Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Trinities, sutured Floer homology, and contact structures

Daniel V. Mathews ¹ joint with Tamás Kálmán ²

¹Monash University Daniel.Mathews@monash.edu

²Tokyo Institute of Technology kalman@math.titech.ac.jp

> Kioloa, ANU 12 January 2016

Background

Trinities and sutured manifolds

nvariants of sutured manifold trinities

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

2 Background

- Trinities and sutured manifolds
- Invariants of sutured manifold trinities

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Overview

This talk is about

- trinities a type of triality arising in graph theory
- sutured Floer homology an extension of Heegaard Floer homology to 3-manifolds with (sutured) boundary
- contact structures on 3-manifolds.

In progress / joint with T. Kálmán. Building on work of Friedl, Juhasz, Kálmán, Rasmussen, Etnyre, Honda, Kazez, Ozsváth, Szabó, Witten, Floer ...

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Overview

This talk will:

- Briefly introduce background ideas
 - sutured 3-manifolds
 - Heegaard Floer homology, sutured Floer homology
 - contact structures & classifying them
 - trinities in graph theory

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview

This talk will:

- Briefly introduce background ideas
 - sutured 3-manifolds
 - Heegaard Floer homology, sutured Floer homology
 - contact structures & classifying them
 - trinities in graph theory
- Introduce certain triples of sutured 3-manifolds associated to trinities

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview

This talk will:

- Briefly introduce background ideas
 - sutured 3-manifolds
 - Heegaard Floer homology, sutured Floer homology
 - contact structures & classifying them
 - trinities in graph theory
- Introduce certain triples of sutured 3-manifolds associated to trinities
- Discuss how they are in triality
 - isomorphic sutured Floer homology
 - bijections between contact structures
 - isomorphisms of related polytopes

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Outline

Background

- Sutured 3-manifolds
- Floer homology
- Contact structures
- Trinities

Invariants of sutured manifold trinities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Sutured 3-manifolds

A sutured 3-manifold (M, Γ) is a 3-manifold M with some decorations Γ on its boundary.

• Decorations consist of oriented curves (sutures) on ∂M .

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Sutured 3-manifolds

A sutured 3-manifold (M, Γ) is a 3-manifold M with some decorations Γ on its boundary.

- Decorations consist of oriented curves (sutures) on ∂M .
- Γ splits ∂M into "positive" and "negative" regions R_±, oriented in a coherent way.

•
$$\partial R_+ = -\partial R_- = \Gamma$$

• when you cross Γ , you go from R_+ to R_- .

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Sutured 3-manifolds

A sutured 3-manifold (M, Γ) is a 3-manifold M with some decorations Γ on its boundary.

- Decorations consist of oriented curves (sutures) on ∂M .
- Γ splits ∂M into "positive" and "negative" regions R_±, oriented in a coherent way.

•
$$\partial R_+ = -\partial R_- = \Gamma$$

• when you cross Γ , you go from R_+ to R_- .

A sutured 3-manifold is balanced if $\chi(R_+) = \chi(R_-)$. We're interested in some specific sutured 3-manifolds...

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Heegaard Floer homology

Heegaard Floer homology gives invariants of closed 3-manifolds.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Heegaard Floer homology

Heegaard Floer homology gives invariants of closed 3-manifolds.

Given a closed 3-manifold *M*, essentially:

- Heegaard Floer homology of *M* is Lagrangian intersection Floer homology of a manifold constructed from a Heegaard decomposition (Σ, α, β) of *M*.
 - Σ a closed surface of genus g
 - $\alpha = \{\alpha_1, \dots, \alpha_g\}, \beta = \{\beta_1, \dots, \beta_g\}$ Heegaard curves.

Much of this extends to the case of a sutured 3-manifold.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Heegaard Floer homology

More specifically:

• If Σ has genus g, take Sym^g Σ

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Heegaard Floer homology

- If Σ has genus g, take Sym^g Σ
- Lagrangian submanifolds given by $\mathbb{T}_{\alpha} = \alpha_1 \times \cdots \times \alpha_g$ and $\mathbb{T}_{\beta} = \beta_1 \times \cdots \times \beta_g$

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Heegaard Floer homology

- If Σ has genus g, take Sym^g Σ
- Lagrangian submanifolds given by $\mathbb{T}_{\alpha} = \alpha_1 \times \cdots \times \alpha_g$ and $\mathbb{T}_{\beta} = \beta_1 \times \cdots \times \beta_g$
- Form a chain complex generated by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Heegaard Floer homology

- If Σ has genus g, take Sym^g Σ
- Lagrangian submanifolds given by $\mathbb{T}_{\alpha} = \alpha_1 \times \cdots \times \alpha_g$ and $\mathbb{T}_{\beta} = \beta_1 \times \cdots \times \beta_g$
- Form a chain complex generated by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$
- For $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$, consider holomorphic curves "from" \mathbf{x} "to" \mathbf{y} in Sym^g Σ

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Heegaard Floer homology

- If Σ has genus g, take Sym^g Σ
- Lagrangian submanifolds given by $\mathbb{T}_{\alpha} = \alpha_1 \times \cdots \times \alpha_g$ and $\mathbb{T}_{\beta} = \beta_1 \times \cdots \times \beta_g$
- Form a chain complex generated by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$
- For $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$, consider holomorphic curves "from" \mathbf{x} "to" \mathbf{y} in Sym^g Σ
- Such curves which are suitably rigid give a boundary operator ∂ and ∂² = 0.

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Heegaard Floer homology

- If Σ has genus g, take Sym^g Σ
- Lagrangian submanifolds given by $\mathbb{T}_{\alpha} = \alpha_1 \times \cdots \times \alpha_g$ and $\mathbb{T}_{\beta} = \beta_1 \times \cdots \times \beta_g$
- Form a chain complex generated by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$
- For $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$, consider holomorphic curves "from" \mathbf{x} "to" \mathbf{y} in Sym^g Σ
- Such curves which are suitably rigid give a boundary operator ∂ and ∂² = 0.
- $\widehat{HF}(M)$ is the homology of this complex and is an invariant of *M* (independent of all other choices).

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Heegaard Floer homology

More specifically:

- If Σ has genus g, take Sym^g Σ
- Lagrangian submanifolds given by $\mathbb{T}_{\alpha} = \alpha_1 \times \cdots \times \alpha_g$ and $\mathbb{T}_{\beta} = \beta_1 \times \cdots \times \beta_g$
- Form a chain complex generated by intersection points $\mathbb{T}_{\alpha}\cap\mathbb{T}_{\beta}$
- For $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$, consider holomorphic curves "from" \mathbf{x} "to" \mathbf{y} in Sym^g Σ
- Such curves which are suitably rigid give a boundary operator ∂ and ∂² = 0.
- $\widehat{HF}(M)$ is the homology of this complex and is an invariant of *M* (independent of all other choices).

Powerful invariant, categorifies Alexander polynomial, computes genus of knots, etc...

Background

Trinities and sutured manifolds

nvariants of sutured manifold trinities

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sutured Floer homology

Idea of sutured Floer homology (Juhász): extend \widehat{HF} to sutured 3-manifolds.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Sutured Floer homology

Idea of sutured Floer homology (Juhász): extend \widehat{HF} to sutured 3-manifolds.

