Plane graphs, special alternating links, and contact geometry

Daniel V. Mathews

Monash University Daniel.Mathews@monash.edu

University of Sydney 5 October 2017

< ロ > < 同 > < 回 > < 回 >

A mathematical story involving many areas of mathematics:

• Graphs — especially plane & bipartite graphs

- Graphs especially plane & bipartite graphs
- Polytopes (in high-dimensional \mathbb{R}^n) and their lattice points in \mathbb{Z}^n

- Graphs especially plane & bipartite graphs
- Polytopes (in high-dimensional \mathbb{R}^n) and their lattice points in \mathbb{Z}^n
- Knots and links (esp. special alternating links)

- Graphs especially plane & bipartite graphs
- Polytopes (in high-dimensional \mathbb{R}^n) and their lattice points in \mathbb{Z}^n
- Knots and links (esp. special alternating links)
- Dualities and trialities (of links, of polytopes, of graphs)

A mathematical story involving many areas of mathematics:

- Graphs especially plane & bipartite graphs
- Polytopes (in high-dimensional \mathbb{R}^n) and their lattice points in \mathbb{Z}^n
- Knots and links (esp. special alternating links)
- Dualities and trialities (of links, of polytopes, of graphs)
- 3-manifold topology especially sutured 3-manifolds

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

- Graphs especially plane & bipartite graphs
- Polytopes (in high-dimensional \mathbb{R}^n) and their lattice points in \mathbb{Z}^n
- Knots and links (esp. special alternating links)
- Dualities and trialities (of links, of polytopes, of graphs)
- 3-manifold topology especially sutured 3-manifolds
- Contact geometry the odd-dim version of symplectic geometry
- Floer homology invariants based on holomorphic curves

A mathematical story involving many areas of mathematics:

- Graphs especially plane & bipartite graphs
- Polytopes (in high-dimensional \mathbb{R}^n) and their lattice points in \mathbb{Z}^n
- Knots and links (esp. special alternating links)
- Dualities and trialities (of links, of polytopes, of graphs)
- 3-manifold topology especially sutured 3-manifolds
- Contact geometry the odd-dim version of symplectic geometry
- Floer homology invariants based on *holomorphic curves* Work of many people:
 - Friedl, Kálmán, Murakami, Postnikov, Rasmussen, Tutte

A mathematical story involving many areas of mathematics:

- Graphs especially plane & bipartite graphs
- Polytopes (in high-dimensional \mathbb{R}^n) and their lattice points in \mathbb{Z}^n
- Knots and links (esp. special alternating links)
- Dualities and trialities (of links, of polytopes, of graphs)
- 3-manifold topology especially sutured 3-manifolds
- Contact geometry the odd-dim version of symplectic geometry
- Floer homology invariants based on *holomorphic curves* Work of many people:
- Friedl, Kálmán, Murakami, Postnikov, Rasmussen, Tutte Recent results:
 - Kálmán–M, Tight contact structures on Seifert surface complements, arXiv:1709.10304

Expository paper:

• M, Polytopes, dualities, and Floer homology, arXiv:1702.03630

Outline

Graphs, trinities and trees

Knots and links and 3-manifolds

3 Contact geometry

Floer homology

Polytopes

Outline

- Knots and links and 3-manifolds
- 3 Contact geometry
- 4 Floer homology
- 5 Polytopes
 - Further details

Bipartite plane graphs

- Let *G* be a bipartite plane graph.
- Colour vertices blue/violet and green/emerald
- Colour edges red.
- Embedded in $\mathbb{R}^2 \subset S^2$.

Now consider the following construction on G...

• Add red vertices in complementary regions

- Add red vertices in complementary regions
- Connect each red vertex to blue and green vertices around the boundary of its region.
- We can colour each edge by the unique colour distinct from endpoints.

- Add red vertices in complementary regions
- Connect each red vertex to blue and green vertices around the boundary of its region.
- We can colour each edge by the unique colour distinct from endpoints.

- Add red vertices in complementary regions
- Connect each red vertex to blue and green vertices around the boundary of its region.
- We can colour each edge by the unique colour distinct from endpoints.

- Add red vertices in complementary regions
- Connect each red vertex to blue and green vertices around the boundary of its region.
- We can colour each edge by the unique colour distinct from endpoints.

