
An introduction to contact geometry and topology

Daniel V. Mathews

Monash University
Daniel.Mathews@monash.edu

MSI Workshop on Low-Dimensional Topology & Quantum Algebra
ANU

31 October 2016

1 / 42



Outline

1 Introduction

2 Some differential geometry

3 Examples, applications, origins
Examples of contact manifolds
Classical mechanics
Geometric ordinary differential equations

4 Fundamental results

5 Ideas and Directions
Contact structures on 3-manifolds
Open book decompositions
Knots and links
Surfaces in contact 3-manifolds
Floer homology

2 / 42



Overview

An introduction to contact geometry and topology:
What it is
Background, fundamental results
Some applications / “practical" examples
Some areas of interest / research

Standing assumptions/warnings:
All manifolds are smooth, oriented, compact unless otherwise
specified.
All functions smooth unless otherwise specified
Smooth = C∞

Beware sign differences
Biased!
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What is contact geometry?

Contact geometry is...
Some seemingly obscure differential geometry...

... but actually deeply connected to lots of physical and practical
situations!
A major area of research in contemporary low-dimensional
geometry and topology
Connected to many fields of mathematics:

I symplectic geometry, Gromov-Witten theory, moduli spaces,
quantum algebra, foliations, differential equations, mapping class
groups, 3-and 4-manifolds, homotopy theory, homological algebra,
category theory, knot theory...

Connected to many fields of physics:
I classical mechanics, thermodynamics, optics, string theory, ice

skating...

Contact geometry has a sibling: symplectic geometry.
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Some differential geometry

Let M be a manifold.

Definition
A symplectic form on M is a closed 2-form ω such that ωn is a volume
form.
A contact form on M is a 1-form α such that α∧ (dα)n is a volume form.

Immediate consequences:
Symplectic forms only exist in even dimensions 2n.
Contact forms only exist in odd dimensions 2n + 1.
A symplectic form is nondegenerate: if a vector v satisfies
ω(v , ·) = ιvω = 0, then v = 0.
Insertion of vectors into ω yields an isomorphism between vectors
and 1-forms, v ↔ ιvω = ω(v , ·).
The kernel of a contact form ξ = kerα is a codimension-1 plane
field on M.
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Integrability

Frobenius’ theorem:
α ∧ (dα)n 6= 0 implies ξ is maximally non-integrable
— any submanifold S ⊂ M tangent to ξ must have dimension ≤ n.

Definition
A contact structure ξ on M2n+1 is a maximally non-integrable
codimension-1 plane field.
(M, ξ) is a contact manifold.

A submanifold tangent to ξ is called Legendrian.

Contact structures vs forms:
The kernel of a contact form is a contact structure.
A contact manifold has many contact forms: as many as smooth
nonvanishing functions on M.

A contact form co-orients ξ.
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Examples

Standard / “only" examples of symplectic & contact structures:
R2n with coordinates x1, y1, . . . , xn, yn and ω =

∑n
j=1 dxj ∧ dyj .

R2n+1 with coordinates x1, y1, . . . , xn, yn, z and
α = dz −

∑n
j=1 yjdxj .

In R3:
α = dz − y dx , ξ = span {∂y , ∂x + y ∂z}

No tangent surfaces!
Only tangent/Legendrian curves! Legendrian knots and links.
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Another example:
Cylindrically symmetric standard contact structure on R3

α = dz + r2 dθ, ξ = span
{
∂r , r2∂z − ∂θ

}
.

This is equivalent to the standard contact structure.

Definition
A contactomorphism is a diffeomorphism f between contact manifolds
(M1, ξ1) −→ (M2, ξ2) such that f∗ξ1 = ξ2.
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Ice skating

The unit tangent bundle UTS of a smooth surface S has a canonical
contact structure ξ:

Take (x , v) ∈ UTS, with x ∈ S, v ∈ TxS
The contact plane there is spanned by v (“tautological direction")
and the fibre direction.

A smooth curve on S lifts uniquely
to a Legendrian curve in UTS.
Ice skating on an ice rink S:

Status of skater = (position of
skater, direction of skates)
∈ UTS
Ice skater’s path is Legendrian
iff she does not skid.

Similar: parking a car, rolling a
suitcase.
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Symplectic and contact examples

More examples:

Symplectic Contact
R2n, ω =

∑
dxi ∧ dyi R2n+1, α = dz −

∑
yi dxi

Cotangent bundles
T ∗M

ω =
∑n

i=1 dxi ∧ dyi = −dλ

Unit tangent bundles
UTM

ξ spanned by fibre direction
and tautological direction

S2

ω = area form
S3 = unit quaternions
ξx = span{ix , jx}.