Sutured manifolds also have Heegaard decompositions (Σ, α, β) :

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Sutured Floer homology

Idea of sutured Floer homology (Juhász): extend \widehat{HF} to sutured 3-manifolds.

Sutured manifolds also have Heegaard decompositions (Σ, α, β) :

- Compact orientable surface Σ , genus g, with boundary
- Take $\Sigma \times [0, 1]$, glue discs to $\alpha \times \{0\}$, $\beta \times \{1\}$

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Sutured Floer homology

Idea of sutured Floer homology (Juhász): extend \widehat{HF} to sutured 3-manifolds.

Sutured manifolds also have Heegaard decompositions (Σ, α, β) :

- Compact orientable surface Σ , genus g, with boundary
- Take $\Sigma \times [0, 1]$, glue discs to $\alpha \times \{0\}$, $\beta \times \{1\}$
- Boundary then consists of
 - $\partial \Sigma \times [0,1] = \Gamma$
 - $\Sigma \times \{0\}$ (surgered along α) = R_{-}
 - $\Sigma \times \{1\}$ (surgered along β) = R_+

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

(日) (日) (日) (日) (日) (日) (日)

Sutured Floer homology

Idea of sutured Floer homology (Juhász): extend \widehat{HF} to sutured 3-manifolds.

Sutured manifolds also have Heegaard decompositions (Σ, α, β) :

- Compact orientable surface Σ , genus g, with boundary
- Take $\Sigma \times [0, 1]$, glue discs to $\alpha \times \{0\}$, $\beta \times \{1\}$
- Boundary then consists of
 - $\partial \Sigma \times [0,1] = \Gamma$
 - $\Sigma \times \{0\}$ (surgered along α) = R_{-}
 - $\Sigma \times \{1\}$ (surgered along β) = R_+

If manifold is balanced, then $\#\alpha = \#\beta$ and one can define $SFH(M, \Gamma)$ in a completely analogous way to \widehat{HF} .

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Sutured Floer homology

Idea of sutured Floer homology (Juhász): extend \widehat{HF} to sutured 3-manifolds.

Sutured manifolds also have Heegaard decompositions (Σ, α, β) :

- Compact orientable surface Σ , genus g, with boundary
- Take $\Sigma \times [0, 1]$, glue discs to $\alpha \times \{0\}$, $\beta \times \{1\}$
- Boundary then consists of
 - $\partial \Sigma \times [0,1] = \Gamma$
 - $\Sigma \times \{0\}$ (surgered along α) = R_{-}
 - $\Sigma \times \{1\}$ (surgered along β) = R_+

If manifold is balanced, then $\#\alpha = \#\beta$ and one can define $SFH(M, \Gamma)$ in a completely analogous way to \widehat{HF} . Generalises \widehat{HF} in several cases:

- closed manifold
- knot Floer homology
- knots with Seifert surfaces

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

ヘロト 人間 とくほとくほとう

3

Contact structures

A contact structure on a 3-manifold *M* is a non-integrable 2-plane field $\xi = \ker \alpha$.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact structures

A contact structure on a 3-manifold *M* is a non-integrable 2-plane field $\xi = \ker \alpha$.

Contact topology question: Given a 3-manifold M, how many (isotopy classes of) contact structures are there on M?

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact structures

A contact structure on a 3-manifold *M* is a non-integrable 2-plane field $\xi = \ker \alpha$.

Contact topology question: Given a 3-manifold M, how many (isotopy classes of) contact structures are there on M? Two types of contact structures: tight and overtwisted.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures

A contact structure on a 3-manifold *M* is a non-integrable 2-plane field $\xi = \ker \alpha$.

Contact topology question: Given a 3-manifold M, how many (isotopy classes of) contact structures are there on M? Two types of contact structures: tight and overtwisted.

An overtwisted contact structure is one containing an overtwisted disc:

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Contact 3-manifolds

Overtwisted contact structures are equivalent to homotopy classes of 2-plane fields (Eliashberg 1989).

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Contact 3-manifolds

Overtwisted contact structures are equivalent to homotopy classes of 2-plane fields (Eliashberg 1989).

• Question: How many isotopy classes of tight contact structures are there on *M*?

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact 3-manifolds

Overtwisted contact structures are equivalent to homotopy classes of 2-plane fields (Eliashberg 1989).

• Question: How many isotopy classes of tight contact structures are there on *M*?

For a closed oriented atoroidal 3-manifold *M*, there are finitely many isotopy classes of tight contact structures (Colin–Giroux–Honda 2002).

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact 3-manifolds

Overtwisted contact structures are equivalent to homotopy classes of 2-plane fields (Eliashberg 1989).

• Question: How many isotopy classes of tight contact structures are there on *M*?

For a closed oriented atoroidal 3-manifold *M*, there are finitely many isotopy classes of tight contact structures (Colin–Giroux–Honda 2002). For 3-manifolds with boundary:

- natural boundary conditions for contact structures are given by sutures.
- Roughly, sutures Γ on ∂M prescribe a contact structure up to isotopy near ∂M.
- This is via Giroux's theory of convex surfaces (1991).

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Convex surfaces and sutures

A generic surface *S* in a contact 3-manifold is convex: \exists a contact vector field *X* transverse to *S*.

Background ○○○○○●○○○○○○○

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Convex surfaces and sutures

A generic surface *S* in a contact 3-manifold is convex: \exists a contact vector field *X* transverse to *S*. The dividing set Γ and R_{\pm} are given by

$$\begin{split} \mathsf{\Gamma} &= \{ p \in S \ : \ X_p \in \xi_p \} = \{ p \in S \ : \ \alpha_p(X_p) = 0 \} \\ \mathsf{R}_{\pm} &= \{ p \in S \ : \ \alpha_p(X_p) \gtrless 0 \} \end{split}$$

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Convex surfaces and sutures

A generic surface *S* in a contact 3-manifold is convex: \exists a contact vector field *X* transverse to *S*. The dividing set Γ and R_{\pm} are given by

$$\begin{split} \mathsf{\Gamma} &= \{ \pmb{p} \in \pmb{S} \ : \ X_{\pmb{p}} \in \xi_{\pmb{p}} \} = \{ \pmb{p} \in \pmb{S} \ : \ \alpha_{\pmb{p}}(X_{\pmb{p}}) = \pmb{0} \} \\ \mathsf{R}_{\pm} &= \{ \pmb{p} \in \pmb{S} \ : \ \alpha_{\pmb{p}}(X_{\pmb{p}}) \gtrless \pmb{0} \} \end{split}$$

(Roughly: think of *S* as "horizontal", *X* as "vertical", Γ is "where ξ is vertical".)