Now consider the following construction on G...

- Add red vertices in complementary regions
- Connect each red vertex to blue and green vertices around the boundary of its region.
- We can colour each edge by the unique colour distinct from endpoints.
- This yields a 3-coloured graph triangulating S^2 .

Definition

A 3-coloured triangulation of S^2 is called a trinity.

The violet graph G_V , emerald graph G_E , red graph G_R are all bipartite plane graphs which yield (and are subsets of) the same trinity.

So:

• Bipartite plane graphs naturally come in *threes* (*triality*).

Compare to:

Plane graphs have duals, so naturally come in twos (duality).

Trinities and triangulations

In the triangulation of S^2 from a trinity:

• Each triangle contains a vertex (edge) of each colour.

Trinities and triangulations

In the triangulation of S^2 from a trinity:

- Each triangle contains a vertex (edge) of each colour.
- In each triangle, the blue-green-red vertices (edges) are
 - anticlockwise colour the triangle white or
 - clockwise colour the triangle black

Trinities and triangulations

In the triangulation of S^2 from a trinity:

- Each triangle contains a vertex (edge) of each colour.
- In each triangle, the blue-green-red vertices (edges) are
 - anticlockwise colour the triangle white or
 - clockwise colour the triangle black
- Triangles sharing an edge must be *opposite* colours. (In other words, the planar dual of the trinity is bipartite.)

Consider the planar dual G_V^* of G_V in a trinity.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Observations on G_V^* :

- G_V^* has edges bijective with violet edges.
- Each edge of *G*^{*}_V crosses precisely *two* triangles of the trinity and hence is naturally *oriented*, say black to white.

/╗▶ ∢ ⋽▶ ∢

Observations on G_V^* :

- G_V^* has edges bijective with violet edges.
- Each edge of *G*^{*}_V crosses precisely *two* triangles of the trinity and hence is naturally *oriented*, say black to white.
- Around each vertex of G_V^* , edges alternate in and out.

Observations on G_V^* :

- G_V^* has edges bijective with violet edges.
- Each edge of *G*^{*}_V crosses precisely *two* triangles of the trinity and hence is naturally *oriented*, say black to white.
- Around each vertex of G_V^* , edges alternate in and out.
- G^{*}_V is a balanced directed planar graph.
 (Balanced: in-deg = out-deg at each vertex.)

Arborescences

Let D be a directed graph D. Choose a *root* vertex r.

Definition

A (spanning) arborescence of D is a spanning tree T of D all of whose edges point away from r.

• I.e. for each vertex v of D there is a unique directed path in T from r to v.

Arborescences

Let D be a directed graph D. Choose a *root* vertex r.

Definition

A (spanning) arborescence of D is a spanning tree T of D all of whose edges point away from r.

• I.e. for each vertex v of D there is a unique directed path in T from r to v.

Arborescences

Let D be a directed graph D. Choose a *root* vertex r.

Definition

A (spanning) arborescence of D is a spanning tree T of D all of whose edges point away from r.

• I.e. for each vertex v of D there is a unique directed path in T from r to v.

Theorem (Tutte, 1948)

Let D is a balanced finite directed graph. Then the number of spanning arborescences of D does not depend on the choice of root point.

Theorem (Tutte, 1948)

Let D is a balanced finite directed graph. Then the number of spanning arborescences of D does not depend on the choice of root point.

Hence we may define $\rho(D)$, the *arborescence number* of *D*, to be the number of spanning arborescences.

Theorem (Tutte, 1948)

Let D is a balanced finite directed graph. Then the number of spanning arborescences of D does not depend on the choice of root point.

Hence we may define $\rho(D)$, the *arborescence number* of *D*, to be the number of spanning arborescences.

Theorem (Tutte's tree trinity theorem, 1975)

Let G_V^*, G_E^*, G_R^* be the planar duals of the coloured graphs of a trinity. Then

$$\rho(\mathbf{G}_{\mathbf{V}}^*) = \rho(\mathbf{G}_{\mathbf{E}}^*) = \rho(\mathbf{G}_{\mathbf{R}}^*).$$

Many combinatorial questions about trinities have the same answer.

