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We consider an elementary, and largely unexplored, combinatorial problem in low-
dimensional topology: for a compact surface S, with a finite set of points F fixed on
its boundary, how many configurations of disjoint arcs are there on S whose boundary
is F ? We find that this enumerative problem, counting curves on surfaces, has a rich
structure. We show that such curve counts obey an effective recursion, in the general
spirit of topological recursion, and exhibit quasi-polynomial behavior. This “elemen-
tary curve-counting” is in fact related to a more advanced notion of “curve-counting”
from algebraic geometry or symplectic geometry. The asymptotics of this enumerative
problem are closely related to the asymptotics of volumes of moduli spaces of curves,
and the quasi-polynomials governing the enumerative problem encode intersection num-
bers on moduli spaces. Among several other results, we show that generating functions
and differential forms for these curve counts exhibit structure that is reminiscent of the
mathematical physics of free energies, partition functions and quantum curves.
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1. Introduction

1.1. Summary and motivation

“Curve-counting” plays an important role in several areas of contemporary mathe-
matics. For instance, moduli spaces of curves are central to Gromov–Witten theory,
and zero-dimensional moduli spaces consist of a finite number of curves, which can
be counted. Such curve counts are used to define boundary operators in Floer
homology theories.
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In this paper, we “count curves” of a much simpler type. Consider a (real
2-dimensional) connected compact oriented surface S with boundary. We fix a finite
set of boundary points F ⊂ ∂S and count collections of curves on S — that is,
embedded 1-manifolds — with boundary F , according to the following definitions.

Definition 1.1.

(i) An arc diagram on (S, F ) is a properly embedded collection of arcs C ⊂ S

with boundary F .
(ii) Two arc diagrams C1 and C2 on (S, F ) are equivalent if there is a homeomor-

phism φ : S → S, such that φ|∂S is the identity, and φ(C1) = C2.
(iii) If S has genus g and n boundary components, and F contains b1, . . . , bn points

on the n boundary components of S, then the number of equivalence classes
of arc diagrams on (S, F ) is denoted Gg,n(b1, . . . , bn).

Thus, an arc diagram simply consists of finitely many non-intersecting unori-
ented arcs connecting the points of F in pairs, as in Fig. 1.

In this paper, we present several results about the numbers Gg,n(b1, . . . , bn)
— and related numbers counting collections of curves of various other types —
including how they are related to “curve-counting” of the more advanced type.
Roughly, our main results say the following.

• The curve counts on a surface S can be given recursively in terms of curve counts
on surfaces of simpler topology.

• If we fix g and n, these curve counts exhibit quasi-polynomial behavior.
• The degrees of these quasi-polynomials, and their top-degree coefficients, are

closely related to moduli spaces of curves and in fact recover the intersection
numbers of ψ-classes.

• The counts can be encoded in generating functions and differential forms and in
fact different types of counts can be obtained by expanding the same differential
form in different coordinates.

B1 B2

S = S1,2

Fig. 1. An arc diagram on (S, F ), with S = S1,2, F = F (4, 6) and four complementary regions.
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• Various generating functions encoding these curve counts obey differential equa-
tions reminiscent of the mathematical physics of free energies and partition
functions.

These results are similar in spirit to a wide range of results on the topological
recursion of Chekhov, Eynard and Orantin [6, 15, 18]. There has been a great deal of
recent work demonstrating that many enumerative problems formulated in terms of
surfaces display similar phenomena: polynomiality, recursion and differential forms
and generating functions obeying physically suggestive equations. Such problems
arise, for instance, in matrix models [6], the theory of Hurwitz numbers [2, 4, 7, 17],
moduli spaces of curves [9, 28, 31, 32], Gromov–Witten theory [3, 13, 16, 19, 33]
and combinatorics [8, 12, 14, 23, 29].

We also note that the enumeration of isotopy classes of contact structures near
a convex surface in a contact 3-manifold essentially reduces to a similar question,
counting of arrangements of dividing sets on the surface (see e.g. [20, 22, 26]). The
notions of dividing sets and arc diagrams are however distinct.

On a disc, our counting question leads immediately to the Catalan numbers.
Our curve counts are thus an elementary generalization of the Catalan numbers
from discs to surfaces of general topology. (Other generalizations also exist, see e.g.
[12, 29].)

Despite being a straightforward combinatorial question that could have been
asked well over a century ago, we have not found many results about these curve
counts in the literature, beyond discs and annuli. Recently, Drube–Pongtanapaisan
in [11] counted a slightly different notion of curves on annuli, and Kim in [24]
counted non-crossing matchings and permutations on annuli.

In this introduction, we present an outline of the results in this paper.

1.2. Counts of curves on surfaces

As noted, G0,1(2m) is the mth Catalan number. For small g and n, explicit formulae
for the Gg,n(b1, . . . , bn) can be given as follows. The formulae depend on the parity
of the bi, and so we write bi = 2mi or 2mi + 1, with mi a non-negative integer,
accordingly.

Proposition 1.2. For any integers m1,m2,m3 ≥ 0,

G0,1(2m) = Cm =
1

m+ 1

(
2m
m

)
, the mthCatalan number

(1)

G0,2(2m1, 2m2) =
m1 +m2 +m1m2

m1 +m2

(
2m1

m1

)(
2m2

m2

)
(2)

G0,2(2m1 + 1, 2m2 + 1) =
(2m1 + 1)(2m2 + 1)

m1 +m2 + 1

(
2m1

m1

)(
2m2

m2

)
(3)
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G0,3(2m1, 2m2, 2m3) = (m1 + 1)(m2 + 1)(m3 + 1)
(

2m1

m1

)(
2m2

m2

)(
2m3

m3

)
(4)

G0,3(2m1 + 1, 2m2 + 1, 2m3) = (2m1 + 1)(2m2 + 1)(m3 + 1)
(

2m1

m1

)(
2m2

m2

)(
2m3

m3

)
(5)

G1,1(2m) =
(
m2

12
+

5m
12

+ 1
)(

2m
m

)
. (6)

The result for G0,1(2m) is general knowledge. The special caseG0,2(2n, 0) =
(
2n
n

)
appears in a paper of Przytycki [34]; we are unable to find it elsewhere in the
literature. The result forG0,2 was found by Kim [24, Theorem 6.2]; we were informed
of this result after posting the initial version of this paper. The other formulae, so
far as we know, are new. We prove the statements for annuli by direct combinatorial
arguments, which we develop in Sec. 3.

In each case above, Gg,n(b1, . . . , bn) is given by a product of combinatorial fac-
tors of the form

(
2m
m

)
, multiplied by a symmetric rational function in the bi (or

equivalently mi); these factors and rational functions depend on the parity of the
bi. We show that the Gg,n have a similar structure for all (g, n). In fact, the cases
(g, n) = (0, 1) and (0, 2) are exceptional: for any other (g, n), we obtain polynomials
rather than rational functions.

Theorem 1.3. For (g, n) �= (0, 1), (0, 2), Gg,n(b1, . . . , bn) is the product of

(i) a combinatorial factor
(
2mi

mi

)
for each i = 1, . . . , n, where bi = 2mi if bi is even

and bi = 2mi + 1 if bi is odd; and
(ii) a quasi-polynomial Pg,n(b1, . . . , bn), symmetric in the variables b1, . . . , bn,

depending on the parity of b1, . . . , bn, with rational coefficients, of degree
3g − 3 + 2n.

(A quasi-polynomial f(x1, . . . , xn) is a family of polynomial functions depending
on some congruence classes of the integers x1, . . . , xn.)

Thus, for instance, if (g, n) �= (0, 1), (0, 2) and all bi are even, bi = 2mi, then

Gg,n(2m1, . . . , 2mn) =
(

2m1

m1

)
· · ·
(

2mn

mn

)
Pg,n(2m1, . . . , 2mn),

where Pg,n is a polynomial of degree 3g−3+2n with rational coefficients; there will
be a similar expression (but with a different polynomial), for Gg,n(2m1 + 1, 2m2 +
1, 2m3, . . . , 2mn); and so on.

The proof of Theorem 1.3 is effective: it provides a method by which such
formulae can be calculated for any (g, n).

The Gg,n also satisfy a recursion, expressing the counts on a surface in terms of
counts on surfaces with simpler topology.
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Theorem 1.4. For integers g ≥ 0, n ≥ 1 and b1, . . . , bn such that b1 > 0 and
b2, . . . , bn ≥ 0,

Gg,n(b1, . . . , bn) =
∑
i,j≥0

i+j=b1−2

Gg−1,n+1(i, j, b2, . . . , bn)

+
n∑

k=2

bkGg,n−1(b1 + bk − 2, b2, . . . , b̂k, . . . , bn)

+
∑
i,j≥0

i+j=b1−2

∑
g1,g2≥0
g1+g2=g

∑
I�J={2,...,n}

Gg1,|I|+1(i, bI)Gg2,|J|+1(j, bJ).

Any Gg,n(b1, . . . , bn) can be computed by this recursion with initial conditions
Gg,n(0, . . . , 0) = 1.

In particular, Theorem 1.4 implies that all Gg,n are finite! The notation b̂k
means that bk is omitted from the list b2, . . . , bn. We will discuss the details of this
theorem, including the notation, in Sec. 6.1.

This recursion is not new: an identical recursion was written down by Walsh
and Lehman to enumerate rooted maps [35]. This result was rediscovered in the
context of the generalized Catalan numbers by Dumitrescu, Mulase, Safnuk, Sorkin
and Su�lkowski [12, 29]. Note however that our enumeration uses a different set
of initial conditions. One wonders if two such enumerative problems satisfying the
same recursion, but with different initial conditions, may be related in a more direct
manner.

1.3. Counts of non-boundary-parallel curves

As we will see, it is natural also to count collections of curves satisfying an additional
condition: that no curve be boundary-parallel. In other words, we require that no
curve cut off a disc. Let Ng,n(b1, . . . , bn) be the number of such collections of curves.
The relationship between Gg,n and Ng,n is analogous to the relationship between
Hurwitz numbers and pruned Hurwitz numbers [10].

As with the Gg,n, we give some explicit formulae for the Ng,n.

Proposition 1.5. For any integers b1, b2, b3, b4 ≥ 0,

N0,1(b1) = δb1,0 (7)

N0,2(b1, b2) = b̄1δb1,b2 (8)

N0,3(b1, b2, b3) = b̄1b̄2b̄3 provided b1 + b2 + b3 is even; 0 otherwise. (9)

N0,4(b1, b2, b3, b4) = b̄1b̄2b̄3b̄4 N̂0,4(b1, b2, b3, b4) (provided not all bi = 0) (10)

N1,1(b1) = b̄1

(
b21
48

+
5
12

)
(provided b1 �= 0 even), (11)
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where N̂0,4(b1, b2, b3, b4) is the quasi-polynomial

N̂0,4(b1, b2, b3, b4) =



1
4

(b21 + b22 + b23 + b24) + 2 all bi even

1
4

(b21 + b22 + b23 + b24) +
1
2

two bi even, two bi odd

1
4

(b21 + b22 + b23 + b24) + 2 all bi odd

0 otherwise

Here, n̄ is a convenient notation, defined as follows:

Definition 1.6. For an integer n ≥ 0, we define

n̄ = n+ δn,0 =

{
n n > 0,

1 n = 0.

The pattern in the structure of Ng,n continues, the cases (g, n) = (0, 1) and
(0, 2) again being exceptional. We again obtain symmetric quasi-polynomials; in
fact, they are all even symmetric polynomials.

Theorem 1.7. For (g, n) �= (0, 1), (0, 2) and (b1, . . . , bn) �= (0, . . . , 0),

Ng,n(b1, . . . , bn) = b̄1 · · · b̄n N̂g,n(b1, . . . , bn),

where N̂g,n(b1, . . . , bn) is a symmetric quasi-polynomial over Q in b21, . . . , b
2
n of

degree 3g − 3 + n, depending on the parity of b1, . . . , bn.

The proof is again effective: in principle, we can calculate the quasi-polynomials
for any Ng,n.

The general curve count Gg,n and the non-boundary-parallel curve count Ng,n

are related by the following result, for which we give a direct combinatorial proof
in Sec. 4.

Theorem 1.8. For (g, n) �= (0, 1) and integers b1, . . . , bn,

Gg,n(b1, . . . , bn) =
∑

a1,...,an∈Z

 b1
b1 − a1

2

 · · ·
 bn
bn − an

2

Ng,n(a1, . . . , an).

Here, we consider the binomial coefficient
(
M
N

)
to be zero unless M,N are

positive integers satisfying 0 ≤ N ≤ M , and we regard Ng,n(a1, . . . , an) or
Gg,n(b1, . . . , bn) as zero if any ai < 0 or bi < 0.

The degree 3g−3+n of the quasi-polynomials N̂g,n is familiar as the (complex)
dimension of the moduli space of curves Mg,n. We will show, in fact, that the top-
degree terms of these polynomials encode intersection numbers in the compactified
moduli space Mg,n (see generally e.g. [21]).

Theorem 1.9. For (g, n) �= (0, 1), (0, 2), the non-zero polynomials representing the
quasi-polynomial N̂g,n(b1, . . . , bn) agree in their top-degree terms. For non-negative
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integers d1, . . . , dn such that d1 + · · · + dn = 3g − 3 + n, the coefficient cd1,...,dn of
bd1
1 · · · bdn

n satisfies

cd1,...,dn =
1

25g−6+2n d1! · · · dn!
〈ψd1

1 · · ·ψdn
n , Mg,n〉.

Here, ψi ∈ H2(Mg,n; Q) is the Chern class of the vector bundle over Mg,n given
by pulling back the cotangent bundle at the i’th marked point. We could also write

cd1,...,dn =
1

25g−6+2n d1! · · · dn!

∫
Mg,n

ψd1
1 · · ·ψdn

n .

The top-degree coefficients cd1,...,dn in fact agree exactly with the lattice count
polynomials of Norbury [31] and agree up to simple normalization constants with the
volume polynomials of Kontsevich [25] and the Weil–Petersson volume polynomials
calculated by Mirzakhani [27]. Hence, the asymptotics of the polynomials N̂g,n are
equivalent to the asymptotics of volumes of moduli spaces of curves Mg,n. Details
are given in Sec. 7.3.

Thus, such a naive enterprise as counting curves on surfaces leads naturally to
the topology of moduli spaces.

The Ng,n and N̂g,n also obey a recursion, of a similar nature as for the Gg,n,
given in Proposition 6.1.

1.4. Curve-counting refined by regions

When counting curves, we can also keep track of the number of regions into which
they cut the surface.

Definition 1.10. A complementary region of an arc diagram C on (S, F ) is a con-
nected component of S\C. The number of complementary components is denoted
r.

We define Gg,n,r(b1, . . . , bn) to be the number of collections of curves with r

complementary regions; similarly, we can define Ng,n,r(b1, . . . , bn). It turns out these
counts, refined by the number of regions, obey many properties similar to unrefined
curve counts. For instance, the Gg,n,r obey a similar recursion to the Gg,n.

Theorem 1.11. For any integers g ≥ 0, n ≥ 1, r ≥ 1, b1 > 0 and b2, . . . , bn ≥ 0,

Gg,n,r(b1, . . . , bn)

=
∑

i,j≥0
i+j=b1−2

Gg−1,n+1,r(i, j, b2, . . . , bn)

+
n∑

k=2

bkGg,n−1,r(b1 + bk − 2, b2, . . . , b̂k, . . . , bn)

+
∑

g1+g2=g
I1�I2={2,...,n}

∑
i,j≥0

i+j=b1−2

∑
r1,r2≥1
r1+r2=r

Gg1,|I1|+1,r1(i, bI1)Gg2,|I2|+1,r2(j, bI2).

1750012-7
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A recursion of a similar nature is given for Ng,n,r in Proposition 9.14.
Once g, n, b1, . . . , bn are fixed, the number of regions r into which S can be cut

by a collection of arcs is clearly bounded. We prove various inequalities between
these parameters in Sec. 9.5. In the process, we find that it is useful to introduce an
alternative parameter to track the number of regions, which we call t. (Explicitly,
t = r − χ(S) − 1

2

∑
bi.) As such, we have a second way of refining the curve

counts, which we denote Gt
g,n and N t

g,n. The Gt
g,n and N t

g,n obey polynomiality
properties similar to, but more complicated than, Gg,n and Ng,n. One result is the
following.

Theorem 1.12. For (g, n) �= (0, 1), (0, 2), positive integers b1, . . . , bn, and setting
t = 0,

N0
g,n(b1, . . . , bn) = b̄1 · · · b̄nN̂0

g,n(b1, . . . , bn),

where N̂0
g,n is a symmetric quasi-polynomial over Q in b21, . . . , b2n, of degree 3g−3+n,

depending on the parity of b1, . . . , bn.

Precise and more detailed statements are given in Theorems 9.17 (polynomial-
ity) and 9.19 (degree). A precise statement of polynomiality for the Gt

g,n is Theo-
rem 9.21. We compute several examples of refined counts explicitly in Sec. 9.1.

These refined polynomials also recover intersection numbers on moduli
spaces.

Theorem 1.13. For (g, n) �= (0, 1), (0, 2), positive integers b1, . . . , bn and t = 0,
the non-zero polynomials representing the quasi-polynomial N̂0

g,n(b1, . . . , bn) agree in
their top-degree terms, and they agree with the top-degree terms of N̂g,n(b1, . . . , bn).
That is, the coefficient cd1,...,dn of bd1

1 · · · bdn
n is given by

cd1,...,dn =
1

25g−6+2n d1! · · ·dn!

∫
Mg,n

ψd1
1 · · ·ψdn

n .

A more general statement is proved in Theorem 9.19. The N̂ t
g,n have similar

properties for other values of t (not just t = 0). We can also set some of the
variables bi to zero. For different choices of t and choices of variables set to zero,
we obtain different polynomials. It is as if N̂g,n(b1, . . . , bn) is a quasi-polynomial
depending on the “parity” of b1, . . . , bn, where there are three possible “parities”:
even, odd and zero.

For each choice of k, the number of variables set to zero, and t, in an appropriate
range, we obtain a separate quasi-polynomial in the b2i . We show that N̂ t

g,n has
degree at most 3g−3+n− t+k in general (Theorem 9.18); and if k = t, the degree
is exactly 3g−3+n, with top-degree coefficients agreeing with N̂g,n (Theorem 9.19).

In a certain sense, given a collection of curves, t is a measure of “how separating”
the curves are. The above theorems say that it is sufficient to consider curves which
are “as non-separating as possible” in order to recover the geometry of moduli
spaces.

1750012-8
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1.5. Differential forms and free energies

The curve counts Gg,n and Ng,n fit, at least to some extent, into the framework of
the topological recursion of Chekhov, Eynard and Orantin, with its connections to
enumerative geometry and mathematical physics [6, 15, 18].

Following this framework (e.g. [28, 29]), we define several generating functions
based on the Ng,n and Gg,n. Chief among these are multidifferentials in n variables
x1, . . . , xn on CP1 defined by

ωg,n(x1, . . . , xn) =
∑
µ1≥0

· · ·
∑

µn≥0

Gg,n(µ1, . . . , µn) x−µ1−1
1 · · ·x−µn−1

n dx1 · · · dxn.

(In the case (g, n) = (0, 1), we have two distinct forms, which we denote ωG
0,1

and ωN
0,1; see Sec. 8.1.) Although defined as a formal power series, ωg,n is in fact

meromorphic (Proposition 8.3).
It turns out, if we rewrite ωg,n with respect to new variables z1, . . . , zn defined

by xi = zi + 1
zi

, then the coefficients switch from the curve counts Gg,n, to the non-
boundary-parallel curve counts Ng,n. A similar phenomenon occurs with pruned
Hurwitz numbers [10].

Theorem 1.14. For (g, n) �= (0, 1),

ωg,n =
∑
ν1≥0

· · ·
∑

νn≥0

Ng,n(ν1, . . . , νn) zν1−1
1 · · · zνn−1

n dz1 · · ·dzn.

We can then obtain free energies Fg,n by integrating the ωg,n, i.e. finding func-
tions Fg,n(z1, . . . , zn) such that

dz1 · · · dznFg,n(z1, . . . , zn) = ωg,n(z1, . . . , zn).

We compute several ωg,n explicitly (Lemma 8.2) and also several free energies as
follows:

Proposition 1.15. The following functions are free energy functions.

FN
0,1(z1) = log z1

FG
0,1(z1) =

1
2
z2
1 − log z1

F0,2(z1, z2) = log z1 log z2 − log(1 − z1z2)

F0,3(z1, z2, z3) = log z1 log z2 log z3 +
z1z2 + z2z3 + z3z1 + 1

(1 − z2
1)(1 − z2

2)(1 − z2
3)

+
∑
cyc

(
log z1 log z2

1 − z2
3

+
(z1z2 + 1) log z3
(1 − z2

1)(1 − z2
2)

)
.

The differential forms ωg,n can be refined according to number of regions. For
each value of the number of regions r, and the related parameter t, we obtain mero-
morphic forms ωg,n,r and ωt

g,n (Proposition 10.5). We also show (Proposition 10.6)

1750012-9
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that changing coordinates from zi to xi, changes ωt
g,n from a generating function

for the N t
g,n, into a generating function for the Gt

g,n. (However, such a statement
does not hold for ωg,n,r.) In other words, Theorem 1.14 can be refined with respect
to t.

Moreover, for given g, n, there are only finitely many possible values of t, so ωg,n

splits as a finite sum of ωt
g,n. We compute some ωt

g,n explicitly in Sec. 10.2. We can
similarly refine free energies Fg,n into a finite sum of F t

g,n. The following explicit
computations can be compared with Proposition 1.15.

Proposition 1.16. The following functions are free energy functions.

FN,0
0,1 (z1) = log z1

FG,0
0,1 (x1) =

1
2
z2
1 − log z1

F 0
0,2(z1, z2) = − log(1 − z1z2)

F 1
0,2(z1, z2) = log z1 log z2

F 0
0,3(z1, z2, z3) =

z1z2 + z2z3 + z3z1 + 1
(1 − z2

1)(1 − z2
2)(1 − z2

3)

F 1
0,3(z1, z2, z3) =

(z2z3 + 1) log z1
(1 − z2

2)(1 − z2
3)

+
(z3z1 + 1) log z2
(1 − z2

3)(1 − z2
1)

+
(z1z2 + 1) log z3
(1 − z2

1)(1 − z2
2)

F 2
0,3(z1, z2, z3) = log z1 log z2 log z3 +

log z1 log z2
1 − z2

3

+
log z2 log z3

1 − z2
1

+
log z3 log z1

1 − z2
2

.

1.6. Differential equations and partition function

The recursions on the curve counts Gg,n and Ng,n (and also their refined versions)
translate into recursive differential equations on their generating functions.

The differential forms ωg,n can be written as fg,n(x1, . . . , xn) dx1 · · ·dxn, where

fg,n(x1, . . . , xn) =
∑

µ1,...,µn≥0

Gg,n(µ1, . . . , µn)x−µ1−1
1 · · ·x−µn−1

n

is a function of n variables. To form a recursive differential equation on the fg,n, we
take the recursion in Theorem 1.4, multiply by x−µ1−1

1 · · ·x−µn−1
n , and sum over

µ1, . . . , µn. However, Theorem 1.4 does not apply when b1 = 0, so certain terms are
missing, corresponding to the initial conditions in the recursion. In other words,
the obstacle to obtaining a recursive differential equation in the fg,n is not the
recursion, but the initial conditions.

One way to deal with this issue is to “differentiate out” the initial terms; doing
so, we obtain a differential equation given in Proposition 8.7.

A better way to deal with this issue is to use the refined counts of curves,
keeping track of the number of regions. With refined counts, there is a simple way
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to express Gg,n,r(0, b2, . . . , bn) in terms of Gg,n−1,r(b2, . . . , bn) (Proposition 9.4).
This is something like a “dilaton equation” for curve-counting.

Therefore, we define generating functions which keep track of the number of
regions r, using a new variable α. We can define a generating function

fg,n(x1, . . . , xn;α) =
∑
r≥1

∑
µ1,...,µn≥0

Gg,n,r(µ1, . . . , µn) x−µ1−1
1 · · ·x−µn−1

n αr.

(This function is also called fGg,n in Sec. 10.5). In fact, in Sec. 10.5, we consider vari-
ous generating functions and differential forms, which use the various refined counts
Gg,n,r, Gt

g,n, Ng,n,r and N t
g,n. We find relations between them (Proposition 10.11)

and show they are all meromorphic (Propositions 10.8 and 10.12). We also compute
them in various small cases; the fg,n(x;α) reduce to fg,n(x) upon setting α = 1. We
can then obtain a recursive differential equation in the fg,n.

Proposition 1.17. For any g ≥ 0 and n ≥ 1,

x1 fg,n(x1, . . . , xn;α) = fg−1,n+1(x1, x1, x2, . . . , xn;α)

+
n∑

k=2

∂

∂xk

1
xk − x1

(fg,n−1(x2, . . . , xn;α)

− fg,n−1(x1, x2, . . . , x̂k, . . . , xn;α))

+
∑

g1+g2=g
I1�I2={2,...,n}

fg1,|I1|+1(x1, xI1 ;α)fg2,|I2|+1(x1, xI2 ;α)

+α
∂

∂α
fg,n−1(x2, . . . , xn;α).

From this, we find a differential equation on free energies Fg,n(x1, . . . , xn;α)
defined by integrating the fg,n.

Theorem 1.18. There are free energies Fg,n(x1, . . . , xn;α) such that

x1
∂

∂x1
Fg,n(x1, . . . , xn;α)

=
∂2

∂u∂v
Fg−1,n+1(u, v, x2, . . . , xn;α)

∣∣∣
u=v=x1

+
n∑

k=2

1
xk − x1

×
(

∂

∂xk
Fg,n−1(x2, . . . , xn;α) − ∂

∂x1
Fg,n−1(x1, . . . , x̂k, . . . , xn;α)

)
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+
∑

g1+g2=g
I1�I2={2,...,n}

∂

∂x1
Fg1,|I1|+1(x1, xI1 ;α)

∂

∂x1
Fg2,|I2|+1(x1, xI2 ;α)

+α
∂

∂α
Fg,n−1(x2, . . . , xn;α).

This differential recursion on the free energies Fg,n resembles the recursion on
free energies of Mulase–Su�lkowsi’s “generalized Catalan numbers” [29]. An identical
recursion applies in that case, but the harder initial conditions here require our
recursion to have an extra term.

Combining the free energies into a so-called partition function

Z = exp

[ ∞∑
m=0

�m−1
∑

2g+n−1=m

1
n!

Fg,n(x, . . . , x;α)

]
we obtain a differential equation satisfied by Z.

Theorem 1.19. (
�2 ∂

2

∂x2
− �x

∂

∂x
+ �2α

∂

∂α
+ α

)
Z = 0.

This differential equation provides something like a “quantum curve” result for
the curve countsGg,n, although the extra parameter α appears non-standard. There
is a resemblance to the equation x2 − xz + α = 0, which is obtained from setting

z = fG0,1(x1;α) = x1−
√

x2
1−4α

2 .
It would be interesting to know whether our enumeration is governed by the

topological recursion of Chekhov, Eynard and Orantin [6, 15, 18]. The resemblance
of the recursion of Theorem 1.4 to the recursion for the enumeration of ribbon
graphs [23, 12], though with different initial conditions, suggests that our enumer-
ation may relate instead to the so-called blobbed topological recursion of Borot [1].
Furthermore, the work of Kazarian and Zograf demonstrates that enumerative prob-
lems governed by recursions such as that of Theorem 1.4 may often be encapsulated
in the form of Virasoro constraints [23]. A similar analysis in the context of count-
ing curves on surfaces may hold, which would then lead to a relation between our
enumeration and integrable hierarchies.

1.7. Structure of paper

This paper is organized as follows. In Sec. 2, we set up our framework for counting
curves, and make some elementary observations. In Sec. 3, we count curves on
discs and annuli, giving formulae for curve counts by elementary combinatorial
arguments.

We then turn to the relationship between the curve counts Gg,n and Ng,n. In
Sec. 4, we show that any collection of curves on a surface can be decomposed in an
essentially unique way into a part “local to the boundary”, and a “core” (Sec. 4.1).
We use this “local decomposition” to express Gg,n in terms of Ng,n (Sec. 4.2).
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We are then able to count curves on pants in Sec. 5. After establishing some
terminology (Sec. 5.1), we directly compute N0,3 (Sec. 5.2) and G0,3 (Sec. 5.3).

In Sec. 6, we turn to recursion. We establish recursions for Gg,n (Sec. 6.1) and
Ng,n (Sec. 6.2), and use these to make some computations (Sec. 6.3).

We then turn to polynomiality. After some preliminary work (sec. 7.1), we estab-
lish polynomiality of the Ng,n (Sec. 7.2). Reflecting on this proof establishes the
agreement of top-degree terms with Norbury’s lattice count, giving us results about
moduli spaces and intersection numbers (Sec. 7.3). We can then prove polynomiality
for the Gg,n (Sec. 7.4).

Next, we consider generating functions and differential forms. After defining
(Sec. 8.1) and computing some small cases (Sec. 8.2) of these generating functions,
we show they are meromorphic (Sec. 8.3). We can then show that the expansion
of ωg,n in x and z coordinates yields the Gg,n and Ng,n (Sec. 8.4). Free energies
can then be defined and computed in small cases (Sec. 8.5), and we can make some
initial observations about recursions and differential equations for the generating
functions (Sec. 8.6).

In Sec. 9, we introduce the refinement of counts by regions. After making def-
initions and compute refined counts on discs and annuli (Sec. 9.1), we prove a
sort of “dilaton equation” (Sec. 9.2). We discuss how the concept of local decom-
position (Sec. 9.3) can be refined, and then use it to compute refined counts on
pants (Sec. 9.4). We consider bounds on the number of regions (Secs. 9.5 and 9.6),
refine the recursion (Sec. 9.7) and then use these results to prove polynomiality
for general refined curve counts (Secs. 9.8–9.11). Along the way, we obtain rela-
tions between the refined polynomials and intersection numbers on moduli spaces
of curves (Sec. 9.10).

Section 10 is devoted to refining the results obtained in Sec. 8 according to
the number of complementary regions (Secs. 10.1–10.6). Finally, we obtain differ-
ential equations for the free energies and use this to determine an equation satis-
fied by the partition function that is reminiscent of the notion of quantum curve
(Sec. 10.7).

2. Which Curves to Count?

2.1. Arc diagrams and equivalence

Throughout, we assume all surfaces are compact, connected and oriented, unless
specified otherwise. We will write Sg,n to denote a surface of genus g with n bound-
ary components; when g and n are clear, we simply write S.

We consider finite sets of marked points F ⊂ ∂Sg,n. We label the boundary
components B1, . . . , Bn and write bi = |F ∩ Bi| and b = (b1, . . . , bn). We allow
bi = 0 and indeed, we allow b = 0. We will write F (b1, . . . , bn) = F (b) to denote
such a finite set, and when b is clear, we simply write F .

In Definition 1.1, we defined arc diagrams on (S, F ) = (Sg,n, F (b)) and their
equivalences, and the numbers Gg,n(b1, . . . , bn) which count equivalence classes
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of arc diagrams. Since an arc diagram is a properly embedded collection of arcs
C ⊂ S, it consists of finitely many unoriented arcs connecting points of F . Proper
embedding requires that precisely one arc of C emanate from each point of F , and
that arcs do not intersect. See Fig. 1. By prohibiting crossings, the topology of S
restricts the possible arrangements of curves.

(Strictly speaking, one should distinguish between the embedding of a disjoint
union of intervals into S, and the image of this map. Pre-composing such an embed-
ding with a self-homeomorphism of these intervals gives an equivalent embedding.
In practice, we abuse notation and conflate the embedding with its image, regarding
C as a subset of S. It should not cause any confusion.)

Note that several other reasonable definitions of collections of curves on (S, F )
are possible: for instance, one might allow certain closed curves, require curves to
be oriented, or consider dividing sets or sutures.

While the set of arc diagrams on a given (S, F ) is infinite, we will show that
up to the notion of equivalence in Definition 1.1, the number of arc diagrams on
(S, F ) is finite (as mentioned in the introduction, this follows from the recursion in
Theorem 1.4, which is proved in Sec. 6.1).

Our notion of equivalence, i.e. up to a homeomorphism of the surface fix-
ing the boundary pointwise, is stronger than isotopy. But in general there are
infinitely many isotopy classes of arc diagrams on a given (S, F ). For instance,
for an arc diagram C which essentially intersects a homologically non-trivial sim-
ple closed curve γ, applying Dehn twists about γ to C yields infinitely many
non-isotopic arc diagrams. Arguably, then, the simplest way to count curves
on surfaces is to count equivalence classes of arc diagrams as we have defined
them.

As our notion of equivalence involves homeomorphisms fixing the boundary
pointwise, the labels 1, . . . , n on the boundary components, and the numbers
b1, . . . , bn are fixed (they are not permuted) as we count curves. The number of
equivalence classes only depends on the numbers g, n, b1, . . . , bn. Hence, the follow-
ing definition makes sense.

Definition 2.1. The set of equivalence classes of arc diagrams on (Sg,n, F (b)) is
denoted Gg,n(b).

Thus, Gg,n(b) = |Gg,n(b)|. Our notion of arc diagram includes the empty arc
diagram. Thus, for all g and n, Gg,n(0) = 1.