Background

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Convex surfaces and sutures

A generic surface *S* in a contact 3-manifold is convex: \exists a contact vector field *X* transverse to *S*. The dividing set Γ and R_{\pm} are given by

$$\begin{split} \mathsf{\Gamma} &= \{ \pmb{p} \in \pmb{S} \ : \ X_{\pmb{p}} \in \xi_{\pmb{p}} \} = \{ \pmb{p} \in \pmb{S} \ : \ \alpha_{\pmb{p}}(X_{\pmb{p}}) = \pmb{0} \} \\ \mathsf{R}_{\pm} &= \{ \pmb{p} \in \pmb{S} \ : \ \alpha_{\pmb{p}}(X_{\pmb{p}}) \gtrless \pmb{0} \} \end{split}$$

(Roughly: think of *S* as "horizontal", *X* as "vertical", Γ is "where ξ is vertical".)

If $\partial S \neq \emptyset$, require ∂S to be Legendrian (tangent to ξ).

Background

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Convex surfaces and sutures

A generic surface *S* in a contact 3-manifold is convex: \exists a contact vector field *X* transverse to *S*. The dividing set Γ and R_{\pm} are given by

$$\begin{split} \mathsf{\Gamma} &= \{ \pmb{p} \in \pmb{S} \ : \ X_{\pmb{p}} \in \xi_{\pmb{p}} \} = \{ \pmb{p} \in \pmb{S} \ : \ \alpha_{\pmb{p}}(X_{\pmb{p}}) = \pmb{0} \} \\ \mathsf{R}_{\pm} &= \{ \pmb{p} \in \pmb{S} \ : \ \alpha_{\pmb{p}}(X_{\pmb{p}}) \gtrless \pmb{0} \} \end{split}$$

(Roughly: think of *S* as "horizontal", *X* as "vertical", Γ is "where ξ is vertical".)

If $\partial S \neq \emptyset$, require ∂S to be Legendrian (tangent to ξ).

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Contact corners

When two convex surfaces meet along a boundary, contact planes are arranged as shown.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Honda (2000): contact structures can be built up using a small contact 3-manifold called a *bypass* (=half an overtwisted disc).

"All topologically trivial contact topology is constructed from bypasses."

Background

Trinities and sutured manifolds

nvariants of sutured manifold trinities

Bypasses

Background

Trinities and sutured manifolds

nvariants of sutured manifold trinities

Bypasses

Background

Trinities and sutured manifolds

nvariants of sutured manifold trinities

Bypasses

Background

Trinities and sutured manifolds

nvariants of sutured manifold trinities

Bypasses

Background

Trinities and sutured manifolds

nvariants of sutured manifold trinities

Bypasses

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact invariants in Heegaard Floer homology

Heegaard Floer homology gives invariants of contact structures:

- ξ on closed $M \rightsquigarrow c(\xi) \in \widehat{HF}(-M)$.
- ξ on sutured $(M, \Gamma) \rightsquigarrow c(\xi) \in SFH(-M, -\Gamma)$.

(Ozsváth–Szazó, Honda–Kazez–Matić) Can be defined via open book decompositions...

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Trinities

 Consider a bipartite planar graph G, with vertex classes V (violet/blue), E (emerald/green).

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Trinities

- Consider a bipartite planar graph G, with vertex classes V (violet/blue), E (emerald/green).
- Add vertices *R* (red) in complementary regions.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Trinities

- Consider a bipartite planar graph G, with vertex classes V (violet/blue), E (emerald/green).
- Add vertices *R* (red) in complementary regions.
- Subdivision → triangulation of S² with all triangles containing one vertex of each colour.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Trinities

- Consider a bipartite planar graph *G*, with vertex classes *V* (violet/blue), *E* (emerald/green).
- Add vertices *R* (red) in complementary regions.
- Subdivision → triangulation of S² with all triangles containing one vertex of each colour.
- Colour edges by complementary colour to endpoints.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Trinities

- Consider a bipartite planar graph *G*, with vertex classes *V* (violet/blue), *E* (emerald/green).
- Add vertices *R* (red) in complementary regions.
- Subdivision → triangulation of S² with all triangles containing one vertex of each colour.
- Colour edges by complementary colour to endpoints.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Trinities

- Consider a bipartite planar graph G, with vertex classes V (violet/blue), E (emerald/green).
- Add vertices *R* (red) in complementary regions.
- Subdivision → triangulation of S² with all triangles containing one vertex of each colour.
- Colour edges by complementary colour to endpoints.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Trinities

- Consider a bipartite planar graph G, with vertex classes V (violet/blue), E (emerald/green).
- Add vertices *R* (red) in complementary regions.
- Subdivision → triangulation of S² with all triangles containing one vertex of each colour.
- Colour edges by complementary colour to endpoints.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Trinities

- Consider a bipartite planar graph G, with vertex classes V (violet/blue), E (emerald/green).
- Add vertices *R* (red) in complementary regions.
- Subdivision → triangulation of S² with all triangles containing one vertex of each colour.
- Colour edges by complementary colour to endpoints.
- Alternating colouring on triangles.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Trinities

- Consider a bipartite planar graph G, with vertex classes V (violet/blue), E (emerald/green).
- Add vertices *R* (red) in complementary regions.
- Subdivision → triangulation of S² with all triangles containing one vertex of each colour.
- Colour edges by complementary colour to endpoints.
- Alternating colouring on triangles.

(Alternately can start from triangulation and colour in.)

Introduction 00	Background ○○○○○○○○○○●○○○	Trinities and sutured manifolds	Invariants of sutured manifold trinities
Trinities			

Introduction	Background ○○○○○○○○○●○○○	Trinities and sutured manifolds	Invariants of sutured manifold trinities
Trinities			

Introduction	Background ○○○○○○○○○●○○○	Trinities and sutured manifolds	Invariants of sutured manifold trinities
Trinities			

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Introduction 00	Background ○○○○○○○○○●○○○	Trinities and sutured manifolds	Invariants of sutured manifold trinities
Trinities			

Introduction 00	Background ○○○○○○○○○○●○○○	Trinities and sutured manifolds	Invariants of sutured manifold trinities
Trinities			

Introduction	Background ○○○○○○○○○○○○○	Trinities and sutured manifolds	Invariants of sutured manifold trinities
Trinities			

These three planar graphs form a trinity and have many interesting properties.

Introduction	Background ○○○○○○○○○○○○○○○○	Trinities and sutured manifolds	Invariants of sutured manifold trinities
Trinities			

These three planar graphs form a trinity and have many interesting properties.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	Background ○○○○○○○○○○○○●○○	Trinities and sutured manifolds	Invariants of sutured manifold trinities
Trinities			

These three planar graphs form a trinity and have many interesting properties.

- Dual graphs are naturally oriented.
- Tutte's tree trinity theorem: G^{*}_V, G^{*}_E, G^{*}_R have same number ρ of spanning arborescences.
- Define this number as the arborescence number or magic number of the trinity.

(ロ) (同) (三) (三) (三) (○) (○)

Background

Trinities and sutured manifolds

nvariants of sutured manifold trinities

Hypertrees

• A hypergraph is a pair $\mathcal{H} = (V, E)$ where V is a set of vertices and E is a (multi-)set of hyperedges.

Introduction Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hypertrees

- A hypergraph is a pair $\mathcal{H} = (V, E)$ where V is a set of vertices and E is a (multi-)set of hyperedges.
- A hyperedge is a nonempty subset of V.

