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“Counting curves" in mathematics

“Counting curves" is prominent in mathematics today, e.g.:
Moduli spaces are families of complex curves (Riemann
surfaces) satisfying certain conditions.

Gromov-Witten theory enumerates moduli spaces of
curves in varieties, or symplectic manifolds. Counting 0-D
moduli spaces a key idea in Floer homology.
Contact structures are enumerated by counting
configurations of curves (dividing sets) on a surface.

We propose an even more naive problem...



“Counting curves" in mathematics

“Counting curves" is prominent in mathematics today, e.g.:
Moduli spaces are families of complex curves (Riemann
surfaces) satisfying certain conditions.

Gromov-Witten theory enumerates moduli spaces of
curves in varieties, or symplectic manifolds. Counting 0-D
moduli spaces a key idea in Floer homology.

Contact structures are enumerated by counting
configurations of curves (dividing sets) on a surface.

We propose an even more naive problem...



“Counting curves" in mathematics

“Counting curves" is prominent in mathematics today, e.g.:
Moduli spaces are families of complex curves (Riemann
surfaces) satisfying certain conditions.

Gromov-Witten theory enumerates moduli spaces of
curves in varieties, or symplectic manifolds. Counting 0-D
moduli spaces a key idea in Floer homology.
Contact structures are enumerated by counting
configurations of curves (dividing sets) on a surface.

We propose an even more naive problem...



A naive problem

(Joint work with N. Do & M. Koyama, in progress...)
Consider a compact orientable surface S with some points
marked on the boundary ∂S.

Question
How many ways are there to join these points with curves?

Many variants possible:
Closed curves allowed? If so, which ones?
What sets of curves are equivalent?
Points signed? Curves oriented?

(Avoid answers of∞.)
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The problem

One way to set up the problem precisely.
Let S be a compact orientable surface of genus g with n
boundary components
B1, . . . ,Bn be the boundary components of S
F ⊂ ∂S be a finite set with bi points on Bi .

Definition
An arc diagram on (S,F ) is a properly embedded collection of
arcs on S with boundary F .
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The problem

Definition
Arc diagrams C1,C2 are equivalent if ∃ homeomorphism
φ : S → S such that φ|∂S = 1∂S and φ(C1) = C2.

Let Gg,n(b1, . . . ,bn) denote the number of equivalence classes
of arc diagrams on (S,F ). This gives a finite count!

Question
What is Gg,n(b1, . . . ,bn)?
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Small cases

Some preliminary observations:
For any g and n, Gg,n(0,0, . . . ,0) = 1
If b1 + · · ·+ bn is odd, then Gg,n(b1, . . . ,bn) = 0

Some small cases:
Discs
(g,n) = (0,1)

G0,1(4) = 2

Annuli
(g,n) = (0,2):

G0,2(0,2) = 2

G0,2(1,1) = 1

G1,1(2) = 3
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Small cases
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A combinatorial argument

Proof that G0,2(2n,0) =
(2n

n

)
and G0,1(2n) = 1

n+1

(2n
n

)
(Przytycki?)

Given an annulus with 2n points on the boundary, consider
orienting them so that n point in and n point out.

From such a choice, there is a unique way to construct an arc
diagram (up to equivalence).
Filling in the disc gives an (n + 1)-to-1 map from arcs on annuli
to discs.

A more elaborate but similar style argument can be used to
prove the general G0,2 formula.
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A general result

A quasi-polynomial f (x1, . . . , xn) is a family of polynomial
functions depending on the congruence classes of x1, . . . , xn.

Theorem (Do–M.)

For (g,n) 6= (0,1), (0,2), Gg,n(b1, . . . ,bn) is the product of
a combinatorial factor for each i = 1, . . . ,n, which is(

bi

bi/2

)
if bi is even, or

(
bi − 1

(bi − 1)/2

)
if bi is odd; and

a quasi-polynomial Pg,n(b1, . . . ,bn) over Q of degree
3g − 3 + 2n depending on b1, . . . ,bn mod 2.

E.g. for any (g,n) 6= (0,1), (0,2),

Gg,n(2m1, . . . ,2mn) =

(
2m1

m1

)
· · ·
(

2mn

mn

)
Pg,n(2m1, . . . ,2mn).

where Pg,n is a polynomial of degree 3g − 3 + 2n.
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Non-boundary-parallel arcs

Turns out to be useful to consider arc diagrams without
boundary-parallel arcs — i.e. no arc can cut off a disc.

Definition
Let Ng,n(b1, . . . ,bn) be the number of (equivalence classes) of
arc diagrams on (S,F ) without boundary-parallel arcs.