Any orientable surface
ω = any area form

Any 3-manifold
(Harder)

Not every 4-manifold
has a symplectic structure

Not every 3-manifold
has a tight contact structure
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Hamiltonian mechanics

Physics textbook version:
State of a classical system given by coordinates
x1, . . . , xn, y1, . . . , yn

Set of states forms the phase space R2n

Energy of states given by Hamiltonian function H : R2n −→ R.
Hamilton’s equations:

ẋj =
∂H
∂yj

, ẏj = −∂H
∂xj
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Hamiltonian flows

More generally:
States of system form a symplectic manifold (M, ω)
Energy of states given by Hamiltonian H : M −→ R

Hamilton’s equations arise from symplectic geometry:
Nondegeneracy of ω yields isomorphism between vectors and
1-forms on M
The vector field corresponding to dH is the Hamiltonian vector field

dH = ω(XH , ·) — XH gives dynamics of system

When (M, ω) = (R2N ,
∑

dxi ∧ dyi) we obtain Hamilton’s equations:

XH =

(
∂H
∂yj

,−∂H
∂xj

)
.

The flow of XH preserves ω and H:

LXHω = ιXH dω + dιXHω = 0 + d(dH) = 0.
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Dynamics on a contact manifold: Reeb vector field

Contact geometry has its own version of Hamiltonian mechanics!
A contact form α on M yields a vector field / dynamics.

Since α ∧ (dα)n 6= 0, dα must have 1-dimensional kernel,
transverse to ξ.

Definition
The Reeb vector field on (M, α) is the unique vector field Rα such that

dα(Rα, ·) = 0 and α(Rα) = 1.

Lemma
The flow of Rα preserves α.

Proof.

LRαα = ιRαdα + dιRαα = 0 + d1 = 0.
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The flow of Rα preserves α.

Proof.

LRαα = ιRαdα + dιRαα = 0 + d1 = 0.
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Infinitesimal symmetries of a contact structure

A contact manifold (M, ξ) may not seem to have many symmetries /
contactomorphisms M −→ M.

But there are many! Flowing any Reeb vector fields gives such a
symmetry.

Definition
A contact vector field is a vector field whose flow preserves ξ.

Theorem
Let (M, ξ) be a contact 3-manifold with a contact form α. There is a
bijective correspondence{

Contact vector fields
on (M, ξ)

}
↔

{
Smooth functions

H : M −→ R

}
X 7→ α(X )
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Contact geometry as solving ODEs by geometry

The standard contact structure ξ on R3

dz − y dx = 0 means “y =
dz
dx

”.

A first-order differential equation can be expressed as

F
(

x , z,
dz
dx

)
= 0

for some smooth function F : R3 −→ R and hence (generically)
determines a surface S in R3, with coordinates x , z, dz

dx = y .

The intersections of the plane field ξ with the surface S = {F = 0}
trace out curves on S which are solutions to the ODE.
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E.g. dz
dx = z, solutions z = Aex .

Definition
The intersection of a contact structure ξ with a surface S gives a
singular 1-dimensional foliation called the characteristic foliation of S.
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Fundamental theorems in contact topology

Theorem (Darboux theorem (Darboux 1882))

Let α be a contact form on M2n+1. Near any p ∈ M there are
coordinates x1, . . . , xn, y1, . . . , yn, z such that p = (0, . . . ,0) and

α = dz −
n∑

j=1

yj dxj

“All contact manifolds are locally the same." – no “contact curvature".

Theorem (Gray stability theorem (Gray 1959))
Let ξt be a smooth family (an isotopy) of contact structures on M. Then
there is an isotopy ψt : M −→ M such that ψt∗ξ0 = ξt for all t .

“If the planes move, the space can follow it."

Similar statements hold for symplectic geometry.
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The Weinstein conjecture

Difficult question: Does any vector field on a 3-manifold (say S3) have
a closed orbit?

(No: Schweizer, Harrison, Kuperberg, Kuperberg)

Weinstein conjecture ’79
Let M be any odd-dimensional manifold with a contact form α. Then
the Reeb vector field Rα has a closed orbit.

Theorem (Taubes ’07)
The Weinstein conjecture holds for contact 3-manifolds.

Proof uses Seiberg–Witten Floer homology.
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Questions in 3D contact topology

Given a 3-manifold M:
classify all contact structures on M up to contactomorphism /
isotopy.

Given a contact 3-manifold (M, ξ):
Understand the dynamics of its Reeb vector fields.
Understand its Legendrian knots and links.
Understand its group of contactomorphisms.

Generally:
What is a contact structure like near a surface, and how does it
change as a surface moves?
What invariants are there of contact manifolds, what are their
structures and relationships?
What is the relationship between contact 3-manifolds and
symplectic 4-manifolds?
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Contact structures on 3-manifolds

Natural question
Given a closed 3-manifold M, does it have a contact structure?

Answer: YES. (Martinet 1971) — from Heegaard decomposition.

