p,\Omega}^*$ are final pawn creation and annihilation.

Proposition

The iterated adjoints of $a_{p,0}$ are

where:

 $a_{p,i}$ deletes the i'th pawn $a_{p,i}^*$ doubles the i'th pawn $a_{p,\Omega}$, $a_{p,\Omega}^*$ are final pawn creation and annihilation.

Similarly for anti-pawns in the opposite direction.

$$a_{q,\Omega}^{\dagger} \rightarrow a_{q,\Omega} \rightarrow \cdots a_{q,2} \rightarrow a_{q,1}^{\dagger} \rightarrow a_{q,1} \rightarrow a_{q,0}^{\dagger} \rightarrow a_{q,0}$$

Proposition

The iterated adjoints of $a_{p,0}$ are

where:

 $a_{p,i}$ deletes the i'th pawn $a_{p,i}^*$ doubles the i'th pawn $a_{p,\Omega}$, $a_{p,\Omega}^*$ are final pawn creation and annihilation.

Similarly for anti-pawns in the opposite direction.

$$a_{q,\Omega}^{\dagger} \rightarrow a_{q,\Omega} \rightarrow \cdots a_{q,2} \rightarrow a_{q,1}^{\dagger} \rightarrow a_{q,1} \rightarrow a_{q,0}^{\dagger} \rightarrow a_{q,0}$$

(A simplicial structure.)

Adjoint periodicity

Hence

$$a_{p,0}^{*^{2n_p+2}}=a_{p,\Omega}$$

where n_p = number of pawns.

Adjoint periodicity

Hence

$$a_{p,0}^{*^{2n_p+2}}=a_{p,\Omega}$$

where n_p = number of pawns.

Theorem (M.)

$$a_{p,0}^{*^{2n+2}}=a_{p,0}.$$

where n is the number of squares on the chessboard.

Adjoint periodicity

Hence

Introduction

$$a_{p,0}^{*^{2n_p+2}}=a_{p,\Omega}$$

where n_p = number of pawns.

Theorem (M.)

$$a_{p,0}^{*^{2n+2}}=a_{p,0}.$$

where n is the number of squares on the chessboard.

One can also show that the duality operator defined by

$$\langle u|v\rangle = \langle v|Hu\rangle$$

satisfies

Theorem (M.)

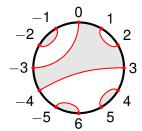
$$H^{2n+2}=1.$$

Outline

- Introduction
- 2 Background
- Quantum Pawn Dynamics (QPD)
- Chord diagrams
 - Chord diagrams
 - Creation and annihiltation
 - Chessboards and chord diagrams
 - "Inner product" on chord diagrams
 - Bypasses
 - Chord diagram vector space

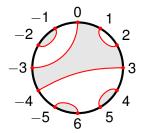
Chord diagrams

Consider a disc D with some 2n + 2 points F marked on ∂D . A *chord diagram* is a collection of non-intersecting curves on D joining points of F. E.g.



Chord diagrams

Consider a disc D with some 2n + 2 points F marked on ∂D . A *chord diagram* is a collection of non-intersecting curves on D joining points of F. E.g.



- Curves join points of opposite parity, so shade as shown.
- 0 is a basepoint.
- Label points mod 2n + 2.

Define *creation operators* $a_{p,i}^*$, $a_{q,i}^\dagger$ to insert a new chord in a specific place in a chord diagram as shown.

Define *creation operators* $a_{p,i}^*$, $a_{q,i}^\dagger$ to insert a new chord in a specific place in a chord diagram as shown.

$$a_{p,i}^*$$
 $-2i+1$
 $-2i-1$
 $-2i-2$

 $a_{p,i}^*$ creates a white region i spots down on the left.

Define *creation operators* $a_{p,i}^*$, $a_{q,i}^\dagger$ to insert a new chord in a specific place in a chord diagram as shown.

$$a_{p,i}^*$$
 $=$
 $\begin{pmatrix} -2i+1 \\ -2i \\ -2i-1 \\ -2i-2 \end{pmatrix}$
 $=$
 $\begin{pmatrix} 2i-1 \\ 2i \\ 2i+1 \\ 2i+2 \end{pmatrix}$

 $a_{p,i}^*$ creates a *white* region *i* spots down on the left. $a_{\sigma,i}^{\dagger}$ creates a *black* region *i* spots down on the right.