If φ is homeomorphism of S providing an equivalence between arc diagrams
C1, C2, then as φ fixes ∂S pointwise, and so takes arcs and complementary regions
of C1 to those of C2 in a canonical fashion. Hence, we may refer to an arc or
complementary region of an equivalence class without ambiguity. In practice, we
often drop the phrase “equivalence classes of” for convenience, and refer only to
counting arc diagrams; we hope that the meaning is clear.
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As discussed in the introduction, it will be useful to consider arc diagrams
without boundary-parallel arcs. An embedded arc in S is boundary-parallel if it is
homotopic (relative to endpoints) to an arc lying entirely in ∂S.

Definition 2.2. The set of equivalence classes of arc diagrams on (Sg,n, F (b))
without boundary-parallel arcs is denoted Ng,n(b).

Thus Ng,n(b) = |Ng,n(b)|.
Definition 2.3. For g ≥ 0, n ≥ 1 and b1, . . . , bn ≥ 0, we define

N̂g,n(b) =
Ng,n(b)
b̄1 · · · b̄n .

2.2. First considerations

Some initial observations about Gg,n(b) are clear.

Lemma 2.4. For any g ≥ 0 and n ≥ 1, if b1 + · · · + bn is odd, then Gg,n(b) = 0.

Proof. Every arc has two endpoints, and the number of endpoints is b1 + · · ·+ bn.

We may regard Gg,n as a function Nn
0 → N0, where N0 = {0, 1, 2, . . .}. That

is, Gg,n takes an n-tuple of non-negative integers (b1, . . . , bn) and returns a non-
negative integer.

Lemma 2.5. The function Gg,n(b1, . . . , bn) is a symmetric function of b1, . . . , bn.

Proof. For any permutation σ ∈ Sn, there is a homeomorphism φ : S → S permut-
ing the boundary components according to σ, φ(Bi) = Bσ(i). So Gg,n(b1, . . . , bn) =
Gg,n(bσ(1), . . . , bσ(n)).

3. Counting Curves on Annuli and Discs

3.1. Definitions and statements

We begin counting curves on some simple surfaces, starting with annuli. As it turns
out, along the way, we will be able to count curves on discs. So let S = S0,2 and
F = F (b1, b2), and let bi = 2mi or 2mi + 1 accordingly as bi is even or odd.

Definition 3.1.

(i) A properly embedded arc on an annulus is traversing if its endpoints lie on
distinct boundary components, and insular if its endpoints lie on the same
boundary component.

(ii) An arc diagram on an annulus is traversing if it contains a traversing arc, and
insular if all its arcs are insular.
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(iii) The number of equivalence classes of traversing arc diagrams on (S, F ) is
denoted T (b1, b2), and the number of equivalence classes of insular arc diagrams
is denoted I(b1, b2).

Note that “insular arc” is synonymous with “boundary-parallel arc”, and
“traversing arc” with “non-boundary-parallel arc”. In an insular arc diagram, all
arcs stay close to their home boundary component, but in a traversing arc diagram,
some brave arc traverses the annulus from one side to the other. The empty arc
diagram is vacuously insular.

We will give I(b1, b2) and T (b1, b2) explicitly. By Lemma 2.4, we only need to
consider b1, b2 both even or both odd. And it is clear that in an insular arc diagram
both b1, b2 must be even.

Proposition 3.2. For integers m1,m2 ≥ 0,

I(2m1, 2m2) =
(

2m1

m1

)(
2m2

m2

)
.

Proposition 3.3. For integers m1,m2 ≥ 0,

T (2m1, 2m2) =
m1m2

m1 +m2

(
2m1

m1

)(
2m2

m2

)
T (2m1 + 1, 2m2 + 1) =

(2m1 + 1)(2m2 + 1)
m1 +m2 + 1

(
2m1

m1

)(
2m2

m2

)
.

Clearly G0,2(b1, b2) = I(b1, b2)+T (b1, b2), so Proposition 1.2(2)–(3) follows from
these two propositions.

We prove these propositions by bijective combinatorial arguments, in Secs. 3.2
and 3.3, respectively. Proposition 3.3 is identical in content to [24, Theorem 6.2],
which in fact contains a more general result with cyclic sieving (Lemma 3.3).

First, however, we calculate r, the number of complementary regions. This
depends on whether the diagram is insular or traversing.

Lemma 3.4. Let C be an arc diagram on an annulus.

(i) If C is insular then r = 1
2 (b1+b2)+1. One complementary region is an annulus;

the rest are discs.
(ii) If C is traversing then r = 1

2 (b1 + b2). All complementary regions are discs.

Proof. First, note that C has precisely 1
2 (b1 + b2) arcs.

If γ is a traversing arc, then cutting along γ cuts S into a disc. Cutting further
along the other 1

2 (b1 + b2) − 1 arcs of C, each cut slices off an extra disc. So S\C
consists of 1

2 (b1 + b2) discs.
If C is insular then, successively cutting along outermost arcs, each cut slices

off a disc. At the end, we have 1
2 (b1 + b2) discs and an annulus.
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3.2. Insular diagrams

We will draw annuli in a standard way, as the region between two concentric cir-
cles in the plane. We can naturally then speak of “clockwise” and “anticlockwise”
directions.

An oriented insular arc γ is isotopic to a properly embedded arc consisting
of a radial arc, followed by an “angular” arc at constant radius from the center,
followed by another radial arc. We say γ is clockwise or anticlockwise according to
the direction of the angular arc.

Given an insular arc diagram C on (S, F ), we may orient each arc anticlockwise.
Each arc then points into S at one endpoint, and out at the other end. The points
of F can be labeled in and out accordingly; we can represent these labels by arrows
pointing into or out of S. This leads us to the following definition.

Definition 3.5. An arrow diagram on (S, F ) is a labeling of points of F either “in”
or “out” so that on each boundary component, exactly half the points are labeled
“in” and half are labeled “out”.

The set of all arrow diagrams on (S, F ), is denoted A(b1, b2).

If an arrow diagram exists on (S, F ), then b1, b2 must both be even, (b1, b2) =
(2m1, 2m2), and we have

|A(2m1, 2m2)| =
(

2m1

m1

)(
2m2

m2

)
.

First, suppose one boundary component has no marked points, (b1, b2) =
(2m, 0). Let Φ : G0,2(2m, 0) → A(2m, 0) be the function which takes a dia-
gram (necessarily insular) to the arrow diagram obtained by orienting each arc
anticlockwise.

Lemma 3.6. The map Φ is a bijection. Hence

G0,2(2m, 0) = |G0,2(2m, 0)| = |A(2m, 0)| =
(

2m
m

)
.

The idea is that an arc diagram C ∈ G0,2(2m, 0) can be constructed from a ∈
A(2m, 0) by starting at a point of F (any point will do) and proceeding anticlockwise
around the annulus. Each time, we arrive at a point of F labeled “in”, we start
drawing a new arc, proceeding anticlockwise around the annulus. Each time, we
arrive at a point of F labeled “out”, we end an arc there (if possible). This process
produces a unique arc diagram. See Fig. 2.

Proof. Proof by induction on m. When m = 0, there is nothing to prove. When
m = 1, the construction is clear: draw an arc anticlockwise from the “in” to the
“out” point of F . This is clearly unique up to equivalence of arc diagrams.

For general m, note that in the arrow diagram a, as we proceed anticlockwise
around the 2m boundary points of F , there must be at least one point fin labeled
“in” followed immediately by another point fout labeled “out”. Any (equivalence
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Fig. 2. Constructing an arc diagram from an arrow diagram.

class of) arc diagram C such that Φ(C) = a must contain a “short” boundary-
parallel arc γ anticlockwise from fin to fout. The remaining 2m − 2 points of a
form an arrow diagram a′ ∈ A(2m− 2, 0). By induction, there exists a unique arc
diagram C′ with Φ(C′) = a′; taking C′ together with γ gives an arc diagram C

with Φ(c) = a. Moreover, since γ must be included, the uniqueness of C′ implies
uniqueness of C.

The idea of the proof above appears in Przytycki [34] and is due to him, so far
as we know. This argument is then used to give a formula for the Catalan numbers,
as we show now.

Proposition 3.7 (Przytycki). For any integer m ≥ 0,

G0,1(2m) =
1

m+ 1

(
2m
m

)
= Cm.

Proof. Consider the annulus (S, F ) = (S0,2, F (2m, 0)) and the disc (D,F (2m)).
There is a map Ψ : G0,2(2m, 0) → G0,1(2m) given by gluing a disc to the boundary
component B2 of (S, F ).

Given an arc diagram C on (D,F (2m)), we can remove a small disc D′ from the
interior of D, not intersecting any arcs, and obtain an arc diagram on (S, F (2m, 0)).
There are m+ 1 complementary regions of the m arcs of C, and removing D′ from
these distinct regions produces m+ 1 distinct arc diagrams on (S, F (2m, 0)). These
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arc diagrams form Ψ−1(C) precisely, so Ψ is (m+ 1)-to-1, and

G0,1(m) = |G0,1(m)| =
|G0,2(m, 0)|
m+ 1

=
G0,2(m, 0)
m+ 1

=
1

m+ 1

(
2m
m

)
= Cm.

This also proves Proposition 1.2(1).

Proof of Proposition 3.2. An insular diagram in G0,2(2m1, 2m2) can be
cut along a core curve into two insular arc diagrams, on (S, F (2m1, 0)) and
(S, F (2m2, 0)), respectively. This gives a bijection between insular arc diagrams
on (S0,2, F (2m1, 2m2)) and G0,2(2m1, 0) × G0,2(2m2, 0), so

I(2m1, 2m2) = G0,2(2m1, 0)G0,2(2m2, 0) =
(

2m1

m1

)(
2m2

m2

)
.

3.3. Traversing diagrams

We now turn to traversing diagrams on (S, F ) = (S0,2, F (b1, b2)). We draw our
annuli within the plane with B1 as “outer” and B2 as “inner” boundary.

Since each insular arc connects two points on the same boundary component,
the number of endpoints of traversing arcs on Bi has the same parity as bi, yielding
the following observation.

Lemma 3.8. The number of traversing arcs in an arc diagram on (S, F ) has the
same parity as b1 and b2. �

Our computation of T (b1, b2) involves bijections between certain combinatorial
sets, which we now define.

Definition 3.9. A decorated arc diagram on (S, F ) is a pair (C,R), where C is an
arc diagram on (S, F ), and R is a complementary region of C. The set of equivalence
classes of decorated traversing arc diagrams on (S, F ) = (S0,2, F (b1, b2)) is denoted
DT(b1, b2).

By Lemma 3.4, a traversing arc diagram has 1
2 (b1 + b2) complementary regions,

so

|DT(b1, b2)| =
1
2

(b1 + b2) T (b1, b2).

To count DT(b1, b2), we find a bijection with objects, we call special arrow diagrams.
We will deal with the even case (b1, b2) = (2m1, 2m2) and the odd case (b1, b2) =
(2m1 + 1, 2m2 + 1) separately. First, we consider the even case.

Definition 3.10. A special arrow diagram on (S, F (2m1, 2m2)) is an arrow dia-
gram together with a choice of one inward arrow on B2 (the special inward arrow),
and an outward arrow on B1 (the special outward arrow). The set of such arrow
diagrams is denoted SA(m1,m2).

We have seen there are
(
2m1
m1

)(
2m2
m2

)
arrow diagrams on (S, F ); hence

|SA(2m1, 2m2)| = m1m2

(
2m1
m1

)(
2m2
m2

)
.
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Next, we define a map Ψ : SA(2m1, 2m2) → DT(2m1, 2m2) as follows. Let a be
a special arrow diagram with special inward arrow i on the inner boundary B2 and
special outward arrow o on the outer boundary B1.

(i) Join special arrows i to o by an oriented arc γ. (There are many choices for γ,
but they are all related by homeomorphisms of S fixing the boundary, hence
lead to equivalent arc diagrams.)

(ii) Cut S along γ to obtain a disc D. The boundary of D, starting from o and
proceeding anticlockwise around B1, consists of B1 (traversed anticlockwise),
followed by γ (traversed backwards), followed by B2 (traversed clockwise),
followed by γ (traversed forwards). The remaining (unconnected, non-special)
arrows on (S, F ) provide D with 2(m1 +m2−1) marked boundary points, half
labeled “in” and half labeled “out”.

(iii) Choose a point p in the interior of D, and remove a small neighborhood of p.
We then have an annulus with 2(m1 + m2 − 1) marked boundary points on
one boundary component, half “in” and half “out”, and no points on the other
boundary component. That is, we have an arrow diagram in A(2m1 + 2m2 −
2, 0).

(iv) By the bijection Φ of Sec. 3.2, we obtain a unique (equivalence class of) arc
diagram C̃ on this annulus. This C̃ has the property that if its arcs are oriented
anticlockwise around the annulus, then the orientations agree with the arrows
at boundary points.

(V) Gluing back the neighborhood of p which was previously removed gives the disc
D, which now has an arc diagram C. The point p and its removed-and-returned
neighborhood now lie in a complementary region R of C.

(vi) Recall that ∂D contains two copies of the oriented arc γ, along which we
originally cut. We now glue these two copies of γ back together, reconstructing
the original annulus S. Combining C and γ gives an (equivalence class of)
arc diagram C on (S, F ), and the complementary region R of C becomes a
complementary region R of C. We define Ψ(a) = (C,R).

At each step, all choices are unique up to homeomorphisms of the surface fixing the
boundary. Thus, the equivalence class of the arc diagram C, and the region R, are
well-defined; so Ψ is well-defined.

This construction is perhaps more natural than it seems. The special arrows
show us how to cut the annulus into a disc. The remaining arrows around a disc
show us how to draw the remaining arcs. But arrows around the boundary are
equivalent to an arc diagram on an annulus obtained by removing a small sub-disc.
This is equivalent to an arc diagram on the annulus together with a choice of region.

Suppose a is special arrow diagram, and Ψ(a) = (C,R). The arc diagram C

consists of m1 + m2 arcs, which are all given an orientation in the construction,
agreeing with the arrows in a. From Lemma 3.8, the number of traversing arcs is
even; let this number be 2k.
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Fig. 3. The arc diagram Ct in the case (b1, b2) = (2m1, 2m2).

We claim that k traversing arcs run “inward” from B1 to B2, and k traversing
arcs run “outward” from B2 to B1. To see this, note that the arrow diagram a

consists of m1 inward and m1 outward arrows on B1, and insular arcs connect
some of the inward to outward arrows in pairs. Thus, the remaining 2k arrows,
which are the endpoints on B1 of traversing arcs, contain the same number k of
inward and outward arrows.

Let Ct denote the oriented arc diagram C with insular arcs removed. So Ct

consists of k inward and k outward traversing arcs. These arcs cut the annulus S
into 2k complementary disc regions, and we may speak of proceeding clockwise or
anticlockwise around the annulus from one traversing arc to the next, or from one
region to the next. One of the traversing arcs is the arc γ connecting the special
arrows; by construction γ points outward. And one of the regions R̃ of Ct contains
the region R and the point p in the construction. (As Ct is obtained from C by
removing arcs, the complementary regions of C are subsets of the complementary
regions of Ct.) See Fig. 3.

Lemma 3.11. Starting from γ and proceeding anticlockwise, the first k traversing
arcs of Ct (including γ) are oriented outward; then we pass through the region R̃;
and the final k traversing arcs of Ct are oriented inward.

Proof. Recall that in the construction of C, we first draw γ, oriented outward;
then we cut along γ, remove a neighborhood of p, and construct an oriented arc
diagram on the resulting annulus. These arcs are oriented so as to run anticlockwise
around this annulus; that is, they run anticlockwise around the point p. Hence,
once the traversing arcs are constructed, we see that those traversing arcs that
lie anticlockwise of R̃ and clockwise of γ must be oriented inward. Similarly, the
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traversing arcs that lie clockwise of R̃ and anticlockwise of γ must be oriented
outward. Since there are k inward and k outward traversing arcs, they must be
arranged as claimed.

In particular, proceeding clockwise through Ct from R̃, the arc γ is the kth
traversing arc encountered. (Similarly, proceeding anticlockwise through Ct from
R̃, the arc γ is the (k + 1)th traversing arc encountered.)

Lemma 3.12. Given (C,R) ∈ DT(2m1, 2m2), there is a unique special arrow dia-
gram a ∈ SA(2m1, 2m2) such that Ψ(a) = (C,R).

Proof. Let Ct be the arc diagram obtained by removing all insular arcs from C;
as C is traversing, Ct is non-empty, with 2k > 0 arcs. The complementary regions
of C are subsets of the complementary regions of Ct; denote the complementary
region of Ct containing R as R̃.

Proceed clockwise through Ct from R̃; denote the kth traversing arc encountered
as γ, orient it outward, and draw a special inward and outward arrow at its end-
points. By the preceding remark, if a is an arrow diagram such that Ψ(a) = (C,R),
then the special arrows must be located at these points.

Now return to the original diagram C, cut along γ, and remove a small neigh-
borhood of some point p ∈ R. Then we have an annulus (S′, F (2m1 + 2m2 − 2, 0)),
containing an arc diagram C′. By Lemma 3.6, there exists a unique arrow diagram
a′ on (S′, F (2m1 + 2m2 − 2, 0)) such that Φ(a′) = C′.

We now take the special arrow diagram a to consist of the arrows of a′, together
with the special arrows constructed above. By construction, applying Ψ to a first
reconstructs γ; then cuts along γ and removes a point p; then reconstructs the arc
diagram C′ on (S′, F (2m1 + 2m2−2, 0)); and finally fills in the hole and selects the
region containing the filled-in hole. This region is R, since the construction removes
a point from R to create the annulus S′. Thus, Ψ(a) = (C,R).

To show uniqueness, suppose we have a special arrow diagram ã satisfying
Ψ(ã) = (C,R); we will show ã = a. This ã must first contain the special arrows of a,
as remarked above. Cutting along the arc γ between them, and removing a neigh-
borhood of a point, we obtain an arrow diagram ã′ on (S′, F (2m1 + 2m2 − 2, 0)).
Now applying Φ to ã′ produces an arc diagram on S′ such that, after filling in
the hole and labeling the region R and re-gluing along γ, we obtain (C,R). Thus,
Φ(ã′) = Φ(a′). By Lemma 3.6, Φ is bijective, so ã′ = a′, and combined with the
special arrows, which agree, we have ã = a.

We have now shown Ψ is bijective, so

|DT(2m1, 2m2)| = |SA(2m1, 2m2)| = m1m2

(
2m1

m2

)(
2m2

m2

)
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and since above we showed |DT(b1, b2)| = b1+b2
2 T (b1, b2), we have

T (2m1, 2m2) =
|DT(2m1, 2m2)|

m1 +m2
=

m1m2

m1 +m2

(
2m1

m1

)(
2m2

m2

)
proving Proposition 3.3 in the even case.

The argument in the odd case is similar, but with slightly different diagrams.

Definition 3.13. A special arrow diagram on (S, F (2m1+1, 2m2+1)) consists of a
triple (f1, f2, a), where fi ∈ F ∩Bi is an exceptional marked point on each boundary
component, and a is an arrow diagram on (S, F\{f1, f2}). The set of special arrow
diagrams on (S, F ) is denoted SA(2m1 + 1, 2m2 + 1).

After removing f1, f2, each boundary component contains an even number of
marked points, so that an arrow diagram exists. We have

|SA(2m1 + 1, 2m2 + 1)| = (2m1 + 1)(2m2 + 1)
(

2m1

m1

)(
2m2

m2

)
.

We now define a map SA(2m1 + 1, 2m2 + 1) → DT(2m1 + 1, 2m2 + 1),
which we will show to be a bijection. The definition is similar to the map
SA(2m1, .2m2) → DT(2m1, 2m2). We call both maps Ψ, so that we will have bijec-
tions Ψ : SA(b1, b2) → DT(b1, b2) for all b1, b2. Let (f1, f2, a) ∈ SA(2m1+1, 2m2+1).

(i) Join the exceptional points f1 and f2 by a traversing arc γ. (There are many
choices for γ, but they are all related by homeomorphisms of S fixing the
boundary.)

(ii) Cut along γ to obtain a disc D. The arrow diagram a gives an arrow diagram
on D with 2m1 + 2m2 arrows, half in and half out.

(iii) Choose a point p in the interior of D and remove a small neighborhood of p.
We then have an arrow diagram in A(2m1 + 2m2, 0).

(iv) Using the bijection Φ of Sec. 3.2, we obtain a unique arc diagram C̃ on this
annulus; if the arcs of C̃ are oriented anticlockwise around the annulus, then
the orientations agree with the arrows.

(v) Glue back the neighborhood of p, which now lies in a complementary region
R̃ of the arc diagram C on D.

(vi) Glue the two copies of γ on ∂D back together to reconstruct the original
annulus. Combining C and γ gives an arc diagram C on (S, F ), and the com-
plementary region R̃ of C becomes a complementary region R of C. We define
Ψ(f1, f2, a) = (C,R).

As in the even case, the construction at each stage is unique up to equivalence, so
Ψ is well-defined.

The arc diagram C̃ in this construction can be regarded as an oriented arc
diagram; the arcs are oriented so as to agree with the arrows. Hence, the arc diagram
C resulting from the construction can be regarded as having one “exceptional” arc
γ, and all other arcs oriented.
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γ

Ct

R̃

kk

Fig. 4. The arc diagram Ct in the case (b1, b2) = (2m1 + 1, 2m2 + 1).

Now consider the traversing arcs of C on (S, F ). By Lemma 3.8, the number of
traversing arcs is odd; let the number be 2k+ 1. One of these is the exceptional arc
γ, which we leave unoriented; the other 2k traversing arcs are oriented. As in the
even case, exactly k of the oriented traversing arcs run inward, and k run outward.

Considering Ct, the arc diagram with insular arcs removed, we have 2k + 1
traversing arcs, consisting of the exceptional arc γ, together with k inward arcs
and k outward arcs. These cut the annulus S into 2k + 1 complementary regions,
which are naturally in a cyclic order, so we can proceed clockwise or anticlockwise
through them. One of these regions R̃ contains the decorated region R from the
construction.

Again, just as in the even case, starting from γ and proceeding anticlockwise, the
first k traversing arcs of Ct after γ are oriented outward; then we pass through the
region R̃; then the final k traversing arcs of Ct are oriented inward. For in the con-
struction of C, after cutting along γ and removing a neighborhood of p, we construct
an oriented arc diagram on the resulting annulus where arcs run anticlockwise. So
those traversing arcs in S which are anticlockwise of R̃ and clockwise of γ are ori-
ented inward, and those clockwise of R̃ and anticlockwise of γ are oriented outward.
See Fig. 4.

Hence, proceeding clockwise through Ct from R̃, the arc γ is the (k + 1)th
traversing arc encountered. (Similarly, proceeding anticlockwise through Ct from
R̃, the arc γ is the (k + 1)th traversing arc encountered.)

We can now prove Ψ is bijective; again the proof is similar to the even case.

Lemma 3.14. Given a pair (C,R) ∈ DT(2m1+1, 2m2+1), there is a unique special
arrow diagram (f1, f2, a) ∈ SA(2m1 + 1, 2m2 + 1) such that Ψ(f1, f2, a) = (C,R).
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Proof. First consider Ct, the arc diagram obtained from C by removing insular
arcs. Let Ct contain 2k + 1 > 0 arcs, and let the complementary region of Ct

containingR be R̃. Proceed clockwise through Ct from R̃; let the (k+1)th traversing
arc encountered be γ. Let its endpoints on B1 and B2 be f1 and f2, respectively.

Now return to the original diagram C, cut along γ, and remove a small neigh-
borhood of a point p ∈ R. Then we have an annulus S′ with boundary conditions
F (2m1+2m2, 0) and an arc diagram C′. By Lemma 3.6, there exists a unique arrow
diagram a′ on (S′, F (2m1 + 2m2, 0)) such that Φ(a′) = C′.

After gluing back along γ, the arrow diagram a′ gives an arrow diagram a on the
original annulus with the points f1, f2 removed. We take (f1, f2, a) as our special
arrow diagram.

We claim that Ψ(f1, f2, a) = (C,R). First, we connect f1 to f2, constructing γ,
up to equivalence. Then we cut along γ and remove a point p; then we reconstruct
C′ on (S′, F (2m1+2m2, 0)); and finally, we fill the hole, select the region containing
the filled-in hole, and glue back together along γ. The diagram obtained is C, and
the region is R, since the construction removes a point from R to create the annulus
S′. Thus, Ψ(f1, f2, a) = (C,R).

To show uniqueness, suppose, we have an exceptional arrow diagram (f̃1, f̃2, ã)
satisfying Ψ(f̃1, f̃2, ã) = (C,R). This ã must first have the same exceptional
points as constructed, and the same arc γ (up to equivalence). Cutting along
γ and removing a neighborhood of a point, we obtain an arrow diagram ã′ on
(S′, F (2m1 + 2m2, 0)); applying Φ to ã′ produces the same arc diagram as a′, so by
bijectivity of Φ, we have ã′ = a′, and hence ã = a.

We have now shown Ψ is a bijection SA(2m1+1, 2m2+1) → DT(2m1+1, 2m2+
1). Comparing the sizes of these sets, we have (2m1 + 1)(2m2 + 1)

(
2m1
m1

)(
2m2
m2

)
=

(m1 +m2 + 1)T (2m1 + 1, 2m2 + 1), and we conclude

T (2m1 + 1, 2m2 + 1) =
(2m1 + 1)(2m2 + 1)

m1 +m2 + 1

(
2m1

m1

)(
2m2

m2

)
.

This proves the second half of Proposition 3.3. Putting together our counts of insular
and traversing arc diagrams, we can compute G0,2(b1, b2) as I(b1, b2) + T (b1, b2).
We have now proved Proposition 1.2(2)–(3).

3.4. Non-boundary-parallel diagrams

It is straightforward to compute N0,1(b1) and N0,2(b1, b2). (Recall the notation b̄

from Definition 1.6.)

Lemma 3.15. For any integer b ≥ 0,

N0,1(0) = 1

N0,2(b, b) = b̄.

All other N0,1(b1) and N0,2(b1, b2) are zero.

1750012-25



2nd Reading

February 23, 2017 16:12 WSPC/S0129-167X 133-IJM 1750012

N. Do, M. A. Koyama & D. V. Mathews

Proof. On a disc, every arc is boundary-parallel, so N0,1(0) = 1, and all other
N0,1(b) = 0.

On an annulus, if there are no boundary-parallel arcs, then every arc must be
traversing. It follows that b1 = b2 = b, and once one arc is drawn the others are
determined up to equivalence. If b > 0, then this gives b equivalence classes of arc
diagrams; if b = 0, then there is one equivalence class, namely that of the empty
diagram.

This establishes Eqs. (7)–(8) in Proposition 1.5.

4. Decomposing Arc Diagrams

4.1. Canonical decomposition

We now show how to decompose an arc diagram C on S = Sg,n into arc diagrams on
annular neighborhoods A1, . . . , An of the boundary componentsB1, . . . , Bn (“local”
to the boundary components), together with an arc diagram on the remaining
surface S′ = S\(

⋃n
i=1Ai) (the “core”). The annuli Ai contain all boundary-parallel

curves, and S′ contains no boundary-parallel arcs.

Definition 4.1. Let S = S0,2 be an annulus with boundary components B,B′,
and let F = F (b, b′) consist of b points on B and b′ points on B′. Let C be an arc
diagram on (S, F ).

(i) If every arc of C intersecting B′ is traversing, then C is called B-local, or b-local
with b′ legs.

(ii) The set of equivalence classes of b-local arc diagrams with b′ legs is denoted
L(b, b′).

Note that in a b-local arc diagram with b′ legs, we must have b′ ≤ b and b ≡ b′

(mod 2).

Definition 4.2. Let S = Sg,n have boundary components B1, . . . , Bn and let C be
an arc diagram on (S, F (b1, . . . , bn)). A local decomposition of C consists of a set
of disjoint simple closed curves B′

1, . . . , B
′
n on S, such that the following conditions

hold.

(i) Cutting S along
⋃n

i=1 B
′
i produces a collection of annuli A1, . . . , An, where

each annulus Ai has boundary ∂Ai = Bi ∪ B′
i, and a surface S′ (the core)

homeomorphic to S.
(ii) The restriction Ci of the arc diagram C to each annulus Ai is Bi-local.

(iii) The restriction C′ of the arc diagram C to S′ contains no boundary-parallel
arcs.

See Fig. 5. We will show that a local decomposition of an arc diagram exists
and is unique up to a natural form of equivalence.
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A1 A2

B′
1 B′

2

Fig. 5. Local decomposition of an arc diagram.

Lemma 4.3. Let S be an oriented connected compact surface with boundary, other
than a disc. Any arc diagram C on S has a local decomposition B′

1, . . . , B
′
n. If

B′
1, . . . , B

′
n and B′′

1 , . . . , B
′′
n are two local decompositions of C, then there is a home-

omorphism φ : S → S, fixing ∂S pointwise, such that φ(Bi) = φ(B′
i) and φ(C) = C.

(On a disc, a local decomposition is obtained by drawing B′
1 inside a single com-

plementary region; drawing B′
1 in distinct complementary regions leads to inequiv-

alent local decompositions.)
Note that the homeomorphism φ of the proposition takes each annulus Ai of the

first decomposition to the corresponding annulus A′′
i of the second decomposition,

while fixing their common boundary Bi pointwise, so that the arc diagrams on Ai

and A′′
i are homeomorphic. The fact that Ai, A

′′
i are Bi-local, then implies that φ

identifies the points of B′
i∩C and B′′

i ∩C in a canonical way. The core S′ of the first
decomposition is taken to the core S′′ of the second decomposition, with boundary
points identified, so that the arc diagrams on S′ and S′′ are homeomorphic.

Proof. First, we show a local decomposition exists. Consider an annulus Ai

obtained by taking a small collar neighborhood of the boundary component Bi,
enlarged to contain neighborhoods of each arc of C parallel to Bi. We can take
such Ai to be disjoint. Let the boundary components of Ai be Bi and B′

i, and let
S′ = S\⋃n

i=1Ai. Then Ci (= C ∩Ai) consists of arcs parallel to Bi, and traversing
arcs, so is Bi-local. Moreover, C′ (= C ∩ S′) contains no boundary-parallel arcs: if
γ′ were such an arc, then γ′ would lie in a boundary-parallel arc γ of C, so would
be contained in Ai, not in S′.

To demonstrate uniqueness, we show any local decomposition must look like the
one just described. Consider a local decomposition B′

1, . . . , B
′
n of C, and an arc γ

of C with an endpoint on Bi of S. Either γ is boundary-parallel to Bi, or γ is not
boundary-parallel.

If γ is boundary-parallel to Bi, then in any local decomposition, the annulus
containing Bi must contain γ: if γ took any other route, then it would create a
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boundary-parallel arc in S′, or an arc in some Aj boundary-parallel to B′
j , violating

the definition of local decomposition.
Similarly, if γ is not boundary-parallel, let γ have endpoints on Bi and Bj

(possibly i = j). Then in any local decomposition, γ must proceed from Bi across
annulus Ai via a traversing arc, across the core S′ to the annulus Aj , and then
across Aj via a traversing arc to Bj . If γ took any other route, then it would create
a boundary-parallel arc in S′ or some Aj violating the local decomposition.

Thus, in any local decomposition of C, each Ai contains precisely the arcs
of C boundary-parallel to Bi, and traversing arcs from the remaining points of
F ∩Bi. Hence, there is a homeomorphism taking the local annuli of any decompo-
sition to the local annuli of any other decomposition, and extending to the desired
equivalence.

4.2. Counting arc diagrams via local decomposition

We now take advantage of local decomposition to count arc diagrams.
Let C be an arc diagram on (S = Sg,n, F (b1, . . . , bn)), with a local decomposition

B′
1, . . . , B

′
n, local annuli Ai and core S′. Let |C ∩ B′

i| = ai. On each Ai, we have
a Bi-local arc diagram in L(bi, ai), for some integer ai satisfying 0 ≤ ai ≤ bi and
ai ≡ bi (mod 2). On the core S′, the arc diagram has no boundary-parallel arcs,
hence lies in Ng,n(a1, . . . , an).

Conversely, arc diagrams in L(bi, ai) and Ng,n(a1, . . . , an) can be glued together
to construct an arc diagram on S in locally-decomposed form, giving a map

L(b1, a1) × L(b2, a2) × · · · × L(bn, an) ×Ng,n(a1, . . . , an) → Gg,n(b1, . . . , bn).

However, this map is not injective: in defining an element of L(bi, ai) or
Ng,n(a1, . . . , an), we need to label the marked points; and on each curve B′

i of
the local decomposition, the ai points could be labeled in distinct ways, starting
from distinct basepoints. If ai > 0, then there are precisely ai ways to label the
points; indeed there is a Zai action on L(bi, ai) and Ng,n(a1, . . . , an). If ai = 0, then
there is no basepoint to choose; effectively there is precisely one choice.

Thus, there is a Zai
action on each L(bi, ai) and Ng,n(a1, . . . , an), cyclically

relabeling the points on B′
i. The orbits of the induced action of Za1 × · · · × Zan

on L(b1, a1) × · · · × L(bn, an) × Ng,n(a) correspond to equivalence classes of arc
diagrams on (S, F ). So, we obtain an injective quotient map

L(b1, a1) × · · · × L(bn, an) ×Ng,n(a1, . . . , an)
Za1 × · · · × Zan

→ Gg,n(b1, . . . , bn).