Introduction Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Hypertrees

- A hypergraph is a pair $\mathcal{H} = (V, E)$ where V is a set of vertices and E is a (multi-)set of hyperedges.
- A hyperedge is a nonempty subset of V.

Graph = hypergraph with each hyperedge containing 2 vertices.

Introduction Background Trinities and sur

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Hypertrees

- A hypergraph is a pair $\mathcal{H} = (V, E)$ where V is a set of vertices and E is a (multi-)set of hyperedges.
- A hyperedge is a nonempty subset of V.

Graph = hypergraph with each hyperedge containing 2 vertices.

• \mathcal{H} naturally determines a bipartite graph Bip \mathcal{H} with vertex classes V, E: join v to e iff $v \in e$. Introduction Background Trinities and sutured manifolds

Invariants of sutured manifold trinities

Hypertrees

- A hypergraph is a pair $\mathcal{H} = (V, E)$ where V is a set of vertices and E is a (multi-)set of hyperedges.
- A hyperedge is a nonempty subset of V.

Graph = hypergraph with each hyperedge containing 2 vertices.

- \mathcal{H} naturally determines a bipartite graph Bip \mathcal{H} with vertex classes V, E: join v to e iff $v \in e$.
- Conversely, any bipartite graph is a hypergraph in two dual ways (V, E), (E, V) — abstract dual.

Introduction Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Hypertrees

- A hypergraph is a pair $\mathcal{H} = (V, E)$ where V is a set of vertices and E is a (multi-)set of hyperedges.
- A hyperedge is a nonempty subset of V.

Graph = hypergraph with each hyperedge containing 2 vertices.

- \mathcal{H} naturally determines a bipartite graph Bip \mathcal{H} with vertex classes V, E: join v to e iff $v \in e$.
- Conversely, any bipartite graph is a hypergraph in two dual ways (V, E), (E, V) — abstract dual.

A hypertree in $\mathcal{H} = (V, E)$ is a function $f : E \to \mathbb{N}_0$ such that \exists a spanning tree in Bip \mathcal{H} with degree f(e) + 1 at each $e \in E$.

troduction	Background	Trinities and s
	000000000000000	

Invariants of sutured manifold tr

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Hypertrees

 The set of hypertrees of hypergraph (V, E) is a subset of Z^E.

Introduction	Background ○○○○○○○○○○○○○○	Trinities and sutured manifolds	Invariants of sutured manifold trinities
Hypertr	ees		

- The set of hypertrees of hypergraph (V, E) is a subset of \mathbb{Z}^{E} .
- In fact, the set of hypertrees of a hypergraph is a convex lattice polytope Q_(V,E) (Postnikov 2009, Kálmán 2013).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Introduction	Background ○○○○○○○○○○○○○○●	Trinities and sutured manifolds	Invariants of sutured manifold trinities
Hypertre	ees		

- The set of hypertrees of hypergraph (V, E) is a subset of \mathbb{Z}^E .
- In fact, the set of hypertrees of a hypergraph is a convex lattice polytope Q_(V,E) (Postnikov 2009, Kálmán 2013).

In a trinity (V, E, R), there are naturally six hypergraphs:

(V, E), (E, V), (E, R), (R, E), (R, V), (V, R).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

How many hypertrees do they have?
troduction	Background ○○○○○○○○○○○○○	Trinities and sutured manifolds	Invariants of sutured manifold trinities

- The set of hypertrees of hypergraph (V, E) is a subset of \mathbb{Z}^E .
- In fact, the set of hypertrees of a hypergraph is a convex lattice polytope Q_(V,E) (Postnikov 2009, Kálmán 2013).

In a trinity (V, E, R), there are naturally six hypergraphs:

(V, E), (E, V), (E, R), (R, E), (R, V), (V, R).

How many hypertrees do they have?

Hypertrees

Theorem (Postnikov 2009, Kálmán 2013)

The number of hypertrees in any of these hypergraphs is equal to the magic number of the trinity:

$$\rho = |Q_{(V,E)}| = |Q_{(E,V)}| = |Q_{(E,R)}| = |Q_{(R,E)}| = |Q_{(R,V)}| = |Q_{(V,R)}|$$

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

- Trinities and sutured manifolds
 - $\bullet~$ Bipartite planar graphs \rightarrow sutured manifolds
- 4 Invariants of sutured manifold trinities

Introduction

Trinities and sutured manifolds • 0 0 0 Invariants of sutured manifold trinities

(ロ) (同) (三) (三) (三) (○) (○)

From bipartite planar graphs to sutured manifolds

Given a planar graph *G*, there is a natural way to construct a surface F_G bounding an alternating link L_G : the median construction.

Introduction

Trinities and sutured manifolds •••• Invariants of sutured manifold trinities

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

From bipartite planar graphs to sutured manifolds

Given a planar graph *G*, there is a natural way to construct a surface F_G bounding an alternating link L_G : the median construction.

- Take a regular neighbourhood of G in the plane (ribbon).
- Insert a negative half twist over each edge of *G* to obtain F_G . Then $L_G = \partial F_G$.

Introduction

Trinities and sutured manifolds • 0 0 0 Invariants of sutured manifold trinities

From bipartite planar graphs to sutured manifolds

Given a planar graph *G*, there is a natural way to construct a surface F_G bounding an alternating link L_G : the median construction.

- Take a regular neighbourhood of G in the plane (ribbon).
- Insert a negative half twist over each edge of *G* to obtain F_G . Then $L_G = \partial F_G$.

Background

Trinities and sutured manifolds $0 \bullet 00$

Invariants of sutured manifold trinities

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

From bipartite planar graphs to sutured manifolds

When G is bipartite, F_G is oriented: a Seifert surface for L_G .

Background

Trinities and sutured manifolds $0 \bullet 00$

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

From bipartite planar graphs to sutured manifolds

When G is bipartite, F_G is oriented: a Seifert surface for L_G .

• In this case L_G is *special alternating* and F_G is a minimal genus Seifert surface (Murasugi 1958, Crowell 1959, Gabai 1986).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

From bipartite planar graphs to sutured manifolds

When *G* is bipartite, F_G is oriented: a Seifert surface for L_G .

- In this case L_G is special alternating and F_G is a minimal genus Seifert surface (Murasugi 1958, Crowell 1959, Gabai 1986).
- In fact, any minimal genus Seifert surface of a non-split prime special alternating link arises as such an F_G (Hirasawa–Sakuma 1996, Banks 2011).

Background

Trinities and sutured manifolds 0000

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Trinity of sutured manifolds

From a trinity of bipartite graphs, we obtain a trinity of alternating links with Seifert surfaces

and sutured 3-manifolds

$$(S^3 - F_{G_V}, L_{G_V}), (S^3 - F_{G_E}, L_{G_E}), (S^3 - F_{G_R}, L_{G_R}).$$

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Trinity of sutured manifolds

Question: For each of $(S^3 - F_{G_V}, L_{G_V})$, $(S^3 - F_{G_E}, L_{G_E})$, $(S^3 - F_{G_R}, L_{G_R})$:

- What is SFH?
- e How many (isotopy classes of) tight contact structures
- **(a)** What are contact invariants $c(\xi) \in SFH$?