Theorem (Tutte, 1948)

Let D is a balanced finite directed graph. Then the number of spanning arborescences of D does not depend on the choice of root point.

Hence we may define $\rho(D)$, the *arborescence number* of *D*, to be the number of spanning arborescences.

Theorem (Tutte's tree trinity theorem, 1975)

Let G_V^*, G_E^*, G_R^* be the planar duals of the coloured graphs of a trinity. Then

$$\rho(G_V^*) = \rho(G_E^*) = \rho(G_R^*).$$

Many combinatorial questions about trinities have the same answer.

Definition

The magic number $Magic(G_V)$ of the plane bipartite graph G is $\rho(G_V^*)$.

Outline

Knots and links and 3-manifolds
Special alternating links
Sutured 3-manifolds

3 Contact geometry

Floer homology

5 Polytopes

From plane graphs to knots and links

Given a plane graph *G*, there is a natural way to construct a knot or link L_G : the median construction.

From plane graphs to knots and links

Given a plane graph *G*, there is a natural way to construct a knot or link L_G : the median construction.

- Take a regular neighbourhood of *G* in the plane (ribbon).
- Insert a negative half twist over each edge of *G* to obtain a surface *F_G*. Then *L_G* = ∂*F_G*.

From plane graphs to knots and links

Given a plane graph *G*, there is a natural way to construct a knot or link L_G : the median construction.

- Take a regular neighbourhood of *G* in the plane (ribbon).
- Insert a negative half twist over each edge of *G* to obtain a surface *F_G*. Then *L_G* = ∂*F_G*.

Note L_G is alternating.

Note L_G is alternating.

Moreover, the surface F_G is oriented iff *G* is bipartite.

Note L_G is alternating.

Moreover, the surface F_G is oriented iff *G* is bipartite.

So if *G* is a plane bipartite graph:

- F_G is a Seifert surface for L_G (in fact, *minimal genus*)
- The link *L_G* is naturally *oriented*
- L_G is in fact special alternating (no nesting of Seifert circles)

Note L_G is alternating.

Moreover, the surface F_G is oriented iff *G* is bipartite.

So if *G* is a plane bipartite graph:

- F_G is a Seifert surface for L_G (in fact, *minimal genus*)
- The link *L_G* is naturally *oriented*
- *L_G* is in fact *special alternating* (no nesting of Seifert circles)

A trinity yields 3 bipartite planar graphs and hence three alternating links L_{G_V} , L_{G_E} , L_{G_R} with Seifert surfaces.

Note L_G is alternating.

Moreover, the surface F_G is oriented iff *G* is bipartite.

So if *G* is a plane bipartite graph:

- F_G is a Seifert surface for L_G (in fact, *minimal genus*)
- The link *L_G* is naturally *oriented*

• L_G is in fact *special alternating* (no nesting of Seifert circles) A trinity yields 3 bipartite planar graphs and hence three alternating links L_{G_V} , L_{G_E} , L_{G_R} with Seifert surfaces.

16/44

- Topologically, $N(F_G)$ and M_G are handlebodies (solid pretzels).
- The boundary ∂M_G naturally has a copy of L_G on it.

- Topologically, $N(F_G)$ and M_G are handlebodies (solid pretzels).
- The boundary ∂M_G naturally has a copy of L_G on it.
- L_G splits ∂M_G into two surfaces, both isotopic to F_G .

 (M_G, L_G) has the structure of a sutured manifold.

Definition

 (M_G, L_G) has the structure of a sutured manifold.

Definition

A sutured 3-manifold (M, Γ) is a smooth oriented 3-manifold M, with some oriented curves Γ on ∂M .

 (M_G, L_G) has the structure of a sutured manifold.

Definition

A sutured 3-manifold (M, Γ) is a smooth oriented 3-manifold M, with some oriented curves Γ on ∂M . The curves Γ split ∂M into positive and negative regions,

 $\partial M \setminus \Gamma = R_+ \sqcup R_-, \quad \partial R_+ = -\partial R_- = \Gamma$

(I.e. when you cross Γ , you go from R_+ to R_- .)

 (M_G, L_G) has the structure of a sutured manifold.

Definition

A sutured 3-manifold (M, Γ) is a smooth oriented 3-manifold M, with some oriented curves Γ on ∂M .

