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Overview

This talk is about
trinities — a type of triality arising in graph theory
sutured Floer homology — an extension of Heegaard Floer
homology to 3-manifolds with (sutured) boundary
contact structures on 3-manifolds.

In progress / joint with T. Kálmán.
Building on work of Friedl, Juhasz, Kálmán, Rasmussen,
Etnyre, Honda, Kazez, Ozsváth, Szabó, Witten, Floer ...
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Overview

This talk will:
Briefly introduce background ideas

sutured 3-manifolds
Heegaard Floer homology, sutured Floer homology
contact structures & classifying them
trinities in graph theory

Introduce certain triples of sutured 3-manifolds associated
to trinities
Discuss how they are in triality

isomorphic sutured Floer homology
bijections between contact structures
isomorphisms of related polytopes
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Sutured 3-manifolds

A sutured 3-manifold (M, Γ) is a 3-manifold M with some
decorations Γ on its boundary.

Decorations consist of oriented curves (sutures) on ∂M.

Γ splits ∂M into “positive" and “negative" regions R±,
oriented in a coherent way.
∂R+ = −∂R− = Γ

when you cross Γ, you go from R+ to R−.
A sutured 3-manifold is balanced if χ(R+) = χ(R−).
We’re interested in some specific sutured 3-manifolds...
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Heegaard Floer homology

Heegaard Floer homology gives invariants of closed
3-manifolds.

Given a closed 3-manifold M, essentially:
Heegaard Floer homology of M is Lagrangian intersection
Floer homology of a manifold constructed from a Heegaard
decomposition (Σ, α, β) of M.

Σ a closed surface of genus g
α = {α1, . . . , αg}, β = {β1, . . . , βg} Heegaard curves.

Much of this extends to the case of a sutured 3-manifold.
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Heegaard Floer homology

More specifically:
If Σ has genus g, take Symg Σ

Lagrangian submanifolds given by Tα = α1 × · · · × αg and
Tβ = β1 × · · · × βg

Form a chain complex generated by intersection points
Tα ∩ Tβ
For x,y ∈ Tα ∩ Tβ, consider holomorphic curves “from" x
“to" y in Symg Σ

Such curves which are suitably rigid give a boundary
operator ∂ and ∂2 = 0.

ĤF (M) is the homology of this complex and is an invariant
of M (independent of all other choices).

Powerful invariant, categorifies Alexander polynomial,
computes genus of knots, etc...
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Sutured Floer homology

Idea of sutured Floer homology (Juhász): extend ĤF to sutured
3-manifolds.

Sutured manifolds also have Heegaard decompositions
(Σ, α, β):

Compact orientable surface Σ, genus g, with boundary
Take Σ× [0,1], glue discs to α× {0}, β × {1}
Boundary then consists of

∂Σ× [0,1] = Γ
Σ× {0} (surgered along α) = R−
Σ× {1} (surgered along β) = R+

If manifold is balanced, then #α = #β and one can define
SFH(M, Γ) in a completely analogous way to ĤF .
Generalises ĤF in several cases:

closed manifold
knot Floer homology
knots with Seifert surfaces
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Contact structures

A contact structure on a 3-manifold M is a non-integrable
2-plane field ξ = kerα.

Contact topology question: Given a 3-manifold M, how many
(isotopy classes of) contact structures are there on M?
Two types of contact structures: tight and overtwisted.

An overtwisted contact
structure is one containing an
overtwisted disc:
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Contact 3-manifolds

Overtwisted contact structures are equivalent to homotopy
classes of 2-plane fields (Eliashberg 1989).

Question: How many isotopy classes of tight contact
structures are there on M?

For a closed oriented atoroidal 3-manifold M, there are finitely
many isotopy classes of tight contact structures
(Colin–Giroux–Honda 2002).
For 3-manifolds with boundary:

natural boundary conditions for contact structures are
given by sutures.
Roughly, sutures Γ on ∂M prescribe a contact structure up
to isotopy near ∂M.
This is via Giroux’s theory of convex surfaces (1991).
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Convex surfaces and sutures

A generic surface S in a contact 3-manifold is convex: ∃ a
contact vector field X transverse to S.