Taken over all ai satisfying 0 ≤ ai ≤ bi and ai ≡ bi (mod 2), we obtain a bijection

Gg,n(b1, . . . , bn) →
⊔

0≤ai≤bi

ai≡bi (mod 2)

L(b1, a1) × · · · × L(bn, an) ×Ng,n(a1, . . . , an)
Za1 × · · · × Zan

giving a precise correspondence between an arc diagram and its local decomposition.
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The action of Za1 × · · ·×Zan on L(b1, a1)× · · ·×L(bn, an)×Ng,n(a) is faithful;
indeed, the stabilizer of each element of L(bi, ai) under the action of Zai is trivial.
Thus, we obtain the following proposition.

Lemma 4.4. For any g ≥ 0, n ≥ 1 other than (g, n) = (0, 1), and any b1, . . . , bn ≥
0, we have

Gg,n(b1, . . . , bn) =
∑

0≤ai≤bi

ai≡bi (mod 2)

|L(b1, a1)| · · · |L(bn, an)|
ā1ā2 · · · ān

Ng,n(a1, . . . , an). �

We now calculate L(b, a), using a bijection similar to Sec. 3.2. So, let (S, F ) =
(S0,2, F (b, a)) now denote an annulus with boundary components B,B′ containing b
and a points, respectively, with B as “outer” and B′ as “inner” boundary. Consider
b-local arc diagrams C with a legs. Such an arc diagram C must have 1

2 (b − a)
boundary-parallel arcs.

Definition 4.5. A local arrow diagram on (S, F ) is a labeling of 1
2 (b− a) points of

F ∩B as “in”; other points of F remain unlabeled.

Lemma 4.6. For any integers 0 ≤ a ≤ b of the same parity,

|L(b, a)| =

 b
1
2

(b− a)

ā.
Proof. From the data of a local arrow diagram, we attempt to construct b-local
arc diagrams with a legs as follows. Start at a marked point on B and proceed
anticlockwise around B. Each time, we arrive at a point of F labeled “in”, we
start drawing a new arc anticlockwise. Each time, we arrive at a point of F that
is unlabeled, we end an arc there if possible. This process produces a partial arc
diagram on the annulus, consisting only of anticlockwise-oriented insular arcs, with
a remaining points on each boundary component which are unlabeled and not yet
joined by arcs.

After boundary-parallel arcs of a b-local arc diagram are drawn, the remaining
points are connected by traversing arcs. If a > 0, then these remaining points can
be connected in a ways: the first point on B′ can be connected to any remaining
point on B, and then the remaining points can only be connected by traversing
arcs in one way. If a = 0, however all points are connected, and we already have a
complete arc diagram.

Thus, a local arrow diagram uniquely determines the boundary-parallel arcs of a
b-local arc diagram. Uniqueness can be proved by an inductive argument similar to
Sec. 3.2. And conversely, the boundary-parallel arcs of a local arc diagram immedi-
ately provide a local arrow diagram, by orienting them anticlockwise. So, specifying
the boundary-parallel arcs is equivalent to specifying a local arrow diagram.

Once boundary-parallel arcs are drawn, the a traversing arcs can be drawn in
ā ways, up to equivalence, giving the desired result.
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Lemmas 4.4 and 4.6 now immediately provide a proof of Theorem 1.8. Note the
results holds even when some or all of the bi are zero. We can even regard them as
holding when some bi is negative, if we regard such Gg,n(b1, . . . , bn) as zero. (Recall,
we regard a binomial coefficient

(
N
M

)
as zero except when 0 ≤M ≤ N are integers.)

5. Counting Curves on Pants

5.1. Approach

We now turn our attention to pairs of pants. Throughout this section, let (S, F ) =
(S0,3, F (b1, b2, b3)). We will first compute N0,3(b1, b2, b3), then use local decompo-
sition to compute G0,3(b1, b2, b3).

We set some conventions. We draw pants as twice-punctured discs in the plane,
with one outer boundary B1 and two inner boundaries, B2 (on the left) and B3 (on
the right). The orientation on the plane induces an orientation on the pants, hence
on boundary components: B1 is oriented anticlockwise, and B2, B3 are oriented
clockwise. See Fig. 6.

We also establish some terminology, extending terminology from the annulus
case. See Fig. 7.

Definition 5.1. An arc on a pair of pants (S, F ) is

(i) traversing if its endpoints lie on distinct boundary components;
(ii) prodigal if its endpoints lie on the same boundary component, but it is not

boundary-parallel;
(iii) insular if it is boundary-parallel.

B1

B2 B3

Fig. 6. Orientations on boundary components of pants.

Fig. 7. Three prodigal arcs.
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Thus, a prodigal arc travels far from home but eventually returns; an insular
arc never goes far from home. In a local decomposition, insular arcs are contained
in local annuli, while prodigal and traversing arcs pass through the core.

Definition 5.2. In an arc diagram on a pair of pants, let the number of

(i) prodigal arcs with endpoints on Bj be pj ;
(ii) traversing arcs with endpoints on Bi and Bj be tij .

5.2. Non-boundary-parallel arc diagrams

We now compute N0,3, given by Eq. (9) in Proposition 1.5: for any integers
b1, b2, b3 ≥ 0 such that b1 + b2 + b3 is even,

N0,3(b1, b2, b3) = b̄1b̄2b̄3;

and if b1+b2+b3 is odd, then N0,3(b1, b2, b3) = 0. The odd case is clear (Lemma 2.4),
so we assume b1 + b2 + b3 is even.

Now an arc diagram in N0,3(b1, b2, b3) contains only prodigal and traversing
arcs. Counting the endpoints of prodigal and traversing arcs we have

b1 = 2p1 + t12 + t31, b2 = 2p2 + t23 + t12, b3 = 2p3 + t31 + t12.

A prodigal arc cuts the pants into two annuli. If p1 > 0, then a prodigal arc with
endpoints on B1 separates B2 from B3, so that there cannot be any traversing arc
from B2 to B3, nor any prodigal arcs from these components; hence p2 = p3 = t23 =
0. Similarly, if p2 > 0, then p3 = p1 = t31 = 0; and if p3 > 0, then p1 = p2 = t12 = 0.
In fact, such conditions are also sufficient to be able to draw an arc diagram. We
can state this precisely.

Lemma 5.3. There exists an arc diagram without boundary-parallel arcs on a pair
of pants if and only if t12, t23, t31, p1, p2, p3 satisfy the following conditions:

(i) If p1 > 0, then p2 = p3 = t23 = 0.
(ii) If p2 > 0, then p3 = p1 = t31 = 0.

(iii) If p3 > 0, then p1 = p2 = t12 = 0.

(Note that if p1 = p2 = p3 = 0, these conditions are all satisfied.)

Proof. The discussion above shows that the conditions are necessary. Now suppose,
we have pi and tij satisfying these conditions. If all pi = 0, then the only possible
non-zero parameters are t12, t23, t31 and such traversing arcs can easily be drawn.
If some pi is non-zero, say p1, then the only possible non-zero parameters are t12
and t31. After drawing p1 parallel prodigal arcs with endpoints on B1, there remain
two complementary annuli on which any number of traversing arcs from B1 to B2,
and from B3 to B1, can be drawn.
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We have seen above three equations expressing the bi in terms of the pi and tij .
The pi and tij can also be expressed in terms of the bi, although the situation is a
little more complicated, as the next lemma shows.

Lemma 5.4. Let b1, b2, b3 ≥ 0 be integers such that b1 + b2 + b3 is even. Then
there are unique non-negative integers t12, t23, t31, p1, p2, p3 satisfying the following
conditions:

(i) (a) b1 = t12 + t31 + 2p1

(b) b2 = t23 + t12 + 2p2

(c) b3 = t31 + t23 + 2p3

(ii) (a) If p1 > 0, then p2 = p3 = t23 = 0.
(b) If p2 > 0, then p3 = p1 = t31 = 0.
(c) If p3 > 0, then p1 = p2 = t12 = 0.

Explicitly, such t12, t23, t31, p1, p2, p3 are given as follows. Let {i, j, k} = {1, 2, 3}
such that bi ≤ bj ≤ bk.

(i) If bi + bj ≥ bk, then p1 = p2 = p3 = 0 and

t12 =
1
2

(b1 + b2 − b3), t23 =
1
2

(b2 + b3 − b1), t31 =
1
2

(b3 + b1 − b2).

(ii) If bi + bj < bk, then pi = pj = tij = 0 and

pk =
1
2

(bk − bi − bj), tik = bi, tjk = bj.

The two cases above correspond to whether or not b1, b2, b3 obey the triangle
inequality — that is, when any two of the bi sum to at least the third.

Proof. First, we note that the triangle inequality is satisfied if and only if all
pi = 0. For if some pi, say p1, is positive, then p2 = p3 = t23 = 0 so b1 =
2p1 + t12 + t31 > t12 + t31 = b2 + b3 and the triangle inequality is violated. And if all
pi = 0, then we have b1 = t12 + t31, b2 = t23 + t12 and b3 = t31 + t12 so, for instance,
b1 + b2 = 2t12 + t23 + t31 ≥ t23 + t31 = b3 and the triangle inequality holds.

Now if the triangle inequality holds, then all pi = 0 so the bi are given by
b1 = t12 + t31, b2 = t23 + t12 and b3 = t31 + t23. This system of linear equations
can be inverted to give the unique solution claimed for t12, t23, t31, which are all
non-negative by the triangle inequality.

If the triangle inequality fails, then some pi > 0, say p1 > 0, so p2 = p3 = t23 = 0
and we have b1 = t12 + t31 + 2p1, b2 = t12 and b3 = t31. So b2, b3 are as claimed and
we immediately obtain p1 = 1

2 (b1 − b2 − b3).

Proof of (9) in Proposition 1.5. Given b1, b2, b3 ≥ 0 with even sum, Lemma 5.4
shows that there exist unique tij and pi which satisfy the conditions of Lemma 5.3,
and hence give the numbers of traversing and prodigal arcs in any arc diagram in
N0,3(b1, b2, b3). With the numbers of each type of arc determined, the arc diagram
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is uniquely determined, up to labeling of points on the boundary. There are b̄i ways
to choose a basepoint from the bi points on the boundary component Bi, which
determines the arc diagram up to equivalence. Hence, N0,3(b1, b2, b3) = b̄1b̄2b̄3 as
claimed.

5.3. General arc diagrams

From Theorem 1.8, we can now express G0,3 in terms of N0,3:

G0,3(b1, b2, b3) =
∑

a1,a2,a3∈Z

 b1
b1 − a1

2

 b2
b2 − a2

2

 b3
b3 − a3

2

 ā1ā2ā3 (12)

so it remains to calculate the sum∑
a∈Z

 b
b− a

2

 =
∑

0≤a≤b
a≡b (mod 2)

 b
b− a

2

 ā =
∑

0≤a≤b
a≡b (mod 2)

L(b, a).

In fact, we will calculate some more general sums, which will prove useful in the
sequel, applying ideas from [33]. Several of the following definitions come from that
paper.

Definition 5.5. For an integer α ≥ 0, define the functions p̃α(n), q̃α(n), P̃α(n),
Q̃α(n) as follows.

P̃α(n) =
n∑

l=0

(
2n
n− l

)
(2l) (2l)2α,

p̃α(n) =
n∑

l=0

(
2n
n− l

)
(2l)2α+1,

Q̃α(n) = q̃α(n) =
n∑

l=0

(
2n+ 1
n− l

)
(2l + 1)(2l + 1)2α =

n∑
l=0

(
2n+ 1
n− l

)
(2l + 1)2α+1.

(Defining separate Q̃α and q̃α is useful for our notation in the sequel.) Clearly
P̃α(n) differs from p̃α only in the l = 0 term, and this only when α = 0, so

P̃α(n) = p̃α(n) +
(

2n
n

)
δα,0.

Norbury–Scott in [33] show that p̃α(n), q̃α(n) are closely related to the following
polynomials pα(n), qα(n).

Definition 5.6. For integers α ≥ 0, the integer polynomials pα(n), qα(n) are
defined recursively by

p0(n) = 1, pα+1(n) = 4n2(pα(n) − pα(n− 1)) + 4npα(n− 1)

q0(n) = 1, qα+1(n) = 4n2(qα(n) − qα(n− 1)) + (4n+ 1)qα(n).
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(Equation (15) in [33] appears to have a typo; the (4n+ 1)qα(n− 1) should be
(4n+ 1)qα(n).)

Proposition 5.7 (Norbury–Scott [33]). Let α ≥ 0 be an integer. Then pα, qα
are integer polynomials of degree α with positive leading coefficients. Moreover,

p̃α(n) =
(

2n
n

)
n pα(n) and q̃α(n) =

(
2n
n

)
(2n+ 1)qα(n).

Further,

P̃α(n) =
(

2n
n

)
Pα(n) and Q̃α(n) =

(
2n
n

)
Qα(n),

where Pα(n) = npα(n) + δα,0 and Qα(n) = (2n + 1)qα(n) are integer polynomials
of degree α+ 1 with positive leading coefficients.

Proof. Norbury–Scott [33] show that p̃α and q̃α are as claimed, and pα, qα have
degree α. It is clear from the recurrence that the coefficients are integers and the
leading coefficients are positive. The claims for P̃α and Q̃α, then follow immediately
from P̃α(n) = p̃α(n) +

(
2n
n

)
δα,0 and Q̃α(n) = q̃α(n).

We compute the first few of the sums P̃α(n) and Q̃α(n).

P̃0(n) =
(

2n
n

)
(n+ 1) Q̃0(n) =

(
2n
n

)
(2n+ 1)

P̃1(n) =
(

2n
n

)
n 4n Q̃1(n) =

(
2n
n

)
(2n+ 1) (4n+ 1)

P̃2(n) =
(

2n
n

)
n 16n(2n− 1) Q̃2(n) =

(
2n
n

)
(2n+ 1) (32n2 + 8n+ 1).

Observe that, for α ≥ 0 an integer, then

∑
0≤a≤b

a≡b (mod 2)

 b

b− a

2

 a a2α =


P̃α(m)

Q̃α(m)

 =


(

2m
m

)
Pα(m) b even, b = 2m(

2m
m

)
Qα(m) b odd, b = 2m+ 1

∑
0≤a≤b

a≡b (mod 2)

 b

b− a

2

 a2α+1 =

{
p̃α(m)

q̃α(m)

}

=


(

2m
m

)
mpα(m) b even, b = 2m(

2m
m

)
(2m+ 1)qα(m) b odd, b = 2m+ 1.
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We have now computed the sums arising in G0,3(b1, b2, b3) and we have the
following.

G0,3(b1, b2, b3) =
3∏

i=1

∑
0≤ai≤bi

ai≡bi (mod 2)

 bi
bi − ai

2

 āi

=
3∏

i=1


(

2mi

mi

)
(mi + 1) bi even, bi = 2mi(

2mi

mi

)
(2mi + 1) bi odd, bi = 2mi + 1

.
This immediately gives the formulae in Proposition 1.2(4)–(5).

6. Combinatorial Topological Recursion

6.1. For curve counts

We now show that the Gg,n(b1, . . . , bn) obey the recursion of Theorem 1.4: for b1 > 0
and b2, . . . , bn ≥ 0,

Gg,n(b1, . . . , bn) =
∑

i,j≥0
i+j=b1−2

Gg−1,n+1(i, j, b2, . . . , bn)

+
n∑

k=2

bkGg,n−1(b1 + bk − 2, b2, . . . , b̂k, . . . , bn)

+
∑
i,j≥0

i+j=b1−2

∑
g1,g2≥0
g1+g2=g

∑
I�J={2,...,n}

Gg1,|I|+1(i, bI)Gg2,|J|+1(j, bJ).

Here, the first term is a sum over integers i, j ≥ 0 summing to b1 − 2; if b1 = 1 this
sum is empty. In the second term, the notation b̂k means that bk is omitted from
the list b2, . . . , bn. In the third term, the sum over I, J is a sum over all pairs of
(possibly empty) disjoint sets (I, J) whose union is {2, . . . , n}. The notation bI is
shorthand for the set of all bk, where k ∈ I; and similarly for bJ . As Gg,n(b1, . . . , bn)
is a symmetric function of the bi, it is sufficient to give bI as a set rather than a
sequence.

Note that when b1 + · · ·+ bn is odd, all terms are zero; in each term the inputs
to each Gg,n have the same parity sum.

This recursion expresses Gg,n in terms of curve counts on “simpler” surfaces.
We regard the complexity of a surface as given by −χ, where χ = 2 − 2g − n is
the Euler characteristic. All terms on the right involve surfaces with complexity
≤ −χ(Sg,n) = 2g + n − 2. The first two terms involve surfaces with complexity
strictly less than 2g+n−2, but the third term may involve surfaces homeomorphic
to S, for instance when g1 = g and I = {2, . . . , n}; however, in this case the number
of marked points b1 + · · · + bn decreases. Thus, repeatedly applying the recursion,
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(and permuting the bi if necessary, to avoid b1 = 0, as Gg,n is a symmetric function),
one eventually arrives at terms of the form Gg,n(0) = 1.

Proof of Theorem 1.4. Label the boundary components of Sg,n as B1, . . . , Bn

as usual, and label the marked points on Bj by 1, . . . , bj according to the bound-
ary orientation of Bj . Let p be the first marked point on B1, which exists since
b1 > 0.

Given an arc diagram C on (Sg,n, F (b)), consider the arc γ with an endpoint
at p. Cutting along γ yields a surface S′ with an arc diagram C′ and one less arc;
γ becomes two arcs on ∂S′. We consider the various cases for γ and show how,
in each case, we can give a standard numbering on the boundary components and
points, so that the arc diagrams so obtained are counted in Gg′,n′(b′) for “simpler”
g′, n′,b′. In each case, the location of γ on ∂S′ after cutting can be determined, so
that C can be uniquely reconstructed from S′ and C′ by gluing these two boundary
arcs together. In this way, we obtain a bijection between Gg,n(b) and various sets
involving simpler Gg′,n′(b′) and establish the desired recursion.

We deal with the cases as follows.

(i) γ has both endpoints on B1 and is non-separating. In this case, cutting along
γ gives S′ of genus g − 1 with n+ 1 boundary components. Let the endpoints
of γ have labels 1 and i + 2, for some integer i with 2 ≤ i + 2 ≤ b1, i.e.
0 ≤ i ≤ b1−2. We name the boundary components of S′ as B′

1, . . . , B
′
n+1, and

their marked points, as follows. The original boundary component B1 splits
into B′

1 and B′
2 so that B′

1 contains the points originally labeled 2, . . . , i + 1;
we now number these points 1, . . . , i. The other boundary component con-
tains points originally labeled i + 3, . . . , b1. Letting j = b1 − i − 2, we
now number them 1, . . . , j. We obtain an element of Gg−1,n+1(i, j, b2, . . . , bn),
where i, j ≥ 0 satisfy i + j = b1 − 2. And given such i, j and an element
of Gg−1,n+1(i, j, b2, . . . , bn), we can reconstruct the original arc diagram in
Gg,n(b), giving a bijective correspondence between arc diagrams in Gg,n(b)
of this type, and elements of Gg−1,n+1(i, j, b2, . . . , bn) for a choice of i, j ≥ 0
with i+ j = b1 − 2.

(ii) γ has endpoints on distinct boundary components. In this case, cutting along γ
gives S′ of genus g with n−1 boundary components. Let the endpoints of γ lie
on boundary components B1 and Bk. We name the boundary components of
S′ as B′

1, . . . , B
′
n−1, where B′

1 is a union of B1, Bk and the two copies of γ, and
then number B′

2, . . . , B
′
n−1 in order as B2, . . . , B̂k, . . . , Bn. The marked points,

in order around B′
1, consist of b1 − 1 points of B1, followed by bk − 1 points of

Bk, so that B′
1 has b1 + bk − 2 boundary points. Numbering marked points on

other boundary components as on S, we obtain an element of Gg,n−1(b1 + bk −
2, b2, . . . , b̂k, . . . , bn); and we also keep track of which of the bk points on Bk

was an endpoint of γ. Conversely, given an arc diagram of genus g with n− 1
boundary components, with one of the points not marked 1 on B1 marked,
we can reconstruct an arc diagram in Gn−1(b1 + bk − 2, b2, . . . , b̂k, . . . , bn) by
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gluing two arcs on the boundary together. This gives a bijective correspondence
between arc diagrams in Gg,n(b) of this type with elements of Gg,n−1(b1 + bk −
2, b2, . . . , b̂k, . . . , bn) with a special marked point on Bk.

(iii) γ has both endpoints on B1 and is separating. In this case, γ cuts S into two
surfaces, S′ and S′′; for definiteness, we say that as we proceed along γ from
the point marked 1, S′ is on the left and S′′ is on the right. Let S′ have
genus g1 and S′′ have genus g2. The boundary components of S1 are then B′

1,
which contains some of B1 and γ, as well as other boundary components Bk

for k ∈ I ⊂ {2, . . . , n}. Similarly, the boundary components of S2 are B′′
1 ,

which contains some of B1 and γ, as well as other boundary components Bk

for k ∈ J ⊂ {2, . . . , n}. Here, I and J are disjoint and I 
 J = {2, . . . , n}.
Let B′

1 and B′′
1 contain i and j marked points, respectively; then i, j ≥ 0

and i+ j = b1 − 2. As in the previous cases, we obtain a bijection between arc
diagrams in Gg,n(b) of this type, and elements of Gg1,|I|+1(i, bI)×Gg2,|J|+1(j, bJ)
over the various possible i, j, g1, g2, I, J . Since B1 is split into two boundary
components, we can number the marked points on the pair of smaller surfaces
so as to indicate how they can be glued back together.

6.2. For non-boundary-parallel curve counts

The Ng,n(b) and N̂g,n(b) also obey a recursion, slightly more complicated than the
Gg,n(b) case.

Proposition 6.1. For (g, n) �= (0, 1), (0, 2), (0, 3) and integers b1, . . . , bn such that
b1 > 0, b2, . . . , bn ≥ 0,

Ng,n(b) =
∑

i,j,m≥0
i+j+m=b1

m even

m

2
Ng−1,n+1(i, j, b2, . . . , bn)

+
n∑

j=2

 ∑
i,m≥0

i+m=b1+bj
m even

m

2
b̄j Ng,n−1(i, b2, . . . , b̂j , . . . , bn)

+
∑̃

i,m≥0
i+m=b1−bj

m even

m

2
b̄j Ng,n−1(i, b2, . . . , b̂j , . . . , bn)


+

∑
g1+g2=g

I�J={2,...,n}
No discs or annuli

∑
i,j,m≥0

i+j+m=b1
m even

m

2
Ng1,|I|+1(i, bI) Ng2,|J|+1(j, bJ)
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b1N̂g,n(b) =
∑

i,j,m≥0
i+j+m=b1

m even

1
2
ī j̄ m N̂g−1,n+1(i, j, b2, . . . , bn)

+
n∑

j=2

1
2

 ∑
i,m≥0

i+m=b1+bj
m even

ī m N̂g,n−1(i, b2, . . . , b̂j , . . . , bn)

+
∑̃

i,m≥0
i+m=b1−bj

m even

ī mN̂g,n−1(i, b2, . . . , b̂j, . . . , bn)


+

∑
g1+g2=g

I�J={2,...,n}
No discs or annuli

∑
i,j,m≥0

i+j+m=b1
m even

1
2
ī j̄ m N̂g1,|I|+1(i, bI) N̂g2,|J|+1(j, bJ ).

We explain the notation on the right-hand side of each equation. The tilde over
the second summation in brackets is interpreted as follows. If b1− bj ≥ 0, then read
the sum as is: it is a sum over non-negative integers i,m such that i+m = b1 − bj
and m is even. If b1 − bj ≤ 0, then replace b1 − bj with bj − b1 and make the sum
negative: i.e. the term in the first equation becomes

−
∑

i,m≥0
i+m=bj−b1

m even

m

2
b̄j Ng,n−1(i, b2, . . . , b̂j, . . . , bn)

the “no discs or annuli” condition means that we exclude terms in which (g1, |I|+1)
or (g2, |J | + 1) is equal to (0, 1) or (0, 2). This idea of splitting the sum this way
appears in [31]; indeed these recursions are very similar to the recursions appearing
in that paper. (In fact, if we drop the bars over i’s and j’s, the recursion on N̂g,n

should be identical. Norbury does not explicitly specify the parity requirements,
but they are implicit. His Eq. (5) also has a typographical error, since there should
be factors of 1/2 in each term.)

Again, the terms are only non-zero when b1 + · · · + bn is even; but the result
holds even when this sum is odd, as all terms are then zero.

The proof is based on a similar analysis as the recursion for Gg,n(b), but
there are significantly more subtleties arising from the lack of boundary-parallel
arcs, and the argument fails for annuli and pants. Hence, we exclude (g, n) =
(0, 1), (0, 2), (0, 3).

To illustrate some of the difficulties, let C be a non-boundary-parallel arc dia-
gram on (Sg,n, F (b)), and let γ be an arc of C starting at the base point on B1.
After cutting along γ, we obtain a less complex surface S′ (possibly disconnected),
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δ

γ

cut along γ
δ

Fig. 8. Arc δ parallel to γ becomes boundary-parallel after cutting along γ.

γ

δ

cut along γ
δ

Fig. 9. Arc δ running from B1 around B2 becomes boundary-parallel after cutting along γ from
B1 to B2.

with a simpler arc diagram C′. However, the arc diagram C′ may contain boundary-
parallel arcs: it is possible that arcs of C, which were not boundary-parallel, might
become boundary-parallel after cutting along γ.

For instance, suppose, we have an arc δ which is parallel to γ. After cutting
along γ, δ becomes boundary-parallel: see Fig. 8. For another example, suppose γ
connects two distinct boundary components B1 and B2, and δ is an arc which runs
from B1, around B2, back to B1: see Fig. 9. Again δ is not boundary-parallel, but
after cutting along γ, δ becomes boundary-parallel. We now establish that these
are the only cases in which arcs can become boundary-parallel.

Lemma 6.2. Let C be an arc diagram on (S, F ) = (Sg,n, F (b)) without boundary-
parallel arcs. Let γ be an arc of C and let the result of cutting along γ be the arc
diagram C′ on (S′, F ′). If δ is an arc of C which is boundary-parallel in S′, then
exactly one of the following cases occurs:

(i) γ has endpoints on two distinct boundary components Bi, Bj of S, and

(a) δ is parallel to γ (as in Fig. 8)
(b) δ has both endpoints on Bi, and runs around Bj as in Fig. 9;

(ii) γ is non-separating with both endpoints on the same boundary component Bi,

and δ is parallel to γ;
(iii) γ is separating, and δ is parallel to γ.

Proof. Any arc γ of C falls into precisely one of the cases (i), (ii) or (iii). Clearly
any arc δ of one of the types listed becomes boundary-parallel after cutting along γ.
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Now suppose an arc δ becomes boundary-parallel after cutting along γ. Let the
endpoints of γ lie on boundary components Bi and Bj (possibly i = j). Then δ

must be homotopic, relative to endpoints, to an arc lying along Bi ∪ Bj ∪ γ. So δ
is parallel to γ, or runs around Bj as claimed.

Proof of Proposition 6.1. We first prove the recursion on Ng,n. Let p be the first
marked point on B1, and let γ be the arc of C with an endpoint at p. We consider
three cases for γ; in each case, we cut along γ, and remove any arcs which become
parallel (i.e. those described in Lemma 6.2) to obtain a simpler boundary-parallel
arc diagram on a simpler surface. We can then construct bijections between arc
diagrams on (S, F ) and arc diagrams on simpler surfaces.

(i) γ has both endpoints on B1, and is non-separating. Orient γ so, that p is the
start point. Cutting along γ produces S′ = Sg−1,n+1. So, B1 is split into two
boundary components B′

1, B
′
2. Let the number of arcs parallel to γ, including

γ, be m
2 , so m ≥ 2 is even. The m

2 − 1 arcs parallel to γ, other than γ,
are precisely the ones that become boundary-parallel in S′. Let the number of
points remaining on B′

1 and B′
2 after removing these boundary-parallel arcs be

i and j, respectively. Together γ and the arcs parallel to γ have m endpoints,
all originally on B1, so we have i + j + m = b1. Labeling boundary points
in a standard fashion, we obtain an equivalence class of arc diagram C′ in
Ng−1,n+1(i, j, b2, . . . , bn). For any i, j,m ≥ 0 such that i + j + m = b1 and m

is even, such arc diagrams C′ exist. Moreover, from the data of C′ and m,
the original arc diagram C can be reconstructed: the boundary labeling on
C′ indicates which boundary segments are to be glued back together, and m

parallel arcs are drawn there.
However, there may be several arc diagrams on (S, F ) which lead to the

same arc diagram C′ and the same number m. In particular, this occurs if we
take the same arc diagram C but shift the basepoint p on B1 so that γ becomes
another one of the m/2 arcs parallel to the original γ. All the arc diagrams on
S which lead to C′ and m are of this form. As γ starts at p, there are m/2
such possibilities for p. Hence, the number of arc diagrams in NG,n(b1, . . . , bn)
for which γ has both endpoints on B1 and is non-separating is given by the
first summation in the recursion.

(ii) γ has endpoints on distinct boundary components B1 and Bj , or is separating
(hence has both endpoints on B1) and cuts an annulus off S. In the latter
case, let the boundary component around which γ loops be Bj , so that Bj is a
boundary component of the annulus cut off by γ. (Note that as (g, n) �= (0, 3),
γ cannot cut S into two annuli; if γ cuts off an annulus, then only one annulus
appears. The possibility of two annuli causes the recursion to fail in the case
(g, n) = (0, 3).)

Let m/2 be the number of arcs “parallel” to γ, in the following sense. If
γ runs from B1 to Bj , we take the arcs parallel to γ, including γ; and also

1750012-40



2nd Reading

February 23, 2017 16:12 WSPC/S0129-167X 133-IJM 1750012

Counting curves on surfaces

B1

Bj

B1

Bj

(a) (b)

Fig. 10. Orientation on arcs running (a) from B1 around Bj , and (b) from Bj around B1.

those which run from B1 around Bj and back to B1; and also those which run
from Bj around B1 and back to Bj ; these curves become boundary-parallel in
S′ = Sg,n−1. If γ cuts off an annulus around Bj, we take the arcs parallel to γ,
including γ, and also those which run from B1 to Bj . These m/2 arcs consist
precisely of γ and the arcs which become boundary-parallel in S′. (Note that
there cannot both be loops from B1 around Bj , and loops from Bj around B1.
The former can only occur if b1 > bj, and the latter can only occur if bj > b1.)

For those arcs with endpoints on B1 and Bj , orient them from B1 to Bj .
For those arcs with endpoints on B1 which loop around Bj (i.e. those which cut
off annuli), orient them as shown in Fig. 10(a) so that they run anticlockwise
around Bj . For those arcs with endpoints on Bj which loop around B1, orient
them as shown in Fig. 10(b) so that they run anticlockwise around B1.

After cutting along γ and removing all the “parallel” arcs described above
— which are precisely the arcs that become boundary-parallel in S′ — we
obtain an arc diagram on S′. Boundary components B1 and Bj are combined
into a boundary component B′

1 of S′. Let i be the number of marked points on
B′

1. Now γ and all the arcs “parallel” to it have m endpoints, so i+m = b1+bj ,
and m is even. Labeling boundary points in a standard fashion (starting near
p, say, and proceeding around the boundary numbering points consecutively),
we obtain an arc diagram C′ in Ng,n−1(i, b2, . . . , b̂j, . . . , bn). For any integers
2 ≤ j ≤ n and i,m ≥ 0 such that i+m = b1+bj and m is even, the arc diagram
C can be reconstructed from C′ and m: again, the labeling on C′ indicates
which boundary segments of C′ to glue to obtain two boundary components
B1, Bj with b1, bj marked points; and we draw m parallel arcs there, possibly
including loops from B1 around Bj or loops from Bj around B1.

However, there may be several arc diagrams on S which lead to the same
arc diagram C′ on S′ and the same m. For one thing, if we adjust the basepoint
p on B1 so that γ is replaced by any of the arcs “parallel” to the original γ,
cutting and removing boundary-parallel arcs leads to the same C′ and m. For
another, the arcs from B1 to Bj can be adjusted so as to meet Bj at different
points; there are b̄j ways to adjust any such diagram. (The effect is like a
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“fractional Dehn twist” about Bj . Equivalently, the labeling on Bj can be
adjusted so as to place the basepoint at any position.) As S is not an annulus,
these two types of adjustment are independent. (When S is an annulus, these
two types of adjustment have the same result, and the claimed recursion fails.)

Suppose for now that b1 ≥ bj. Then the m/2 arcs “parallel” to γ consist of
arcs from B1 to Bj , and possibly arcs from B1 looping around Bj . (But there
cannot be any arcs from Bj looping around B1.) There are precisely m/2
positions for p on B1 so that p is the start point of one of these arcs; and for
each such choice, the points at which arcs meet Bj can be adjusted in b̄j ways.
Hence, the number of (equivalence classes of) arc diagrams in Ng,n(b1, . . . , bn)
for which γ runs from B1 to Bj , or runs from B1 around Bj , and is oriented
so that p is the start point of γ, is given by∑

i,m≥0
i+m=b1+bj

m even

m

2
b̄j Ng,n−1(i, b2, . . . , b̂j , . . . , bn).