Define annihilation operators $a_{p,i}$, $a_{q,i}$ to close off chords in a chord diagram as shown.

Define annihilation operators $a_{p,i}$, $a_{q,i}$ to close off chords in a chord diagram as shown.

$$a_{p,i} = \begin{bmatrix} -2i + 2 & & & & & \\ & -2i + 1 & & & \\ & & -2i & & & \\ & & & -2i - 1 & & & \\ & & & & & -2i + 1 \end{bmatrix}$$

 $a_{p,i}$ closes off a black region i spots down on the left.

Define annihilation operators $a_{p,i}$, $a_{q,i}$ to close off chords in a chord diagram as shown.

 $a_{p,i}$ closes off a black region i spots down on the left. $a_{q,i}$ closes off a white region i spots down on the right.

Diagrams of chessboards

The simplest chord diagram is called the $\textit{vacuum} \ \Gamma_{\emptyset}$.

Build up more complicated diagrams with creation operators.

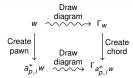
Diagrams of chessboards

The simplest chord diagram is called the *vacuum* Γ_{\emptyset} .

Build up more complicated diagrams with creation operators.

Proposition (M.)

For any chessboard w, there is a chord diagram Γ_w (called a slalom chord diagram) such that creation and annihilation operators agree (are equivariant): $\Gamma_{a_{p,i}^*w} = a_{p,i}^*\Gamma_w$.



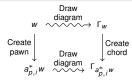
Diagrams of chessboards

The simplest chord diagram is called the *vacuum* Γ_{\emptyset} .

Build up more complicated diagrams with creation operators.

Proposition (M.)

For any chessboard w, there is a chord diagram Γ_w (called a slalom chord diagram) such that creation and annihilation operators agree (are equivariant): $\Gamma_{a_{p,i}^*w} = a_{p,i}^*\Gamma_w$.



• If chessboard has n squares, i.e. |w| = n, then Γ_w has n + 1 chords.

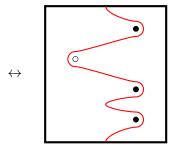
Ski slopes

Construction of the *slalom skiing* chord diagram of a chessboard.

apad ↔ **A B A**

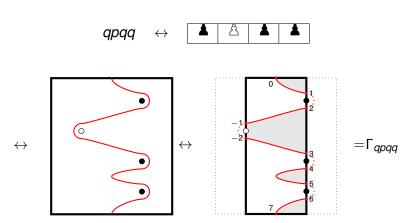
Ski slopes

Construction of the *slalom skiing* chord diagram of a chessboard.

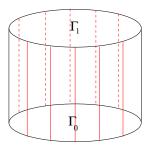


Ski slopes

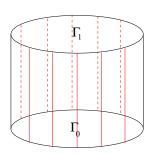
Construction of the *slalom skiing* chord diagram of a chessboard.

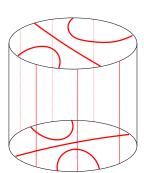


There's a bilinear form on chord diagrams defind by *entering* into a cylinder.

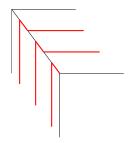


There's a bilinear form on chord diagrams defind by *entering into a cylinder*.

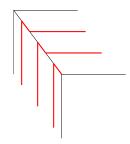


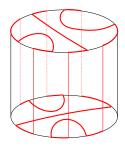


Note curves don't meet at corners! We treat corners as shown.



Note curves don't meet at corners! We treat corners as shown.





Definition

Introduction

$$\langle \Gamma_0 | \Gamma_1 \rangle = \left\{ \begin{array}{ll} 1 & \textit{if the resulting curves on the cylinder} \\ & \textit{form a single connected curve;} \\ 0 & \textit{if the result is disconnected.} \end{array} \right.$$

Theorem (M.)