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

2 Background

- Trinities and sutured manifolds
- Invariants of sutured manifold trinities
 - SFH
 - Contact structures on sutured manifold trinities
 - Contact invariants of sutured manifold trinities

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶▲□▶▲□▶▲□▶ □ のQ@

SFH of sutured manifold trinities

Answer to Q1 is known, thanks to a result of Juhász–Kálmán–Rasmussen (2012):

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

SFH of sutured manifold trinities

Answer to Q1 is known, thanks to a result of Juhász–Kálmán–Rasmussen (2012):

• Essentially, $SFH(S^3 - F_G, L_G)$ "is" the lattice polytope of hypertrees on the associated hypergraph.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

SFH of sutured manifold trinities

Answer to Q1 is known, thanks to a result of Juhász–Kálmán–Rasmussen (2012):

• Essentially, $SFH(S^3 - F_G, L_G)$ "is" the lattice polytope of hypertrees on the associated hypergraph.

To understand this properly, we need some further background on gradings on *SFH*.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

SFH of sutured manifold trinities

Answer to Q1 is known, thanks to a result of Juhász–Kálmán–Rasmussen (2012):

 Essentially, SFH(S³ – F_G, L_G) "is" the lattice polytope of hypertrees on the associated hypergraph.

To understand this properly, we need some further background on gradings on *SFH*.

- homological grading
- spin-c grading

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Spin-c structures and SFH

• Recall a spin-c structure on a closed 3-manifold *M* is a homology class of nonvanishing vector field.

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Spin-c structures and SFH

- Recall a spin-c structure on a closed 3-manifold *M* is a homology class of nonvanishing vector field.
- Two vector fields are homologous if they are homotopic in the complement of a 3-ball in *M*.

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Spin-c structures and SFH

- Recall a spin-c structure on a closed 3-manifold *M* is a homology class of nonvanishing vector field.
- Two vector fields are homologous if they are homotopic in the complement of a 3-ball in *M*.

A spin-c structure on a sutured 3-manifold (M, Γ) ?

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Spin-c structures and SFH

- Recall a spin-c structure on a closed 3-manifold *M* is a homology class of nonvanishing vector field.
- Two vector fields are homologous if they are homotopic in the complement of a 3-ball in *M*.
- A spin-c structure on a sutured 3-manifold (M, Γ) ?
 - a homology class of nonvanishing vector field *v* which has a specified form along ∂*M*:

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Spin-c structures and SFH

- Recall a spin-c structure on a closed 3-manifold *M* is a homology class of nonvanishing vector field.
- Two vector fields are homologous if they are homotopic in the complement of a 3-ball in *M*.
- A spin-c structure on a sutured 3-manifold (M, Γ) ?
 - a homology class of nonvanishing vector field v which has a specified form along ∂M:
 - v must point into M along R_- , out of M along R_+
 - and tangent to ∂M along Γ , pointing from R_{-} to R_{+} .

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Spin-c structures and SFH

- Recall a spin-c structure on a closed 3-manifold *M* is a homology class of nonvanishing vector field.
- Two vector fields are homologous if they are homotopic in the complement of a 3-ball in *M*.
- A spin-c structure on a sutured 3-manifold (M, Γ) ?
 - a homology class of nonvanishing vector field v which has a specified form along ∂M:
 - v must point into M along R_- , out of M along R_+
 - and tangent to ∂M along Γ , pointing from R_- to R_+ .

In both cases, the space of spin-c structures is affine over $H_1(M)$:

 $\operatorname{Spin}^{c}(M,\Gamma) \cong H_{1}(M;\mathbb{Z}).$

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Spin-c structures and SFH

- Recall a spin-c structure on a closed 3-manifold *M* is a homology class of nonvanishing vector field.
- Two vector fields are homologous if they are homotopic in the complement of a 3-ball in *M*.
- A spin-c structure on a sutured 3-manifold (M, Γ) ?
 - a homology class of nonvanishing vector field v which has a specified form along ∂M:
 - v must point into M along R_- , out of M along R_+
 - and tangent to ∂M along Γ , pointing from R_- to R_+ .

In both cases, the space of spin-c structures is affine over $H_1(M)$:

$$\operatorname{Spin}^{c}(M,\Gamma)\cong H_{1}(M;\mathbb{Z}).$$

SFH decomposes over spin-c structures:

$$SFH(M,\Gamma) \cong \bigoplus_{\mathfrak{s}\in \operatorname{Spin}^{c}(M,\Gamma)} SFH(M,\Gamma,\mathfrak{s}).$$

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Spin-c decomposition of SFH of a trinity

Each $(S^3 - F_G, L_G)$ is an example of a sutured *L*-space (Friedl–Juhász–Rasmussen 2011).

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Spin-c decomposition of SFH of a trinity

Each $(S^3 - F_G, L_G)$ is an example of a sutured *L*-space (Friedl–Juhász–Rasmussen 2011).

A sutured *L*-space is a balanced sutured 3-manifold (*M*, Γ) such that SFH(*M*, Γ) is torsion free and supported in a single Z/2 homological grading.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Spin-c decomposition of SFH of a trinity

Each $(S^3 - F_G, L_G)$ is an example of a sutured *L*-space (Friedl–Juhász–Rasmussen 2011).

- A sutured *L*-space is a balanced sutured 3-manifold (*M*, Γ) such that SFH(*M*, Γ) is torsion free and supported in a single Z/2 homological grading.
- Friedl–Juhász–Rasmussen proved that if (M, Γ) is a sutured L-space and s is a spin-c structure, then SFH(M, Γ, s) is either trivial or Z.

Trinities and sutured manifolds

Invariants of sutured manifold trinities

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Spin-c decomposition of SFH of a trinity

Each $(S^3 - F_G, L_G)$ is an example of a sutured *L*-space (Friedl–Juhász–Rasmussen 2011).

- A sutured *L*-space is a balanced sutured 3-manifold (*M*, Γ) such that SFH(*M*, Γ) is torsion free and supported in a single Z/2 homological grading.
- Friedl–Juhász–Rasmussen proved that if (M, Γ) is a sutured L-space and s is a spin-c structure, then SFH(M, Γ, s) is either trivial or Z.

Thus to know *SFH* of a sutured *L*-space it is sufficient to know the support

 $S(M,\Gamma) = \{ \mathfrak{s} \in \operatorname{Spin}^{c}(M,\Gamma) : SFH(M,\Gamma,\mathfrak{s}) \neq 0 \}.$

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Spin-c decomposition of SFH of a trinity

Taking $G = G_R$ planar bipartite with vertex classes (V, E),

$$S^3 - F_{G_R} \cong S^3 - G$$
, handlebody of genus $|R| - 1$.