The curves Γ split ∂M into positive and negative regions,

$$\partial M \setminus \Gamma = R_+ \sqcup R_-, \quad \partial R_+ = -\partial R_- = \Gamma$$

(I.e. when you cross Γ , you go from R_+ to R_- .)

A (10) > A (10) > A

 (M_G, L_G) has the structure of a sutured manifold.

Definition

A sutured 3-manifold (M, Γ) is a smooth oriented 3-manifold M, with some oriented curves Γ on ∂M .

The curves Γ split ∂M into positive and negative regions,

$$\partial M \setminus \Gamma = R_+ \sqcup R_-, \quad \partial R_+ = -\partial R_- = \Gamma$$

(I.e. when you cross Γ , you go from R_+ to R_- .)

From a trinity we obtain a triple of sutured manifolds

 $(M_{G_V}, L_{G_V}), \quad (M_{G_E}, L_{G_E}), \quad (M_{G_R}, L_{G_R}).$

Outline

Graphs, trinities and trees

Knots and links and 3-manifolds

Contact geometry

- Contact structures on 3-manifolds
- Convex surfaces and sutures
- Classifications of contact structures
- Our results

Floer homology

5 Polytopes

Contact structures

A contact structure on a 3-manifold *M* is a non-integrable 2-plane field $\xi = \ker \alpha$.

E.g.
$$\alpha = dz - y dx$$
.
Non-integrability of $\xi \Leftrightarrow \alpha \land d\alpha \neq 0$.

Contact structures

A contact structure on a 3-manifold *M* is a non-integrable 2-plane field $\xi = \ker \alpha$.

E.g. $\alpha = dz - y \, dx$. Non-integrability of $\xi \Leftrightarrow \alpha \land d\alpha \neq 0$. Basic question of contact topology:

• Given a 3-manifold *M*, understand the (isotopy classes of) contact structures on *M*.

伺 ト イ ヨ ト イ ヨ

Two types of contact structures: tight and overtwisted.

Two types of contact structures: tight and overtwisted.

An overtwisted contact structure is one containing an overtwisted disc:

Two types of contact structures: tight and overtwisted.

An overtwisted contact structure is one containing an overtwisted disc:

Classification of overtwisted contact structures:

- { Overtwisted contact structures on *M* } is weakly homotopy equivalent to { Homotopy classes of 2-plane fields on *M* }
- Understood via homotopy theory (Eliashberg 1989).

Two types of contact structures: tight and overtwisted.

An overtwisted contact structure is one containing an overtwisted disc:

Classification of overtwisted contact structures:

- { Overtwisted contact structures on *M* } is weakly homotopy equivalent to { Homotopy classes of 2-plane fields on *M* }
- Understood via homotopy theory (Eliashberg 1989).
- A tight contact structure is a non-overtwisted one:
 - For a closed oriented atoroidal 3-manifold *M*, there are finitely many isotopy classes of tight contact structures (Colin–Giroux–Honda 2002).
 - But understanding these is more subtle.

∃ ► < ∃ ►</p>

For 3-manifolds with boundary:

- sutures provide natural boundary conditions for contact structures.
- Sutures Γ prescribe a contact structure up to isotopy near ∂M .

For 3-manifolds with boundary:

- *sutures* provide natural boundary conditions for contact structures.
- Sutures Γ prescribe a contact structure up to isotopy near ∂M .
- This is via Giroux's theory of convex surfaces (1991):
 - $\Gamma = dividing set.$

Roughly: think of ∂M as horizontal, then

- Γ is "where ξ is vertical"
- R_+, R_- say "which side of ξ is facing up"

For 3-manifolds with boundary:

- *sutures* provide natural boundary conditions for contact structures.
- Sutures Γ prescribe a contact structure up to isotopy near ∂M .
- This is via Giroux's theory of convex surfaces (1991):
 - $\Gamma = dividing set.$

Roughly: think of ∂M as horizontal, then

• Γ is "where ξ is vertical"

• R_+, R_- say "which side of ξ is facing up"

For 3-manifolds with boundary:

- *sutures* provide natural boundary conditions for contact structures.
- Sutures Γ prescribe a contact structure up to isotopy near ∂M .
- This is via Giroux's theory of convex surfaces (1991):
 - $\Gamma = dividing set.$

Roughly: think of ∂M as horizontal, then

- Γ is "where ξ is vertical"
- R_+, R_- say "which side of ξ is facing up"

Existing classification results

A classification of contact structures on (M, Γ) is an explicit description of all contact structures on (M, Γ) .