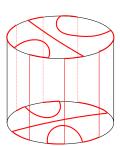
For any two chessboards w_0 , w_1 ,

$$\langle w_0|w_1\rangle=\langle \Gamma_{w_0}|\Gamma_{w_1}\rangle.$$

Theorem (M.)

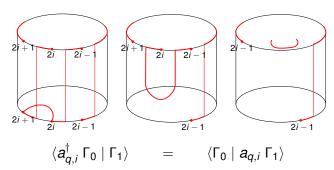
For any two chessboards w_0, w_1 ,

$$\langle w_0|w_1\rangle = \langle \Gamma_{w_0}|\Gamma_{w_1}\rangle.$$



Adjoints

Adjoint relations can be seen topologically as "finger moves".



Now perhaps believable that adjoint is periodic.

In a chord diagram on disc D, consider a sub-disc B as shown:

In a chord diagram on disc *D*, consider a sub-disc *B* as shown:

Two natural ways to adjust this chord diagram, consistent with the colours: *bypass surgeries*.

Г/

-

Γ"

Introduction

In a chord diagram on disc D, consider a sub-disc B as shown:

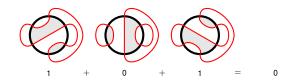
Two natural ways to adjust this chord diagram, consistent with the colours: bypass surgeries.

Proposition

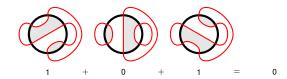
With $\Gamma, \Gamma', \Gamma''$ as above, for any Γ_1 ,

$$\langle \Gamma | \Gamma_1 \rangle + \langle \Gamma' | \Gamma_1 \rangle + \langle \Gamma'' | \Gamma_1 \rangle = 0.$$

Idea of proof:

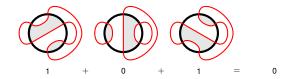


Idea of proof:



If $\langle\cdot|\cdot\rangle$ is to be nondegenerate, any three chord diagrams related by bypass surgery should sum to 0: *bypass relation*.

Idea of proof:



If $\langle \cdot | \cdot \rangle$ is to be nondegenerate, any three chord diagrams related by bypass surgery should sum to 0: *bypass relation*.

$$+$$
 $+$ $+$ $+$ $+$ 0

So we define a vector space

$$V_n = rac{\mathbb{Z}_2\langle ext{Chord diagrams with } n+1 ext{ chords}
angle}{ ext{Bypass relation}}$$

Theorem (M.)

 V_n has dimension 2^n and the slalom diagrams from chessboards of n squares form a basis.

Theorem (M.)

 V_n has dimension 2^n and the slalom diagrams from chessboards of n squares form a basis.

Theorem (M.)

 V_n has dimension 2^n and the slalom diagrams from chessboards of n squares form a basis.

Theorem (M.)

 V_n has dimension 2^n and the slalom diagrams from chessboards of n squares form a basis.

Theorem (M.)

 V_n has dimension 2^n and the slalom diagrams from chessboards of n squares form a basis.

Theorem (M.)

 V_n has dimension 2^n and the slalom diagrams from chessboards of n squares form a basis.

Theorem (M.)

 V_n has dimension 2^n and the slalom diagrams from chessboards of n squares form a basis.

Theorem (M.)

 V_n has dimension 2^n and the slalom diagrams from chessboards of n squares form a basis.

Theorem (M.)

 V_n has dimension 2^n and the slalom diagrams from chessboards of n squares form a basis.

Outline

- Introduction
- 2 Background
- Quantum Pawn Dynamics (QPD)
- Chord diagrams
- String homology
 - The string complex
 - Caculation of homology
- 6 Holomorphic invariants

String diagrams

Return to a disc D with some 2n + 2 points F marked on ∂D . The points of F are signed: half +, half -.

We usually consider points *F* which alternate in sign. (Points were effectively oriented previously...)

String diagrams

Return to a disc D with some 2n + 2 points F marked on ∂D . The points of F are signed: half +, half -.

We usually consider points *F* which alternate in sign. (Points were effectively oriented previously...)

Definition

A <u>string diagram</u> s is a collection of oriented immersed curves on D with $\partial s = F$.