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Spin-c decomposition of SFH of a trinity

Taking $G = G_R$ planar bipartite with vertex classes (V, E),

 $S^3 - F_{G_R} \cong S^3 - G$, handlebody of genus |R| - 1.

$${
m Spin}^c(S^3-F_{G_R},L_{G_R})\ \cong H_1(S^3-G_R)\cong \mathbb{Z}^{|R|-1}$$

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Spin-c decomposition of SFH of a trinity

Taking $G = G_R$ planar bipartite with vertex classes (V, E),

 $S^3 - F_{G_R} \cong S^3 - G$, handlebody of genus |R| - 1.

$$\begin{aligned} & \operatorname{Spin}^{c}(S^{3} - F_{G_{R}}, L_{G_{R}}) \\ & \cong H_{1}(S^{3} - G_{R}) \cong \mathbb{Z}^{|R|-1}. \end{aligned}$$

$$& \operatorname{So} SFH(S^{3} - F_{G_{R}}, L_{G_{R}}) \text{ has s}$$

So $SFH(S^3 - F_{G_R}, L_{G_R})$ has support in $\mathbb{Z}^{|R|-1}$.

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Spin-c decomposition of SFH of a trinity

Taking $G = G_R$ planar bipartite with vertex classes (V, E),

 $S^3 - F_{G_R} \cong S^3 - G$, handlebody of genus |R| - 1.

$$\begin{array}{l} \text{Spin}^{c}(S^{3}-F_{G_{R}},L_{G_{R}})\\ \cong H_{1}(S^{3}-G_{R})\cong \mathbb{Z}^{|R|-1}.\\ \text{So }SFH(S^{3}-F_{G_{R}},L_{G_{R}}) \text{ has support in } \mathbb{Z}^{|R|-1}. \end{array}$$

On the other hand, consider hypergraph (E, R):

- Vertices = E
- Hyperedges = R.

Hypertrees form a polytope in \mathbb{Z}^{R} .

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Spin-c decomposition of SFH of a trinity

Taking $G = G_R$ planar bipartite with vertex classes (V, E),

 $S^3 - F_{G_R} \cong S^3 - G$, handlebody of genus |R| - 1.

$$\begin{split} & \text{Spin}^{c}(S^{3}-F_{G_{R}},L_{G_{R}}) \\ & \cong H_{1}(S^{3}-G_{R}) \cong \mathbb{Z}^{|R|-1}. \\ & \text{So } SFH(S^{3}-F_{G_{R}},L_{G_{R}}) \text{ has support in } \mathbb{Z}^{|R|-1}. \end{split}$$

On the other hand, consider hypergraph (E, R):

- Vertices = E
- Hyperedges = R.

Hypertrees form a polytope in \mathbb{Z}^{R} .

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

SFH of a trinity

So SFH support $S(S^3 - F_{G_R}, L_{G_R}) \subset \mathbb{Z}^{|R|-1}$, and hypertree polytope $Q_{(E,R)} \subset \mathbb{Z}^R$.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

SFH of a trinity

So SFH support $S(S^3 - F_{G_R}, L_{G_R}) \subset \mathbb{Z}^{|R|-1}$, and hypertree polytope $Q_{(E,R)} \subset \mathbb{Z}^R$.

Theorem (Juhász–Kálmán–Rasmussen)

There is an natural embedding $\text{Spin}^{c}(M, \Gamma) = \mathbb{Z}^{|R|-1} \subset \mathbb{Z}^{|R|}$ so that

$$S(S^3 - F_{G_R}, L_{G_R}) \cong Q_{(E,R)}$$

I.e. support of SFH "is" hypertree polytope.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

SFH of a trinity

So SFH support $S(S^3 - F_{G_R}, L_{G_R}) \subset \mathbb{Z}^{|R|-1}$, and hypertree polytope $Q_{(E,R)} \subset \mathbb{Z}^R$.

Theorem (Juhász–Kálmán–Rasmussen)

There is an natural embedding $\text{Spin}^{c}(M, \Gamma) = \mathbb{Z}^{|R|-1} \subset \mathbb{Z}^{|R|}$ so that

$$S(S^3 - F_{G_R}, L_{G_R}) \cong Q_{(E,R)}$$

I.e. support of *SFH* "is" hypertree polytope. (Indeed, all hypertrees must lie in an (|R| - 1)-dimensional plane in $\mathbb{Z}^{|R|}$ by degree considerations.)

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

SFH of a trinity

So SFH support $S(S^3 - F_{G_R}, L_{G_R}) \subset \mathbb{Z}^{|R|-1}$, and hypertree polytope $Q_{(E,R)} \subset \mathbb{Z}^R$.

Theorem (Juhász–Kálmán–Rasmussen)

There is an natural embedding $\text{Spin}^{c}(M, \Gamma) = \mathbb{Z}^{|R|-1} \subset \mathbb{Z}^{|R|}$ so that

$$S(S^3 - F_{G_R}, L_{G_R}) \cong Q_{(E,R)}$$

I.e. support of *SFH* "is" hypertree polytope. (Indeed, all hypertrees must lie in an (|R| - 1)-dimensional plane in $\mathbb{Z}^{|R|}$ by degree considerations.) What is the dimension of *SFH*?

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

SFH of a trinity

So SFH support $S(S^3 - F_{G_R}, L_{G_R}) \subset \mathbb{Z}^{|R|-1}$, and hypertree polytope $Q_{(E,R)} \subset \mathbb{Z}^R$.

Theorem (Juhász–Kálmán–Rasmussen)

There is an natural embedding $\text{Spin}^{c}(M, \Gamma) = \mathbb{Z}^{|R|-1} \subset \mathbb{Z}^{|R|}$ so that

$$S(S^3 - F_{G_R}, L_{G_R}) \cong Q_{(E,R)}$$

I.e. support of *SFH* "is" hypertree polytope. (Indeed, all hypertrees must lie in an (|R| - 1)-dimensional plane in $\mathbb{Z}^{|R|}$ by degree considerations.) What is the dimension of *SFH*?

dim
$$SFH(S^3 - F_{G_R}, L_{G_R}) = |Q_{(E,R)}| = \rho$$
 magic number.
Trinities and sutured manifolds

Invariants of sutured manifold trinities

SFH of a trinity

So SFH support $S(S^3 - F_{G_R}, L_{G_R}) \subset \mathbb{Z}^{|R|-1}$, and hypertree polytope $Q_{(E,R)} \subset \mathbb{Z}^R$.