However, there is also the possibility that p is the endpoint of γ. Such a situation
only arises when γ is an arc from B1 which loops around Bj ; in this case, as
bj ≤ b1, there must be bj arcs connecting B1 to Bj . Redefine m/2 to be the
number of arcs from B1 looping around Bj (i.e. cutting off an annulus with Bj

as a boundary component). Still letting i denote the number of marked points
of C′ on B′

1, these i points together with the m endpoints of the arcs looping
around Bj and the bj arcs from B1 to Bj together make up all the marked
points on B1, so i + m+ bj = b1. Again C can be reconstructed from C′ and
m. Again there are several arc diagrams on (S, F ) with p as the endpoint of
γ which lead to the same C′ and m: we may rotate the arcs to meet Bj at
different points in b̄j ways; and we may adjust the basepoint p to be any of the
m/2 points on B1 at which an arc looping around Bj ends. Thus, the number
of arc diagrams in Ng,n(b1, . . . , bn) for which γ runs from B1 around Bj , and
is oriented so that p is the end point of γ, is given by∑

i,m≥0
i+m=b1−bj

m even

m

2
b̄j Ng,n−1(i, b2, . . . , b̂j, . . . , bn).

This covers all possibilities in the case b1 ≥ bj.
Now suppose b1 ≤ bj. Note that in this case the arcs “parallel” to γ consist

of arcs from B1 to Bj , and possibly arcs from Bj looping around B1. Let m/2
denote the number of these “parallel” arcs. As in the case b1 ≥ bj , the term∑

i,m≥0
i+m=b1+bj

m even

m

2
b̄j Ng,n−1(i, b2, . . . , b̂j, . . . , bn)

gives the number of arc diagrams in Ng,n(b1, . . . , bn) for which p is the start
point of the arc γ along which we cut. However, it counts these diagrams
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regardless of whether p lies on B1 or Bj ! We must therefore subtract off the
diagrams for which p lies on Bj .

In such cases, γ is an arc-based at Bj looping around B1, and as b1 ≤ bj ,
there must be b1 arcs connecting B1 to Bj . Redefine m/2 to be the number of
arcs from Bj looping around B1, so i+m+ b1 = bj. By a similar argument as
above, the number of arc diagrams in Ng,n(b1, . . . , bn) for which γ runs from
Bj around B1, and is oriented so that p is the start point, is given by∑

i,m≥0
i+m=bj−b1

m even

m

2
b̄j Ng,n−1(i, b2, . . . , b̂j , . . . , bn).

Hence, the number of arc diagrams in Ng,n(b1, . . . , bn) for which γ has
endpoints on distinct boundary components, or is separating and cuts off an
annulus, is given by the summations in the second line of the recursion.

(iii) γ is separating but does not cut off an annulus. As C has no boundary-parallel
arcs, γ cannot cut off a disc either. Thus, it remains to consider separating γ
where no discs or annuli arise. If we orient γ to start at p, as S is oriented,
then cutting along γ there is a surface S1 to the left of γ and a surface S2 to its
right. Let S1 have genus g1 and S2 have genus g2, so g1, g2 ≥ 0 and g1 + g2 =
g. After cutting along γ, boundary component B1 contributes a boundary
component B′

1 to S1 and B′′
1 to S2; the remaining boundary components of S1

and S2 come from the original boundary components B2, . . . , Bn of S. Let S1

contain boundary components whose numbers consist of I ⊂ {2, . . . , n}, and
let S2 contain boundary components J ⊂ {2, . . . , n}, so I 
 J = {2, . . . , n}.
There may be arcs which become boundary-parallel after cutting along C:
such arcs will be parallel to γ; let there be m

2 − 1 of them, so that γ and
its parallel arcs together contain m endpoints. Let B′

1, B
′′
1 contain i, j marked

points respectively, so i+ j+m = b1 and m is even. Labeling boundary points
in a standard fashion, we obtain an arc diagram C1 in Ng1,|I|+1(i, bI) and an
arc diagram C2 ∈ Ng2,|J|+1(j, bJ ). For any g1, g2, i, j,m ≥ 0 and I, J such that
g1 +g2 = g, I
J = {2, . . . , n}, i+j+m = b1 and m is even, such arc diagrams
C1 and C2 exist, and conversely, from C1, C2 and m, the original C can be
reconstructed.

However, several arc diagrams on (S, F ) could lead to the same C′ and
m: this occurs if we shift p so that γ is another one of the m/2 arcs parallel
to the original γ. Since γ starts at p, there are m/2 such possibilities for p.
Hence, the number of arc diagrams in Ng,n(b1, . . . , bn) for which γ is separating,
but does not cut off any discs or annuli, is given by the third line of the
recursion.

Putting these cases together, the number of arc diagrams in Ng,n(b1, . . . , bn) is as
claimed. Dividing through by b̄2 · · · b̄n (and since b1 > 0, so b̄1 = b1) we obtain the
recursion on N̂g,n.
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6.3. Applying the recursion

So far, we have found N0,1, N0,2 and N0,3 (Lemma 3.15 and Sec. 5.2), and hence
also N̂0,1, N̂0,2, N̂0,3. If we apply the recursion to N̂1,1(b) directly, then using
N̂0,2(b1, b2) = δb1,b2/b̄1, we obtain

b̄N̂1,1(b) =
∑

i,j,m≥0
i+j+m=b

m even

1
2
ī j̄ m N̂0,2(i, j) =

∑
i,j,m≥0

i+j+m=b
m even

1
2
ī mδi,j =

∑
i,m≥0

2i+m=b
m even

1
2
ī m.

When b is odd, there are no terms in the sum; when b is even, we obtain

N̂1,1(b) =
1
2b̄

∑
p,q≥0
p+q=b
q even

(p/2) q =
1
4b̄

∑
p,q≥0
p+q=b
q even

p̄ q +
1
4
. (13)

In the last step, we used the fact that p/2 = p̄/2, except when p = 0, in which case
p/2 = p̄/2 + 1

2 . In the next section, we compute this and more general sums.

7. Polynomiality Results

7.1. Some useful sums

We aim to show quasi-polynomiality of N̂g,n(b1, . . . , bn) for (g, n) �= (0, 1), (0, 2). For
this, it will be useful first to compute certain summations, following the techniques
of Norbury in [31]. Several of the following definitions appear in that paper.

Definition 7.1. For integers m ≥ 0, define the functions Am, Sm : N0 → N0 by
the following sums:

Am(k) =
∑

p,q≥0
p+q=k
q even

p̄p2mq, Sm(k) =
∑

p,q≥0
p+q=k
q even

p2m+1q.

Note that once the parity of k is given, the sum is over p and q of fixed parity: q
is even, and p has the same parity as k. The functions Am and Sm are clearly very
similar; they only differ in their p = 0 terms, and then only when m = 0.

Definition 7.2. For integers m,n ≥ 0, define the functions Bm,n, B
0
m,n, B

1
m,n,

Rm,n, R
0
m,n, R

1
m,n : N0 → N0 by the following sums.

Bm,n(k) =
∑

p,q,r≥0
p+q+r=k

r even

p̄ q̄ p2mq2nr Rm,n(k) =
∑

p,q,r≥0
p+q+r=k

r even

p2m+1q2n+1r

B0
m,n(k) =

∑
p,q,r≥0

p+q+r=k
p even, r even

p̄ q̄ p2mq2nr R0
m,n(k) =

∑
p,q,r≥0

p+q+r=k
p even, r even

p2m+1q2n+1r

B1
m,n(k) =

∑
p,q,r≥0

p+q+r=k
p odd, r even

p̄ q̄ p2mq2nr R1
m,n(k) =

∑
p,q,r≥0

p+q+r=k
p odd, r even

p2m+1q2n+1r.
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The summations in Bm,n, Rm,n are over integers p, q, r ≥ 0 such that p+q+r =
k and r is even. If the parity of k is given, then the parities of p and q in the
sum are not fixed. For instance, if k is even, then the sum will be over triples
(p, q, r), where (p, q, r) ≡ (0, 0, 0) and (1, 1, 0) (mod 2). When we split these sums
into those terms for which p is even or odd, we obtain B0

m,n and B1
m,n, respectively,

so Bm,n = B0
m,n + B1

m,n. Similarly, Rm,n = R0
m,n +R1

m,n.
Clearly each B sum is very similar to the corresponding R sum; they differ only

in terms where p = 0 or q = 0, and then only when m = 0 or n = 0.
The sums Sm, Rm,n were defined by Norbury in [31]. He proved results about the

ir polynomiality, and we will show similar results for Am, Bm,n, B
0
m,n, B

1
m,n, R

0
m,n

and R1
m,n. Our proof follows the methods of Norbury, which in turn rely on a result

of Brion–Vergne [5] generalizing Ehrhart’s theorem. By a convex lattice polytope in
Rn, we mean a polytope P in Rn, with all vertices in the lattice Zn, i.e. the convex
hull of a finite subset of Zn. We denote by P 0 the interior of P and by ∂P the
boundary of P ; if P 0 is non-empty, then P must be n-dimensional. For any non-
negative integer k, the set kP = {kx : x ∈ P} is again a convex lattice polytope.
Given a function φ : Rn → R, we may sum it on the lattice points of P , P 0 or ∂P .
We may in fact sum φ over the lattice points of kP or kP 0 or ∂P and see how this
sum varies with k. Thus, we define

NP (φ, k) =
∑

x∈Zn∩kP

φ(x),

NP 0(φ, k) =
∑

x∈Zn∩kP 0

φ(x), and N∂P (φ, k) =
∑

x∈Zn∩k∂P

φ(x).

Since ∂P = P\P 0, and similarly k∂P = kP\kP 0, we have immediately

N∂P (φ, k) = NP (φ, k) −NP 0(φ, k).

The result of Brion–Vergne says that under certain circumstances, these are poly-
nomials obeying a surprising property.

Proposition 7.3 (Brion–Vergne [5, Proposition 4.1]). Let P be a convex
lattice polytope in Rn with non-empty interior P 0. Let φ(x1, . . . , xn) be a homoge-
neous rational polynomial of degree d. Then NP (φ, k) and NP 0(φ, k) are rational
polynomials in k of degree n+ d. Moreover,

NP 0(φ, k) = (−1)n+dNP (φ,−k). �

Note that while NP (φ,−k) does not appear to be defined, when −k is a nega-
tive integer, the notation means to substitute −k for k in the polynomial function
NP (φ, k). Thus, the two polynomials are obtained from each other by replacing k
with −k and adjusting the overall sign.
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Lemma 7.4 (Cf. Norbury [31, Lemma 1]).

(i) Let m ≥ 0 be an integer. Then Am(k) and Sm(k) are rational odd quasi-
polynomials of degree 2m + 3, depending on the parity of k, which differ by
a lower-degree quasi-polynomial.

(ii) Let m,n ≥ 0 be integers. Then Bm,n(k), B0
m,n(k), B1

m,n(k), Rm,n(k), R0
m,n(k),

R1
m,n(k) are all rational odd quasi-polynomials of degree 2m+ 2n+ 5, depend-

ing on the parity of k. Each of Bm,n, B
0
m,n, B

1
m,n differs from the respective

Rm,n, R
0
m,n, R

1
m,n by a lower-degree quasi-polynomial.

In all cases, the leading coefficients are positive.

Proof. Norbury [31, Lemma 1] proved that Sm(k) is an odd quasi-polynomial of
degree 2m + 3, depending on the parity of k; it follows from the proof that the
coefficients are rational. We then observe that

Am(k) =
∑

p,q≥0
p+q=k
q even

p̄p2mq =
∑

p,q≥0
p+q=k
q even

p2m+1q +
∑
q≥0

p=0, q=k
q even

p2mq = Sm(k) + δm,0

∑
q=k

q even

q.

The second term here is zero, unless m = 0 and k is even, in which case it is k.
Thus, A0(k) = S0(k) + k for k even, and A0(k) = S0(k) for k odd. Since S0(k) has
degree 3, A0(k) is a rational odd quasi-polynomial of degree 3, depending on the
parity of k. When m > 0 we have Am(k) = Sm(k) for all k. So for all m, Am(k) is a
rational odd quasi-polynomial of degree 2m+3, given by Sm(k), plus a lower-degree
quasi-polynomial.

We now turn to the various R functions. Consider the following convex lattice
polytope in R3:

P = {(x, y, z) ∈ R3 : x, y, z ≥ 0, 2x+ y + 2z ≤ 2}
which is the convex hull of {(0, 0, 0), (1, 0, 0), (0, 2, 0), (0, 0, 1)}. This P is a 3-
simplex, with three of its four (2-dimensional) faces right-angled triangles in the
xy, yz and zx planes, and the fourth face cut out by the plane 2x+ y + 2z = 2 in
the positive octant.

Consider the polynomial function

φ(x, y, z) = x2m+1y2n+1z

fixing m and n throughout this discussion, so deg φ = 2m + 2n + 3. Applying
Proposition 7.3 to P and φ, NP (φ, k) and NP 0(φ, k) are rational polynomials in k

of degree 2m+ 2n+ 6, and NP 0(φ, k) = NP (φ,−k). Hence

N∂P (φ, k) = NP (φ, k) −NP 0(φ, k) = NP (φ, k) −NP (φ,−k)

is an odd rational polynomial function of k of degree ≤ 2m+ 2n+ 5.
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Now φ(0, y, z) = φ(x, 0, z) = φ(x, y, 0) = 0, so φ vanishes in the xy, yz and zx

planes, hence on three sides of P . We thus have

N∂P (φ, k) =
∑

x,y,z≥0
2x+y+2z=2k

x2m+1y2n+1z.

Let p = 2x, q = y, r = 2z. So x, y, z are non-negative integers such that 2x+y+2z =
2k if and only if p, q, r are non-negative integers such that p+ q + r = 2k with p, r

are even (hence q is also even). Hence

N∂P (φ, k) =
∑

p,q,r≥0
p+q+r=2k

p even, r even

(
p

2

)2m+1

q2n+1

(
r

2

)
=

1
22m+2

R0
m,n(2k).

Thus, for even k, R0
m,n(k) is an odd polynomial of degree ≤ 2m + 2n + 5. An

elementary estimate gives us that the degree is exactly 2m+ 2n+ 5. For instance,
for any positive integer k and positive integers u, v, w with u+ v +w = k, we have
(k + u, 2k + 2v, k + w) ∈ 8k ∂P . For given k there are

(
k−1
2

)
such points, and for

each we have

φ(k + u, 2k + 2v, k + w) = (k + u)2m+1(2k + 2v)2n+1(k + 2) > k2m+2n+3

so that

N∂P (φ, 8k) =
∑

v∈Z3∩8k∂P

φ(v) ≥
∑

u,v,w

φ(k + u, 2k + 2v, k + w) >
(
k − 1

2

)
k2m+2n+3.

Hence, degN∂P (φ, k) ≥ 2m+2n+5 and thus the degree must be exactly 2m+2n+5.
We have proved that for even k, R0

m,n(k) is an odd polynomial of degree 2m+2n+5.
Now we consider R0

m,n(k) for odd k. So let k = 2κ+ 1 and consider (following
Norbury)

NP 0(φ, κ+ 1) −NP (φ, κ) = NP 0

(
φ,
k + 1

2

)
−NP

(
φ,
k − 1

2

)
.

The first sum is a sum of φ(x, y, z) over lattice points (x, y, z) in the interior of
(κ+1)P , hence over all integers x, y, z > 0 such that 2x+y+2z < 2(κ+1) = k+1.
The second sum is a sum of φ(x, y, z) over lattice points (x, y, z) in κP , hence over
all integers x, y, z ≥ 0 such that 2x + y + 2z ≤ 2κ = k − 1. After subtracting
(and recalling that φ vanishes when any of x, y, z are zero), we are only left with
x, y, z > 0 such that 2x+ y + 2z = k. Thus

NP 0

(
φ,
k + 1

2

)
−NP

(
φ,
k − 1

2

)
=

∑
x,y,z>0

2x+y+2z=k

x2m+1y2n+1z

=
∑

p,q,r≥0
p+q+r=k

p even, r even

(
p

2

)2m+1

y2n+1

(
r

2

)
=

1
22m+2

R0
m,n(k).
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Applying Proposition 7.3, NP (φ, t) and NP 0(φ, t) are rational polynomials in t

of degree 2m+ 2n+ 6, and NP 0(φ, t) = NP (φ,−t). Thus, still taking k = 2κ+ 1 to
be odd,

1
22m+2

R0
m,n(k) = NP 0

(
φ,
k + 1

2

)
−NP

(
φ,
k − 1

2

)
= NP

(
φ,

−k − 1
2

)
−NP

(
φ,
k − 1

2

)
.

This is evidently an odd function of k, and it is a polynomial in k of degree ≤
2m+ 2n+ 5. A similar estimate as above in the case k even shows that the degree
is exactly 2m+ 2n+ 5.

We have now shown that R0
m,n(k) is a rational odd quasi-polynomial of degree

2m+2n+5. Norbury in [31, Lemma 1] showed that Rm,n(k) has the same property.
It is clear from his argument that the coefficients are rational. Thus R1

m,n = Rm,n−
R0

m,n is a rational odd quasi-polynomial of degree ≤ 2m+2n+5, depending on the
parity of k. An estimate of the sort used above shows that R1

m,n has degree exactly
2m+ 2n+ 5.

Now consider the various B functions. For Bm,n(k) we compute,

Bm,n(k) =
∑

p,q,r≥0
p+q+r=k

r even

p̄ q̄ p2mq2nr

= Rm,n(k) + δn,0Sm(k) + δm,0Sn(k) + δm,0δn,0

∑
r=k

r even

r.

The last sum is k, if k is even, and 0 if k is odd.
When m = n = 0 are zero, B0,0(k) is given by R0,0(k) + 2S0(k) + k for k even

and R0,0(k) + 2S0(k) for k odd, where degS0 = 3 < 5 = degR0,0. When m = 0
and n �= 0, we have B0,n(k) = R0,n(k) + Sn(k), where degSn = 2n+ 3 < 2n+ 5 =
degR0,n. The case m �= 0 and n = 0 is similar. If m,n are both non-zero, then
Bm,n(k) = Rm,n(k).

In all cases, then Bm,n(k) is given by Rm,n(k), plus a lower-degree odd rational
quasi-polynomial (possibly zero) depending on the parity of k. Hence, Bm,n(k) is a
rational odd quasi-polynomial of degree 2m+ 2n+ 5.

We can perform a similar computation for B0
m,n(k), expressing it as R0

m,n(k)
plus lower degree terms; and similarly again for B1

m,n(k). We conclude that both
are also odd rational quasi-polynomials of degree 2m + 2n + 5 depending on the
parity of k.

As all the functions are defined by summing positive polynomials on positive
integers, all highest degree coefficients must be positive.
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The first few polynomials among the Am and Bm,n are

A0(k) =


1
12
k3 +

2
3
k k even

1
12
k3 − 1

12
k k odd

A1(k) =


1
40
k5 − 1

6
k3 +

4
15
k k even

1
40
k5 − 1

6
k3 +

17
120

k k odd

A2(k) =


1
84
k7 − 1

6
k5 +

2
3
k3 − 16

21
k k even

1
84
k7 − 1

6
k5 +

2
3
k3 − 43

84
k k odd

A3(k) =


1

144
k9 − 1

6
k7 +

7
5
k5 − 40

9
k3 +

64
15
k k even

1
144

k9 − 1
6
k7 +

7
5
k5 − 40

9
k3 +

769
240

k k odd

B0,0(k) =


1

240
k5 +

1
8
k3 +

13
30
k k even

1
240

k5 +
1
8
k3 − 31

240
k k odd

B0,1(k) =


1

1680
k7 +

7
480

k5 − 7
60
k3 +

41
210

k k even

1
1680

k7 +
7

480
k5 − 7

60
k3 +

341
3360

k k odd

B0,2(k) =


1

6048
k9 +

1
144

k7 − 169
1440

k5 +
185
378

k3 − 17
30
k k even

1
6048

k9 +
1

144
k7 − 169

1440
k5 +

185
378

k3 − 91
240

k k odd

B1,1(k) =


1

20160
k9 − 1

840
k7 +

1
96
k5 − 23

630
k3 +

3
70
k k even

1
20160

k9 − 1
840

k7 +
1
96
k5 − 23

630
k3 +

61
2240

k k odd

Although Am(k) was originally defined as a function N0 → N0, since we now
know it is a quasi-polynomial it naturally extends to a function Z → Z. We can
similarly extend all the B,R, S functions.
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Lemma 7.5. For any non-negative integers m,n and any integer k,

Am(k) =
∑̃

p,q≥0
p+q=k
q even

p̄ p2mq and Bm,n(k) =
∑̃

p,q,r≥0
p+q+r=k

r even

p̄ q̄ p2mq2mr.

Recall from Sec. 6.2 that the tilde over the summation means that if k ≥ 0,
interpret the sum as is; if k < 0, then take the negative of the sum over p+ q = −k
or p+ q + r = −k.

Proof. We prove the result for Am(k); Bm,n(k) is similar. When k > 0, this is true
by definition. When k = 0, we know Am(k) = 0 as Am is odd, and the summation
consists only of the term with p = q = 0. When k < 0, we have∑̃

p,q≥0
p+q=k
q even

p̄ p2mq = −
∑

p,q≥0
p+q=−k
q even

p̄ p2mq = −Am(−k)

which is equal to Am(k), as Am is odd.

The following lemma now follows immediately from the properties of Am(k) in
Lemma 7.4.

Lemma 7.6. For any integer m ≥ 0,

Am(x+ y) +Am(x− y)

is a quasi-polynomial function of x and y, depending on the parity of x and y, odd
in x and even in y, of degree 2m + 3, with all coefficients of highest total degree
being positive.

7.2. Polynomiality for non-boundary-parallel counts

We now prove polynomiality of N̂g,n. Lemma 7.4 allows us to compute the summa-
tions in the recursion of Proposition 6.1 for N̂g,n, and we have computed enough
initial values.

For instance, in Eq. (13), we found an expression for N̂1,1(b) for b even, which
we now recognize as

N̂1,1(b) =
1
4b̄
A0(b) +

1
4
.

Since A0(b) = 1
12b

3 + 2
3b for even b, we immediately obtain a closed expression

N̂1,1(b) =
1
48
b2 +

5
12

for b �= 0 even

proving Eq. (11) in Proposition 1.5.
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Similarly, we can compute N̂0,4. From the recursion (Proposition 6.1) for N̂g,n,
we have

b1N̂0,4(b) =
4∑

j=2

1
2

 ∑
i,m≥0

i+m=b1+bj
m even

ī m N̂0,3(i, b2, . . . , b̂j , . . . , b4)

+
∑̃

i,m≥0
i+m=b1−bj

m even

ī m N̂0,3(i, b2, . . . , b̂j, . . . , b4)

 .
When

∑
bi is odd, all terms are zero, so assume

∑
bi is even. In this case, all N̂0,3

occurring have arguments with even sum, and hence each N̂0,3 occurring is equal
to 1. We then obtain (using Lemma 7.5)

2b1N̂0,4(b) =
4∑

j=2

 ∑
i,m≥0

i+m=b1+bj
m even

ī m+
∑̃

i,m≥0
i+m=b1−bj

m even

ī m

 =
4∑

j=2

A(b1 + bj) +A(b1 − bj).

We will compute N̂0,4(b1, b2, b3, b4) assuming that b1, b2 are even and b3, b4 are
odd; when b1, b2, b3, b4 have different parities a similar method will work. Recall
A0(k) = 1

12k
3 + 2

3k when k is even and 1
12k

3 − 1
12k when k is odd. By Lemma 7.6,

each A0(b1 + bi) +A0(b1 − bi) is odd in b1 and even in bi; explicitly

A0(b1 + b2) +A0(b1 − b2) =
1
6
b31 +

1
2
b1b

2
2 +

4
3
b1

and

A0(b1 + b3) +A0(b1 − b3) =
1
6
b31 +

1
2
b1b

2
3 −

1
6
b1

with a similar calculation for A0(b1 ± b4). Putting these together, we obtain

N̂0,4 =
1
4

(b21 + b22 + b23 + b24) +
1
2
.

Completing the calculation for other parities of (b1, b2, b3, b4), we obtain Eq. (10)
in Proposition 1.5.

Using a similar method, we now prove polynomiality of N̂g,n in general.

Proof of Theorem 1.7. We prove the result by induction on the complexity
−χ = 2g + n− 2 of the surface. For −χ = 1, i.e. (g, n) = (1, 1) and (0, 3), we have
proved the result directly; we consider N̂g,n with complexity at least 2, supposing
the result holds for all surfaces of smaller positive complexity.
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Fix a parity for each b1, . . . , bn. We claim that N̂g,n(b) is given by a polynomial
in b1, . . . , bn which is even in every variable and with total degree 3g − 3 + n in
b21, . . . , b

2
n, with all top-degree coefficients positive.

Consider the recursion for N̂g,n(b) in Proposition 6.1. Each N̂ in the recursion
is of the form N̂g−1,n+1, N̂g,n−1, or N̂g′,n′ where g′ ≤ g and n′ ≤ n − 2, but
(g′, n′) �= (0, 1) or (0, 2). So each term corresponds to a surface with strictly smaller
complexity. Further, neither N̂0,1 nor N̂0,2 ever appears; every term appearing has
positive complexity. So we know that every N̂ appearing in the recursion is given
by a quasi-polynomial with all the claimed properties.

After expanding out the sum
∑n

j=2 in the second line of the recursion, and the
sum over g1 + g2 = g and I 
 J = {2, . . . , n} in the third line, we can express
b1N̂g,n(b) as a finite collection of sums, where each sum is either over i,m ≥ 0
such that i+m = b1 ± bj (for some j) and m is even, or over i, j,m ≥ 0 such that
i + j + m = b1 and m is even. In the first case, each sum is, up to a constant, of
the form īmN̂g′,n′(i, bI); and in the second case, of the form ī j̄ mN̂g′,n′(i, j, bI)
or ī j̄ mN̂g′,n′(i, bI)N̂g′′,n′′(j, bJ ). In both cases, (g′, n′) or (g′′, n′′) has positive
complexity that is lower than (g, n), and bI denotes some subset of b2, . . . , bn.
Either way, the N̂ factors are all even functions of all their variables. Also, all
sums are equal to the sums, we obtain by writing a tilde over them; and all top-
degree coefficients are positive. Thus, each summation is of one of the following two
types, for some function p that is a positive constant times an N̂ or a product of
N̂ ’s:

Type 1:
∑̃

i,m≥0
i+m=b1±bj

m even

ī m p(i, bI), Type 2:
∑̃

i,j,m≥0
i+j+m=b1

m even

ī j̄ m p(i, j, bI).

Having fixed the parity of b1, . . . , bn, we now consider the possible parity of i and
j occurring in the sums. In a summation of type 1, the parity of i is fixed. In a
summation of type 2, the parity of i+ j is fixed; hence there are two possibilities for
the parity of i and j, and we can split the summation into two separate summations
where the parity of each variable is fixed.

In any case, we are able to express b1N̂g,n(b) as a finite sum of terms, where each
term is a summation of type 1 or 2, with the parities of each variable fixed. In each
summation p(i, bI) or p(i, j, bI) is a polynomial with top-degree coefficients positive
and even in all its variables. Taking each term of each polynomial separately, and
factoring out variables not involved in the summation, each term of type 1 becomes
a finite collection of sums of the form

q(bI)
∑̃

i,m≥0
i+m=k

i≡ε (mod 2), m even

ī i2am =

{
q(bI)Aa(k) k ≡ ε (mod 2),

0 otherwise,
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where q(bI) is a constant (for terms of highest degree, a positive constant) times
a product of even powers of bi’s. We determined in Lemma 7.4 that Aa(k) is odd
in k; and since the parity of k is fixed, Aa(k) is a polynomial in k. Every time,
we see Aa arising, it is from the second line of the recursion, hence appears in
the form Aa(b1 ± bj), both terms appearing together; by Lemma 7.6, the result
is odd in b1, even in bj (and indeed all other bi), with top-degree coefficients
positive.

Similarly, each term of type 2 becomes a finite collection of sums of the form

q(bI)
∑̃

i,j,m≥0
i+j+m=k

i≡δ (mod 2),
j≡ε (mod 2), m even

ī j̄ i2aj2mm =

{
q(bI)Bδ

a,b(k) k ≡ δ + ε (mod 2),

0 otherwise,

where δ, ε ∈ {0, 1}. Here, again q(bI) is a constant (positive for highest degree terms)
times a product of even powers of bi’s. From Lemma 7.4, each Ba,b(k) is odd in k,
and since the parity of k is fixed, Ba,b(k) is a polynomial in k. Every time, we see
Ba,b arising, it appears in the form Ba,b(b1), hence the result is odd in b1 and even
in all other bi.

After collecting terms and simplifying all Aa’s and Ba,b’s, the result for
b1N̂g,n(b) is divisible by b1, odd in b1, and even in all the other variables. Hence,
N̂g,n(b) is an even polynomial in all the variables as desired.

We can also keep track of degrees. Let us keep track of the degrees of the
variables rather than their squares, so we will show N̂g,n has degree 6g−6+2n. In the
recursion, the first term has N̂g−1,n+1, which has degree 6g+2n−10: it is multiplied
by ī j̄m and all summations are of Ba,b’s, leading to a total degree of 6g−5+2n. The
terms in the second line have N̂g,n−1, which has degree 6g−8+2n: it is multiplied by
ī m and the summations give Aa polynomials, leading to a total degree of 6g−5+2n;
the summation over j does not alter the degree. The terms in the third line have
N̂g1,|I|+1N̂g2,|J|+1 which has degree 6(g1 + g2)− 12 + 2|I|+ 2|J |+ 4 = 6g− 10 + 2n;
we then multiply by ī j̄ m and sum, obtaining Ba,b polynomials and a total degree
of 6g − 5 + 2n. As all top-degree terms are positive, there can be no cancelation
of terms and the right-hand side of the recursion is of degree 6g − 5 + 2n, with all
highest-degree coefficients positive. Dividing by b1 then gives the degree of N̂g,n as
6g − 6 + 2n.

7.3. Lattice count polynomials and moduli spaces

Norbury in [31] derives a recursion for counts of lattice points in the moduli space
of curves, which correspond to ribbon graphs without degree 1 vertices. We denote
the number of such ribbon graphs with prescribed genus, number of boundary
components, and boundary lengths, by Ng,n(b1, . . . , bn). Writing Eq. (5) of [31] in
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our notation, these lattice point counts satisfy the recursion

b1Ng,n(b1, . . . , bn)

=
∑

i,j,m≥0
i+j+m=b1

m even

1
2
i j m Ng−1,n+1(i, j, b2, . . . , bn)

+
n∑

j=2

1
2

 ∑
i,j≥0

i+m=b1+bj
m even

i m Ng,n−1(i, b2, . . . , b̂j , . . . , bn)

+
∑̃

i,m≥0
i+m=b1−bj

m even

i m Ng,n−1(i, b2, . . . , b̂j, . . . , bn)


+

∑
g1+g2=g

I�J={2,...,n}
No discs or annuli

∑
i,j,m≥0

i+j+m=b1
m even

1
2
i j m Ng1,|I|+1(i, bI) Ng2,|J|+1(j, bJ).

This recursion is identical to the recursion on N̂g,n (Proposition 6.1), with the bars
dropped from i’s and j’s.

The initial conditions for the recursions on Ng,n and N̂g,n are

N0,3(b1, b2, b3) = 1 N̂0,3(b1, b2, b3) = 1

N1,1(b1) =
1
48
b21 −

1
12

N̂1,1(b1) =
1
48
b21 +

5
12
.

(Both (g, n) = (1, 1) expressions are for even b1; they are both zero when b1 is
odd.) Norbury’s proof that each Ng,n(b1, . . . , bn) is a quasi-polynomial, depending
on the parity of b1, . . . , bn, of degree 3g − 3 + n in b21, . . . , b

2
n, is analogous to our

N̂g,n(b1, . . . , bn); indeed, we adapted his proof above. Thus, N and N̂ agree in initial
cases in highest-degree terms. As their recursions are also similar, it is now not too
surprising that they should have the same highest degree terms.

Proposition 7.7. Let (g, n) �= (0, 1) or (0, 2) and fix the parity of b1, . . . , bn.
Then the corresponding polynomials in the quasi-polynomials Ng,n(b1, . . . , bn) and
N̂g,n(b1, . . . , bn) have identical terms of highest total degree.

Proof. We compare the proofs of quasi-polynomiality of N̂g,n and Ng,n.
Having fixed the parity of each b1, . . . , bn, the expression for b1N̂g,n(b1, . . . , bn)

in the recursion can be written as a sum of terms, each consisting of a positive
constant, multiplied by a product of powers of bi’s, multiplied by some Aa(b1 ± bj)
or B0

a,b(b1) or B1
a,b(b1). Each Aa term occurs in a pair where we can factor out

1750012-54



2nd Reading

February 23, 2017 16:12 WSPC/S0129-167X 133-IJM 1750012

Counting curves on surfaces

Aa(b1 + bj) + Aa(b1 − bj); these terms are then collected together, and we obtain
the desired polynomial.

Exactly the same applies to b1Ng,n, replacing Aa and Ba,b with Sa and Rab.
From Lemma 7.4, Aa(k) and Sa(k) agree in their leading terms; and similarly
B0

a,b(k), B1
a,b(k) and R0

a,b(k), R1
a,b(k), respectively agree in their leading terms. So

if all N̂ and N of lower complexity have identical terms of highest degree, then
their highest degree terms also agree at a given complexity, and by induction on
complexity, we obtain the desired result.

In [31, Theorem 3], Norbury shows that

Ng,n(b1, . . . , bn) =
1
2
Vg,n(b1, . . . , bn) + lower order terms,

where Vg,n(b1, . . . , bn) is the volume polynomial of Kontsevich [25]. So N̂g,n, Ngn

and 1
2Vg,n all agree in highest degree terms.