The string complex

We define a chain complex based on string diagrams.

Definition

$$\widehat{CS}(D,F) = \frac{\mathbb{Z}_2\langle String\ diagrams\ on\ (D,F)\rangle}{\mathbb{Z}_2\langle String\ diagrams\ with\ contractible\ curves\rangle}$$

I.e. formal sums of string diagrams; contractible curves = 0.

The string complex

We define a chain complex based on string diagrams.

Definition

$$\widehat{CS}(D,F) = \frac{\mathbb{Z}_2\langle String\ diagrams\ on\ (D,F)\rangle}{\mathbb{Z}_2\langle String\ diagrams\ with\ contractible\ curves\rangle}$$

I.e. formal sums of string diagrams; contractible curves = 0.

The differential on $\widehat{CS}(\Sigma, F)$ resolves intersections:

The string complex

We define a chain complex based on string diagrams.

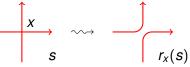
Definition

Introduction

$$\widehat{CS}(D,F) = \frac{\mathbb{Z}_2 \langle String \ diagrams \ on \ (D,F) \rangle}{\mathbb{Z}_2 \langle String \ diagrams \ with \ contractible \ curves \rangle}$$

I.e. formal sums of string diagrams; contractible curves = 0.

The differential on $\widehat{CS}(\Sigma, F)$ resolves intersections:

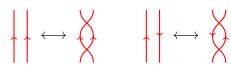


Definition

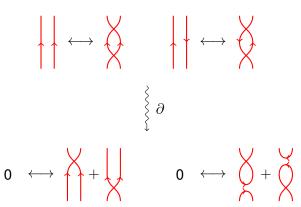
$$\partial s = \sum_{x \text{ crossing of } s} r_x(s)$$

Is ∂ well defined? Show that ∂ is unchanged by "string Reidemeister moves". E.g.

Is ∂ well defined? Show that ∂ is unchanged by "string Reidemeister moves". E.g.



Is ∂ well defined? Show that ∂ is unchanged by "string Reidemeister moves". E.g.



This shows why mod 2 is useful...

Also...

$$\downarrow \longleftrightarrow \nearrow$$

Also...

$$\begin{array}{c} \downarrow \longleftrightarrow \\ \downarrow \\ \partial \\ 0 \end{array}$$

This shows why contractible strings are set to zero.

Also...

$$\begin{array}{c} \downarrow \longleftrightarrow \\ \downarrow \\ \partial \\ 0 \end{array}$$

This shows why contractible strings are set to zero. Once ∂ is well defined, it's clear $\partial^2 = 0 \pmod{2}$.

Also...

$$\begin{array}{c} & \longleftrightarrow & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

This shows why contractible strings are set to zero. Once ∂ is well defined, it's clear $\partial^2 = 0 \pmod{2}$. What is the homology $\widehat{HS}(D, F)$?

Calculation of homology

Note $\widehat{CS}(D, F)$ is well-defined, whether F is alternating or not.

Calculation of homology

Note $\widehat{CS}(D, F)$ is well-defined, whether F is alternating or not.

Proposition (M.–Schoenfeld)

If F is not alternating, then $\widehat{HS}(\Sigma, F) = 0$.

Calculation of homology

Note $\widehat{CS}(D, F)$ is well-defined, whether F is alternating or not.

Proposition (M.–Schoenfeld)

If F is not alternating, then $\widehat{HS}(\Sigma, F) = 0$.

Theorem (M.–Schoenfeld)

For alternating F, $\widehat{HS}(D,F)$ is generated by chord diagrams, and the bypass relation is satisfied. In fact,

$$\widehat{\mathit{HS}}(\mathit{D}^2, \mathit{F}) \cong \frac{\mathbb{Z}_2 \langle \mathit{Chord\ diagrams\ on\ } (\mathit{D}, \mathit{F}) \rangle}{\mathit{Bypass\ relation}} \cong \mathit{V}_\mathit{n}.$$

Calculation of homology

Note $\widehat{CS}(D, F)$ is well-defined, whether F is alternating or not.