Natural next question
How many contact structures does M have?

Answer: ∞. Non-integrability is an open condition — so any
sufficiently small perturbation is still a contact structure.

Natural refinement
How many isotopy classes of contact structures does M have?

Answer: ∞. (Lutz 1977) — We can perform a Lutz twist on an
embedded solid torus arbitrarily many times.
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The contact structures obtained by Lutz twists are usually overtwisted.

Definition
An overtwisted contact structure is one that contains a specific contact
disc called an overtwisted disc.
A non-overtwisted contact structure is called tight.

Classifying overtwisted contact structures reduces to homotopy theory!

Theorem (Eliashberg 1989)

{
Overtwisted contact structures

on M

}
'
{

2-plane fields on M
}
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Classifying contact structures

Natural next question
How many isotopy classes of tight contact structures does M have?

Answer (Colin 2001, Honda–Kazez–Matić 2002):
If M = M1#M2 then contact structures on M correspond to
contact structures on M1 and M2.
If M is toroidal then∞.

Interesting question
Given closed irreducible atoroidal M, how many isotopy classes of tight
contact structures does it have?

Answer: Finitely many (Colin–Giroux–Honda 2003)
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If M = M1#M2 then contact structures on M correspond to
contact structures on M1 and M2.
If M is toroidal then∞.

Interesting question
Given closed irreducible atoroidal M, how many isotopy classes of tight
contact structures does it have?

Answer: Finitely many (Colin–Giroux–Honda 2003)

26 / 42



Some examples

The 3-sphere S3:
1 tight contact structure (Eliashberg 1991).

Lens spaces L(p,q):
# tight contact structures is a complicated function of p and q
(Honda 2000, Giroux 2001)
E.g. L(34,19) has 12 contact structures

−34
19 = −2− 1

−5− 1
−4∣∣∣(−2 + 1)(−5 + 1)(−4 + 1)
∣∣∣ = 12

M#M where M is Poincaré homology sphere:
NO tight contact structure (Etnyre–Honda 1999).
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Open book decompositions

Theorem (Giroux 2000)
Let M be a closed 3-manifold. There is a bijective correspondence

{
Contact structures
on M up to isotopy

}
↔


Open book decompositions of M

up to isotopy
and positive stabilisation


Definition
An open book decomposition of M consists of

an oriented link B ⊂ M (the binding), and
a map π : M\B −→ S1 where the preimage π−1(θ) of every θ ∈ S1

is a surface Σθ with ∂Σθ = B.

The surfaces Σθ are the pages of the open book decomposition.
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Open book decompositions

An open book can be considered abstractly
as a pair (Σ, φ) where

Σ is an oriented compact surface with
boundary,
φ : Σ −→ Σ is a diffeomorphism (the
monodromy)

From this data we can reconstruct M:

M =
Σ× [0,1]

(x ,1) ∼ (φ(x),0) ∀x ∈ Σ,
(x , t) ∼ (x , t ′) ∀x ∈ ∂Σ

In fact, from (Σ, φ) can reconstruct M and ξ.
(Roughly, ξ transverse to the binding,
close to parallel to pages.)
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Examples:
Σ a disc, φ the identity: S3, tight contact structure.

Σ an annulus, φ the identity: S2 × S1, tight contact structure.
Σ an annulus, φ a right-handed Dehn twist: S3, tight.
Σ an annulus, φ a left-handed Dehn twist: S3, overtwisted.

Definition
A stabilisation of an open book (Σ, φ) is an open book (Σ′, φ′) where

Σ′ is Σ with a 1-handle attached along its boundary
φ′ = φ◦ a Dehn twist around a simple closed curve intersecting
the co-core of the 1-handle exactly once.
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Σ an annulus, φ a left-handed Dehn twist: S3, overtwisted.

Definition
A stabilisation of an open book (Σ, φ) is an open book (Σ′, φ′) where
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The stabilisation is positive (resp. negative) if the Dehn twist is
right-handed (resp. left-handed).

Proposition
The 3-manifolds constructed from (Σ′, φ′) and (Σ, φ) are
homeomorphic.

Let ξ, ξ′ be the corresponding contact structures.

Proposition
If (Σ′, φ′) is obtained from (Σ, φ)

by a positive stabilisation, then ξ, ξ′ are contactomorphic;
by a negative stabilisation, then ξ′ is overtwisted.

Which (Σ, φ) are tight and which are overtwisted?
Wand (2014): “consistency".
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Knots in contact 3-manifolds

Let K be a Legendrian knot in standard R3, with α = dz − y dx .

Definition
The front projection of K is its projection onto the xz-plane.

As K is Legendrian, y = dz
dx along K and the y -coordinate can be

recovered from the front projection.
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Thurston-Bennequin number

A framing of a knot K in a manifold M is any/all of:
a trivialisation of the normal bundle of K ;
a choice of longitude on torus boundary of a neighbourhood of K ;
a choice of “pushoff" of K .

