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“Counting curves" in mathematics

“Counting curves" is prominent in mathematics today, e.g.:

@ Moduli spaces are families of complex curves (Riemann
surfaces) satisfying certain conditions.
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@ Gromov-Witten theory enumerates moduli spaces of
curves in varieties, or symplectic manifolds. Counting 0-D
moduli spaces a key idea in Floer homology.

@ Contact structures are enumerated by counting
configurations of curves (dividing sets) on a surface.




A naive problem

(Joint work with N. Do & M. Koyama, in progress...)
Consider a compact orientable surface S with some points
marked on the boundary 0S.
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A naive problem

(Joint work with N. Do & M. Koyama, in progress...)
Consider a compact orientable surface S with some points
marked on the boundary 0S.

~

How many ways are there to join these points with curves? I

Many variants possible:
@ Closed curves allowed? If so, which ones?
@ What sets of curves are equivalent?
@ Points signed? Curves oriented?

(Avoid answers of cc.)




The problem

One way to set up the problem precisely.

@ Let S be a compact orientable surface of genus g with n
boundary components

@ By,..., B, be the boundary components of S
@ F C 0S be a finite set with b; points on B;.
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Definition

An arc diagramon (S, F) is a properly embedded collection of
arcs on S with boundary F.
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The problem

Definition

Arc diagrams Cj, C, are equivalent if 3 homeomorphism
¢ S — Ssuchthat ¢|ss = 195 and ¢(Cq) = Co.

Let Gg,n(b1,. .., bn) denote the number of equivalence classes
of arc diagrams on (S, F). This gives a finite count!

What |S Gg}n(b‘] g ooy bn)o
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Some preliminary observations:
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The case of discs is quite well known: Catalan numbers.

1 2n
Go,1(2n):n+1<n>, Go’1(2n+1)=0

There are also results for annuli:
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One can continue in this vein...

(M.?)  Goa(2ny,2np,205) = (zn’:‘) <2nf;2) (Zn’;s)(m +1)(nz +1)(n5 +1)

Go,a(2m + 1,2, +1,203) = (zn’:‘) (zn’;?) (2”3)(2n1 +1)(2p + 1)(ng + 1)

Co,4(2m, 2z, 213, 24) = <2nr1h) <2nr;2) (2n3 ) (2”4) (1 +2) m+) o
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A combinatorial argument

Proof that Gy 2(2n,0) = (%) and Go1(2n) = -1+
(Przytycki?)

Given an annulus with 2n points on the boundary, consider
orienting them so that n point in and n point out.

From such a choice, there is a unique way to construct an arc
diagram (up to equivalence).

Filling in the disc gives an (n + 1)-to-1 map from arcs on annuli
to discs. O

4

A more elaborate but similar style argument can be used to
prove the general Gy > formula.
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A general result

A quasi-polynomial f(x1, ..., Xp) is a family of polynomial
functions depending on the congruence classes of x1, ..., Xs.

Theorem (Do—M.)

For(g,n) # (0,1),(0,2), Gg,n(b1, ..., bn) is the product of
@ a combinatorial factor foreach i =1,...,n, which is
b\ .., . b —1 o )
(bi/2> if b; is even, or<(bl_ - 1)/2> if b is odd; and
@ a quasi-polynomial Py n(by, ..., bp) over Q of degree
39 — 3 + 2n depending on by, . .., b, mod 2.

E.g. for any (g, n) # (0,1),(0,2),

2m 2m
Gg’n(zm‘], ,zmn) — < 1) e ( n> Pg7n(2m1, .,2m,~,).
m1 mn

where Py is a polynomial of degree 3g — 3 + 2n.



Non-boundary-parallel arcs

Turns out to be useful to consider arc diagrams without
boundary-parallel arcs — i.e. no arc can cut off a disc.