Proposition (M.-Schoenfeld)

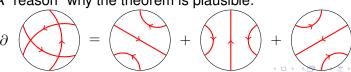
If F is not alternating, then $\widehat{HS}(\Sigma, F) = 0$.

Theorem (M.-Schoenfeld)

For alternating F, $\widehat{HS}(D,F)$ is generated by chord diagrams, and the bypass relation is satisfied. In fact,

$$\widehat{\mathit{HS}}(\mathit{D}^2, \mathit{F}) \cong \frac{\mathbb{Z}_2 \langle \mathit{Chord \ diagrams \ on \ }(\mathit{D}, \mathit{F}) \rangle}{\mathit{Bypass \ relation}} \cong \mathit{V}_\mathit{n}.$$

A "reason" why the theorem is plausible:



Introduction

Consider the switching operation on string diagrams

$$W:\widehat{CS}(\Sigma,F)\longrightarrow\widehat{CS}(\Sigma,F).$$

$$W: \widehat{CS}(\Sigma, F) \qquad q \qquad \qquad W \qquad q \qquad \qquad \longrightarrow \widehat{CS}(\Sigma, F) \qquad p \qquad \qquad p \qquad \longrightarrow \widehat{CS}(\Sigma, F) \qquad p \qquad \longrightarrow \widehat{C$$

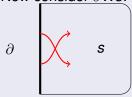
Introduction

Consider the switching operation on string diagrams

$$W:\widehat{\mathit{CS}}(\Sigma,F)\longrightarrow\widehat{\mathit{CS}}(\Sigma,F).$$

$$W: \widehat{CS}(\Sigma, F) \qquad q \longrightarrow \widehat{CS}(\Sigma, F) \qquad p \longrightarrow \widehat{CS}(\Sigma$$

Now consider ∂Ws :



Introduction

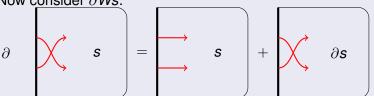
Proof of proposition

Consider the switching operation on string diagrams

$$W:\widehat{CS}(\Sigma,F)\longrightarrow\widehat{CS}(\Sigma,F).$$

$$W: \widehat{CS}(\Sigma, F) \qquad q \qquad \qquad W \qquad q \qquad \qquad \\ \longrightarrow \widehat{CS}(\Sigma, F) \quad p \qquad \qquad \qquad p \qquad \qquad \qquad p$$

Now consider ∂Ws :



W∂s

Proof of proposition

Introduction

Consider the switching operation on string diagrams

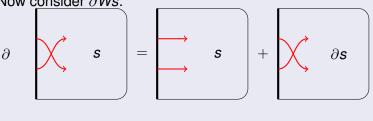
$$W:\widehat{CS}(\Sigma,F)\longrightarrow\widehat{CS}(\Sigma,F).$$

$$W: \widehat{CS}(\Sigma, F) \qquad q \qquad \qquad W \qquad q$$

$$\longrightarrow \widehat{CS}(\Sigma, F) \quad p \qquad \qquad p$$

Now consider ∂Ws :

∂Ws



s

Introduction

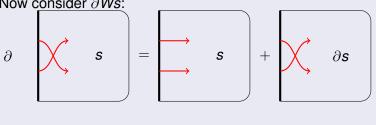
Consider the switching operation on string diagrams

$$W:\widehat{CS}(\Sigma,F)\longrightarrow\widehat{CS}(\Sigma,F).$$

$$W: \widehat{CS}(\Sigma, F) \qquad q \qquad \qquad W \qquad q \qquad \qquad \\ \longrightarrow \widehat{CS}(\Sigma, F) \quad P \qquad \qquad p \qquad \qquad p$$

Now consider ∂Ws :

∂Ws



Thus W is a chain homotopy from 1 to 0, and $HS(\Sigma, F) = 0$.

s

W∂s

Outline

- Introduction
- 2 Background
- Quantum Pawn Dynamics (QPD)
- 4 Chord diagrams
- String homology
- 6 Holomorphic invariants
 - Sutured Floer homology
 - A "computation"
 - Contact invariants
 - Rynaccac

Actually all the above comes from *sutured Floer homology*, a holomorphic invariant of sutured manifolds.