Framings “in nature":
A Legendrian knot has a contact framing — use contact planes.
A nullhomologous knot has a surface framing — use a surface
bounded by K .

Any two framings of a knot differ by an integer.

Definition
Let K be a nullhomologous Legendrian knot in (M, ξ). The
Thurston-Bennequin number tb (K ) is the difference between the
contact framing and the surface framing on K .
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Legendrian surgery

Sometimes, Dehn surgery on a knot is “naturally contact".

Proposition (Legendrian surgery)
Let K be a Legendrian knot in a contact 3-manifold (M, ξ).
The manifold M ′ obtained by (−1)-Dehn surgery on K carries a natural
contact structure ξ′ that coincides with ξ away from K .

In fact, there is a symplectic cobordism from (M, ξ) to (M ′, ξ′) arising
from a handle attachment.

Theorem (Wand 2014)
If (M, ξ) is tight then (M ′, ξ′) is tight.
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Surfaces in contact 3-manifolds

Recall a surface S in (M, ξ) has a singular 1-dimensional foliation F ,
the characteristic foliation, given by F = TS ∩ ξ.

Generically, singularities are only of two types: elliptic and
hyperbolic.

Roughly, F determines the “germ" of a contact structure near S.
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Convex surfaces

Definition (Giroux 1991)
An embedded surface S in a contact 3-manifold is convex if there is a
contact vector field X transverse to S.

We can take a neighbourhood S × I (I = [0,1]), with X pointing along I.

Local coordinates x , y on S, and t on I, so X = ∂
∂t
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Take coordinates x , y , t as above. Then:

The contact form α (ξ = kerα) is invariant in I direction, so

α = β + u dt , where β is a 1-form and u a function on S.

Characteristic foliation F = kerβ, with singularities when β = 0.
ξ is “vertical"⇔ α( ∂∂t ) = u = 0.
“Which side of ξ is facing up" corresponds to whether α( ∂∂t ) = u is
positive or negative.

Definition
The dividing set of S is Γ = u−1(0) = {p ∈ S : X (p) ∈ ξ}.
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One can show that:
Any embedded surface in a contact 3-manifold can be made
convex by an arbitrarily small isotopy.

The dividing set Γ is a smooth embedded 1-manifold transverse to
F
The characteristic foliation F on S\Γ is “expanding".
If F ′ is another expanding foliation then there is a small isotopy of
S in M such that the characteristic foliation becomes F ′.

Moral
A contact structure near an embedded surface in a contact 3-manifold
can be described by an isotopy class of dividing set.

The combinatorial structure of dividing sets and contact structures
between them is captured by an algebraic object called the contact
category.
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Floer homology

Many powerful invariants have been developed in contact topology
using ideas of Floer homology.

Homology theories constructed from analysis of
pseudo-holomorphic curves in a symplectic manifold (M, ω)

Define an almost complex structure on (M, ω) and consider
pseudo-holomorphic maps u : Σ −→ M, where Σ is a Riemann
surface (Gromov 1985).

M

v
Jv

C

u

Σ

Given appropriate constraints and assumptions, the space of
holomorphic curves is a finite-dimensional moduli spaceM.
Can do analysis using Fredholm/index theory, compactness
theorems, etc.
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Boundary ofM is stratified: boundary strata are moduli spaces for
“degenerate” holomorphic curves (nodal surfaces, etc.)

M

v
Jvu

Floer Homology theories roughly, define a chain complex...
generated by holomorphic curve boundary conditions,
differential counts 0-dimensional families of holomorphic curves
between boundary conditions...
Boundary structure of moduli space gives ∂2 = 0.

Analogy: singular homology via Morse complex.
Complex generated by critical points of
Morse function f .
∂ counts 0-dimensional families of
trajectories of ∇f .

Index i

i − 1i − 1

i − 2
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Holomorphic invariants

Floer homology theories give very powerful invariants of 3-manifolds,
contact structures, knots, Legendrian knots, etc...

Two of many examples:
Heegaard Floer homology is an invariant of 3-manifolds derived
from counting holomorphic curves in a symplectic manifold
derived from a Heegaard decomposition (Ozsváth–Szábo 2004).

M  ĤF (M)

A contact structure ξ on M determines a contact element c(ξ)
(Ozsváth–Szabó 2005, Honda–Kazez–Matić 2009).
Legendrian contact homology associates to a Legendrian link
L ⊂ (M, α) a differential graded algebra (A, ∂).
L,L′ Legendrian isotopic⇒ (A, ∂), (A′, ∂′) have isomorphic
homology.
(Chekanov, Eliashberg, Ekholm–Etnyre–Sullivan, ...)
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Thanks for listening!
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