In fact, the Kontsevich volumes also agree with the highest order terms in
the Weil–Petersson volume polynomials of Mirzakhani up to a simple normaliza-
tion [27]. Note Vg,n is a polynomial, not quasi-polynomial. It immediately follows
that the polynomials defining each quasi-polynomial N̂g,n(b1, . . . , bn) all agree in
highest degree. Moreover, the coefficients of Vg,n are, up to a combinatorial factor,
the intersection numbers on the moduli space of curves. In Ng,n, the coefficient of
b2d1
1 · · · b2dn

n , for
∑
di = 3g − 3 + n, is given by

1
25g−6+2nd1! · · · dn!

〈ψd1
1 · · ·ψdn

n ,Mg,n〉.
We have thus proved Theorem 1.9.

7.4. Polynomiality for general curve counts

We now use the polynomiality of N̂g,n to prove polynomiality for Gg,n. It is now
no more difficult than our computation of G0,3 in Sec. 5.3; in fact, we developed all
we need there.

Recall (Theorem 1.8) that Gg,n(b1, . . . , bn) can be written in terms of N̂g,n:

Gg,n(b1, . . . , bn) =
∑

0≤ai≤bi

ai≡bi (mod 2)

×
 b1
b1 − a1

2

 · · ·
 bn
bn − an

2

 ā1 · · · ān N̂g,n(a1, . . . , an).

(14)

Recall from Definition 5.5 that, for integers α ≥ 0,

P̃α(n) =
n∑

l=0

(
2n
n− l

)
(2l) (2l)2α, Q̃α(n) =

n∑
l=0

(
2n+ 1
n− l

)
(2l + 1)(2l + 1)2α.
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We also defined p̃α(n) and q̃α(n) “without the bars”. We showed (Proposition 5.7)
that P̃α(n) =

(
2n
n

)
Pα(n), Q̃α(n) =

(
2n
n

)
Qα(n), where Pα, Qα are integer polynomi-

als of degree α+ 1; and similarly for p̃α(n) and q̃α(n).
In evaluating the summations in (14), we can write the even polynomial

N̂g,n(b1, . . . , bn) as a sum of even monomials, and factorize each term into sums
of the form

∑
0≤a≤b

a≡b (mod 2)

 b
b− a

2

 ā a2α.

When b is even, b = 2n, we only sum over even a, so with a = 2l and the sum is
P̃α(n). When b is odd, b = 2n+1, we sum over odd a = 2l+1 and the sum is Q̃α(n).
When all ai are set to zero however, N̂g,n(0) = 1, to which the quasi-polynomial
for N̂g,n does not apply; separating out this term, we have a p̃α(n) rather than a
P̃α(n).

Proof of Theorem 1.3. We may evaluate Gg,n(b1, . . . , bn) by simply replacing
sums of the above type with functions P̃α, p̃α and Q̃α. More precisely, each mono-
mial in ā1 · · · ānN̂g,n(a1, . . . , an) is of the form ā1 · · · āna

2α1
1 · · · a2αn

n , and we replace
each factor āia

2αi

i with P̃α(mi) = P̃α(bi/2) or p̃α(mi), when bi = 2mi is even, and
with Q̃α(mi) = Q̃α( bi−1

2 ) when bi = 2mi +1 is odd. Each such substitution replaces
a factor of degree 2αi + 1 with an expression

(
2mi

mi

)
multiplied by a polynomial of

degree αi + 1 in bi.
After performing this substitution over all ai, each monomial becomes an expres-

sion of the form
(
2m1
m1

) · · · (2mn

mn

)
multiplied by a product of Pα(m) and Qα(m), which

is a polynomial in b1, . . . , bn. Since each monomial has
∑

2αi = 6g−6+2n, we end
up with a polynomial of degree

∑
(αi + 1) = 3g − 3 + 2n.

Furthermore, it follows from the proof of Theorem 1.7 in Sec. 7.2 that each poly-
nomial that appears in the quasi-polynomial N̂g,n(b1, . . . , bn) had positive highest-
degree coefficients. After making the substitutions described above, we still have
positive leading coefficients. When we collect terms, the result then is of the form(
2m1
m1

) · · · (2mn

mn

)
Pg,n(b1, . . . , bn), where Pg,n has positive highest-order coefficients

and degree 3g − 3 + 2n.

We illustrate the technique with an example, computing G1,1(b); clearly, we
need only consider b even, b = 2m. We computed in Sec. 7.2, Eq. (11) of
Proposition 1.5,

N̂1,1(b) =
1
48
b2 +

5
12

for b �= 0 even, N̂1,1(0) = 1.
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Hence

G1,1(b) =
∑

0≤a≤b
a≡b (mod 2)

ā N̂1,1(a)

=
(
b

b/2

)
N̂1,1(0) +

∑
0<a≤b

a≡b (mod 2)

 b

b− a

2

 ā( 1
48
a2 +

5
12

)

=
(

2m
m

)
+

1
48
p̃1(m) +

5
12
p̃0(m) =

(
2m
m

)(
1
12
m2 +

5
12
m+ 1

)
.

This gives Eq. (6) in Proposition 1.2.

8. Differentials and Generating Functions

8.1. Definitions

We now string the curve counts Ng,n and Gg,n out into generating functions and
differentials.

Definition 8.1 (Generating functions and differentials). For any g ≥ 0 and
n ≥ 1, let

fG
g,n(x1, . . . , xn) =

∑
µ1,...,µn≥0

Gg,n(µ1, . . . , µn)x−µ1−1
1 · · ·x−µn−1

n

fN
g,n(z1, . . . , zn) =

∑
ν1,...,νn≥0

Ng,n(ν1, . . . , νn)zν1−1
1 · · · zνn−1

n

ωG
g,n(x1, . . . , xn) = fG

g,n(x1, . . . , xn) dx1 ⊗ · · · ⊗ dxn

ωN
g,n(z1, . . . , zn) = fN

g,n(z1, . . . , zn) dz1 ⊗ · · · ⊗ dzn.

Here, x1, . . . , xn are coordinates on CP1, as are z1, . . . , zn. For now, we treat
these as formal Laurent series. In Sec. 8.3, we show that they are all meromorphic
functions and forms.

The differential forms can be regarded as sections of the product bundle

(T ∗CP1)�n = π∗
1(T ∗CP1) ⊗ π∗

2(T ∗CP1) ⊗ · · · ⊗ (π∗
nT

∗CP1).

This is a vector bundle over (CP1)n, where πi : (CP1)n → CP1 is projection onto
the i’th coordinate. For convenience, we write dz1 · · · dzn rather than dz1⊗· · ·⊗dzn.
The ωg,n are multidifferentials.

We will often regard the coordinates z and x as related by the equation x = z+ 1
z ;

indeed, as we will see in Sec. 8.4, ωG
g,n and ωN

g,n are essentially equal, with this change
of coordinates.
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8.2. Small cases

We can compute the generating functions fG
g,n, f

N
g,n and differential forms ωG

g,n, ω
N
g,n

directly in the cases (g, n) = (0, 1) or (0, 2).

Let xi = zi + 1
zi

and zi = xi−
√

x2
i−4

2 .

Lemma 8.2.

ωN
0,1(z1) = z−1

1 dz1

ωG
0,1(x1) =

x1 −
√
x2

1 − 4
2

dx1 = z1 dx1 = (z1 − z−1
1 ) dz1

ωN
0,2(z1, z2) =

(
1

z1z2
+

1
(1 − z1z2)2

)
dz1dz2

ωN
0,3(z1, z2, z3) =

1 + z4
1z

4
2z

4
3 +
∑

cyc(z
4
1 + z1z2 + z3

1z
3
2 + z4

1z
4
2)

+
∑

sym(z3
1z2 + z4

1z
3
2z3 + z4

1z2z3)
z1z2z3(1 − z2

1)2(1 − z2
2)2(1 − z2

3)2
dz1dz2dz3.

The
∑

cyc refers to a sum over cyclic permutations of z1, z2, z3 (i.e. (1, 2, 3) �→
(2, 3, 1), (3, 1, 2), 3 terms), and

∑
sym to a sum over all permutations (6 terms).

Proof. For (g, n) = (0, 1), we have N0,1(0) = 1 and all other N0,1(ν) = 0, so
fN
0,1(z1) = z−1

1 and ωN
0,1 is as claimed. We also have G0,1(2m) = 1

m+1

(
2m
m

)
and

G0,1(µ) = 0 for odd µ, so fG
0,1(x1) is a generating function for the Catalan numbers:

fG
0,1(x1) =

∞∑
m=0

G0,1(2m)x−2m−1
1

=
∞∑

m=0

1
m+ 1

(
2m
m

)
x−2m−1

1 =
x1 −

√
x2

1 − 4
2

= z1.

Since dxi = (1 − z−2
i )dzi, then ωG

0,1 is as claimed.
Turning to (g, n) = (0, 2), recall N0,2(ν1, ν2) = δν1,ν2ν1 (Lemma 3.15). Noting

that
∑∞

ν=0 νz
ν−1 = 1

(1−z)2 , we compute

fN
0,2(z1, z2) =

∞∑
ν=0

ν (z1z2)ν−1 = z−1
1 z−1

2 +
∞∑

ν=0

ν(z1z2)ν−1 = z−1
1 z−1

2 +
1

(1 − z1z2)2
.

Thus, ωN
0,2 is as desired.

Turning to (g, n) = (0, 3), from Sec. 5.2, we have N0,3(b1, b2, b3) = b̄1b̄2b̄3 if
b1 + b2 + b3 is even, and 0 otherwise. Thus

fN
0,3(z1, z2, z3)

=
∑

ν1,ν2,ν3≥0
ν1+ν2+ν3 even

ν1 ν2 ν3 z
ν1−1
1 zν2−1

2 zν3−1
3
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=

 ∑
ν1,ν2,ν3 even

+
∑

ν1 even
ν2,ν3 odd

+
∑

ν2 even
ν3,ν1 odd

+
∑

ν3 even
ν1,ν2 odd


× ν1 ν2 ν3 z

ν1−1
1 zν2−1

2 zν3−1
3 .

If we define

ρ(z) =
∑
ν≥0

ν even

ν zν−1, σ(z) =
∑
ν≥0

ν odd

ν zν−1

then we have

fN
0,3(z1, z2, z3) = ρ(z1)ρ(z2)ρ(z3) + ρ(z1)σ(z2)σ(z3)

+ ρ(z2)σ(z3)σ(z1) + ρ(z3)σ(z1)σ(z2).

We can compute ρ(z), σ(z) directly (say by differentiating the geometric series
1

1−z2 =
∑

m≥0 z
2m):

ρ(z) =
(
z−1 +

2z
(1 − z2)2

)
and σ(z) =

1 + z2

(1 − z2)2
.

Writing out fN
0,3 in terms of z1, z2, z3, we obtain the claimed expression.

Observe that all the functions and forms computed above are meromorphic; we
next show this is true in general.

8.3. Meromorphicity

Proposition 8.3. For all g ≥ 0 and n ≥ 1, fN
g,n(z1, . . . , zn) is a meromorphic

function and ωN
g,n(z1, . . . , zn) is a meromorphic differential form.

Proof. In Sec. 8.2 above, we computed ωN
0,1(z1) and ωN

0,2(z1, z2), seeing directly
that they are meromorphic. And ωN

g,n = fN
g,ndz1 · · ·dzn. So, it suffices to show

fN
g,n(z1, . . . , zn) is a meromorphic function, for (g, n) �= (0, 1), (0, 2).

By Theorem 1.7, for (g, n) �= (0, 1), (0, 2), each Ng,n(ν1, . . . , νn) is ν̄1ν̄2 · · · ν̄n

times a quasi-polynomial function of ν1, . . . , νn, depending on the parity of each
νi. Letting νi ≡ εi (mod 2), where εi ∈ {0, 1}, we split fN

g,n into 2n sums of
the form ∑

ν1≥0
ν1≡ε1 (mod 2)

· · ·
∑
νn≥0

νn≡εn (mod 2)

ν1 · · · νn P (ν1, . . . , νn)zν1−1
1 · · · zνn−1

n ,
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where P (ν1, . . . , νn) is a polynomial. Splitting each such polynomial into monomials,
we can write fN

g,n as a finite sum of terms of the form of a constant times∑
ν1≥0

ν1≡ε1 (mod 2)

· · ·
∑
νn≥0

νn≡εn (mod 2)

ν1 · · · νn ν
a1
1 · · · νan

n zν1−1
1 · · · zνn−1

n

=
n∏

i=1

 ∑
νi≥0

νi≡εi (mod 2)

νi ν
ai

i z
νi−1
i

,
where a1, . . . , an are non-negative integers. Thus, it suffices to show that for a ≥ 0
and ε ∈ {0, 1}, ∑

ν≥0
ν≡ε (mod 2)

ν νa zν−1 = δa,0z
−1 +

∑
ν≥0

ν≡ε (mod 2)

νa+1zν−1

is meromorphic. Now we have∑
ν≥0

ν≡ε (mod 2)

νazν =
(
z
d

dz

)a ∑
ν≥0

ν≡ε (mod 2)

zν

so it suffices to show that
∑

ν≡ε (mod 2) z
ν is meromorphic. Accordingly as ε = 0 or

1, we have∑
ν≥0

ν even

zν =
∑
m≥0

z2m =
1

1 − z2
, or

∑
ν≥0

ν odd

zν =
∑
m≥0

z2m+1 =
z

1 − z2
,

both of which are clearly meromorphic.

In fact, since z d
dz introduces no new poles, we note that for all (g, n) �= (0, 2),

ωN
g,n has poles only at zi = −1, 0, 1.

8.4. Change of coordinates between non-boundary-parallel

and general curve counts

Recall ωN
g,n is a generating function for the Ng,n, while ωG

g,n is a generating function
for the Gg,n. It turns out that after the change of variable xi = zi + 1

zi
(so that

dxi = (1 − z−2
i )dzi), these two formal differential forms are equal.

So define φ : CP1 → CP1 by φ(z) = z + 1
z = x, and consider pulling back

ωG
g,n(x1, . . . , xn) under φ. We may therefore express Theorem 1.14 more precisely

by saying that for any (g, n) �= (0, 1),

φ∗ωG
g,n(x1, . . . , xn) = ωN

g,n(z1, . . . , zn).

Thus, if we regard x and z as alternative coordinates on CP1 and φ as a change
of coordinate, then ωG

g,n and ωN
g,n give the same differential form, which we simply
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denote ωg,n. We can also express this theorem as

ωN
g,n(z) =

∞∑
ν=0

Ng,n(ν)zν−1dz =
∞∑

µ=0

Gg,n(µ)x−µ−1dx = ωG
g,n(x).

Our explicit computations of ωG
0,1 and ωN

0,1 show that the theorem fails for (g, n) =
(0, 1).

The proof is by a residue argument, following ideas of Do–Norbury in [10].

Proof of Theorem 1.14. Let µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn). From Theo-
rem 1.8, we have

Gg,n(µ) =
∑

ν1,...,νn≥0

Ng,n(ν)
n∏

i=1

 µi

µi − νi

2

 .
Now we note that, for any integers µ, ν (even if negative, even if ν > µ), µ

µ− ν

2

 = Res
z=0

zν−µ−1
∞∑

m=0

(
µ

m

)
z2m dz

= Res
z=0

zν−µ−1(1 + z2)µ dz = Res
z=0

zν−1 dz xµ.

Substituting this residue expression for
( µ

µ−ν
2

)
and recalling that ωN

g,n is meromor-
phic, we obtain

Gg,n(µ) = Res
(z1,...,zn)=(0,...,0)

ωN
g,n(z1, . . . , zn)

n∏
i=1

xµi

i .

Now suppose, we rewrite ωN
g,n(z1, . . . , zn) in terms of x1, . . . , xn; as ωN

g,n is mero-
morphic this form is determined by its Laurent series. Let ag,n(λ1, . . . , λn) be the
coefficient of x−λ1−1

1 · · ·x−λn−1
n dx1 · · · dxn, so

ωN
g,n =

∑
λ1,...,λn

ag,n(λ1, . . . , λn)x−λ1−1
1 · · ·x−λn−1

n dx1 · · · dxn.

The residue at (z1, . . . , zn) = (0, . . . , 0) corresponds to the residue at (x1, . . . , xn) =
(∞, . . . ,∞); if we substitute yi = x−1

i , this corresponds to the residue at
(y1, . . . , yn) = (0, . . . , 0). Since dxi = −y−2

i dyi and x−λi−1
i dxi = −yλi−1

i dyi,
we have

Gg,n(µ) = Res
(x1,...,xn)=(∞,...,∞)

×
∑

λ1,...,λn

ag,n(λ1, . . . , λn)x−λ1−1
1 · · ·x−λn−1

n dx1 · · ·dxn

n∏
i=1

xµi

i
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= (−1)2n Res
(y1,...,yn)=(0,...,0)

×
∑

λ1,...,λn

ag,n(λ1, . . . , λn)yλ1−1−µ1
1 · · · yλn−1−µn

n dy1 · · ·dyn

= ag,n(µ1, . . . , µn).

Hence Gg,n(µ) = ag,n(µ), and ωN
g,n, expressed in terms of the xi, is actually a

generating function for the Gg,n(µ), as desired.

We illustrate the use of this theorem by calculating fG
0,2(x1, x2), the generating

function for all G0,2(µ1, µ2), given by the complicated formulae in Eqs. (2) and (3).

Lemma 8.4.

fG
0,2(x1, x2) =

1
2(x1 − x2)2

(
1 +

2x2
1 − 3x1x2 + 2x2

2 − 4√
(x2

1 − 4)(x2
2 − 4)

)
.

Proof. Substitute zi = xi−
√

x2
i−4

2 into the expression ω0,2 = ( 1
z1z2

+
1

(1−z1z2)2 )dz1dz2 from Lemma 8.2.

8.5. Free energies

Each ωg,n(z1, . . . , zn) is a meromorphic section of the vector bundle (T ∗CP1)�n over
(CP1)n. A form of this type may be obtained by taking a function F : (CP1)n → CP1

and the exterior differential dzi in each coordinate zi. Then dz1dz2 · · · dznF is a
section of (T ∗CP1)�n.

Definition 8.5. A function Fg,n : (CP1)n → CP1 such that

dz1 · · · dznFg,n(z1, . . . , zn) = ωg,n(z1, . . . , zn)

is called a free energy.

Given ωg,n, there are many free energies: Fg,n =
∫ z1 · · ·∫ zn ωg,n; each integral

introduces a constant of integration. We have

fG
g,n(x1, . . . , xn) =

∂nFg,n

∂x1 ∂x2 · · · ∂xn
and fN

g,n(z1, . . . , zn) =
∂nFg,n

∂z1 ∂z2 · · · ∂zn
.

In the case (g, n) = (0, 1), we can integrate ωG
0,1 and ωN

0,1; in this case, we can obtain
two distinct free energy functions FG

0,1(z1) and FN
0,1(x1).

Proof of Proposition 1.15. It is straightforward (if a little tedious in the (0, 3)
case) to check that differentiating the claimed free energy functions yields the forms
ωG

0,1, ω
N
0,1, ω0,2, ω0,3 calculated in Lemma 8.2.
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8.6. Recursion and generating functions

We now make a first attempt to turn the recursion on Gg,n into a recursion on
generating functions fG

g,n. Throughout this section, we write fg,n rather than fG
g,n,

for convenience. (No fN
g,n’s arise, so there is no possible ambiguity.)

The recursion on Gg,n (Theorem 1.4), as noted in Sec. 1.2, is identical to the
recursion obeyed by the “generalized Catalan numbers”, but has different initial
conditions. Since generating functions for the “generalized Catalan numbers” obey
a recursive differential equation [29], we might expect the fg,n to obey a similar dif-
ferential equation. However the different initial conditions lead to some difficulties.
The recursion on Gg,n fails when b1 = 0; the generalized Catalan numbers avoid
this issue, as b1 = 0 implies that the corresponding generalized Catalan number is
zero.

In our first attempt now, we postpone the issue and only consider b1 > 0, and
prove the following.

Lemma 8.6. For any g ≥ 0 and n ≥ 1, we have∑
b1≥1

b2,...,bn≥0

Gg,n(b1, . . . , bn)x−b1−1
1 · · ·x−bn−1

n

= x−1
1 fg−1,n+1(x1, x1, x2, . . . , xn)

+ x−1
1

n∑
k=2

∂

∂xk

1
xk − x1

(fg,n−1(x2, . . . , xn) − fg,n−1(x1, x2, . . . , x̂k, . . . , xn))

+ x−1
1

∑
g1+g2=g

I1�I2={2,...,n}

fg1,|I1|+1(x1, xI1) fg2,|I2|+1(x1, xI2).

Proof. Take the recursion on Gg,n (Theorem 1.4), multiply by x−b1−1
1 · · ·x−bn−1

n ,
and sum over all b1 ≥ 1 and b2, . . . , bn ≥ 0. We obtain, on the right-hand side, the
three terms

I =
∑
b1≥1

b2,...,bn≥0

∑
i,j≥0

i+j=b1−2

Gg−1,n+1(i, j, b2, . . . , bn) x−b1−1
1 · · ·x−bn−1

n

II =
∑
b1≥1

b2,...,bn≥0

n∑
k=2

bkGg,n−1(b1 + bk − 2, b2, . . . , b̂k, . . . , bn) x−b1−1
1 · · ·x−bn−1

n

III =
∑
b1≥1

b2,...,bn≥0

∑
g1+g2=g

I1�I2={2,...,n}

×
∑

i,j≥0
i+j=b1−2

Gg1,|I1|+1(i, bI1)Gg2,|I2|+1(j, bI2 ) x−b1−1
1 · · ·x−bn−1

n .
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Each of I, II, III can be written in terms of the generating functions fg,n. We show
that these correspond to the three terms in the claimed equation.

Considering I, we note that i+j = b1−2 implies x−b1−1
1 = x−i−1

1 x−j−1
1 x−1

1 ; and
we note that a sum over b1 ≥ 1, followed by a sum over i, j ≥ 0 with i+ j = b1 − 2,
is simply a sum over i, j ≥ 0. Thus

I = x−1
1

∑
b2,...,bn≥0

∑
i,j≥0

Gg−1,n+1(i, j, b2, . . . , bn) x−i−1
1 x−j−1

1 x−b2−1
2 · · ·x−bn−1

n

= x−1
1 fG

g−1,n+1(x1, x1, x2, . . . , xn).

To simplify II, let m = b1 + bk − 2, and replace the sum over b1 and bk with a
sum over m, followed by a sum over b1 ≥ 1, bk ≥ 0 satisfying b1 + bk − 2 = m.

II =
n∑

k=2

∑
b2,...,bbk,...,bn≥0

m≥0

Gg,n−1(m, b2, . . . , b̂k, . . . , bn)x−b2−1
2 · · · x̂−bk−1

k · · ·x−bn−1
n

×
∑

b1≥1, bk≥0
b1+bk−2=m

bk x
−b1−1
1 x−bk−1

k

Now we note the sum over b1 and bk is∑
b1≥1, bk≥0
b1+bk−2=m

bk x
−b1−1
1 x−bk−1

k = −x−1
1

∂

∂xk

(
x−m−1

1 − x−m−1
k

xk − x1

)

=
−x−1

1

xk − x1
(m+ 1)x−m−2

k +
x−1

1

(xk − x1)2
(
x−m−1

1 − x−m−1
k

)
.

Hence, we obtain an expression for II, which is a sum over k and the parameters
b2, . . . , b̂k, . . . , bn,m appearing in the Gg,n:

II =
n∑

k=2

∑
b2,...,bbk,...,bn,m≥0

Gg,n−1(m, b2, . . . , b̂k, . . . , bn)x−b2−1
2 · · · x̂−bk−1

k · · ·x−bn−1
n

[ −x−1
1

xk − x1
(m+ 1)x−m−2

k +
x−1

1

(xk − x1)2
(x−m−1

1 − x−m−1
k )

]

=
n∑

k=2

∑
b2,...,bbk,...,bn,m≥0

−x−1
1

xk − x1
Gg,n−1(m, b2, . . . , b̂k, . . . , bn)x−b2−1

2 · · · x̂−bk−1
k

· · ·x−bn−1
n (m+ 1)x−m−2

k +
x−1

1

(xk − x1)2
Gg,n−1(m, b2, . . . , b̂k, . . . , bn)x−b2−1

2

· · · x̂−bk−1
k · · ·x−bn−1

n (x−m−1
1 − x−m−1

k )
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=
n∑

k=2

x−1
1

xk − x1

∂

∂xk
fg,n−1(x2, . . . , xn)

+
x−1

1

(xk − x1)2
(fg,n−1(x1, x2, . . . , x̂k, . . . , xn) − fg,n−1(x2, . . . , xn))

= x−1
1

n∑
k=2

∂

∂xk

1
xk − x1

(fg,n−1(x2, . . . , xn) − fg,n−1(x1, x2, . . . , x̂k, . . . , xn)).

Finally, we turn to III. As with I, a sum over b1 ≥ 1 and then over i, j ≥ 0
with i+ j = b1 − 2 is equivalent to a sum over i, j ≥ 0, so we obtain

III = x−1
1

∑
g1+g2=g

I1�I2={2,...,n}

∑
i,bI≥0

Gg1,|I1|+1(i, bI1)x−i−1
1 x

−bI1−1

I1

×
∑

j,bJ≥0

Gg2,|I2|+1(j, bI2)x−j−1
1 x

−bI2−1

I2

= x−1
1

∑
g1+g2=g

I1�I2={2,...,n}

fg1,|I1|+1(x1, xI1 ) fg2,|I2|+1(x1, xI2).

This gives the desired result.

From the above lemma, we can obtain a differential equation for fg,n by arrang-
ing all the terms with b1 = 0 to be constant terms, and differentiating them away.

Proposition 8.7. For any g ≥ 0 and n ≥ 1,
∂

∂x1
(x1fg,n(x1, . . . , xn))

=
∂

∂x1
fg−1,n+1(x1, x1, x2, . . . , xn)

+
∂

∂x1

n∑
k=2

∂

∂xk

1
xk − x1

(fg,n−1(x2, . . . , xn) − fg,n−1(x1, x2, . . . , x̂k, . . . , xn))

+
∂

∂x1

∑
g1+g2=g

I1�I2={2,...,n}

fg1,|I1|+1(x1, xI1 )fg2,|I2|+1(x1, xI2).

�

Proof. Consider the equation in Lemma 8.6 above. Multiplying the left-hand side
by x1 and then differentiating with respect to x1, we obtain ∂

∂x1
(x1fg,n(x1, . . . , xn)),

since terms with b1 = 0 are annihilated by the differentiation. Doing the same to
the right-hand side yields the result.

We return to the search for a differential equation in Sec. 10.6. An alterna-
tive method to obtain a differential equation is to find a simple way to compute
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Gg,n(0, b2, . . . , bn). There is a straightforward way to do this, if we keep track of
the number of complementary regions in the arc diagram. This is the subject of the
next section.

9. Keeping Track of Regions

9.1. Refining curve counts

As it turns out, many of the results already proved about Gg,n and Ng,n, can be
refined by keeping track of the number r of complementary regions (Definition 1.10)
in arc diagrams. It will turn out to be very useful to use a related parameter t. We
begin by making the following definitions.

Definition 9.1.

(i) The set of equivalence classes of arc diagrams on (Sg,n, F (b)) with r comple-
mentary regions is denoted Gg,n,r(b). The number of such equivalence classes
is denoted Gg,n,r(b).

(ii) The subset of Gg,n,r(b) without boundary-parallel arcs is denoted Ng,n,r(b).
The number of such equivalence classes is denoted Ng,n,r(b). We also define

N̂g,n,r(b1, . . . , bn) =
Ng,n,r(b1, . . . , bn)
b1 b2 · · · bn

.

(iii) For g ≥ 0 and n, r ≥ 1 and b1, . . . , bn ≥ 0, define

t = r − (2 − 2g − n) − 1
2

n∑
i=1

bi = r − χ− 1
2

n∑
i=1

bi.

(iv) For g ≥ 0, n ≥ 1, and b1, . . . , bn ≥ 0, define Gt
g,n(b) = Gg,n,r(b), N t

g,n(b) =
Ng,n,r(b) and

Gt
g,n(b) = Gg,n,r(b), N t

g,n(b) = Ng,n,r(b), N̂ t
g,n(b) = N̂g,n,r(b).

Clearly Gg,n(b) = 
r≥0Gg,n,r(b) = 
tGt
g,n(b) and Gg,n(b) =

∑
r≥0Gg,n,r(b),

so we have Gg,n(b) =
∑

r≥0Gg,n,r(b) =
∑

tG
t
g,n(b), Ng,n(b) =

∑
r≥0Ng,n,r(b) =∑

tN
t
g,n(b) and N̂g,n(b) =

∑
r≥0 N̂g,n,r(b) =

∑
t N̂

t
g,n(b). We will discuss how

many non-zero terms are in these sums, i.e. bounds on r and t, in Sec. 9.5.
We can easily compute the refined counts Gg,n,r and Ng,n,r explicitly for (g, n) =

(0, 1), (0, 2).

Lemma 9.2.

(i) For any integer m ≥ 0,

G0,1,m+1(2m) = G0
0,1(2m) =

1
m+ 1

(
2m
m

)
.
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(ii) For integers m1,m2 ≥ 0,

G0
0,2(2m1, 2m2) = G0,2,m1+m2(2m1, 2m2) =

m1m2

m1 +m2

(
2m1

m1

)(
2m2

m2

)
G0

0,2(2m1 + 1, 2m2 + 1) = G0,2,m1+m2(2m1 + 1, 2m2 + 1)

=
(2m1 + 1)(2m2 + 1)

m1 +m2 + 1

(
2m1

m1

)(
2m2

m2

)

G1
0,2(2m1, 2m2) = G0,2,m1+m2+1(2m1, 2m2) =

(
2m1

m1

)(
2m2

m2

)
.

All other G0,1,r(b1), Gt
0,1(b1), G0,2,r(b1, b2) and Gt

0,2(b1, b2) are zero.

Proof. An a disc (S0,1, F (2m)), an arc diagram has m arcs, which divide the disc
into m+ 1 complementary regions. Thus G0,1,r(2m) = G0,1(2m) if r = m+ 1, and
is zero otherwise. This value of r corresponds to t = 0.

Now consider annuli (S0,2, F (b1, b2)). For an arc diagram to exist, we need b1 +
b2 ≡ 0 (mod 2). From Lemma 3.4, a traversing arc diagram has r = 1

2 (b1 + b2), and
an insular diagram has r = 1

2 (b1 + b2) + 1; these correspond to t = 0 and t = 1,
respectively. Propositions 3.2 and 3.3 then give the result.

Lemma 9.3.

(i) N0,1,1(0) = N0
0,1(0) = 1, and all other N0,1,r(b1) and N t

0,1(b1) are zero.
(ii) N0,2,1(0, 0) = 1, N0,2,b(b, b) = b for b > 0, and all other N0,2,r(b1, b2) are zero.

Equivalently, N1
0,2(0, 0) = 1, N0

0,2(b, b) = b for b > 0, and all other N t
0,2(b1, b2)

are zero. �

Proof. As discussed in Sec. 3.4, the only arc diagram without boundary-parallel
arcs on a disc is the empty diagram, for which r = 1 and t = 0. On an annulus, such
a diagram must consist entirely of parallel traversing arcs, so b1 = b2 = b; there are
b̄ such diagrams, which have b̄ complementary regions, so r = b̄ and t = b̄−b = δb,0.

9.2. Counting arc diagrams with punctures

When b1 = 0, the first boundary component of Sg,n has no points marked on
it; we may regard the boundary component as a puncture in Sg,n−1. Filling in
the puncture gives arc diagrams on Sg,n−1; we already saw this idea in Proposi-
tion 3.7. We now show precisely how keeping track of regions allows us to compute
Gg,n,r(0, b2, . . . , bn).

Proposition 9.4. For any g ≥ 0, n ≥ 2 and b2, . . . , bn ≥ 0,

Gg,n,r(0, b2, . . . , bn) = r Gg,n−1,r(b2, . . . , bn).
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In the case of enumerating lattice points in moduli spaces of curves [32], the
evaluation b1 = 0 is related to the dilaton equation that appears in the general
theory of the topological recursion [18]. Thus, the equation above can be regarded
as a kind of dilaton equation for curve counts.

Proof. Filling in the first boundary component with a disc gives a well-defined
map

Gg,n,r(0, b2, . . . , bn) → Gg,n−1,r(b2, . . . , bn).

Conversely, removing a disc from any complementary region of an arc diagram in
Gg,n−1,r(b2, . . . , bn) gives an arc diagram in Gg,n,r(0, b2, . . . , bn). Two arc diagrams
obtained on (Sg,n, F (0, b2, . . . , bn)) by removing discs from a given arc diagram on
(Sg,n−1, F (b2, . . . , bn)) are equivalent if and only if the discs were removed from the
same complementary region. Thus, the map above is surjective and r-to-1, giving
the claimed equality.

9.3. Refining local decomposition

In the local decomposition of an arc diagram C on (Sg,n, F (b1, . . . , bn)), we obtain a
Bi-local arc diagram Ci on an annulus neighborhood of each boundary component
Bi, lying in L(bi, ai), and a diagram C′ without boundary-parallel arcs on the core
S′. So Ci has ai traversing arcs and (bi − ai)/2 insular arcs.

Let C and C′ have r, r′ complementary regions respectively, and corresponding
parameters t, t′. Now C′ can be obtained by successively removing from C outermost
boundary-parallel arcs, at each stage cutting off a disc complementary region. There
are
∑n

i=1(bi − ai)/2 such boundary-parallel arcs, so

r′ = r − 1
2

n∑
i=1

(bi − ai).