Very roughly... (Ozsváth–Szabó 2004, Juhasz 2006)

• A sutured manifold is a 3-manifold M with boundary, and some curves Γ on ∂M dividing ∂M into alternating positive and negative regions.

Actually all the above comes from *sutured Floer homology*, a holomorphic invariant of sutured manifolds.

Very roughly... (Ozsváth–Szabó 2004, Juhasz 2006)

- A sutured manifold is a 3-manifold M with boundary, and some curves Γ on ∂M dividing ∂M into alternating positive and negative regions.
- Given (M, Γ) , take a *Heegaard decomposition* with surface Σ and curves $\alpha_1, \ldots, \alpha_k$ bounding discs on one side and β_1, \ldots, β_k bounding discs on the other.

Actually all the above comes from *sutured Floer homology*, a holomorphic invariant of sutured manifolds.

Very roughly... (Ozsváth–Szabó 2004, Juhasz 2006)

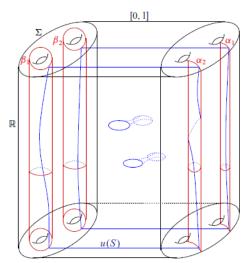
- A sutured manifold is a 3-manifold M with boundary, and some curves Γ on ∂M dividing ∂M into alternating positive and negative regions.
- Given (M, Γ) , take a *Heegaard decomposition* with surface Σ and curves $\alpha_1, \ldots, \alpha_k$ bounding discs on one side and β_1, \ldots, β_k bounding discs on the other.
- Consider $\Sigma \times I \times \mathbb{R}$ as a symplectic manifold with an almost complex structure and consider holomorphic curves

$$u : S \longrightarrow \Sigma \times I \times \mathbb{R}$$

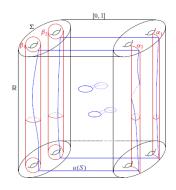
where S is a Riemann surface.

• Boundary conditions based on Heegaard curves α_i and β_i .

Cylindrical picture of Lipshitz (2006):



Cylindrical picture of Lipshitz (2006):



$$\operatorname{ind} (D\bar{\partial}) = k - \chi(S) + \sum_{i=1}^{k} \mu(a_i) - \sum_{i=1}^{k} \mu(b_i).$$

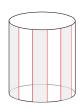
 Chain complex generated by boundary conditions, which are intersections of boundary curves.

$$z_1 \in \alpha_1 \cap \beta_{\sigma(1)}, \ z_2 \in \alpha_2 \cap \beta_{\sigma(2)}, \ \ldots, \ z_k \in \alpha_k \cap \beta_{\sigma(k)}.$$

- Differential counting index-1 holomorphic curves between boundary conditions.
- Resulting homology is $SFH(M, \Gamma)$.
- Etnyre–Honda (2009): Any *contact structure* ξ on (M, Γ) defines a natural *element* $c(\xi) \in SFH(M, \Gamma)$.

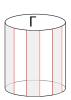
Solid tori

We consider the *sutured solid torus* $D^2 \times S^1$ with 2n + 2 longitudinal curves $F \times S^1$. (|F| = 2n + 2)



Solid tori

We consider the *sutured solid torus* $D^2 \times S^1$ with 2n + 2 longitudinal curves $F \times S^1$. (|F| = 2n + 2)

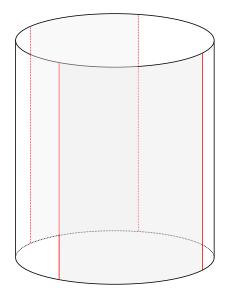


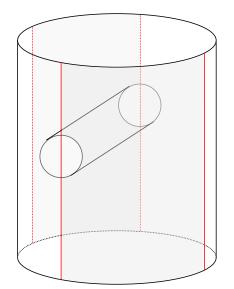
Theorem (M.)