Theorem (Juhász–Kálmán–Rasmussen)

There is an natural embedding $\text{Spin}^{c}(M, \Gamma) = \mathbb{Z}^{|R|-1} \subset \mathbb{Z}^{|R|}$ so that

$$S(S^3 - F_{G_R}, L_{G_R}) \cong Q_{(E,R)}$$

I.e. support of *SFH* "is" hypertree polytope. (Indeed, all hypertrees must lie in an (|R| - 1)-dimensional plane in $\mathbb{Z}^{|R|}$ by degree considerations.) What is the dimension of *SFH*?

dim
$$SFH(S^3 - F_{G_R}, L_{G_R}) = |Q_{(E,R)}| = \rho$$
 magic number.
Similarly, $S(S^3 - F_{G_R}, L_{G_R}) \cong -Q_{(V,R)}$.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

SFH of a trinity

It follows that

$$SFH(S^3 - F_{G_V}, L_{G_V}), \quad SFH(S^3 - F_{G_E}, L_{G_E}), \quad SFH(S^3 - F_{G_R}, L_{G_R})$$

all have dimension given by magic number, corresponding to

$$|Q_{(V,E)}| = |Q_{(E,V)}| = |Q_{(E,R)}| = |Q_{(R,E)}| = |Q_{(R,V)}| = |Q_{(V,R)}| = \rho.$$

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Duality of polytopes

Postnikov related dual polytopes $Q_{(V,E)} \subset \mathbb{Z}^{E}$, $Q_{(E,V)} \subset \mathbb{Z}^{V}$.

$$Q_{(V,E)} = \left(\sum_{v \in V} \Delta_v\right) - \Delta_E = Q^+_{(V,E)} - \Delta_E,$$

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Duality of polytopes

Postnikov related dual polytopes $Q_{(V,E)} \subset \mathbb{Z}^{E}$, $Q_{(E,V)} \subset \mathbb{Z}^{V}$.

$$Q_{(V,E)} = \left(\sum_{v \in V} \Delta_v\right) - \Delta_E = Q^+_{(V,E)} - \Delta_E,$$

where $\Delta_v = \text{Conv}\{e : v \in e\}, \Delta_E = \text{Conv}\{e : e \in E\}$, and subtraction is Minkowski difference.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Duality of polytopes

Postnikov related dual polytopes $Q_{(V,E)} \subset \mathbb{Z}^{E}$, $Q_{(E,V)} \subset \mathbb{Z}^{V}$.

$$Q_{(V,E)} = \left(\sum_{v \in V} \Delta_v\right) - \Delta_E = Q^+_{(V,E)} - \Delta_E,$$

where $\Delta_{v} = \text{Conv}\{e : v \in e\}, \Delta_{E} = \text{Conv}\{e : e \in E\}$, and subtraction is Minkowski difference. The "untrimmed polytopes" $Q^{+}_{(V,E)}, Q^{+}_{(E,V)}$ are related via a higher-dimensional root polytope in $\mathbb{R}^{V} \oplus \mathbb{R}^{E}$

$$Q = \operatorname{Conv} \{ e + v : v \in e \} \subset \mathbb{R}^{V} \oplus \mathbb{R}^{E}.$$

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

(日) (日) (日) (日) (日) (日) (日)

Duality of polytopes

Postnikov related dual polytopes $Q_{(V,E)} \subset \mathbb{Z}^{E}$, $Q_{(E,V)} \subset \mathbb{Z}^{V}$.

$$Q_{(V,E)} = \left(\sum_{v \in V} \Delta_v\right) - \Delta_E = Q^+_{(V,E)} - \Delta_E,$$

where $\Delta_{v} = \text{Conv}\{e : v \in e\}, \Delta_{E} = \text{Conv}\{e : e \in E\}$, and subtraction is Minkowski difference. The "untrimmed polytopes" $Q^{+}_{(V,E)}, Q^{+}_{(E,V)}$ are related via a higher-dimensional root polytope in $\mathbb{R}^{V} \oplus \mathbb{R}^{E}$

$$Q = \operatorname{Conv} \{ e + v : v \in e \} \subset \mathbb{R}^{V} \oplus \mathbb{R}^{E}.$$

Essentially they are projections of Q, e.g.: $\pi_V : \mathbb{R}^V \oplus \mathbb{R}^E \to \mathbb{R}^V$

$$Q^+_{(V,E)} \cong |V| \left(Q \cap \pi_V^{-1} \left(\frac{1}{|V|} \sum_{v \in V} v \right) \right)$$

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Duality of polytopes

$$\begin{aligned} \mathcal{Q}_{(V,E)} &= \left(\sum_{v \in V} \Delta_v\right) - \Delta_E = \mathcal{Q}^+_{(V,E)} - \Delta_E, \\ \mathcal{Q} &= \operatorname{Conv} \left\{ \boldsymbol{e} + \boldsymbol{v} \ : \ \boldsymbol{v} \in \boldsymbol{e} \right\} \subset \mathbb{R}^V \oplus \mathbb{R}^E. \\ \mathcal{Q}^+_{(V,E)} &\cong |V| \ \left(\mathcal{Q} \cap \pi_V^{-1} \left(\frac{1}{|V|} \sum_{v \in V} \boldsymbol{v} \right) \right) \end{aligned}$$

Question

Does this root polytope have a symplectic or Floer-theoretic interpretation?

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

SFH of a trinity

Theorem (Juhász–Kálmán–Rasmussen)

$$S(S^3 - F_{G_R}, L_{G_R}) \cong Q_{(E,R)}$$

Ideas of proof:

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

SFH of a trinity

Theorem (Juhász–Kálmán–Rasmussen)

$$S(S^3 - F_{G_R}, L_{G_R}) \cong Q_{(E,R)}$$

Ideas of proof:

- Friedl–Juhász–Ramsussen (2011) proved that the Euler characteristic χ(SFH(M, Γ, s)) is given by the Turaev torsion of the pair (M, R_).
- This torsion can be calculated by using Fox calculus and the map $\pi_1(R_-) \rightarrow \pi_1(M)$.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

SFH of a trinity

Theorem (Juhász-Kálmán-Rasmussen)

$$S(S^3 - F_{G_R}, L_{G_R}) \cong Q_{(E,R)}$$

Ideas of proof:

- Friedl–Juhász–Ramsussen (2011) proved that the Euler characteristic χ(SFH(M, Γ, s)) is given by the Turaev torsion of the pair (M, R_).
- This torsion can be calculated by using Fox calculus and the map $\pi_1(R_-) \rightarrow \pi_1(M)$.
- The Fox calculus yielding Turaev torsion of (S³ F_{G_R}, L_{G_R}) is equal to the determinant of a certain adjacency matrix for the trinity.
- Terms in this determinant are monomials corresponding to lattice points in the polytope Q_(E,R).

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Contact structures on trinities

Q2: How many isotopy classes of tihgt contact structures on sutured manifolds of a trinity?

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Contact structures on trinities

Q2: How many isotopy classes of tihgt contact structures on sutured manifolds of a trinity?

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_{G_R}, L_{G_R})$ is given by

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Contact structures on trinities

Q2: How many isotopy classes of tihgt contact structures on sutured manifolds of a trinity?

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_{G_R}, L_{G_R})$ is given by ρ , the magic number of the trinity.

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Contact structures on trinities

Q2: How many isotopy classes of tihgt contact structures on sutured manifolds of a trinity?

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_{G_R}, L_{G_R})$ is given by ρ , the magic number of the trinity. Moreover, there is precisely one isotopy class of tight contact structure in each Spin^c class in the support $S(S^3 - F_G, L_G)$ of SFH.

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Q2: How many isotopy classes of tihgt contact structures on sutured manifolds of a trinity?

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_{G_R}, L_{G_R})$ is given by ρ , the magic number of the trinity. Moreover, there is precisely one isotopy class of tight contact structure in each Spin^{*c*} class in the support $S(S^3 - F_G, L_G)$ of SFH.