Since S and S′ have the same Euler characteristic χ, we have

t′ = r′ − χ− 1
2

n∑
i=1

ai = r − χ− 1
2

n∑
i=1

bi = t.

In other words, C and C′ have the same t-parameter. There is thus a map

L(b1, a1) × · · · × L(bn, an) ×N t
g,n(a1, . . . , an) → Gt

g,n(b1, . . . , bn)

which glues local decompositions into a general arc diagram. Taking the quotient
by the action of Zā1 × · · · ×Zān by rotations, and a union over ai as in Sec. 4.2, we
obtain a bijection

∆ : Gt
g,n(b1, . . . , bn) →

⊔
0≤ai≤bi

ai≡bi (mod 2)

L(b1, a1) × · · · × L(bn, an) ×N t
g,n(a1, . . . , an)

Zā1 × · · · × Zān

and hence, using Lemma 4.6, we have the folowing refinement of Theorem 1.8.
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Proposition 9.5. For (g, n) �= (0, 1) and integers b1, . . . , bn and t, we have

Gt
g,n(b1, . . . , bn) =

∑
ai∈Z

i=1,...,n

 b1
b1 − a1

2

 · · ·
 bn
bn − an

2

N t
g,n(a1, . . . , an).

�

Because of this proposition, for many purposes, it is more convenient to use the
parameter t rather than r.

9.4. Refined curve counts on pants

We now compute refined curve counts on pants, so let (S, F ) = (S0,3, F (b1, b2, b3)).
Recall the notation of Sec. 5.1: let pi be the number of prodigal arcs with endpoints
on Bi, and tij the number of traversing arcs with endpoints on Bi and Bj .

Consider an arc diagram on (S, F ) without boundary-parallel arcs. In Sec. 5.2,
we showed that b1, b2, b3 determine the pi and tij uniquely, so that there is a unique
arc diagram in N0,3(b1, b2, b3), up to rotations around boundary components. The
next lemma shows that b1, b2, b3 also determine r and t.

Lemma 9.6. Let b1, b2, b3 ≥ 0 be integers such that b1 + b2 + b3 ≡ 0 (mod 2).
Then for any arc diagram C without boundary-parallel curves on (S, F ), r and t

are given by

r = 1, t = 2 if all bi = 0

r =
1
2

(b1 + b2 + b3) + 1, t = 2 if two bi are zero and one is non-zero

r =
1
2

(b1 + b2 + b3), t = 1 if one bi is zero and two are non-zero

r =
1
2

(b1 + b2 + b3) − 1, t = 0 if all bi are non-zero

Proof. We repeatedly apply Lemma 5.4, which gives the number of arcs of each
type. It suffices to compute r, since t = r + 1 − 1

2

∑
bi. Without loss of generality

suppose b1 ≥ b2 ≥ b3.
If all bi = 0, then clearly r = 1. If b2 = b3 = 0, then C consists of b1/2 parallel

prodigal arcs, which cut S into b1
2 + 1 = 1

2 (b1 + b2 + b3) + 1 regions.
If b3 = 0 and b1, b2 �= 0, then we have p1 = 1

2 (b1−b2) and t12 = b2. Cutting along
the first traversing arc leaves a connected surface; cutting along every subsequent
arc increases the number of components by 1, so r = 1

2 (b1 + b2 + b3).
If all bi are non-zero, then at least two of t12, t23, t31 are non-zero. Cutting

along traversing arcs of two different types cuts S into a disc; each subsequent arc
increases the number of components by 1. So r is one less than the number of arcs
in C.
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Proposition 9.7. For integers b1, b2, b3 > 0,

N̂0
0,3(b1, b2, b3) = 1 provided b1 + b2 + b3 ≡ 0 (mod 2),

N̂1
0,3(b1, b2, 0) = 1 provided b1 + b2 ≡ 0 (mod 2),

N̂2
0,3(b1, 0, 0) = 1 provided b1 ≡ 0 (mod 2),

N̂2
0,3(0, 0, 0) = 1.

All other N̂ t
0,3(b1, b2, b3) are zero.

Proof. By Lemma 9.6, b1, b2, b3 determine t, and for this value of t, we have
N t

g,n(b1, b2, b3) = Ng,n(b1, b2, b3). The result now follows from (9) in Proposition 1.5.

Letting k denote the number of bi equal to zero, we can tabulate the N̂ t
0,3 as

follows.

k t 0 1 2
0 1
1 1
2 1
3 1

Proposition 9.8. For integers m1,m2,m3 ≥ 0,

G0
0,3(2m1, 2m2, 2m3) =

(
2m1

m1

)(
2m2

m2

)(
2m3

m3

)
m1m2m3

G0
0,3(2m1 + 1, 2m2 + 1, 2m3) =

(
2m1

m1

)(
2m2

m2

)(
2m3

m3

)
(2m1 + 1)(2m2 + 1)m3

G1
0,3(2m1, 2m2, 2m3) =

(
2m1

m1

)(
2m2

m2

)(
2m3

m3

)
(m1m2 +m2m3 +m3m1)

G1
0,3(2m1 + 1, 2m2 + 1, 2m3) =

(
2m1

m1

)(
2m2

m2

)(
2m3

m3

)
(2m1 + 1)(2m2 + 1)

G2
0,3(2m1, 2m2, 2m3) =

(
2m1

m1

)(
2m2

m2

)(
2m3

m3

)
(m1 +m2 +m3 + 1).

For any other t and b1, b2, b3 not covered by these cases, Gt
0,3(b1, b2, b3) = 0.

Proof. Proposition 9.5 expresses Gt
0,3(b1, b2, b3) as a linear combination of N̂ t

0,3;
by Proposition 9.7, then Gt

0,3(b1, b2, b3) is zero unless t ∈ {0, 1, 2}. We consider each
value of t separately.
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If t = 0, we have N̂0
0,3(a1, a2, a3) = 1 when each ai > 0 and

∑
ai ≡ 0 (mod 2),

and 0 otherwise, so

G0
0,3(b1, b2, b3) =

∑
ai>0

 b1
b1 − a1

2

 b2
b2 − a2

2

 b3
b3 − a3

2

ā1ā2ā3

=
3∏

i=1

∑
ai>0

 bi
bi − ai

2

āi.

Write bi = 2mi if bi is even and bi = 2mi + 1 if bi is odd. If all bi are even, then
all the ai must also be even and the above expression is p̃0(m1)p̃0(m2)p̃0(m3). If
two bi are odd and one is even, say b1, b2, and b3 are even, then the expression is
q̃0(m1)q̃0(m2)p̃0(m3). In Sec. 5.3, we found p̃0(m) =

(
2m
m

)
m and q̃0(m) =

(
2m
m

)
(2m+

1), giving G0
0,3 as claimed.

Now suppose t = 1. For N̂1
0,3(a1, a2, a3) to be non-zero, we require exactly one

of the ai to be zero.

G1
0,3(b1, b2, b3) =

 ∑
a1=0

a2,a3>0

+
∑
a2=0

a3,a1>0

+
∑
a3=0

a1,a2>0

 b1
b1 − a1

2

 b2
b2 − a2

2


×
 b3
b3 − a3

2

ā1ā2ā3.

If all bi = 2mi are even, we obtain G1
0,3(2m1, 2m2, 2m3) =

(
2m1
m1

)
p̃0(m2)p̃0(m3) +(

2m2
m2

)
p̃0(m3)p̃0(m1)+

(
2m3
m3

)
p̃0(m1)p̃0(m2), and if b1, b2 are odd and b3 even, we have

G1
0,3(2m1 + 1, 2m2 + 1, 2m3) =

(
2m3
m3

)
q̃0(m1)q̃0(m2), so G1

0,3 is as claimed.

Finally, let t = 2. Now for N̂2
0,3(a1, a2, a3) to be non-zero, at least two of the ai

to be zero; hence for G2
0,3(b1, b2, b3) to be non-zero all bi must be even. We then

have

G2
0,3(b1, b2, b3) =

 ∑
a1=a2=0

a3>0

+
∑

a2=a3=0
a1>0

+
∑

a3=a1=0
a2>0

+
∑

a1=a2=a3=0


×
 b1
b1 − a1

2

 b2
b2 − a2

2

 b3
b3 − a3

2

ā1ā2ā3

which is equal to
(
2m1
m1

)(
2m2
m2

)
p̃0(m3) +

(
2m2
m2

)(
2m3
m3

)
p̃0(m1) +

(
2m3
m3

)(
2m1
m1

)
p̃0(m2) +(

2m1
m1

)(
2m2
m2

)(
2m3
m3

)
, giving the claimed expression for G2

0,3.

9.5. Inequalities on regions

Clearly, if g, n and b1, . . . , bn are fixed, the number of regions r is bounded. We now
establish some precise bounds.
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Lemma 9.9. Suppose an arc diagram on (Sg,n, F (b1, . . . , bn)) has r complemen-
tary regions, and k of the numbers b1, . . . , bn are zero. Then the following statements
hold.

(i) r ≤ 1 + 1
2

∑n
i=1 bi

(ii) If 0 ≤ k ≤ n− 1, then r ≥ χ(S) + k + 1
2

∑n
i=1 bi

(iii) If k = n, then r = 1.

These inequalities are necessary, but not sufficient, conditions for the existence
of an arc diagram. For instanceG0,2,2(1, 1) = 0, despite satisfying all the inequalities
above.

Proof. The diagram has 1
2

∑
bi arcs, and cutting along each arc of C can increase

the number of components by at most 1, establishing (i). If k = n, then there are
no arcs, so r = 1, establishing (iii).

To see (ii), fill the k boundary components of S with bi = 0 by gluing discs; this
increases χ by k. Then cut along the curves of C; each of these 1

2

∑
bi cuts increases

χ by 1. The resulting surface has r components, all with non-empty boundary, hence
has Euler characteristic at most r. Thus χ(S) + k + 1

2

∑
bi ≤ r.

We give a further bound when there are no boundary-parallel curves.

Lemma 9.10. Suppose (g, n) �= (0, 1), (0, 2). Let C be an arc diagram on
(Sg,n, F (b1, . . . , bn)) with no boundary-parallel arcs, r complementary regions, and
with k of the numbers b1, . . . , bn zero, where 0 ≤ k ≤ n− 1. Then

r ≤ g + k − 1 +
1
2

n∑
i=1

bi.

Note that g+ k ≥ 2 is equivalent to g+ k− 1 + 1
2

∑n
i=1 bi ≥ 1 + 1

2

∑n
i=1 bi. So if

g + k ≥ 2, then Lemma 9.9 immediately implies this result; this upper bound thus
only gives new information when g + k ≤ 1.

Proof. As discussed, we can assume g + k ≤ 1.
First, suppose g = 0 and 0 ≤ k ≤ 1. We prove r ≤ k − 1 + 1

2

∑
bi for all n ≥ 3

by induction on n.
If n = 3, then by Lemma 9.6, r = k − 1 + 1

2

∑n
i=1 bi, so the desired inequality

holds (in fact is an equality).
Now consider general n ≥ 4, and an arc γ in the arc diagram. If γ connects two

distinct boundary components, then cutting along γ gives an arc diagram with the
same r, with k increased by at most 1, and 1

2

∑n
i=1 bi − 1 arcs, on an (n− 1)-holed

sphere, so by induction r ≤ (k + 1) − 1 + (1
2

∑n
i=1 bi − 1) and the result holds. If

γ has both endpoints on the same boundary component, then γ is separating. Let
the number of arcs parallel to γ (including γ) be p. Cutting along γ, and removing
these parallel arcs, yields two surfaces S′, S′′ with n′, n′′ boundary components,
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r′, r′′ complementary regions, and numbers of marked points given by b′i and b′′i ,
of which k′, k′′ are zero respectively. We have n′, n′′ ≥ 2 (as γ is not boundary
parallel), 1

2

∑
b′i + 1

2

∑
b′′i + p = 1

2

∑
bi, k′ + k′′ ≤ k+ 2, and r′ + r′′ + p− 1 = r. If

both n′, n′′ ≥ 3, then the inequality holds for both S′ and S′′, and we have

r = r′ + r′′ + p− 1 ≤ k′ + k′′ + p− 3 +
1
2

∑
b′i +

1
2

∑
b′′i ≤ k − 1 +

1
2

n∑
i=1

bi

as desired. So now suppose, we obtain an annulus. As n ≥ 4, S′ and S′′ cannot
both be annuli. So, we may assume S′ is an annulus (i.e. n′ = 2), and S′′ is not
(i.e. n′′ ≥ 3). Then the inequality holds for S′′. If the annulus S′ has no arcs, then
actually the inequality holds for S′ too (r = g+k−1+ 1

2

∑
bi = 0+2−1+0 = 1), so

we are done. If the annulus S′ has non-empty arc diagram, then we have r′ = 1
2

∑
b′i

and k′ = 0; and since we do not obtain any extra boundary components with zero
marked points on S′, we must have k′′ ≤ k + 1. Then we obtain

r = r′ + r′′ + p− 1 ≤ 1
2

∑
b′i +

1
2

∑
b′′i + p+ k′′ − 2 ≤ k − 1 +

1
2

n∑
i=1

bi

and the inequality holds. This completes the proof in the case g = 0.
Now suppose g = 1 and k = 0, and we prove r ≤ 1

2

∑n
i=1 bi. We proceed by

induction on n ≥ 1. If n = 1, then take an arc γ in the arc diagram; as γ is not
boundary-parallel, it cuts S into an annulus. Suppose there are p arcs parallel to γ
(including γ), so cutting along γ and removing these parallel arcs gives a diagram
on the annulus without boundary-parallel curves, with r−p+1 regions and 1

2b1−p
arcs. If there are no arcs on the annulus, then we have one region, so r− p+ 1 = 1
and 1

2b1 − p = 0, and hence r = p = 1
2b1. If there are arcs on the annulus, then

the number of arcs and regions are equal, so r = −1 + 1
2b1. Either way, we have

r ≤ 1
2b1 = 1

2

∑n
i=1 bi.

Now take a general n ≥ 2. Take an arc γ on S with p parallel copies (including γ).
If γ is non-separating, then cutting along γ and removing its parallel arcs gives a
surface S′ of genus g′, with n′ boundary components, with b′i marked points on
boundary components, k′ of which are zero, and an arc diagram with r′ = r− p+ 1
complementary regions and 1

2

∑
b′i = 1

2

∑
bi − p arcs. Since we originally had all

bi > 0, after cutting along γ and removing parallel copies, we can make at most
one b′i = 0, so k′ ≤ 1. Now S′ either has genus zero and n′ = n + 1 ≥ 3 boundary
components, in which case the result holds by our previous arguments; or S′ has
genus 1 and n′ = n − 1 boundary components, in which case the result holds by
inductive assumption (if k′ = 0) or previous argument (if k′ = 1). Either way,
r′ ≤ g′ + k′ − 1 + 1

2

∑n′

i=1 b
′
i and g′ + k′ ≤ 2, and hence

r = r′ + p− 1 ≤ p+ g′ + k′ − 2 +
1
2

n′∑
i=1

b′i = g′ + k′ − 2 +
1
2

n∑
i=1

bi ≤ 1
2

n∑
i=1

bi.

On the other hand, if γ is separating, with p parallel copies, then cutting along
γ and removing parallel arcs gives two surfaces S′, S′′, with genera g′ + g′′ = 1;
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say g′ = 0 and g′′ = 1. Let them have n′, n′′ boundary components, with b′i, b
′′
i

marked points, of which k′, k′′ are zero, and arc diagrams with r′, r′′ complementary
regions. So we have n′ + n′′ = n + 1. As there are no boundary-parallel curves,
n′, n′′ ≥ 2 and hence n′, n′′ ≤ n − 1. We also have r′ + r′′ + p − 1 = r and
1
2

∑
b′i + 1

2

∑
b′′i + p = 1

2

∑
bi. The only way to have b′i = 0 or b′′i = 0 is from the

boundary components involving γ, so k′, k′′ ≤ 1. The inductive assumption applies
to S′′, and we obtain r′′ ≤ k′′ + 1

2

∑
b′′i ≤ 1 + 1

2

∑
b′′i . If S′ is an annulus, then

as k′ ≤ 1, the arc diagram is non-empty and r′ = 1
2

∑
b′i. If S′ is not an annulus,

then the inductive hypothesis (if k′ = 0) or the above argument applies (if k′ = 1),
so the inequality holds for S′ giving r′ ≤ k′ − 1 + 1

2

∑
b′i ≤ 1

2

∑
b′i. Either way,

r′ ≤ 1
2

∑
b′i. Putting this together yields

r = r′ + r′′ + p− 1 ≤ 1
2

∑
b′i +

1
2

∑
b′′i + p =

1
2

n∑
i=1

bi.

This completes the proof.

Putting together Lemmas 9.9 and 9.10 immediately gives the following result.

Proposition 9.11. Let (g, n) �= (0, 1), (0, 2). Suppose an arc diagram on
(Sg,n, F (b1, . . . , bn)) has no boundary-parallel arcs, r complementary regions and
k boundary components without marked points. If 0 ≤ k ≤ n− 1, then

max

(
1, k + 2 − 2g − n+

1
2

n∑
i=1

bi

)
≤ r

≤ min

(
1 +

1
2

n∑
i=1

bi, g + k − 1 +
1
2

n∑
i=1

bi

)
and

max

(
k, 2g + n− 1 − 1

2

n∑
i=1

bi

)
≤ t ≤ min (2g + n− 1, k + 3g − 3 + n) .

If k = n, then r = 1 and t = 2g + n− 1. �
The above inequalities are necessary for the existence of an arc diagram with-

out boundary-parallel arcs, but not sufficient. For instance, N̂7
3,2(2n + 1, 1) =

N3,2,n+2(2n+ 1, 1) = 0, but max(0, 6−n) = max(k, 2g+n− 1− 1
2

∑
bi) ≤ 7 = t ≤

min(3g−3+n, 2g+n−1) = 7. To see why, suppose there were such an arc diagram;
then there must be an arc connecting the two boundary components. Cutting along
this arc gives an arc diagram in G3,1,n+2(2n), hence with n arcs. But cutting along
n arcs can only create n+ 1 regions, not the required n+ 2. In the particular case
t = k, we can give necessary and sufficient conditions in the next section.

When k = 0, so that all boundary components have marked points, we have
0 ≤ t ≤ 1 − χ. So t is roughly a measure of how “separating” an arc diagram is:
when t = 0 it is as non-separating as possible, and as t increases, it is more and
more separating.
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9.6. Existence of certain arc diagrams

We now give some results guaranteeing the existence of arc diagrams in certain
circumstances.

Lemma 9.12. Suppose (g, n) �= (0, 1), (0, 2), and 0 ≤ k ≤ n−1. Let b1, . . . , bn−k >

0 be positive integers such that b1 + · · ·+ bn−k is even, and suppose bn−k+1 = · · · =
bn = 0.

(i) If 1
2

∑n
i=1 bi < 2g + n− 1 − k, then Nk

g,n(b1, . . . , bn−k, 0, . . . , 0) = 0.
(ii) If 1

2

∑n
i=1 bi ≥ 2g + n− 1 − k, then Nk

g,n(b1, . . . , bn−k, 0, . . . , 0) > 0.

(Here the notation Nk
g,n means that we set t = k.)

Proof. If t = k, then r = k + χ + 1
2

∑n
i=1 bi = k + 2 − 2g − n + 1

2

∑n
i=1 bi. If

1
2

∑n
i=1 bi < 2g + n− 1 − k, then r < 1, so no arc diagram exists, proving (i).

It remains to prove (ii); we first prove it under the assumption k = 0. So suppose
all bi > 0, 1

2

∑n
i=1 bi ≥ 2g + n − 1 = 1 − χ, and we will construct an arc diagram

with the desired parameters.
First, suppose g = 0, so n ≥ 3. Then, as k = 0, we may successively draw

arcs joining distinct boundary components and cut along them, in order to reduce
the number of boundary components. (Provided at each stage, we do not join
two boundary components each with one marked point, we retain at least one
point on each boundary component. And this is certainly possible since

∑n
i=1 bi ≥

4g + 2n − 2 ≥ 2n − 2.) We proceed until, we have a pair of pants, with a non-
zero number of points on each boundary component. Since each cut increases Euler
characteristic by 1, at this stage, we have drawn and cut along −1 − χ arcs; so we
have 1

2

∑n
i=1 bi + 1 + χ remaining arcs to draw. From Sec. 5.2 above, there is an

arc diagram on the pants, with the required number of points on each boundary
component, without boundary-parallel curves, and from Lemma 9.6, the number of
regions into which they cut the pants is one less than the number of arcs drawn.
So, drawing these arcs and cutting, we obtain 1

2

∑n
i=1 bi + χ components. This

corresponds to an arc diagram on the original surface without boundary-parallel
arcs, and with r = 1

2

∑n
i=1 bi + χ complementary regions, hence with t = 0.

Now suppose g ≥ 1. Use a similar method to join boundary components until,
we obtain a single boundary component, with an even number of points on it. At
this stage, we have a genus g surface with a single boundary component, hence
Euler characteristic has increased from χ to 1 − 2g, so we have drawn and cut
along 1 − 2g − χ non-boundary-parallel arcs. There are 1

2

∑n
i=1 bi + χ + 2g − 1 =

1
2

∑n
i=1 bi − n+ 1 ≥ 2g remaining arcs to draw.

Now we can draw 2g curves to cut the genus g surface into a disc. We draw these
curves, along with some parallel copies of them, so that there are 1

2

∑n
i=1 bi + χ+

2g− 1 arcs drawn in total, none of them boundary-parallel. Cutting along all these
curves, including the parallel copies splits the surface into 1

2

∑n
i=1 bi+χ components.
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This corresponds to a diagram on the original surface, without boundary-parallel
arcs, and with r = 1

2

∑n
i=1 bi + χ complementary regions, so t = 0.

This proves the result in the case k = 0. For general k, fill in the k boundary
components with no marked points with discs, to obtain a surface of genus g with
n−k boundary components. Provided, we do not end up with a disc or annulus, the
k = 0 argument applies, and we obtain an arc diagram with 1

2

∑n
i=1 bi+2−2g−n+k

regions, with no boundary-parallel arcs. Then removing the k discs gives an arc
diagram on the original surface, still with no boundary-parallel arcs, and with the
same number of complementary regions, hence with t = k.

If this argument fails, ending up with a disc or annulus, then we must have g = 0,
n ≥ 3, and k ≥ n− 2. In this case, we fill in n− 3 of the k boundary components
without marked points, to obtain a pair of pants, on which k′ = k−n+3 boundary
components have no marked points. Note 1 ≤ k′ ≤ 2. Using Sec. 5.2 again, there is
an arc diagram on the pants with no boundary-parallel arcs, and with the required
number of points on each boundary component. Using Lemma 9.6, the number
of complementary regions of this arc diagram on the pants is 1

2

∑
bi + k′ − 1 =

1
2

∑
bi + 2 − n+ k. Removing the n− 3 discs gives an arc diagram on the original

surface with no boundary-parallel arcs and with the same number of regions, hence
with t = k.

For general arc diagrams, we have the following easier result, which can be
proved by similar methods.

Lemma 9.13. Suppose g ≥ 0 and n ≥ 1, and 0 ≤ k ≤ n− 1. Let b1, . . . , bn−k > 0
be positive integers such that b1 + · · · + bn−k is even, and suppose bn−k+1 = · · · =
bn = 0, so that k of b1, . . . , bn are zero.

(i) If 1
2

∑n
i=1 bi < 2g + n− 1 − k, then Gk

g,n(b1, . . . , bn−k, 0, . . . , 0) = 0.
(ii) If 1

2

∑n
i=1 bi ≥ 2g + n− 1 − k, then Gk

g,n(b1, . . . , bn−k, 0, . . . , 0) > 0.

So, fixing g, n and setting t = k (and hence fixing r − 1
2

∑n
i=1 bi), provided

we have sufficiently many marked points, we can find an arc diagram with these
parameters — and, provided (g, n) �= (0, 1) or (0, 2), one without any boundary-
parallel arcs.

9.7. Refining recursion

Now we prove the recursion on Gg,n,r in Theorem 1.11, refining Theorem 1.4.

Proof of Theorem 1.11. The proof is essentially the same as that of Theorem 1.4.
Given an arc diagram C in Gg,n,r(b), take the arc γ at the first marked point on the
first boundary component. Cutting along γ gives a surface S′ with an arc diagram
C′. Consider the various cases for the topology of γ and S′, as in Theorem 1.4. In
each case, C can be reconstructed by gluing together two boundary arcs on S′ in a
specified way.
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Cutting along γ does not change the number of complementary regions; all the
arc diagrams considered have r complementary regions. Hence, enumerating the
various cases, the arc diagrams in Gg,n,r(b) are in bijection with the various arc
diagrams enumerated on the right-hand side of the equation.

Turning to the Ng,n, we now obtain the following, refining Proposition 6.1.

Proposition 9.14. For (g, n) �= (0, 1), (0, 2), (0, 3), r ≥ 1 and b1, . . . , bn such that
b1 > 0, b2, . . . , bn ≥ 0,

Ng,n,r(b) =
∑

i,j,m≥0
i+j+m=b1

m even

m

2
Ng−1,n+1,r−m

2 +1(i, j, b2, . . . , bn)

+
n∑

j=2

 ∑
i,m≥0

i+m=b1+bj
m even

m

2
b̄jNg,n−1,r−m

2 +1−δbj ,0(i, b2, . . . , b̂j , . . . , bn)

+
∑̃

i,m≥0
i+m=b1−bj

m even

m

2
b̄jNg,n−1,r−m

2 −min(b1,bj)+1
(i, b2, . . . , b̂j, . . . , bn)


+

∑
g1+g2=g

I�J={2,...,n}
No discs or annuli

∑
i,j,m≥0

i+j+m=b1
m even

×
∑

r1,r2≥0
r1+r2=r−m

2 +1

m

2
Ng1,|I|+1,r1(i, bI)Ng2,|J|+1,r2(j, bJ )

b1N̂
t
g,n(b) =

∑
i,j,m≥0

i+j+m=b1
m even

1
2
ī j̄ m N̂ t

g−1,n+1(i, j, b2, . . . , bn)

+
n∑

j=2

1
2

 ∑
i,m≥0

i+m=b1+bj
m even

ī m N̂
t−δbj,0

g,n−1 (i, b2, . . . , b̂j, . . . , bn)

+
∑̃

i,m≥0
i+m=b1−bj

m even

ī m N̂
t−δbj,0

g,n−1 (i, b2, . . . , b̂j , . . . , bn)


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+
∑

g1+g2=g
I�J={2,...,n}

No discs or annuli

∑
i,j,m≥0

i+j+m=b1
m even

×
∑

t1,t2≥0
t1+t2=t

1
2
ī j̄ m N̂ t1

g1,|I|+1(i, bI) N̂ t2
g2,|J|+1(j, bJ).

Proof. We proceed similarly to the proof of Proposition 6.1. First, we prove the
recursion on Ng,n. Let C be a non-boundary-parallel arc diagram on (Sg,n, F (b)),
with arc γ at the first marked point p on the first boundary component B1. We
consider the same three cases for γ as in the proof of Proposition 6.1.

First, suppose γ has both endpoints on B1 and is non-separating. There are m
2

arcs (including γ) parallel to γ. Between the m
2 parallel arcs there are m

2 − 1 com-
plementary regions. Cutting along γ and removing arcs which become boundary-
parallel produces an Sg−1,n+1 with m

2 − 1 fewer complementary regions. So all
diagrams considered in this case have r − m

2 − 1 regions, and following the argu-
ment in the proof of Proposition 6.1, the number of arc diagrams so obtained is
given by the first term in the recursion.

The second case is when γ has endpoints on distinct boundary components B1

and Bj , or is separating and cuts off an annulus with Bj as a boundary component.
This corresponds to the second and third lines above.

Let m/2 be the number of arcs which are “parallel” to γ, in the extended sense
of the argument of Proposition 6.1: if γ runs from B1 to Bj , then we take as
“parallel” all arcs parallel to γ, and those which run from from B1 around Bj back
to B1, and those which run from Bj around B1 back to Bj ; while if γ cuts off an
annulus around Bj , we take as “parallel” all arcs parallel to γ, and those which run
from B1 to Bj . These m/2 arcs consist precisely of γ and those arcs which become
boundary-parallel after cutting along γ.

Assuming that bj > 0, these m/2 arcs, running from B1 to Bj , or from one
of these boundary components around the other and back to itself, enclose m

2 − 1
regions within an annular region which is effectively removed from S: see Fig. 11.
If bj = 0, then we only have m/2 arcs running around Bj , which enclose precisely
m/2 regions. Thus the number of regions effectively removed from S is m

2 −1+δbj,0.
We again orient these arcs so that they run from B1 to Bj , or run anticlockwise
around B1 or Bj , and again the number of arc diagrams for which γ runs from B1

to Bj , or runs from B1 around Bj , and is oriented so that p is the start point of
γ, is given by the summation in the second line above: all diagrams obtained by
cutting along such γ and removing boundary-parallel arcs have r − m

2 + 1 − δbj ,0

complementary regions.
If b1 ≥ bj, then as in Proposition 6.1, we need to count arc diagrams, where p is

the endpoint of γ. We redefine m so that the number of arcs from B1 looping around
Bj is m/2. If bj = 0, then these m/2 arcs looping around Bj enclose m/2 regions
within an annular region which is effectively removed from S, so resulting diagrams
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B1

Bj

Fig. 11. The m/2 “parallel” arcs enclose m/2 − 1 regions.

have r− m
2 complementary regions. If bj > 0, then the m/2 arcs looping around Bj

also enclose bj arcs running from B1 to Bj and the annular region has m
2 − bj + 1

regions. Thus, the resulting diagrams have r − m
2 + bj − 1 complementary regions.

Either way, the resulting diagrams have r − m
2 + b̄j − 1 regions and, following the

proof of Proposition 6.1 (and noting min(b1, bj) = b̄j), we obtain the summation in
the third line.

If b1 ≤ bj , then we have overcounted, and as in Proposition 6.1 need to subtract
off diagrams where p lies on Bj . We redefine m so that the number of arcs from
Bj looping around B1 is m/2. As in the previous paragraph, these arcs enclose an
annular region with m

2 − b̄1 + 1 complementary regions, so that diagrams obtained
after removing this annulus have r − m

2 + b̄1 − 1 complementary regions. (Note
b1 > 0, so that b̄1 = b1 in any case; but we write b̄1 for consistency.) Since we have
min(b1, bj) = b̄1, we obtain the summation in the third line again.

The third and final case is when γ is separating but does not cut off an annulus.
There are m/2 arcs (including γ) parallel to γ. As in the first case, there are
m
2 − 1 complementary regions between the m

2 parallel arcs. Cutting along γ and
removing arcs which become boundary-parallel, we obtain a surface with r− m

2 + 1
complementary regions. This surface is disconnected, with two components having
r1, r2 complementary regions satisfying r1 + r2 = r − m

2 + 1. The number of arc
diagrams is then given by the final line in the recursion.

This completes the proof of the recursion for Ng,n,r. We now rewrite it in terms
of t-parameters. Let t be the parameter for the left-hand side, and t′ for the term
in the first line of the right-hand side. Then

t = r − (2 − 2g − n) − 1
2

n∑
i=1

bi

= r − m

2
+ 1 − (2 − 2(g − 1) − (n+ 1)) − 1

2

(
i+ j +

n∑
i=2

bi

)
= t′,

where we used i + j + m = b1. If we write t′′ for the parameter for the term in
the second line, we similarly obtain t′′ = t− δbj ,0. In the third line, if b1 ≥ bj then
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min(b1, bj) = bj , so writing t′′′ for the parameter, we have

t′′′ = r − m

2
− bj + 1 − (2 − 2g − (n− 1)) − 1

2
(i+ b2 + · · · + b̂j + · · · + bn)

= r − (2 − 2g − n) − 1
2

n∑
i=1

bi +
1
2

(b1 − bj − i−m) + bj − b̄j = t− δbj ,0.

Here, we used the fact that i+m = b1−bj in the summation. If alternatively b1 ≤ bj,
then we obtain t′′′ = t − δb1,0. Either way, we have t′′′ = t − δmin(b1,bj),0. But we
are assuming b1 > 0, so δmin(b1,bj),0 = δbj ,0. In the final term, if the two factors
have parameters t1, t2, the condition r1 + r2 = r − m

2 + 1 translates to t1 + t2 = t.
Dividing through by b̄2 · · · b̄n immediately gives the desired recursion on N̂ t

g,n.

9.8. Polynomiality in small cases

We can now use the recursion of Proposition 9.14 to find N̂ t
g,n for (g, n) = (1, 1)

and (0, 4).

Proposition 9.15. For b1 even and non-zero,

N̂0
1,1(b1) =

1
48
b21 −

1
12
, N̂1

1,1(b1) =
1
2
, N̂2

1,1(0) = 1.

All other N̂ t
1,1(b1) are zero.

Proof. Consider N̂ t
1,1(b1). We assume b1 is even. We have, for b1 > 0,

b1N̂
t
1,1(b1) =

∑
i,j,m≥0

i+j+m=b1
m even

1
2
ī j̄ m N̂ t

0,2(i, j).