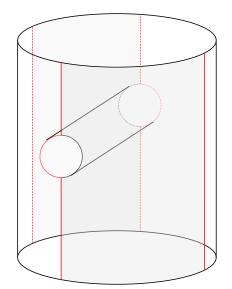
$$SFH(D^2 \times S^1, F \times S^1) \cong V_n = \frac{\mathbb{Z}_2 \langle \textit{Chord diagrams w/ n} + 1 \textit{ chords} \rangle}{\textit{Bypass relation}}$$

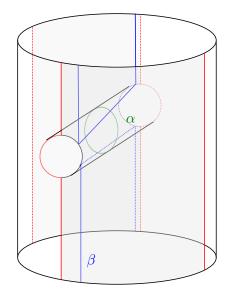
 $\cong \widehat{\mathit{HS}}(D^2, F)$

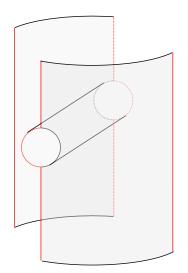
Any chord diagram Γ in V_n or $\widehat{HS}(D^2, F)$ corresponds to a a contact structure ξ_{Γ} on $D^2 \times S^1$ and maps to $c(\xi_{\Gamma})$.

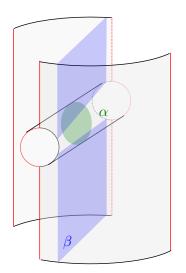


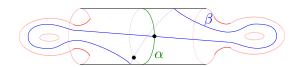




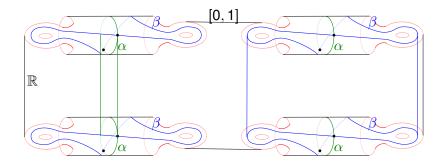




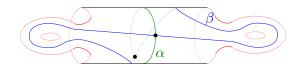




Chain complex $= \mathbb{Z}_2 \oplus \mathbb{Z}_2$.



Chain complex = $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. Where do holomorphic curves go?



Chain complex $= \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Where do holomorphic curves go? Nowhere for holomorphic curves to go! $\partial = 0$.

$$SFH = \mathbb{Z}_2 \oplus \mathbb{Z}_2 = V_1$$

Chord diagrams and contact structures

Giroux (1991): theory of convex surfaces.

A chord diagram Γ / dividing set on a disc D describes a contact structure ξ_{Γ} on a neighbourhood $D \times I$ of D.

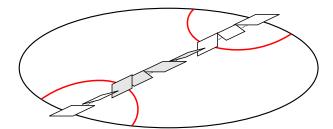
Chord diagrams and contact structures

Giroux (1991): theory of *convex surfaces*.

A chord diagram Γ / dividing set on a disc D describes a contact structure ξ_{Γ} on a neighbourhood $D \times I$ of D.

Roughly speaking, the contact planes are

- Tangent to ∂D
- "Perpendicular" to D precisely along Γ



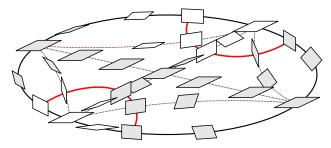
Chord diagrams and contact structures

Giroux (1991): theory of convex surfaces.

A chord diagram Γ / dividing set on a disc D describes a contact structure ξ_{Γ} on a neighbourhood $D \times I$ of D.

Roughly speaking, the contact planes are

- Tangent to ∂D
- "Perpendicular" to D precisely along Γ



Colours in chord diagram = visible side of contact plane.

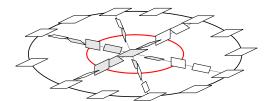
Eliashberg (1989): fundamentally 2 types of contact structures.

- Overtwisted: contains an overtwisted disc.
- Tight: does not.

Eliashberg (1989): fundamentally 2 types of contact structures.

- Overtwisted: contains an overtwisted disc.
- Tight: does not.

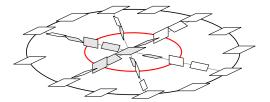
An overtwisted disc is:



Eliashberg (1989): fundamentally 2 types of contact structures.

- Overtwisted: contains an overtwisted disc.
- Tight: does not.