Non-boundary-parallel arcs

Small cases:
N0,1(b1) = δb1,0

N0,2(b1,b2) = b1δb1,b2

N0,3(b1,b2,b3) = · · · ? Turns out once b1,b2,b3 are specified
(and their sum is even), this specifies a unique way to join
boundary components. Then rotate around each boundary.

Define n̄ =
{

n n > 0
1 n = 0

}
= n + δn,0.

Proposition (M.?)

N0,3(b1,b2,b3) = b̄1b̄2b̄3 (provided b1 + b2 + b3 even).
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More formulas

One can continue in this vein...

Theorem (Do–M.)

N0,4(b1,b2,b3,b4) = b̄1b̄2b̄3b̄4P0,4(b1,b2,b3,b4)

where

P0,4(b1,b2,b3,b4) =


1
4 (b2

1 + b2
2 + b2

3 + b2
4) + 2 all bi even

1
4 (b2

1 + b2
2 + b2

3 + b2
4) + 1

2 two even, two odd
1
4 (b2

1 + b2
2 + b2

3 + b2
4) + 2 all odd

0 otherwise

Theorem (Do–M.)

N1,1(b1) = b̄1

(
b2

1
48

+
5

12

)
(provided b1 even)
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Arc diagrams and moduli spaces

A similar formula holds for each g and n.

Theorem (Do–M.)

For (g,n) 6= (0,1), (0,2) and (b1, . . . ,bn) 6= (0, . . . ,0),

Ng,n(b1, . . . ,bn) = b̄1 · · · b̄nN̂g,n(b1, . . . ,bn)

where N̂g,n is a polynomial in b2
1, . . . ,b

2
n of degree 3g − 3 + n.

The polynomials N̂g,n are quite interesting:
3g − 3 + n = dimension of moduli space of curvesMg,n.
Their top-degree terms agree with

Kontsevich’s volume polynomials: polytopes inMg,n.
Norbury’s lattice count polynomials: enumeration inMg,n.

Top-degree terms give intersection numbers onMg,n: the
coefficient cd1,...,dn of bd1

1 · · · b
dn
n satisfies

cd1,...,dn =
1

25g−6+2nd1! · · · dn!
〈ψd1

1 · · ·ψ
dn
n ,Mg,n〉.
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Idea of proofs

Proofs draw heavily on ideas of Do–Norbury, Eynard–Orantin,
Mulase, Norbury, Norbury–Scott.

1 Gg,n(b1, . . . ,bn) (also Ng,n, N̂g,N ) satisfy a topological
recursion of Eynard–Orantin & Mulase

Gg,n(b1, . . . , bn) =

b1−2∑
j=0

Gg−1,n+1(j, b1 − j − 2, b2, . . . , bn)

+
n∑

k=2

bk Gg,n−1(b1 + bk − 2, b2, . . . , b̂k , . . . , bn)

+

b1−2∑
j=0

∑
g1+g2=g

∑
I1tI2={2,...,n}

Gg1,|I1|+1(j, gI1
) Gg2,|I2|+1(b1 − j − 2, bI2

).

2 Show N̂g,n are even polynomials in bi (Norbury).
3 Arc diagrams decompose into “∂-parallel" and “guts":

Gg,n(b1, . . . , bn) =

b1∑
a1=0

· · ·
bn∑

an=0

(
b1

b1−a1
2

)
· · ·

(
bn

bn−an
2

)
Ng,n(a1, . . . , an)

4 Show Gg,n have desired form (Norbury–Scott).



Summary

1 “Count curves" on a surface in the most naive way:
Gg,n(b1, . . . ,bn) count embedded arcs with fixed boundary
points, up to homeomorphism fixing boundary pointwise.
A generalisation of Catalan numbers.

2 Polynomiality results
For each g and n, Gg,n(b1, . . . ,bn) is given by combinatorial
factors

( bi
bi/2

)
, multiplied by a quasipolynomial in b1, . . . ,bn.

Consider arc diagrams without boundary-parallel arcs;
counted by Ng,n(b1, . . . ,bn).
For each g and n, Ng,n(b1, . . . ,bn) turns out to be given by
b̄1 · · · b̄n multiplied by a quasipolynomial N̂g,n in b2

1, . . . ,b
2
n.

3 Arrive at more advanced forms of “curve-counting"
N̂g,n closely related to volume of moduli spaceMg,n
Encode intersection numbers of ψ-classes.

Many questions raised:
More structure? Eynard–Orantin topological recursion...
spectral curve, quantum curve, etc.
Do other “curve-counting" problems have similar structure?



Thanks for listening!