The dividing set Γ and R± are given by

Γ = {p ∈ S : Xp ∈ ξp} = {p ∈ S : αp(Xp) = 0}
R± = {p ∈ S : αp(Xp) ≷ 0}

(Roughly: think of S as “horizontal", X as “vertical", Γ is “where
ξ is vertical".)
If ∂S 6= ∅, require ∂S to be Legendrian (tangent to ξ).
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Contact corners

When two convex surfaces meet along a boundary, contact
planes are arranged as shown.
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Bypasses

Honda (2000): contact structures can be built up using a small
contact 3-manifold called a bypass (=half an overtwisted disc).

“All topologically trivial contact topology is constructed from
bypasses.”



Introduction Background Trinities and sutured manifolds Invariants of sutured manifold trinities

Bypasses



Introduction Background Trinities and sutured manifolds Invariants of sutured manifold trinities

Bypasses



Introduction Background Trinities and sutured manifolds Invariants of sutured manifold trinities

Bypasses



Introduction Background Trinities and sutured manifolds Invariants of sutured manifold trinities

Bypasses



Introduction Background Trinities and sutured manifolds Invariants of sutured manifold trinities

Bypasses



Introduction Background Trinities and sutured manifolds Invariants of sutured manifold trinities

Contact invariants in Heegaard Floer homology

Heegaard Floer homology gives invariants of contact
structures:

ξ on closed M  c(ξ) ∈ ĤF (−M).
ξ on sutured (M, Γ) c(ξ) ∈ SFH(−M,−Γ).

(Ozsváth–Szazó, Honda–Kazez–Matić)
Can be defined via open book decompositions...
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Trinities

Consider a bipartite planar
graph G, with vertex classes
V (violet/blue), E
(emerald/green).

Add vertices R (red) in
complementary regions.
Subdivision→ triangulation of
S2 with all triangles containing
one vertex of each colour.
Colour edges by
complementary colour to
endpoints.
Alternating colouring on
triangles.

(Alternately can start from
triangulation and colour in.)
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Trinities

Taking edges of each colour, obtain three distinct bipartite
planar graphs.
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Trinities

These three planar graphs form a trinity and have many
interesting properties.

GV
GE GR

Dual graphs are naturally oriented.
Tutte’s tree trinity theorem: G∗V ,G

∗
E ,G

∗
R have same number

ρ of spanning arborescences.
Define this number as the arborescence number or magic
number of the trinity.
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Hypertrees

A hypergraph is a pair H = (V ,E) where V is a set of
vertices and E is a (multi-)set of hyperedges.

A hyperedge is a nonempty subset of V .

Graph = hypergraph with each hyperedge containing 2 vertices.

H naturally determines a bipartite graph
BipH with vertex classes V ,E : join v to
e iff v ∈ e.
Conversely, any bipartite graph is a
hypergraph in two dual ways (V ,E),
(E ,V ) — abstract dual.

A hypertree in H = (V ,E) is a function f : E → N0 such that ∃ a
spanning tree in BipH with degree f (e) + 1 at each e ∈ E .
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Hypertrees

The set of hypertrees of hypergraph (V ,E) is a subset of
ZE .

In fact, the set of hypertrees of a hypergraph is a convex
lattice polytope Q(V ,E) (Postnikov 2009, Kálmán 2013).

In a trinity (V ,E ,R), there are naturally six hypergraphs:

(V ,E), (E ,V ), (E ,R), (R,E), (R,V ), (V ,R).

How many hypertrees do they have?

Theorem (Postnikov 2009, Kálmán 2013)
The number of hypertrees in any of these hypergraphs is equal
to the magic number of the trinity:

ρ = |Q(V ,E)| = |Q(E ,V )| = |Q(E ,R)| = |Q(R,E)| = |Q(R,V )| = |Q(V ,R)|.
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From bipartite planar graphs to sutured manifolds

Given a planar graph G, there is a natural way to construct a
surface FG bounding an alternating link LG: the median
construction.

Take a regular
neighbourhood of G
in the plane (ribbon).
Insert a negative
half twist over each
edge of G to obtain
FG. Then LG = ∂FG.
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From bipartite planar graphs to sutured manifolds

When G is bipartite, FG is oriented: a Seifert surface for LG.