Proof gives explicit bijections

{contact structures} \cong {hypertrees on (*E*, *R*)} \cong {Spin^{*c*} structures},

and is constructive.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

(ロ) (同) (三) (三) (三) (○) (○)

Contact structures on trinities

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_G, L_G)$ is given by ρ , the magic number of the trinity.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Contact structures on trinities

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_G, L_G)$ is given by ρ , the magic number of the trinity.

Proof ideas:

• $S^3 - F_G$ can be cut into two 3-balls by |R| convex discs D_i in the complementary regions of *G*

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

(日) (日) (日) (日) (日) (日) (日)

Contact structures on trinities

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_G, L_G)$ is given by ρ , the magic number of the trinity.

- $S^3 F_G$ can be cut into two 3-balls by |R| convex discs D_i in the complementary regions of G
- **2** A choice of dividing set Γ_i on each D_i determines at most one tight contact structure on $(S^3 F_G, L_G)$.

Trinities and sutured manifolds

Invariants of sutured manifold trinities

(日) (日) (日) (日) (日) (日) (日)

Contact structures on trinities

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_G, L_G)$ is given by ρ , the magic number of the trinity.

- $S^3 F_G$ can be cut into two 3-balls by |R| convex discs D_i in the complementary regions of G
- **2** A choice of dividing set Γ_i on each D_i determines at most one tight contact structure on $(S^3 F_G, L_G)$.
- A spanning tree *T* representing a hypertree yields a dividing set on each *D_i* by taking the boundary of a ribbon.

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_G, L_G)$ is given by ρ , the magic number of the trinity.

- $S^3 F_G$ can be cut into two 3-balls by |R| convex discs D_i in the complementary regions of G
- **2** A choice of dividing set Γ_i on each D_i determines at most one tight contact structure on $(S^3 F_G, L_G)$.
- A spanning tree *T* representing a hypertree yields a dividing set on each *D_i* by taking the boundary of a ribbon.
- Analyse bypasses in between the two 3-balls, use Honda's gluing theorem to prove contact structures are tight.

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_G, L_G)$ is given by ρ , the magic number of the trinity.

- $S^3 F_G$ can be cut into two 3-balls by |R| convex discs D_i in the complementary regions of G
- **2** A choice of dividing set Γ_i on each D_i determines at most one tight contact structure on $(S^3 F_G, L_G)$.
- A spanning tree T representing a hypertree yields a dividing set on each D_i by taking the boundary of a ribbon.
- Analyse bypasses in between the two 3-balls, use Honda's gluing theorem to prove contact structures are tight.
- Use Kálmán's work: there are ρ hypertrees; two spanning trees representing same hypertree produce contact structures related by bypasses.

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Consider complements of tubular neighbourhood of G:

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Consider complements of tubular neighbourhood of G:

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Consider complements of tubular neighbourhood of G:

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Now just take one side of the plane:

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Now just take one side of the plane:

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Now just take one side of the plane:

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

A spanning tree in (E, R)

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

A spanning tree in (E, R) yields a dividing set

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

A spanning tree in (E, R) yields a dividing set

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Introduction Bac

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact structures on trinities

Introduction

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact invariants of sutured manifold trinities

Q3: What about contact invariants of these contact structures?

|▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへで

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Contact invariants of sutured manifold trinities

Q3: What about contact invariants of these contact structures? From Q2, there is one (isotopy class of) tight contact structure $\xi_{\mathfrak{s}}$ for each spin-c structure \mathfrak{s} , so

$$c(\xi_{\mathfrak{s}})\in SFH(S^3-F_G,L_G,\mathfrak{s})\cong\mathbb{Z}.$$

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contact invariants of sutured manifold trinities

Q3: What about contact invariants of these contact structures? From Q2, there is one (isotopy class of) tight contact structure ξ_{s} for each spin-c structure s, so

$${\boldsymbol{c}}(\xi_{\mathfrak{s}})\in {\boldsymbol{SFH}}({\boldsymbol{S}}^3-{\boldsymbol{F}}_{{\boldsymbol{G}}},{\boldsymbol{L}}_{{\boldsymbol{G}}},\mathfrak{s})\cong \mathbb{Z}.$$

Theorem (Kálmán–M.)

 $c(\xi_{\mathfrak{s}})$ generates $SFH(S^3 - F_G, L_G, \mathfrak{s})$.

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact invariants of sutured manifold trinities

Q3: What about contact invariants of these contact structures? From Q2, there is one (isotopy class of) tight contact structure ξ_{s} for each spin-c structure s, so

$${\boldsymbol{c}}(\xi_{\mathfrak{s}})\in {\boldsymbol{SFH}}({\boldsymbol{S}}^3-{\boldsymbol{F}}_{{\boldsymbol{G}}},{\boldsymbol{L}}_{{\boldsymbol{G}}},\mathfrak{s})\cong \mathbb{Z}.$$

Theorem (Kálmán–M.)

```
c(\xi_{\mathfrak{s}}) generates SFH(S^3 - F_G, L_G, \mathfrak{s}).
```

Proof uses Honda-Kazez-Matić TQFT map on SFH:

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact invariants of sutured manifold trinities

Q3: What about contact invariants of these contact structures? From Q2, there is one (isotopy class of) tight contact structure ξ_{s} for each spin-c structure s, so

$${\boldsymbol{c}}(\xi_{\mathfrak{s}})\in {\boldsymbol{SFH}}({\boldsymbol{S}}^3-{\boldsymbol{F}}_{{\boldsymbol{G}}},{\boldsymbol{L}}_{{\boldsymbol{G}}},\mathfrak{s})\cong \mathbb{Z}.$$

Theorem (Kálmán–M.)

$$c(\xi_{\mathfrak{s}})$$
 generates SFH($S^3 - F_G, L_G, \mathfrak{s}$).

Proof uses Honda–Kazez–Matić TQFT map on SFH:

 Each contact structure ξ_s on (S³ − F_G, L_G) includes into the standard tight contact structure on S³.

Introduction

Trinities and sutured manifolds

Invariants of sutured manifold trinities

Contact invariants of sutured manifold trinities

Q3: What about contact invariants of these contact structures? From Q2, there is one (isotopy class of) tight contact structure ξ_{s} for each spin-c structure s, so

$${\boldsymbol{c}}(\xi_{\mathfrak{s}})\in {\boldsymbol{SFH}}({\boldsymbol{S}}^3-{\boldsymbol{F}}_{{\boldsymbol{G}}},{\boldsymbol{L}}_{{\boldsymbol{G}}},\mathfrak{s})\cong \mathbb{Z}.$$

Theorem (Kálmán–M.)

$$c(\xi_{\mathfrak{s}})$$
 generates $SFH(S^3 - F_G, L_G, \mathfrak{s})$.

Proof uses Honda–Kazez–Matić TQFT map on SFH:

- Each contact structure ξ_s on (S³ − F_G, L_G) includes into the standard tight contact structure on S³.
- Each ξ₅ is the complement of a neighbourhood of a Legendrian graph in S³.

Introduction

Background

Trinities and sutured manifolds

Invariants of sutured manifold trinities

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Thanks for listening!