An overtwisted disc is:

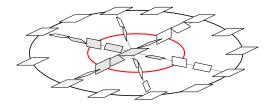


 Overtwisted contact geometry reduces to (well-understood) homotopy theory. Tight contact structures offer important topological information.

Eliashberg (1989): fundamentally 2 types of contact structures.

- Overtwisted: contains an overtwisted disc.
- Tight: does not.

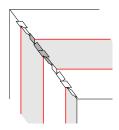
An overtwisted disc is:



- Overtwisted contact geometry reduces to (well-understood) homotopy theory. Tight contact structures offer important topological information.
- Eliashberg (1992): contact structure near an S² is tight iff dividing set is *connected*. If so, contact structure extends uniquely (up to isotopy) to a tight contact structure on B³.

Contact corners

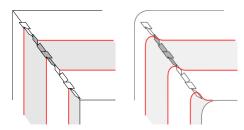
When two convex surfaces meet along a boundary, contact planes are arranged as shown.



Contact corners

Introduction

When two convex surfaces meet along a boundary, contact planes are arranged as shown.



Proposition

Let Γ_0 , Γ_1 be chord diagrams. The following are equivalent:

- $\langle \Gamma_0 | \Gamma_1 \rangle = 1$.
- The solid cylinder with dividing set Γ_0 on the bottom and Γ_1 on the top has a tight contact structure.

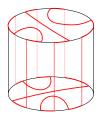
Bypasses

Honda (2000's): any 3-manifold can be built up from a surface and dividing set by adding *bypasses*.

Effect on dividing set is "bypass surgery" as defined earlier.

Bypasses

Honda (2000's): any 3-manifold can be built up from a surface and dividing set by adding *bypasses*.



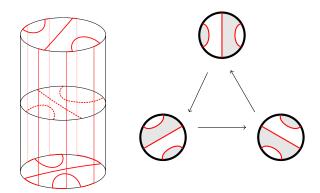
Effect on dividing set is "bypass surgery" as defined earlier. Corresponds to

$$\langle \Gamma_{pq} | \Gamma_{qp} \rangle = 1$$

or

Bypasses

Stacking two bypasses on top of each other produces an overtwisted contact structure!



Can build something like a *triangulated category* out of dividing sets and contact structures (Honda, M.). V_n is the *Grothiendick group*.

Contact TQFT = Quantum pawn dynamics

These definitions give many of the properties of a (2+1)-dimensional *topological quantum field theory*.

- Contact structure near disc (2-dim) → "states" in V_n
- Contact structure over cylinder (2+1-dim) \rightsquigarrow element of \mathbb{Z}_2 .
- "Possibility of a tight contact structure from one state to another" → inner product ⟨·|·⟩ : V_n ⊗ V_n → Z₂.

Contact TQFT = Quantum pawn dynamics

These definitions give many of the properties of a (2+1)-dimensional *topological quantum field theory*.

- Contact structure near disc (2-dim) → "states" in V_n
- Contact structure over cylinder (2+1-dim) \rightsquigarrow element of \mathbb{Z}_2 .
- "Possibility of a tight contact structure from one state to another" → inner product ⟨·|·⟩ : V_n ⊗ V_n → Z₂.

Theorem (M.)

"Contact TQFT is isomorphic to quantum pawn dynamics."

Thanks for listening!

References:

- D. Mathews, Chord diagrams, contact-topological quantum field theory, and contact categories,
 Alg. & Geom. Top. 10 (2010) 2091–2189
- D. Mathews, Sutured Floer homology, sutured TQFT and non-commutative QFT, Alg. & Geom. Top. 11 (2011) 2681–2739.
- D. Mathews, Sutured TQFT, torsion, and tori, Int. J. Math. 24 (2013) 1350039.
- D. Mathews, Itsy bitsy topological field theory, Ann. Henri Poincaré 15 (2014) 1801-1865.
- D. Mathews and E. Schoenfeld, *Dimensionally-reduced sutured Floer homology as a string homology* (2012) arXiv 1210.7394.
- D. Mathews, Contact topology and holomorphic invariants via elementary combinatorics, Expo. Math. 32 (2014), 121-160.