In this case LG is special alternating and FG is a minimal
genus Seifert surface (Murasugi 1958, Crowell 1959,
Gabai 1986).
In fact, any minimal genus Seifert surface of a non-split
prime special alternating link arises as such an FG
(Hirasawa–Sakuma 1996, Banks 2011).
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Trinity of sutured manifolds

From a trinity of bipartite graphs, we obtain a trinity of
alternating links with Seifert surfaces

and sutured 3-manifolds

(S3 − FGV ,LGV ), (S3 − FGE ,LGE ), (S3 − FGR ,LGR ).
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Trinity of sutured manifolds

Question: For each of (S3 − FGV ,LGV ), (S3 − FGE ,LGE ),
(S3 − FGR ,LGR ):

1 What is SFH?
2 How many (isotopy classes of) tight contact structures ξ?
3 What are contact invariants c(ξ) ∈ SFH?
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Contact structures on sutured manifold trinities
Contact invariants of sutured manifold trinities
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SFH of sutured manifold trinities

Answer to Q1 is known, thanks to a result of
Juhász–Kálmán–Rasmussen (2012):

Essentially, SFH(S3 − FG,LG) “is" the lattice polytope of
hypertrees on the associated hypergraph.

To understand this properly, we need some further background
on gradings on SFH.

homological grading
spin-c grading
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Spin-c structures and SFH

Recall a spin-c structure on a closed 3-manifold M is a
homology class of nonvanishing vector field.

Two vector fields are homologous if they are homotopic in
the complement of a 3-ball in M.

A spin-c structure on a sutured 3-manifold (M, Γ)?
a homology class of nonvanishing vector field v which has
a specified form along ∂M:

v must point into M along R−, out of M along R+

and tangent to ∂M along Γ, pointing from R− to R+.
In both cases, the space of spin-c structures is affine over
H1(M):

Spinc(M, Γ) ∼= H1(M;Z).

SFH decomposes over spin-c structures:

SFH(M, Γ) ∼=
⊕

s∈Spinc(M,Γ)

SFH(M, Γ, s).
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Spin-c decomposition of SFH of a trinity

Each (S3 − FG,LG) is an example of a sutured L-space
(Friedl–Juhász–Rasmussen 2011).

A sutured L-space is a balanced sutured 3-manifold (M, Γ)
such that SFH(M, Γ) is torsion free and supported in a
single Z/2 homological grading.
Friedl–Juhász–Rasmussen proved that if (M, Γ) is a
sutured L-space and s is a spin-c structure, then
SFH(M, Γ, s) is either trivial or Z.

Thus to know SFH of a sutured L-space it is sufficient to know
the support

S(M, Γ) = {s ∈ Spinc(M, Γ) : SFH(M, Γ, s) 6= 0}.
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Spin-c decomposition of SFH of a trinity

Taking G = GR planar bipartite with vertex classes (V ,E),

S3 − FGR
∼= S3 −G,handlebody of genus |R| − 1.

Spinc(S3 − FGR ,LGR )
∼= H1(S3 −GR) ∼= Z|R|−1.

So SFH(S3−FGR ,LGR ) has sup-
port in Z|R|−1.

On the other hand, consider hyper-
graph (E ,R):

Vertices = E
Hyperedges = R.

Hypertrees form a polytope in ZR.
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SFH of a trinity

So SFH support S(S3 − FGR ,LGR ) ⊂ Z|R|−1,
and hypertree polytope Q(E ,R) ⊂ ZR.

Theorem (Juhász–Kálmán–Rasmussen)

There is an natural embedding Spinc(M, Γ) = Z|R|−1 ⊂ Z|R| so
that

S(S3 − FGR ,LGR ) ∼= Q(E ,R)

I.e. support of SFH “is" hypertree polytope.
(Indeed, all hypertrees must lie in an (|R| − 1)-dimensional
plane in Z|R| by degree considerations.)
What is the dimension of SFH?

dim SFH(S3 − FGR ,LGR ) = |Q(E ,R)| = ρ magic number.

Similarly, S(S3 − FGR ,LGR ) ∼= −Q(V ,R).
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SFH of a trinity

It follows that

SFH(S3−FGV ,LGV ), SFH(S3−FGE ,LGE ), SFH(S3−FGR ,LGR )

all have dimension given by magic number, corresponding to

|Q(V ,E)| = |Q(E ,V )| = |Q(E ,R)| = |Q(R,E)| = |Q(R,V )| = |Q(V ,R)| = ρ.