Lemma 9.3 found that N̂0
0,2(b, b) = 1

b̄
for b > 0, N̂1

0,2(0, 0) = 1, and all other
N̂ t

0,2(b1, b2) = 0.
Thus, we only need consider the cases t = 0, 1. In the t = 0 case, we obtain

b1N̂
0
1,1(b1) =

∑
i>0, m≥0
2i+m=b1
m even

1
2
i2 m

1
i

=
∑

i>0, m≥0
2i+m=b1
m even

1
2
i m

=
1
4

∑
ι,m≥0

ι+m=b1
m even

ι m =
1
4
S0(b1) =

1
48
b31 −

1
12
b1,

where we let 2i = ι, and S0 is the sum studied in Sec. 7.1.
For t = 1, we have a non-zero term only when i = j = 0:

b1N̂
1
1,1(b1) =

∑
i,j,m≥0

i+j+m=b1
m even

1
2
ī j̄ m N̂1

0,2(i, j) =
1
2
b1.
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The above assumes that b1 > 0. When b1 = 0, the only non-zero count is
N1,1,1(0) = N2

1,1(0) = 1.

We can summarize N̂ t
1,1 in a table of k and t; we present the result for (g, n) =

(0, 4) in a similar fashion.

k t 0 1 2
0 1

48b2
1 − 1

12
1
2

1 1

Proposition 9.16. For the various possible values of t, k, with b1, . . . , bn−k > 0
and bn−k+1 = · · · = bn = 0, N̂ t

0,4(b1, . . . , bn−k, 0, . . . , 0) is given by the following
tables.

(i) If all bi are even:

k t 0 1 2 3
0 1

4 (b2
1 + b2

2 + b2
3 + b2

4) − 1 3
1 1

4 (b2
1 + b2

2 + b2
3) − 1 3

2 1
4 (b2

1 + b2
2) 2

3 1
4b2

1 + 2
4 1

(ii) If two bi are odd:

k t 3210
0 1

4 (b2
1 + b2

2 + b2
3 + b2

4) − 1
2 1

1 1
4 (b2

1 + b2
2 + b2

3) − 1
2 1

2 1
4 (b2

1 + b2
2) + 1

2 0
3 0
4 0

(iii) If four bi are odd:

k t 0 1 2 3
0 1

4 (b2
1 + b2

2 + b2
3 + b2

4) − 1 3
1 0 0
2 0 0
3 0
4 0
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Proof. Proposition 9.14 gives, for b1 > 0,

b1N̂
t
0,4(b) =

4∑
j=2

1
2

 ∑
i,m≥0

i+m=b1+bj
m even

īmN̂
t−δbj,0

0,3 (i, b2, . . . , b̂j , . . . , bn)

+
∑̃

i,m≥0
i+m=b1−bj

m even

īmN̂
t−δbj,0

0,3 (i, b2, . . . , b̂j , . . . , bn)

 . (15)

Proposition 9.11 gives us bounds on k and t. Either 0 ≤ k ≤ 3 and max(k, 3 −
1
2

∑n
i=1 bi) ≤ t ≤ min(3, 1 + k), or k = 4 and t = 3. Since bi may become large,

we first consider 0 ≤ k ≤ 3 and k ≤ t ≤ min(k + 1, 3). This gives eight cases to
consider: (k, t) = (0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (4, 3). We present the
cases (0, 0) and (0, 1); the remaining cases can be handled in a similar fashion.

If (k, t) = (0, 0), then (15) expresses N̂0
0,4(b1, b2, b3, b4) in terms of N̂0

0,3. From
Proposition 9.7, N̂0

0,3(b1, b2, b3) = 1 provided b1 + b2 + b3 is even, and all bi are
non-zero. Hence, every N̂0

0,3(i, b2, . . . , b̂j, . . . , bn) = 1, except when i = 0. We see
sums S0(b1 ± bj), and obtain

2b1N̂0
0,4(b1, b2, b3, b4) = S0(b1 + b2) + S0(b1 − b2) + S0(b1 + b3)

+S0(b3 − b3) + S0(b1 + b4) + S0(b1 − b4).

We have S0(k) = k3

12 − k
3 when k is even, and k3

12 − k
12 when k is odd. Thus, we

obtain

N̂0
0,4(b1, b2, b3, b4) =



1
4

(b21 + b22 + b23 + b24) − 1 all bi even,

1
4

(b21 + b22 + b23 + b24) − 1
2

two bi even, two odd,

1
4

(b21 + b22 + b23 + b24) − 1 all bi odd.

If (k, t) = (0, 1) then 15 expresses N̂1
0,4(b) in terms of N̂1

0,3. Proposition 9.7 says
that N̂1

0,3(b1, b2, b3) = 1 provided that precisely one of the bi is zero, and b1 +b2 +b3
is even. As k = 0, all bi > 0 so only setting i = 0 (hence m = b1 ± bj) can provide
the zero. But i ≡ b1 ± bj (mod 2), so only those j for which bj ≡ b1 provide a
non-zero term. If all bi are even, or all bi are odd, then all j provide a non-zero
term, and we obtain

2b1N̂1
0,4(b1, b2, b3, b4) = (b1 + b2) + (b1 − b2) + (b1 + b3)

+ (b1 − b3) + (b1 + b4) + (b1 − b4) = 6b1
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and hence N̂1
0,4(b1, b2, b3, b4) = 3. But if two of the bi are even and two of the bi are

odd, then we obtain 2b1N̂0,4(b1, b2, b3, b4) = 2b1, so N̂1
0,4(b1, b2, b3, b4) = 1.

In these examples, within the range 0 ≤ k ≤ n − 1 and k ≤ t ≤ min(2g + n −
1, k+3g−3+n), the degrees of the polynomials decrease as t increases, and increase
as k increases. When all bi are even, these polynomials are all non-zero and their
degrees in the b2i precisely decrease by 1 at each step. However, when the bi are
not all even, sometimes the polynomials drop abruptly to zero. Sometimes this is
forced: for instance if k of the bi are zero, then we can have at most n− k of the bi
being odd. But even when the value of k does not force N̂ t

g,n(b1, . . . , bn−k, 0, . . . , 0)
to be zero for parity reasons, the polynomial may drop to zero anyway, as seen
above for N̂3

0,4(b1, b2, 0, 0) with b1, b2 odd.
We will prove that such behavior always occurs in the next section.

9.9. Polynomiality of refined non-boundary-parallel counts

Theorem 9.17. Suppose that (g, n) �= (0, 1), (0, 2). Let k, t be non-negative integers
and b1, . . . , bn−k be positive integers.

(i) If 0 ≤ k ≤ n − 1 and k ≤ t ≤ min(2g + n − 1, k + 3g − 3 + n), then
N̂ t

g,n(b1, . . . , bn−k, 0, . . . , 0) is a symmetric quasi-polynomial over Q in
b21, . . . , b

2
n−k, depending on the parity of b1, . . . , bn−k.

(ii) If k = n and t = 2g + n− 1, then N̂ t
g,n(0, . . . , 0) = 1.

(iii) For any other values of k and t, N̂ t
g,n(b1, . . . , bn−k, 0, . . . , 0) = 0.

Note that the inequalities on t in (i) are from Proposition 9.11, and are necessary
conditions for the existence of non-boundary-parallel arc diagrams.

When k = t = 0, this theorem reduces to Theorem 1.12 (apart from the
statement about degree). The proof is essentially a refinement of the proof of
Theorem 1.7. The computations above have established the theorem for (g, n) =
(0, 3), (0, 4) and (1, 1). However, because of the inequalities on g, k, n, t, establishing
that various terms are non-zero is a more technical exercise.

Proof. We first dispose of parts (ii) and (iii). When k = n, we have all bi = 0,
so the only possible arc diagram is the empty one, which has t = 2g + n − 1, so
N̂ t

g,n(0, . . . , 0) = 1 as claimed, proving (ii).
To see (iii), suppose k, t are not covered by parts (i) or (ii). As k is the number

of zero boundary components, 0 ≤ k ≤ n. If 0 ≤ k ≤ n − 1, then we must have
t < k or t > 2g + n − 1 or t > k + 3g − 3 + n; and if k = n, then we must have
t �= 1 − χ. In any of these cases, the conditions of Proposition 9.11 are violated, so
N̂ t

g,n = 0, proving (iii).
It remains to prove (i). The proof is by induction on the complexity −χ =

2g+ n− 2; we have computed the −χ = 1 cases (g, n) = (0, 3) and (1, 1) explicitly.
We now take (g, n) with complexity ≥ 2, assuming the theorem holds for any
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smaller complexity. We also take k, t such that 0 ≤ k ≤ n − 1 and k ≤ t ≤
min(2g+n−1, k+3g−3+n). Take k of the bi to be zero; without loss of generality
assume b1, . . . , bn−k > 0 and bn−k+1 = · · · = bn = 0. Further, fix the parity of
b1, . . . , bn−k; we must show that N̂ t

g,n(b1, . . . , bn−k, 0, . . . , 0) is a polynomial with
the required properties.

The recursion in Proposition 9.14 expresses N̂ t
g,n(b) in terms of N̂ t′

g′,n′ where
(g′, n′) is of smaller complexity (but neither (g′, n′) = (0, 1) nor (0, 2) are ever seen),
hence for which the result holds. Explicitly, the following N̂s occur:

• N̂ t
g−1,n+1(i, j, b2, . . . , bn), where i, j ≥ 0, i+ j ≤ b1 and i+ j ≡ b1 (mod 2);

• N̂
t−δbj ,0

g,n−1 (i, b2, . . . , b̂j , . . . , bn), where i ≥ 0, i ≤ b1 ± bj and i ≡ b1 ± bj (mod 2);

• N̂ t1
g1,|I|+1(i, bI) N̂ t2

g2,|J|+1(j, bJ ), where g1, g2, i, j, t1, t2 ≥ 0, g1 + g2 = g, i+ j ≤ b1,
i+ j ≡ b1 (mod 2), t1 + t2 = t, |I|, |J | ≥ 2, and |I| + |J | = n− 1.

Expanding out the
∑n

j=2 sum in the second line, and the sums over g1 +
g2 = g, I 
 J = {2, . . . , n}, t1 + t2 = t in the third line, we express
b1N̂

t
g,n(b1, . . . , bn−k, 0, . . . , 0) as a finite collection of sums of the types

Type 1:
∑̃

i,m≥0
i+m=b1±bj

m even

ī m · · · or Type 2:
∑̃

i,j,m≥0
i+j+m=b1

m even

ī j̄ m · · · .

Here, the · · · represents some constant times an N̂ ·
·,·(bI , 0, . . . , 0), or a product of two

such terms. As discussed in the proof of Proposition 9.14, having fixed the parity of
b1, . . . , bn−k, the parity of i in a sum of type 1 is determined, but in a sum of type
2 only the parity of i + j is fixed; so there are two possibilities for (i, j) (mod 2).
Fixing the parity of all variables, every N̂ occurring has inputs which are all fixed
in parity. We further need to distinguish between zero and non-zero inputs to each
N̂ . So, we split sums of type 1 into the i = 0 term and the sum over i > 0 terms.
And we split sums of type 2 into the i = 0, j = 0 term, a sum over i = 0, j > 0
terms, a sum over i > 0, j = 0 terms, and a sum over i > 0, j > 0 terms.

Each term of type 1 becomes a finite collection of monomial terms, or sums, of
one of the forms

q(bI)(b1 ± bj) or q(bI)
∑̃

i>0, m≥0
i+m=b1±bj

i≡ε mod 2, m even

ī i2am

=

{
q(bI)Sa(b1 ± bj) b1 ± bj ≡ ε (mod 2)

0 otherwise,

where ε ∈ {0, 1}. (Note we obtain Sa(b1 ± bj), not Aa(b1 ± bj), because in the sum
i > 0.) Here, each q(bI) is a constant multiplied by a monomial in the b2i other than
b21 and b2j . We have seen (Lemma 7.4) that Sa(k), with fixed parity of k, is an odd
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polynomial. Every time, we see an Sa, it appears in a pair Sa(b1 + bj) +Sa(b1− bj),
which is odd in b1 and even in bj .

Each term of type 2, similarly, becomes a finite collection of sums of one of the
forms

q(bI)b1 or

q(bI)
∑̃

i>0,m≥0
i+m=b1

i≡ε mod 2, m even

ī i2a m =

{
q(bI)Sa(b1) b1 ≡ ε (mod 2),

0 otherwise,
or

q(bI)
∑̃

i,j>0, m≥0
i+j+m=b1

i≡δ (mod 2),
j≡ε (mod 2), m even

ī j̄ i2aj2bm =

{
q(bI)Rδ

a,b(b1) b1 ≡ δ + ε (mod 2)

0 otherwise.

Each S(b1) and Ra,b(b1) is an odd polynomial in b1 (Lemma 7.4). Collecting all
these terms together, we obtain on the right-hand side a polynomial which is odd
in b1 and even in all other variables. Hence, N̂ t

g,n(b1, . . . , bn−k, 0, . . . , 0) is an even
polynomial in all variables.

Theorem 9.18. Suppose that (g, n) �= (0, 1), (0, 2). Let k, t be non-negative integers
satisfying 0 ≤ k ≤ n−1 and k ≤ t ≤ min(2g+n−1, k+3g−3+n). Let b1, . . . , bn−k

be positive integers. Fixing the parity of b1, . . . , bn−k, the degree of the polynomial
N̂ t

g,n(b1, . . . , bn−k, 0, . . . , 0) in the b2i is at most 3g − 3 + n− t+ k.

We will see in Theorem 9.19 that when 0 ≤ k ≤ n−1 and t = k, the degree is in
fact exactly 3g− 3 +n− t+ k. Note that the bounds k ≤ t ≤ k+ 3g− 3 +n provide
“just enough room” in t for the degrees of the polynomials N̂ t

g,n to decrease from
3g− 3 + n (when t = k) to 0 (when t = k+ 3g − 3 + n). However, as we have seen,
it is possible for the polynomials obtained to have degree less than k + 3g − 3 + n.

Proof. From the previous theorem, N̂ t
g,n(b1, . . . , bn−k, 0, . . . , 0) there are polyno-

mials as claimed; we only need to check degrees. To do this, we consider each term
of the recursion separately, and consider the possible N̂ t′

g′,n′(b1, . . . , bn−k′ , 0, . . . , 0)
which can occur, keeping track of the possible genera g′, numbers of boundary
components n′, complementary region parameter t′, and number of boundary com-
ponents with no marked points k′.

In the first line of the recursion (case 1), we see terms involving N̂ t
g−1,n+1

(i, j, b2, . . . , bn−k, 0, . . . , 0). So g′ = g − 1, n′ = n + 1 and t′ = t. The variables
i and j can be zero or non-zero, hence k′ = k, k+ 1 or k+ 2. We refer to these cases
as 1a, 1b, 1c, respectively.

In the second line of the recursion (case 2), we have N̂
t−δbj ,0

g,n−1 (i, b2, . . . , b̂j , . . . , bn).
Here, i and bj can be zero or non-zero. We refer to the cases (Sgn i, Sgn bj) =
(0, 0), (0, 1), (1, 0), (1, 1) as 2a, 2b, 2c, 2d, respectively.
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In the third line of the recursion (case 3), we have N̂ t1
g1,|I|+1(i, bI)N̂ t2

g2,|J|+1(j, bJ ).
Let k1, k2 be the number of zeroes in (i, bI) and (j, bJ ), respectively. We deal with the
two N̂ terms separately. There are many possibilities for g1, g2, |I|, |J |, t1, t2, k1k2,
subject to the constraints in the summations. There are also the further possi-
bilities that i, j may be zero or non-zero. We refer to the cases (Sgn i, Sgn j) =
(0, 0), (0, 1), (1, 0), (1, 1) as 3a, 3b, 3c, 3d, respectively.

In cases 1a–2d, we calculate the maximum degree 3g′ − 3 + n′ − t′ + k′ of the
corresponding quasi-polynomials N̂ t′

g′,n′ , as shown, always assuming that 0 ≤ k ≤
n− 1 (since b1 > 0 in Proposition 9.14). These are as shown.

Case g′ n′ t′ k′ 3g′ − 3 + n′ − t′ + k′

1a g − 1 n+ 1 t k 3g − 5 + n− t+ k

1b g − 1 n+ 1 t k + 1 3g − 4 + n− t+ k

1c g − 1 n+ 1 t k + 2 3g − 3 + n− t+ k

2a g n− 1 t− 1 k 3g − 3 + n− t+ k

2b g n− 1 t k + 1 3g − 3 + n− t+ k

2c g n− 1 t− 1 k − 1 3g − 4 + n− t+ k

2d g n− 1 t k 3g − 4 + n− t+ k

In case 1a, we have k′ = k, so we sum 1
2 ijN̂

t′
g′,n′ over i, j > 0, subject to

i + j + m = b1, where m ≥ 0 is even. By induction, after fixing the parity of all
entries, N̂ t′

g′,n′(i, j, b2, . . . , bn−k, 0, . . . , 0) has degree at most 6g−10+2n−2t+2k in
i, j and the bi. (If i+ j and b1 have distinct parity then the polynomial is zero, but
the degree condition is still satisfied.) After multiplying by ijm and performing the
summation, obtaining a R0 or 1

a,b (b1) in the process, we have a polynomial of degree
at most 6g − 5 + 2n − 2t + 2k which is odd in b1 and even in all other variables;
dividing by b1, we obtain a polynomial of degree at most 6g − 6 + 2n − 2t + 2k,
hence of degree ≤ 3g − 3 + n− t+ k in the b2i .

Cases 1b and 1c follow a similar analysis.
In case 2, we consider the sum of 1

2 īmN̂
t′
g,n−1(i, b2, . . . , b̂j , . . . , bn−k, 0, . . . , 0),

over i and m ≥ 0 satisfying i+m = b1±bj with m even. There are two summations,
one with b1 + bj and one with b1 − bj , and we add them.

In case 2a, we have i = 0 and bj = 0, and the sums both reduce to the same
single term 1

2b1N̂
t′
g′,n′(0, b2, . . . , bn−k, 0, . . . , 0) with t′ = t−1 and k′ = k. (This term

is zero if b1 is odd.) Fixing the parity of the variables and dividing out by b1, we
have a polynomial of degree ≤ 3g − 3 + n− t+ k in the b2i .

In case 2b, we have i = 0 again, so the sums reduce to single terms, but now
bj �= 0, so the single terms are 1

2 (b1±bj)N̂ t′
g′,n′(0, b2, . . . , b̂j, . . . , bn−k, 0, . . . , 0), where

t′ = t and k′ = k + 1. These sum to b1N̂ t′
g′,n′(0, b2, . . . , b̂j , . . . , bn−k, 0, . . . , 0). (This

is zero unless i ≡ b1 ± bj (mod 2).) Fixing parity and dividing out by b1, again we
have a polynomial of degree ≤ 3g − 3 + n− t+ k in the b2i .

Cases 2c and 2d follow a similar analysis.
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We turn next to case 3. Here, each N̂ t1
g1,|I|+1(i, bI) and N̂ t2

g2,|J|+1(j, bJ ) by induc-
tion satisfies the conditions of the theorem; so once, we fix parity of the non-zero
variables, and recalling that g1 + g2 = g, t1 + t2 = t and |I|+ |J | = n−1, we obtain
polynomials in the b2i , with degree

deg N̂ t1
g1,|I|+1(i, bI) N̂ t2

g2,|J|+1(j, bJ)

≤ (3g1 − 3 + (|I| + 1) − t1 + k1) + (3g2 − 3 + (|J | + 1) − t2 + k2)

= 3g − 5 + n− t+ (k1 + k2).

In case 3a, we have i = j = 0, so k1 +k2 = k+2 and the sum reduces to a single
term 1

2b1N̂
t1
g1,|I|+1(0, bI) N̂ t2

g2,|J|+1(0, bJ). (This term is zero if b1 is odd, since the
sum is over i + j ≡ b1 (mod 2).) Dividing out by b1 yields a polynomial of degree
≤ 3g − 5 + n− t+ (k1 + k2) = 3g − 3 + n− t+ k.

In cases 3b and 3c, we have one of i, j being zero and the other non-zero; without
loss of generality suppose j = 0 and i > 0. Then the sum reduces to a sum over i > 0
and m ≥ 0 with i+m = b1 and m even. We have k1 +k2 = k+ 1, so fixing parities,
N̂ t1

g1,|I|+1(i, bI)N̂ t2
g2,|J|+1(0, bJ) has degree ≤ 6g − 8 + 2n − 2t + 2k in its variables.

(If i and b1 have distinct parity, it is zero.) Multiplying by 1
2 im and summing, we

see an Sa(b1), and obtain a polynomial of degree ≤ 6g − 5 + 2n− 2t+ 2k which is
odd in b1 and even in all other bi. Dividing by b1, we obtain a polynomial of degree
≤ 3g − 3 + n− t+ k in the b2i .

Finally, in case 3d, we sum over i, j > 0. We have k1 +k2 = k, so fixing parities,
the product N̂ t1

g1,|I|+1(i, bI)N̂ t2
g2,|J|+1(j, bJ ) has degree ≤ 6g−10 + 2n−2t+ 2k (zero

unless i+ j ≡ b1 (mod 2)). Multiplying by 1
2 ijm and summing, we see a R0 or 1

a,b (b1)
and obtain a polynomial of degree ≤ 6g − 5 + 2n− 2t+ 2k; dividing by b1 gives a
polynomial of degree ≤ 3g − 3 + n− t+ k in the b2i .

We have now shown that using the recursion, we can take b1N̂
t
g,n(b1, . . . ,

bn−k, 0, . . . , 0), express it as a finite collection of sums, and, fixing the parity of
b1, . . . , bn−k, each non-zero sum yields a polynomial of degree ≤ 3g − 3 + n− t+ k

in the b2i with positive coefficients of highest degree. Summing them, the result is
a polynomial of degree at most 3g − 3 + n− t+ k.

9.10. Relations between polynomials, volumes and moduli spaces

Summing N̂ t
g,n(b) over t gives N̂g,n(b), regardless of whether some bi are zero.

Thus, for any g ≥ 0, n ≥ 1 and 0 ≤ k ≤ n,

N̂g,n(b1, . . . , bn−k, 0, . . . , 0) =
∑

t

N̂ t
g,n(b1, . . . , bn−k, 0, . . . , 0). (16)

This sum is finite and when (g, n) �= (0, 1), (0, 2), these functions are quasi-
polynomials.

Obviously, N̂g,n(b1, . . . , bn−k, 0, . . . , 0) can be obtained from N̂g,n(b1, . . . ,
bn−k, bn−k+1, . . . , bn) by setting bn−k+1 = · · · = bn = 0. But it is not true
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that setting bn−k+1 = · · · = bn = 0 in N̂ t
g,n(b1, . . . , bn−k, bn−k+1, . . . , bn) gives

N̂ t
g,n(b1, . . . , bn−k, 0, . . . , 0), since t depends on the (sum of the) bi. Indeed, as seen

from the examples in Sec. 9.8, for distinct values of k, the sequences (in t) of
quasi-polynomials N̂ t

g,n(b1, . . . , bn−k, 0, . . . , 0) may be quite distinct, and cannot be
obtained from each other simply by setting some variables to zero (or even by
setting variables of designated even parity equal to zero).

Nonetheless, fix k in the range 0 ≤ k ≤ n−1, and consider the sequence (in t) of
quasi-polynomials N̂ t

g,n(b1, . . . , bn−k, 0, . . . , 0). These quasi-polynomials can only be
non-zero for t in the range k ≤ t ≤ min(2g+n−1, k+3g−3+n), by Theorem 9.17.
By Theorem 9.18, for such k and t, these quasi-polynomials have degree at most
3g − 3 + n − t + k. And since k ≤ t, we have 3g − 3 + n − t + k ≤ 3g − 3 + n.
However, we know from Theorem 1.7 that the quasi-polynomials N̂g,n(b1, . . . , bn)
have degree 3g − 3 + n. This leads us to the following.

Theorem 9.19. Let g ≥ 0 and n ≥ 1 satisfy (g, n) �= (0, 1), (0, 2). Let 0 ≤ k ≤
n− 1.

(i) Each polynomial defining the quasi-polynomial N̂k
g,n(b1, . . . , bn−k, 0, . . . , 0) has

degree 3g − 3 + n in b21, . . . , b
2
n−k.

(ii) Fix parities for b1, . . . , bn−k. Then the highest degree (3g− 3 + n) terms of the
polynomial N̂k

g,n(b1, . . . , bn−k, 0, . . . , 0) in b21, . . . , b
2
n−k agree with the highest

degree terms of the following three polynomials:

N̂g,n(b1, . . . , bn−k, 0, . . . , 0),

Ng,n(b1, . . . , bn−k, 0, . . . , 0),
1
2
Vg,n(b1, . . . , bn−k, 0, . . . , 0).

(iii) The polynomials defining the quasi-polynomial N̂k
g,n(b1, . . . , bn−k, 0, . . . , 0)

all agree in their terms of highest degree, and for non-negative integers
d1, . . . , dn−k satisfying d1 + · · · + dn−k = 3g − 3 + n, the coefficient cd1,...,dn−k

of b2d1
1 · · · b2dn−k

n−k in each of these polynomials is given by

cd1,...,dn−k
=

1
25g−6+2n d1! · · · dn−k!

〈
ψd1

1 · · ·ψdn−k

n−k ,Mg,n

〉
.

Recall that Ng,n(b1, . . . , bn) denotes the lattice count quasi-polynomials of [31],
and Vg,n(b1, . . . , bn) denotes the volume polynomials of [25].

When k = 0, we obtain Theorem 1.13, and (ii) gives the degree statement in
Theorem 1.12, completing the proof of that theorem.

Proof. Fix parities of b1, . . . , bn−k. By Theorem 1.9, for any d1, . . . , dn ≥ 0 such
that d1+· · ·+dn = 3g−3+n, the coefficient of b2d1

1 · · · b2dn
n is non-zero. In particular,

setting bn−k+1, . . . , bn to zero, the degree of N̂g,n remains 3g−3+n. This proves (i).
Still fixing parities of the bi, as discussed above, Eq. 16 expresses a polynomial

of degree 3g − 3 + n as a sum of polynomials of degree at most 3g − 3 + n− t+ k;
moreover in this sum we always have t ≥ k, so 3g− 3 +n− t+ k ≤ 3g− 3 +n, with
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equality if and only if t = k. Thus the polynomial with t = k has degree exactly
3g−3+n. Moreover, the the terms of degree 3g−3+n in N̂g,n(b1, . . . , bn−k, 0, . . . , 0)
and N̂k

g,n(b1, . . . , bn−k, 0, . . . , 0) agree. Theorem 1.9, Proposition 7.7 and subsequent
discussion then immediately imply the rest of the conclusions.

Thus, we can recover the full set of intersection numbers of ψ-classes on the
moduli space of curves from N̂0

g,n(b1, . . . , bn), restricting the number of regions in
arc diagrams by k = t = 0. The constraints k = t = 0 mean topologically that
each boundary component has at least one arc endpoint, and that the arcs cut the
surface into the minimum number of regions possible.

When k = t, the quasi-polynomials N̂k
g,n(b1, . . . , bn−k, 0, . . . , 0), in addition to

recovering intersection numbers on moduli spaces, have an interesting set of zeroes
and positivity constraints. Indeed, Lemma 9.12 immediately implies that these
quasi-polynomials must be zero, or positive, for certain values of b1, . . . , bn−k, giving
the following result.

Proposition 9.20. Consider the quasi-polynomials N̂k
g,n(b1, . . . , bn−k, 0, . . . , 0), for

(g, n) �= (0, 1), (0, 2), 0 ≤ k ≤ n− 1 and b1, . . . , bn−k > 0.

(i) Any integer point b = (b1, . . . , bn−k, 0, . . . , 0) satisfying 1
2 (b1 + · · · + bn−k) <

2g + n− 1 − k is a zero of N̂k
g,n, i.e. N̂k

g,n(b) = 0.
(ii) At any integer point b = (b1, . . . , bn−k, 0, . . . , 0) satisfying 1

2 (b1 + · · ·+ bn−k) ≥
2g + n− 1 − k, N̂k

g,n is positive, i.e. N̂k
g,n(b) > 0.

9.11. Polynomiality for general refined curve counts

It is now not difficult to show that theGt
g,n obey a polynomiality result similar to the

Gg,n, using a method similar to Sec. 7.4, refining it as in the proof of Proposition 9.8.

Theorem 9.21. Let (g, n) �= (0, 1), (0, 2), let t be an integer satisfying 0 ≤ t ≤
min(2g + n − 1, 3g − 3 + n), and let b1, . . . , bn be non-negative integers. Then
Gt

g,n(b1, . . . , bn) is given by a product of

(i) a combinatorial factor
(
2mi

mi

)
for each 1 ≤ i ≤ n, where bi = 2mi if bi is even

and bi = 2mi + 1 if bi is odd, and
(ii) a symmetric rational quasi-polynomial P t

g,n(b1, . . . , bn), depending on the parity
of each bi, of degree ≤ 3g − 3 + 2n− t.

If we fix the parity of each bi so that at least t of the bi are even, then the degree
of the corresponding polynomial in P t

g,n(b1, . . . , bn) is exactly 3g − 3 + 2n− t.

Proof. Fix the parity of b1, . . . , bn, and write bi = 2mi or bi = 2mi +1 accordingly.
Using Proposition 9.5, we express Gt

g,n(b1, . . . , bn) as a sum over a1, . . . , an, where
0 ≤ ai ≤ bi and ai ≡ bi (mod 2). For those bi which are even, we split the sum
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over ai into the ai = 0 term and the ai > 0 terms. This expresses Gt
g,n as a sum of

terms of the form∏
i∈K

(
2mi

mi

) ∑
1≤aj≤bj

aj≡bj (mod 2)
j∈J

∏
j∈J

 bj
bj − aj

2

 aj

N̂ t
g,n(a1, . . . , an).

In each such term, each ai is fixed to be even or odd, and each of even ai is fixed to
be zero or non-zero; J and K denote the set of i for which ai has been set to non-zero
or zero, respectively, so K
J = {1, . . . , n}. Hence, we can write N̂ t

g,n(a1, . . . , an) =
N̂ t

g,n(aJ , 0). In fact, Gt
g,n(b1, . . . , bn) is the sum of all such expressions, where K

runs over subsets of I, the set of indices i for which bi has been chosen to be even.
We write |K| = k as per previous notation, so |J | = n− k.

If k = n, we have N̂ t
g,n(0, . . . , 0) = δt,2g+n−1. Depending on t, this is also a

symmetric quasi-polynomial of degree 0, or is zero; it gives a term of the form(
2m1
m1

) · · · (2mn

mn

)
times a constant in Gt

g,n, when t = 2g + n− 1. Thus, it remains to
consider the terms with 0 ≤ k ≤ n− 1.

By Theorem 9.17, when 0 ≤ k ≤ n− 1, N̂ t
g,n(aJ , 0) is either zero, or t lies in the

range specified in the theorem (in particular, k ≤ t), and N̂ t
g,n(aJ , 0) is a symmetric

quasi-polynomial in the a2
j , of degree ≤ 3g−3 +n− t+k ≤ 3g−3 +n. Splitting up

N̂ t
g,n(aJ , 0) as a sum of monomials cα

∏
j∈J a

2αj

j , we can write the corresponding
terms of Gt

g,n as a finite sum of terms of the form

∏
i∈K

(
2mi

mi

)∑
α

cα
∏
j∈J

∑
1≤aj≤bj

aj≡bj (mod 2)

 bj
bj − aj

2

 a2αj

j .

As N̂ t
g,n(aJ , 0) has degree ≤ 3g − 3 + n − t + k, we always have α1 + · · · + αn ≤

3g−3+n− t+k. When t = k, by Theorem 9.19, the degree of N̂ t
g,n(aJ , 0) is exactly

3g− 3 +n− t+ k = 3g− 3 +n, so in this case there are terms with α1 + · · ·+αn =
3g − 3 + n. Each

∑
aj

( bj
bj−aj

2

)
a2αj is either p̃αj (mj) =

(
2mj

mj

)
mjpαj (mj), if aj is

even, or q̃αj (mj) =
(
2mj

mj

)
(2mj + 1)qαj (mj), if aj is odd. Each mjpαj (mj) and

(2mj + 1)qαj (mj) is a polynomial of degree αj + 1, so in each term, the degree of
their product is

∑
j∈J (αj + 1) = (

∑
j∈J αj) + n − k ≤ 3g − 3 + 2n− t, and when

t = k there are terms where equality holds.
Thus, Gt

g,n(b1, . . . , bn) can be expressed as a finite sum of terms, where each
term is a constant multiplied by

(
2m1
m1

) · · · (2mn

mn

)
, multiplied by a polynomial in

m1, . . . ,mn. This polynomial is either a constant (in the case k = n and t =
2g+n− 1), or is a product of mjpαj (mj) and (2mj + 1)qαj (mj), over j ∈ J . Terms
where the number k of variables set to zero satisfies 0 ≤ k ≤ n − 1 contribute
polynomials of degree ≤ 3g− 3 + 2n− t. When k = n, the polynomial contribution
is a constant. Thus, Gt

g,n has properties (i) and (ii) claimed.
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If at least t of the bi are even, then it is possible to set t of the variables to zero,
so there is a term with k = t which contributes to the polynomial P t

g,n(b1, . . . , bn).
As discussed above, there are then monomials appearing with

∑
j∈J αj = 3g− 3 +

n− t+k, and when we perform summations, we obtain products of mjpαj (mj) and
(2mj + 1)qαj , contributing a polynomial of degree exactly 3g − 3 + 2n− t to P t

g,n.
As all the polynomials involved have positive highest degree terms, the resulting
polynomial P t

g,n(b1, . . . , bn) must have degree exactly 3g − 3 + 2n− t.

10. Differential Equations and Partition Functions

10.1. Refined differential forms and generating functions

Refining by regions, we now develop generating functions fG
g,n, f

N
g,n and differential

forms ωg,n by regions which will satisfy differential equations.