SALHONC
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a‘r ALLU\«l:> .
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Definition

Let Ny n(by, ..., bn) be the number of (equivalence classes) of
arc diagrams on (S, F) without boundary-parallel arcs.
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Non-boundary-parallel arcs

Small cases:
@ No,1(b1) = dp, 0
® No2(b1,b2) = b1, b,
Nos(b1,b2,b3) =---? Turns out once by, by, bs are specified

(and their sum is even), this specifies a unique way to join
boundary components. Then rotate around each boundary.
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Non-boundary-parallel arcs

Small cases:

@ No,1(b1) = dp, 0
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Proposition (M.?)

No,a(b1, bz, bs) = bybybs (provided by + b, + bs even).




More formulas

One can continue in this vein...
Theorem (Do—-M.)
No,a(b1, ba, b3, bs) = bybybsbsPo 4(b1, bo, bs, bs)
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otherwise
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where
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otherwise
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O Bl p|n|—

\

Theorem (Do—M.)

_ (b2
Ni 1(by) = by (4_18 + %) (provided by even)
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Arc diagrams and moduli spaces

A similar formula holds for each g and n.
Theorem (Do—M.)

For(g,n) # (0,1),(0,2) and (b, ...,bn) # (0,...,0),
Ng’n(b‘],. . .,bn) = 51 . ‘Bni\\lg7n(b1,. . ,bn)

where Ny , is a polynomial in b?, . . ., b2 of degree 3g — 3 + n.

The polynomials Ng,n are quite interesting:
@ 3g — 3 + n = dimension of moduli space of curves Mg .
@ Their top-degree terms agree with
e Kontsevich’s volume polynomials: polytopes in Mg ;.
o Norbury’s lattice count polynomials: enumeration in Mg 5.
@ Top-degree terms give intersection numbers on Mg »: the
coefficient cg, g, of bS" - - - b2 satisfies
1 d ——
Cd«‘,‘..,dn = 259_6+2nd1 | - dnl <¢11 U n 7ngn>’




Idea of proofs

Proofs draw heavily on ideas of Do—Norbury, Eynard—Orantin,
Mulase, Norbury, Norbury—Scott.

Q Gg,n(bj ,...,bpn) (also Ng7n,_Ng7N) satisfy a topological
recursion of Eynard—Orantin & Mulase
by—2
Gg,n(by, - - -, bn) = > Gg_1,ns10is by —j—2,ba, ..., bn)
j=0

n
+ > bkGg,n—1(by + bx —2, by, - . -, by, .-y bn)

by —
+> > > Ggy 11y 1+1U> 91) Gy, [1p|+1(b1 —J — 2, by,).

j=0 91+92=0 julb={2,...,n}

© Show Ng,n are even polynomials in b; (Norbury).
© Arc diagrams decompose into “9-parallel” and “guts":

by bn
b b
ng b17-~ bn) = Z Z (b1 1a1> <bn"an>Ng,n(a1,...,a,,)
2

=0

© Show Gg 5 have desired form (Norbury—Scott).



@ “Count curves" on a surface in the most naive way:
e Ggn(by,...,bsy) count embedded arcs with fixed boundary
points, up to homeomorphism fixing boundary pointwise.
e A generalisation of Catalan numbers.
© Polynomiality results
e Foreach gand n, Ggn(bs,...,b,) is given by combinatorial
factors (b /2) multiplied by a quasipolynomial in by, ..., b,.
e Consider arc diagrams without boundary-parallel arcs;
counted by Ny »(by, ..., bn).
e Foreach gand n, Ny, ,,(b1 ,...,bp) turns out to be given by
by - - - b, multiplied by a qua3|polynom|al Ng pin b2, ..
© Arrive at more advanced forms of “curve-counting"
° Ng,,, closely related to volume of moduli space Mg,
e Encode intersection numbers of i-classes.
Many questions raised:
@ More structure? Eynard—Orantin topological recursion...
spectral curve, quantum curve, etc.
@ Do other “curve-counting" problems have similar structure?



Thanks for listening!