SFH

( )
∼= SFH

( )
∼= SFH

( )
.
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Duality of polytopes

Postnikov related dual polytopes Q(V ,E) ⊂ ZE , Q(E ,V ) ⊂ ZV .

Q(V ,E) =

(∑
v∈V

∆v

)
−∆E = Q+

(V ,E) −∆E ,

where ∆v = Conv{e : v ∈ e}, ∆E = Conv{e : e ∈ E}, and
subtraction is Minkowski difference.
The “untrimmed polytopes" Q+

(V ,E), Q+
(E ,V ) are related via a

higher-dimensional root polytope in RV ⊕ RE

Q = Conv {e + v : v ∈ e} ⊂ RV ⊕ RE .

Essentially they are projections of Q, e.g.: πV : RV ⊕RE → RV

Q+
(V ,E)

∼= |V |

(
Q ∩ π−1

V

(
1
|V |

∑
v∈V

v

))
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Q(V ,E) =

(∑
v∈V

∆v

)
−∆E = Q+

(V ,E) −∆E ,

Q = Conv {e + v : v ∈ e} ⊂ RV ⊕ RE .

Q+
(V ,E)

∼= |V |

(
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Question
Does this root polytope have a symplectic or Floer-theoretic
interpretation?
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SFH of a trinity

Theorem (Juhász–Kálmán–Rasmussen)

S(S3 − FGR ,LGR ) ∼= Q(E ,R)

Ideas of proof:

Friedl–Juhász–Ramsussen (2011) proved that the Euler
characteristic χ(SFH(M, Γ, s)) is given by the Turaev
torsion of the pair (M,R−).
This torsion can be calculated by using Fox calculus and
the map π1(R−)→ π1(M).
The Fox calculus yielding Turaev torsion of (S3 − FGR ,LGR )
is equal to the determinant of a certain adjacency matrix
for the trinity.
Terms in this determinant are monomials corresponding to
lattice points in the polytope Q(E ,R).
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Contact structures on trinities

Q2: How many isotopy classes of tihgt contact structures on
sutured manifolds of a trinity?

Theorem (Kálmán–M.)
The number of isotopy classes of tight contact structures on
(S3 − FGR ,LGR ) is given by

ρ, the magic number of the trinity.

Moreover, there is precisely one isotopy class of tight contact
structure in each Spinc class in the support S(S3 − FG,LG) of
SFH.

Proof gives explicit bijections

{contact structures} ∼= {hypertrees on (E ,R)} ∼= {Spinc structures},

and is constructive.
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Contact structures on trinities

Theorem (Kálmán–M.)
The number of isotopy classes of tight contact structures on
(S3 − FG,LG) is given by ρ, the magic number of the trinity.

Proof ideas:

1 S3 − FG can be cut into two 3-balls by |R| convex discs Di
in the complementary regions of G

2 A choice of dividing set Γi on each Di determines at most
one tight contact structure on (S3 − FG,LG).

3 A spanning tree T representing a hypertree yields a
dividing set on each Di by taking the boundary of a ribbon.

4 Analyse bypasses in between the two 3-balls, use Honda’s
gluing theorem to prove contact structures are tight.

5 Use Kálmán’s work: there are ρ hypertrees; two spanning
trees representing same hypertree produce contact
structures related by bypasses.
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Now just take one side of the plane:
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Contact structures on trinities

Now round corners and consider dividing set: it is a
neighbourhood of tree, hence connected, so gives tight 3-balls.
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Contact invariants of sutured manifold trinities

Q3: What about contact invariants of these contact structures?

From Q2, there is one (isotopy class of) tight contact structure
ξs for each spin-c structure s, so

c(ξs) ∈ SFH(S3 − FG,LG, s) ∼= Z.

Theorem (Kálmán–M.)

c(ξs) generates SFH(S3 − FG,LG, s).

Proof uses Honda–Kazez–Matić TQFT map on SFH:
Each contact structure ξs on (S3 − FG,LG) includes into
the standard tight contact structure on S3.
Each ξs is the complement of a neighbourhood of a
Legendrian graph in S3.
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Thanks for listening!
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