Definition 10.1 (Refined generating functions and differentials). For inte-
gers g ≥ 0, n ≥ 1 and r ≥ 1, and t, let

fG
g,n,r(x1, . . . , xn) =

∑
µ1,...,µn≥0

Gg,n,r(µ1, . . . , µn)x−µ1−1
1 · · ·x−µn−1

n

fN
g,n,r(z1, . . . , zn) =

∑
ν1,...,νn≥0

Ng,n,r(ν1, . . . , νn)zν1−1
1 · · · zνn−1

n

fG,t
g,n (x1, . . . , xn) =

∑
µ1,...,µn≥0

Gt
g,n(µ1, . . . , µn)x−µ1−1

1 · · ·x−µn−1
n ,

fN,t
g,n (z1, . . . , zn) =

∑
ν1,...,νn≥0

N t
g,n(ν1, . . . , νn)zν1−1

1 · · · zνn−1
n

ωG
g,n,r(x1, . . . , xn) = fG

g,n,r(x1, . . . , xn) dx1 · · · dxn

ωN
g,n,r(z1, . . . , zn) = fN

g,n,r(z1, . . . , zn) dz1 · · ·dzn

ωG,t
g,n(x1, . . . , xn) = fG,t

g,n (x1, . . . , xn) dx1 · · · dxn

ωN,t
g,n (z1, . . . , zn) = fN,t

g,n (z1, . . . , zn) dz1 · · · dzn.

Since Gg,n(µ) =
∑

r Gg,n,r(µ) =
∑

tG
t
g,n(µ) and Ng,n(ν) =

∑
r Ng,n,r(ν) =∑

t N
t
g,n(ν), we immediately have fG

g,n =
∑

r≥1 f
G
g,n,r =

∑
t f

G,t
g,n and fN

g,n =∑
r≥1 f

N
g,n,r =

∑
t f

N,t
g,n .

10.2. Small cases of refined generating functions

and differential forms

We can compute these generating functions directly in small cases (g, n) =
(0, 1), (0, 2), (0, 3).
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Proposition 10.2. The generating functions fG
0,1,r(x1), fN

0,1,r(z1), fG,t
0,1 (x1) and

fN,t
0,1 (z1) are all meromorphic, given by

fG
0,1,r(x1) =

1
r

(
2r − 2
r − 1

)
x−2r+1

1 , fG,t
0,1 (x1) =


x1 −

√
x2

1 − 4
2

if t = 0,

0 otherwise,

fN
0,1,r(z1) =

{
z−1
1 if r = 1,

0 otherwise,
fN,t
0,1 (z1) =

{
z−1
1 if t = 0,

0 otherwise.

Proof. An arc diagram on the disc with r complementary regions has r − 1 arcs,
so the only non-zero G0,1,r(µ) is G0,1,r(2r − 2) = 1

r

(
2r−2
r−1

)
, yielding fG

0,1,r(x1). The
only arc diagram without boundary-parallel arcs is the empty diagram, so the only
contribution to fN

0,1,r is a z−1
1 , when r = 1.

All arc diagrams on the disc have t = 0, hence fG,t
0,1 (x1) is equal to fG

0,1(x1) when
t = 0, and zero otherwise; similarly for fN,t

0,1 .

Proposition 10.3. The function fN,t
0,2 is meromorphic and is given by

fN,t
0,2 (z1, z2) =



1
(1 − z1z2)2

if t = 0,

1
z1z2

if t = 1,

0 otherwise.

We calculated in Sec. 8.2 that fN
0,2(z1, z2) = 1

z1z2
+ 1

(1−z1z2)2
; we now see that

the two terms in this sum correspond precisely to t = 0 and t = 1.

Proof. From Lemma 9.3, we have N0
0,2(b1, b2) = b1 for b1 = b2 > 0, N1

0,2(0, 0) = 1,
and all other N t

0,2(b1, b2) = 0. Thus, fN,0
0,2 (z1, z2) =

∑∞
ν=1 ν(z1z2)ν−1 = 1

(1−z1z2)2

and fN,1
0,2 (z1, z2) = z−1

1 z−1
2 .

Proposition 10.4. The function fN,t
0,3 is meromorphic and is given by

fN,0
0,3 (z1, z2, z3) =

2(z1 + z2 + z3 + z1z2z3)(1 + z1z2 + z2z3 + z3z1)
(1 − z2

1)2(1 − z2
2)2(1 − z2

3)2

fN,1
0,3 (z1, z2, z3) =

1 + 4z1z2 + z2
1 + z2

2 + z2
1z

2
2

(1 − z2
1)2(1 − z2

2)2z3
+

1 + 4z2z3 + z2
2 + z2

3 + z2
2z

2
3

(1 − z2
2)2(1 − z2

3)2z1

+
1 + 4z3z1 + z2

3 + z2
1 + z2

3z
2
1

(1 − z2
3)2(1 − z2

1)2z2

fN,2
0,3 (z1, z2, z3) =

1 + 16z2
1z

2
2z

2
3 + z4

1z
4
2z

4
3 +
∑

cyc(z
4
1 − 4z2

1z
2
2 + z4

1z
4
2 − 4z4

1z
2
2z

2
3)

z1z2z3(1 − z2
1)2(1 − z2

2)2(1 − z2
3)2

and fN,t
0,3 (z1, z2, z3) = 0 otherwise.
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One can check that these three fN,t
0,3 sum to the fN

0,3 calculated in Lemma 8.2.

Proof. From Proposition 9.7, we have N0
0,3(b1, b2, b3) = b1b2b3, for positive bi with

even sum; N1
0,3(b1, b2, 0) = b1b2 for positive bi with even sum; N2

0,3(b1, 0, 0) = b1 for
positive even b1; and N2

0,3(0, 0, 0) = 1. All other N t
0,3 are zero. Thus, following a

similar method to Lemma 8.2, we may define

ρ(z) =
∑
ν≥1

ν even

ν zν−1 =
2z

(1 − z2)2
, σ(z) =

∑
ν≥1

ν odd

ν zν−1 =
1 + z2

(1 − z2)2
.

(note ρ here is slightly different from Lemma 8.2) and then

fN,0
0,3 (z1, z2, z3) = ρ(z1)ρ(z2)ρ(z3) + ρ(z1)σ(z2)σ(z3)

+ ρ(z2)σ(z3)σ(z1) + ρ(z3)σ(z1)σ(z2)

fN,1
0,3 (z1, z2, z3) =

∑
cyc

z−1
1 (ρ(z2)ρ(z3) + σ(z2)σ(z3))

fN,2
0,3 (z1, z2, z3) = z−1

1 z−1
2 z−1

3 + z−1
2 z−1

3 ρ(z1) + z−1
3 z−1

1 ρ(z2) + z−1
1 z−1

2 ρ(z3).

Expanding these out gives the claimed expressions.

10.3. Meromorphicity and change of coordinates

A similar method to Sec. 8.3 shows that we have meromorphicity in many cases.

Proposition 10.5. For all integers g ≥ 0, n ≥ 1 and t, the functions fN,t
g,n , f

G
g,n,r,

fN
g,n,r and the differential forms ωN,t

g,n , ω
G
g,n,r, ω

N
g,n,r are all meromorphic.

Proof. First, we deal with fG
g,n,r and fN

g,n,r. Once g, n and r are given, Lemma 9.9
says that if Gg,n,r(µ1, . . . , µn) > 0, then

1
2

n∑
i=1

µi ≤ r + 2g + n− 2.

Thus, only finitely many (µ1, . . . , µn) contribute to the sum for fG
g,n,r(x1, . . . , xn).

Similarly, the sum for fN
g,n,r(z1, . . . , zn) is finite. Thus fG

g,n,r and fN
g,n,r are Laurent

polynomials in x1, . . . , xn, hence meromorphic; and hence ωG
g,n,r(x1, . . . , xn) and

ωN
g,n,r(z1, . . . , zn) are meromorphic.

Turning to fN,t
g,n , the proof follows Proposition 8.3. Propositions 10.2 and 10.3

show that fN,t
0,1 (z1) and fN,t

0,2 (z1, z2) are meromorphic; and hence ωN,t
0,1 (z1) and

ωN,t
0,2 (z1, z2) are meromorphic forms.

For (g, n) �= (0, 1), (0, 2), we proved in Theorem 9.17 that N̂ t
g,n(ν1, . . . ,

νn−k, 0, . . . , 0) is a rational symmetric quasi-polynomial in ν2
1 , . . . , ν

2
n−k. Hence, if

we fix each ν to be zero, positive odd, or positive even, then we obtain a polynomial.
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Let {1, 2, . . . , n} = K 
 J , where K is the set of i for which νi = 0, and J is the set
of j for which νj > 0. When j ∈ J , we can set νj ≡ εj (mod 2), where εj ∈ {0, 1}.
Thus, we can split the sum for fN,t

g,n into 3n sums of the form

∑
νj≥1

νj≡εj (mod 2)
j∈J

∏
j∈J

νj

P (ν1, . . . , νn)|νK=0 z
ν1−1
1 · · · zνn−1

n ,

where P (ν1, . . . , νn) is a polynomial, and P (ν1, . . . , νn)|νK=0 means we set all νi = 0
for i ∈ K. This is a polynomial in the νj for j ∈ J . Splitting each such polynomial
into monomials, we can write fN,t

g,n as a finite sum of terms of the form of a constant
times (∏

i∈K

z−1
i

) ∑
νj≥1

νj≡εj (mod 2)
j∈J

∏
j∈J

ν
aj

j z
νj−1
j

 .
Now we know from the proof of Proposition 8.3 that for any positive integer a and
ε ∈ {0, 1}, ∑

ν≥0
ν≡ε (mod 2)

νazν =
∑
ν≥1

ν≡ε (mod 2)

νazν

is meromorphic. Hence, fN,t
g,n is a finite sum of meromorphic functions, hence is

meromorphic, as is ωN,t
g,n .

We have now shown all generating functions and differential forms are
meromorphic, except fG,t

g,n and ωG,t
g,n , to which we now turn. Just as Theo-

rem 1.8 expresses Gg,n(b1, . . . , bn) in terms of Ng,n(a1, . . . , an), Proposition 9.5
expresses Gt

g,n(b1, . . . , bn) in terms of N t
g,n(a1, . . . , an). The proof of Theorem 1.14,

then applies verbatim, replacing Gg,n, Ng,n with Gt
g,n, N

t
g,n, and we obtain the

following.

Proposition 10.6. For any g ≥ 0, n ≥ 1 other than (g, n) = (0, 1) and integer t,

φ∗ωG,t
g,n(x1, . . . , xn) = ωN,t

g,n (z1, . . . , zn),

where φ(z1, . . . , zn) = (z1 + 1
z1
, . . . , zn + 1

zn
). In particular, fG,t

g,n and ωG,t
g,n are

meromorphic.

As in the unrefined case, we can regard xi ↔ zi as a change of coordinates and
simply write ωt

g,n, rather than ωG,t
g,n or ωN,t

g,n , for (g, n) �= (0, 1). Proposition 10.6
indicates again that the parameter t is more natural than r for our purposes.

We conclude that each meromorphic form ωg,n naturally decomposes into a
finite sum of meromorphic forms ωt

g,n.
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10.4. Refined free energies

From the refined meromorphic ωt
g,n, we can also refined our notion of free energy.

So a refined free energy is a function F t
g,n : (CP1)n → (CP1) such that

dz1 · · · dznF
t
g,n(z1, . . . , zn) = ωt

g,n(z1, . . . , zn).

In the case (g, n) = (0, 1), we have distinct FG,t
0,1 and FN,t

0,1 .
In Proposition 1.16, we give expressions for free energy energy functions for

(g, n) = (0, 1), (0, 2), (0, 3), which we now prove.

Proof of Proposition 1.16. We saw in Proposition 10.2 that fG,0
0,1 = fG

0,1 and
fN,0
0,1 = fN

0,1, so FG,0
0,1 = FG

0,1 and FN,0
0,1 = FN

0,1, which were given in Proposi-
tion 1.15. Differentiating the claimed F 0

0,2 and F 1
0,2 with respect to z1, z2 gives

the fN,0
0,2 and fN,1

0,2 from Proposition 10.3. Similarly, differentiating the F t
0,3 with

respect to z1, z2, z3 gives the fN,t
0,3 from Proposition 10.4.

From Propositions 10.2, 10.3 and 10.4, we observe that the free energy functions
of Proposition 1.16 are the only non-zero functions with (g, n) = (0, 1), (0, 2), (0, 3).

We can observe directly that these F t
g,n sum to the Fg,n calculated previously. In

the (0, 2) and (0, 3) cases especially, the terms of the rather complicated functions
Fg,n split up in a natural way.

10.5. Putting the generating functions and differential

forms together

We can now combine refined generating functions, differential forms and free ener-
gies together over all values of r or t, to obtain more general generating functions
and forms. These will eventually be put together into partition functions. We intro-
duce variables α and β to keep track of r and t, respectively.

Definition 10.7. For integers g ≥ 0 and n ≥ 1, define the functions fGg,n, f
N
g,n,

fG
g,n, f

N
g,n and differential forms ΩG

g,n,ΩN
g,n by

fGg,n(x1, . . . , xn;α) =
∑
r≥1

fG
g,n,r(x1, . . . , xn) αr,

fNg,n(z1, . . . , zn;α) =
∑
r≥1

fN
g,n,r(z1, . . . , zn) αr

ΩG
g,n(x1, . . . , xn;α) = fGg,n(x1, . . . , xn;α) dx1 · · · dxn =

∑
r≥1

ωG
g,n,r(x1, . . . , xn)αr
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ΩN
g,n(z1, . . . , zn;α) = fNg,n(z1, . . . , zn;α) dz1 · · · dzn =

∑
r≥1

ωN
g,n,r(z1, . . . , zn)αr

fG
g,n(x1, . . . , xn;β) =

∑
t

fG,t
g,n (x1, . . . , xn) βt,

fN
g,n(z1, . . . , zn;β) =

∑
t

fN,t
g,n (z1, . . . , zn) βt.

Finally, for (g, n) �= (0, 1), define the differential form

Ωg,n(β) =
∑

t

ωt
g,n β

t.

For (g, n) �= (0, 1), we have taken advantage of Proposition 10.6 to simply
write ωt

g,n, which can be written in terms of the zi or xi; Ωg,n then behaves
similarly.

We can regard fGg,n and fNg,n as families of functions (CP1)n → CP1, parametrized
by α ∈ CP1. Similarly, we can regard ΩG

g,n and ΩN
g,n as families of sections of

(T ∗CP1)�n, parametrized by α, and Ωg,n as a family of sections parametrized by
β. Setting α = 1 or β = 1 recovers the unrefined generating functions fG

g,n, fN
g,n,

and differential forms ωG
g,n, ωN

g,n.
While we know that each fG

g,n,r, fN
g,n,r, ωG

g,n,r and ωN
g,n,r is meromorphic, we

do not yet know that fGg,n, fNg,n, ΩG
g,n or ΩN

g,n are meromorphic, as they are defined
by infinite sums. (We will see this later in Proposition 10.12.) On the other hand,
because of the bounds on t, namely 0 ≤ t ≤ 2g + n− 1, each sum over t is a finite
sum, immediately giving us the following.

Proposition 10.8. Let g ≥ 0 and n ≥ 1. The functions fG
g,n(x1, . . . , xn;β) and

fN
g,n(z1, . . . , zn;β) are meromorphic, and for each β ∈ C, Ωg,n(β) is a meromorphic
form. �

Using our calculations from Sec. 10.2, we can calculate small cases of these
functions and forms.

Proposition 10.9. The functions fG0,1, fN0,1, fG
0,1, fN

0,1 and differential forms ΩG
0,1,

ΩN
0,1 are given as follows:

fG0,1(x1;α) =
x1 −

√
x2

1 − 4α
2

so ΩG
0,1(x1;α) =

x1 −
√
x2

1 − 4α
2

dx1

fN0,1(z1;α) = z−1
1 α so ΩN

0,1(z1;α) = z−1
1 α dz1

fG
0,1(x1;β) = z1

fN
0,1(z1;β) = z−1

1 .
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Proof. All the claimed expressions except fG0,1(x1;α) consist of sums with a single
term, obtained immediately from Proposition 10.2. We compute f0,1(x1;α):

fG0,1(x1;α) =
∞∑

m=0

G0,1,m+1(2m)x−2m−1
1 αm+1

= α1/2
∞∑

m=0

G0,1(2m)(x1α
−1/2)−2m−1 = α1/2fG

0,1(x1α
−1/2).

Since fG
0,1(x) = x−√

x2−4
2 (Lemma 8.2), we obtain the desired result.

We obtain fN
0,2, fN

0,3 immediately from Propositions 10.3 and 10.4; multiplying
by dzi gives the corresponding Ω0,2,Ω0,3.

Proposition 10.10. The generating functions fN
0,2, f

N
0,3 are given as follows:

fN
0,2(z1, z2;β) =

1
(1 − z1z2)2

+
β

z1z2

fN
0,3(z1, z2, z3;β) =

2(z1 + z2 + z3 + z1z2z3)(1 + z1z2 + z2z3 + z3z1)
(1 − z2

1)2(1 − z2
2)2(1 − z2

3)2

+ β

(∑
cyc

1 + 4z1z2 + z2
1 + z2

2 + z2
1z

2
2

(1 − z2
1)2(1 − z2

2)2z3

)

+ β2


1 + 16z2

1z
2
2z

2
3 + z4

1z
4
2z

4
3 +
∑

cyc z
4
1

− 4z2
1z

2
2 + z4

1z
4
2 − 4z4

1z
2
2z

2
3

z1z2z3(1 − z2
1)2(1 − z2

2)2(1 − z2
3)2

 .
�

In the proof of Proposition 10.9, we found an expression for fG0,1(x1;α) by rewrit-
ing the sum as one involving fG

0,1(x1α
−1/2). We can use a similar trick in general

to write each f in terms of an f .

Proposition 10.11. For any g ≥ 0 and n ≥ 1,

fNg,n(z1, . . . , zn;α) = α2−2g− n
2 fN

g,n(z1α1/2, . . . , znα
1/2;α)

fGg,n(x1, . . . , xn;α) = α2−2g− 3n
2 fG

g,n(x1α
−1/2, . . . , xnα

−1/2;α)

Note that the “usual” inputs to fN
g,n are (z1, . . . , zn;β); we are saying that if

we replace each zi with ziα
1/2, and β with α, then up to a factor of α2−2g− n

2 , we
recover fNg,n(z1, . . . , zn;α). Similarly, if we substitute zi with ziα

−1/2 and β with α

in fG
g,n, then we can recover fGg,n.
Thus, generating functions with respect to the number of regions r, and the

variable α, can be recovered from generating functions with respect to the parameter
t, and the variable β.
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Proof. We compute

α2−2g− n
2 fN

g,n(z1α1/2, . . . , znα
1/2;α) = α2−2g−n

2

×
∑

t,ν1,...,νn

N t
g,n(ν1, . . . , νn)(z1α1/2)ν1−1 · · · (znα

1/2)νn−1 αt

=
∑

t,ν1,...,νn

N t
g,n(ν1, . . . , νn)zν1−1

1 · · · zνn−1
n α2−2g−n

2 + 1
2

Pn
i=1(νi−1)

= fNg,n(z1, . . . , zn;α).

Here, we used r = t − (2 − 2g − n) − 1
2

∑n
i=1 νi. The computation for the second

equality is similar.

Since fN
g,n(z1, . . . , zn;β) and fG

g,n(x1, . . . , xn;β) is meromorphic, the above propo-
sition immediately yields the following.

Proposition 10.12. The functions fGg,n(x1, . . . , xn;α) and fNg,n(z1, . . . , zn;α) are
locally meromorphic, and for each α ∈ C, ΩG

g,n(x1, . . . , xn;α) and ΩN
g,n(z1, . . . , zn;α)

are locally meromorphic differential forms. �

10.6. Refined differential equations

We now return to the attempt to find differential equations satisfied by the
generating functions fg,n(x1, . . . , xn), which we left off in Sec. 8.6, and prove
Proposition 1.17.

Recall in Sec. 8.6 that we took the recursion on Gg,n(b1, . . . , bn), multiplied by
x−b1−1

1 · · ·x−bn−1
n , and summed over all b1 ≥ 1 and b2, . . . , bn ≥ 0. After suitable

manipulation of the three terms I, II, III on the right-hand side, we arrived at
Lemma 8.6. The problem was dealing with the terms on the left-hand side with
b1 = 0.

To this end, we start again, refining the process by regions. So, we start from
the recursion, on Gg,n,r rather than Gg,n, applying Theorem 1.11. Multiplying that
recursion by x−b1−1

1 · · ·x−bn−1
n αr and summing over r > 1, b1 > 0 and b2, . . . , bn ≥

0, we obtain∑
b1≥1

b2,...,bn≥0
r≥1

Gg,n(b1, . . . , bn) x−b1−1
1 · · ·x−bn−1

n αr = Iα + IIα + IIIα,

where the left-hand side is “almost” fGg,n(x1, . . . , xn;α) (except for terms with b1 =
0), and

Iα =
∑
b1≥1

b2,...,bn≥0
r≥1

∑
i,j≥0

i+j=b1−2

Gg−1,n+1,r(i, j, b2, . . . , bn)x−b1−1
1 · · ·x−bn−1

n αr,
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IIα =
∑
b1≥1

b2,...,bn≥0
r≥1

n∑
k=2

bkGg,n−1(b1 + bk − 2, b2, . . . , b̂k, . . . , bn)x−b1−1
1 · · ·x−bn−1

n αr,

IIIα =
∑
b1≥1

b2,...,bn≥0
r≥1

∑
g1+g2=g

I1�I2={2,...,n}

∑
i,j≥0

i+j=b1−2

×
∑

r1,r2≥1
r1+r2=r

Gg1,|I1|+1,r1(i, bI1)Gg2,|I2|+1,r2(j, bI2 )x−b1−1
1 · · ·x−bn−1

n αr.

Proof of Proposition 1.17. The computations of Sec. 8.6 work equally here to
simplify terms Iα, IIαIIIα. The only difference is that a factor of αr is carried
throughout; and in IIIα, we have αr = αr1αr2 , so we obtain a similar factorisation.
We obtain

Iα = x−1
1 fGg−1,n+1(x1, x1, x2, . . . , xn;α)

IIα = x−1
1

n∑
k=2

∂

∂xk

1
xk − x1

(fGg,n−1(x2, . . . , xn;α)

− fGg,n−1(x1, x2, . . . , x̂k, . . . , xn;α))

IIIα = x−1
1

∑
g1+g2=g

I1�I2={2,...,n}

fGg1,|I1|+1(x1, xI1 ;α) fGg2,|I2|+1(x1, xI2 ;α).

For the rest of this section, we simply write fg,n rather than fGg,n to avoid clutter;
we will not be writing fNg,n, so there will be no ambiguity. If we examine fg,n, we
find

fg,n(x1, . . . , xn;α) =
∑

b1,...,bn≥0
r≥1

Gg,n,r(b1, . . . , bn) x−b1−1
1 · · ·x−bn−1

n αr

= Iα + IIα + IIIα + IVα,

where IVα is the sum arising from terms with b1 = 0:

IVα =
∑

b2,...,bn≥0
r≥1

Gg,n,r(0, b2, . . . , bn)x−1
1 x−b1−1

2 · · ·x−bn−1
n αr.

Applying Proposition 9.4 to IVα, we obtain

IVα =
∑

b2,...,bn≥0
r≥1

r Gg,n−1,r(b2, . . . , bn) x−1
1 x−b2−1

2 · · ·x−bn−1
n αr
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= x−1
1 α

d

dα

∑
b2,...,bn≥0

r≥1

Gg,n−1,r(b2, . . . , bn) x−b2−1
2 · · ·x−bn−1

n αr

= x−1
1 α

d

dα
fg,n−1(x2, . . . , xn;α).

Putting Iα through IVα all together yields the desired differential equation.

10.7. Differential equation in free energies, and quantum curve?

We now integrate the differential equation of Proposition 1.17 to obtain a differen-
tial equation on a free energy. We obtained free energies by integrating the form
ωt

g,n; it is this form, rather than ωg,n,r, which was natural. Similarly, it is the fG
g,n

and fN
g,n, which produce the natural differential form Ωg,n. However, as we have

seen, a nice recursion can be obtained on Gg,n,r, and from it we have derived a
differential equation for fGg,n. If we integrate this function, we obtain another set
of “free energies” which obey a differential equation. In this, we follow Mulase–
Su�lkowski [29].

We therefore define Fg,n(x1, . . . , xn;α) to be a free energy if

∂nF

∂x1 · · ·∂xn
= fGg,n(x1, . . . , xn;α).

Proof of Theorem 1.18. Integrate both sides of the equation in Proposition 1.17
with respect to x2, . . . , xn. From fg,n(x1, . . . , xn;α), we obtain ∂

∂x1
F(x1, . . . , xn;α);

and similarly, we obtain the desired terms on the right-hand side.

We now assemble the ingredients for a partition function.

Definition 10.13. For integers m ≥ 0, define

Sm(x) =
∑

2g+n−1=m

1
n!

Fg,n(x, . . . , x), F =
∞∑

m=0

�m−1Sm(x) and Z = eF.

Here, � is a formal parameter and we regard these as formal Laurent series. We
refer to F as a logarithmic partition function, and Z as the partition function.

Lemma 10.14. For each m ≥ 0,

x
∂

∂x
Sm+1 =

∂2Sm

∂x2
+

∑
a+b=m+1

∂Sa

∂x

∂Sb

∂x
+ α

∂Sm

∂α
.

Proof. This proof follows the method of [29, Appendix A]. We drop α from
Fg,n(x1, . . . , xn;α) for convenience. From Theorem 1.18, set x1 = · · · = xn = x,
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multiply by 1
(n−1)! , and sum over all g, n such that 2g + n − 2 = m. Taking the

terms of the equation separately, we first have

∑
2g+n−2=m

1
(n− 1)!

x1
∂

∂x1
Fg,n(x1, . . . , xn)

∣∣∣
x1,...,xn

= x
∂

∂x

∑
2g+n−2=m

1
n!

Fg,n(x, . . . , x) = x
∂

∂x
Sm+1.

Here, we used the general fact that, for a symmetric function f of n variables,

d

dt
f(t, . . . , t) = n

∂

∂u
f(u, t, . . . , t)

∣∣∣
u=t

.

Doing the same for the first term on the right-hand side, we obtain

∑
2g+n−2=m

1
(n− 1)!

∂2

∂u ∂v
Fg−1,n+1(u, v, x2, . . . , xn)

∣∣∣
u=v=x2=···=xn

=
∑

2g+n−2=m

1
(n− 1)!

∂2

∂u ∂v
Fg−1,n+1(u, v, x, . . . , x)

∣∣∣
u=v=x

.

Turning to the second term on the right-hand side yields

∑
2g+n−2=m

1
(n− 1)!

n∑
k=2

1
xk − x1

(
∂

∂xk
Fg,n−1(x2, . . . , xn)

− ∂

∂x1
Fg,n−1(x1, . . . , x̂k, . . . , xn)

) ∣∣∣
x2=···=xn=x

=
∑

2g+n−2=m

1
(n− 1)!

n∑
k=2

∂2

∂x2
Fg,n−1(x, x2, . . . , x̂k, . . . , xn)

∣∣∣
x2=···=cxk=···=xn=x

=
∑

2g+n−2=m

1
(n− 1)!

n∑
k=2

∂2

∂u2
Fg,n−1(u, x, . . . , x)

∣∣∣
u=x

=
∑

2g+n−2=m

1
(n− 2)!

∂2

∂u2
Fg,n−1(u, x, . . . , x)

∣∣∣
u=x

.

In the second line, we used the general fact that for functions f and g,

1
x− y

(
g(x)

df(x)
dx

− g(y)
df(y)
dy

) ∣∣∣
x=y

= g′(x)f ′(x) + g(x)f ′′(x).
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Now adding the first and second terms on the right-hand side gives∑
2g+n−2=m

1
(n− 1)!

∂2

∂u ∂v
Fg−1,n+1(u, v, x, . . . , x)

∣∣∣
u=v=x

+
1

(n− 2)!
∂2

∂u2
Fg,n−1(u, x, . . . , x)

∣∣∣
u=x

=
∑

2g+n−2=m

1
n!

∂2

∂x2
Fg,n−1(x, . . . , x) =

∂2Sm

∂x2
.

Here, we have used the general fact that, for a symmetric function f of n variables,

d2

dt2
f(t, . . . , t)

= n
∂2

∂u2
f(u, t, . . . , t)

∣∣∣
u=t

+ n(n− 1)
∂2

∂u1 ∂u2
f(u1, u2, t, . . . , t)

∣∣∣
u1=u2=t

.

For the final term, we find∑
2g+n−2=m

1
(n− 1)!

×
∑

g1+g2=g
I1�I2={2,...,n}

∂

∂x1
Fg1,|I1|+1(x1, xI1)

∂

∂x1
Fg2,|I2|+1(x1, xI2 )

∣∣∣
x1=···=xn=x

=
∑

2g+n−2=m

1
(n− 1)!

∑
g1+g2=g

n1+n2=n−1

(
n− 1
n1

)
∂

∂x1
Fg1,n1+1

× (x1, x, . . . , x)
∂

∂x1
Fg2,n2+1(x1, x, . . . , x)

∣∣∣
x1=x

=
∑

2g+n−2=m

∑
g1+g2=g

n1+n2=n−1

1
n1!

∂

∂x1
Fg1,n1+1

× (x1, x, . . . , x)
1
n2!

∂

∂x1
Fg2,n2+1(x1, x, . . . , x)

∣∣∣
x1=x

=
∑

a+b=m+1

( ∑
2g1+n1−2=a−2

1
(n1 + 1)!

∂

∂x
Fg1,n1+1(x, . . . , x)

)

×
 ∑

2g2+m2=2=b−2

1
(n2 + 1)!

∂

∂x
Fg2,n2+1(x, . . . , x)


=

∑
a+b=m+1

∂Sa

∂x

∂Sb

∂x
.

Adding together all the terms then gives the desired result.
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Next, we find a differential equation satisfied by the logarithmic partition
function F.

Proposition 10.15. The function F satisfies

�2

(
∂2F
∂x2

+
(
∂F
∂x

)2

+ α
∂F
∂α

)
− �x

∂F
∂x

+ α = 0.

Proof. Take Lemma 10.14, multiply by �m+1 and sum over m ≥ 0. The left-hand
side becomes

∞∑
m=0

x
∂Sm+1

∂x
�m+1 = x�

∂F
∂x

− x
∂S0

∂x
.

The first term on the right-hand side becomes
∞∑

m=0

�m+1 ∂
2Sm

∂x2
= �2 ∂

2F
∂x2

.

The second term yields
∞∑

m=0

∑
a+b=m+1

�m+1 ∂Sa

∂x

∂Sb

∂x
=
∑

a+b≥1

�a ∂Sa

∂x

∂Sb

∂x

=

( ∞∑
a=0

�a ∂Sa

∂x

)( ∞∑
b=0

�b ∂Sb

∂x

)
−
(
∂S0

∂x

)2

= �2

(
∂F
∂x

)2

−
(
∂S0

∂x

)2

.

The final term gives
∞∑

m=0

�m+1α
∂Sm

∂α
= �2α

∂F
∂α

.

Summing the terms and rearranging, then gives

�2 ∂
2F
∂x2

+ �2

(
∂F
∂x

)2

+ �2α
∂F
∂α

− x�
∂F
∂x

+ x
∂S0

∂x
−
(
∂S0

∂x

)2

= 0.

It remains to compute the S0 terms. Now S0(x) = F0,1(x), which is an integral of
fG0,1(x1, . . . , xn;α). Using Proposition 10.9,

∂S0

∂x
= fG0,1(x;α) =

x−√
x2 − 4α
2

, so that x
∂S0

∂x
−
(
∂S0

∂x

)2

= α

giving the desired result.

Finally, we obtain a differential equation satisfied by the partition function Z.
This is reminiscent of the “quantum curve” that appears in the general theory of
the topological recursion [29, 30].

Proof of Theorem 1.19. Since Z = eF, we have ∂Z
∂x = ∂F

∂x Z, so ∂2Z
∂x2 =

(∂2F
∂x2 + (∂F

∂x )2)Z. Also ∂Z
∂α = ∂F

∂αZ. Substituting these into Proposition 10.15 gives
the claimed result.
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combinatorial moduli space of curves, Adv. Math. 230(3) (2012) 1322–1339.

[29] M. Mulase and P. Su�lkowski, Spectral curves and the Schrödinger equations for the
Eynard–Orantin recursion, Adv. Theor. Math. Phys. 19(5) (2015) 955–1015.

[30] P. Norbury, Quantum curves and topological recursion, String-Math 2014, Proc. Sym-
pos. Pure Math., Vol. 93 (Amer. Math. Soc., Providence, RI, 2016), pp. 41–65.

[31] P. Norbury, Counting lattice points in the moduli space of curves, Math. Res. Lett.
17(3) (2010) 467–481.

[32] P. Norbury, String and dilaton equations for counting lattice points in the moduli
space of curves, Trans. Amer. Math. Soc. 365(4) (2013) 1687–1709.

[33] P. Norbury and N. Scott, Gromov-Witten invariants of P1 and Eynard–Orantin
invariants, Geom. Topol. 18(4) (2014) 1865–1910.

[34] J. H. Przytycki, Fundamentals of Kauffman bracket skein modules, Kobe J. Math.
16(1) (1999) 45–66.

[35] T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. I, J. Combin.
Theory Ser. B 13 (1972) 192–218.

1750012-105