Existing classification results

A classification of contact structures on (M, Γ) is an explicit description of all contact structures on (M, Γ) .

Write $cs(M, \Gamma)$ for the number of (isotopy classes of) tight contact structures on (M, Γ) .

Some known classification results:

 Ball B³ with one suture Γ: 1 tight contact structure, cs(B³, Γ) = 1 (Eliashberg ≈1992)

A (10) A (10)

Existing classification results

A classification of contact structures on (M, Γ) is an explicit description of all contact structures on (M, Γ) .

Write $cs(M, \Gamma)$ for the number of (isotopy classes of) tight contact structures on (M, Γ) .

Some known classification results:

- Ball B³ with one suture Γ: 1 tight contact structure, cs(B³, Γ) = 1 (Eliashberg ≈1992)
- Ball *B*³ with more than one suture: no tight contact structures (already overtwisted!)

・ロト ・ 四ト ・ ヨト ・ ヨト …
Existing classification results

A classification of contact structures on (M, Γ) is an explicit description of all contact structures on (M, Γ) .

Write $cs(M, \Gamma)$ for the number of (isotopy classes of) tight contact structures on (M, Γ) .

Some known classification results:

- Ball B³ with one suture Γ: 1 tight contact structure, cs(B³, Γ) = 1 (Eliashberg ≈1992)
- Ball *B*³ with more than one suture: no tight contact structures (already overtwisted!)
- Sphere S^3 : cs = 1 (Eliashberg 1992)

イロト 不得 トイヨト イヨト

Existing classification results

A classification of contact structures on (M, Γ) is an explicit description of all contact structures on (M, Γ) .

Write $cs(M, \Gamma)$ for the number of (isotopy classes of) tight contact structures on (M, Γ) .

Some known classification results:

- Ball B³ with one suture Γ: 1 tight contact structure, cs(B³, Γ) = 1 (Eliashberg ≈1992)
- Ball *B*³ with more than one suture: no tight contact structures (already overtwisted!)
- Sphere S^3 : cs = 1 (Eliashberg 1992)
- Lens spaces L(p, q): cs depends intricately on p, q (Giroux, Honda ~ 2000)

Existing classification results

A classification of contact structures on (M, Γ) is an explicit description of all contact structures on (M, Γ) .

Write $cs(M, \Gamma)$ for the number of (isotopy classes of) tight contact structures on (M, Γ) .

Some known classification results:

- Ball B³ with one suture Γ: 1 tight contact structure, cs(B³, Γ) = 1 (Eliashberg ≈1992)
- Ball *B*³ with more than one suture: no tight contact structures (already overtwisted!)
- Sphere S^3 : cs = 1 (Eliashberg 1992)
- Lens spaces L(p, q): cs depends intricately on p, q (Giroux, Honda ~ 2000)
- Solid tori with two sutures: cs depends intricately on slope of sutures (Giroux, Honda ~2000)

イロン イロン イヨン イヨン 三日

Contact structures on Seifert surface complements

- With Kálmán, we investigated this question for sutured manifolds (M_G, L_G) :
 - bipartite plane graph $G \rightarrow$ sutured manifold (M_G, L_G) .

Contact structures on Seifert surface complements

- With Kálmán, we investigated this question for sutured manifolds (M_G, L_G) :
 - bipartite plane graph $G \rightarrow$ sutured manifold (M_G, L_G) .

Theorem (Kálmán-M.)

 $cs(M_G, L_G)$ is equal to the magic number of G.

Contact structures on Seifert surface complements

- With Kálmán, we investigated this question for sutured manifolds (M_G, L_G) :
 - bipartite plane graph $G \rightarrow$ sutured manifold (M_G, L_G) .

Theorem (Kálmán-M.)

 $cs(M_G, L_G)$ is equal to the magic number of G.

Hence for a trinity with a triple of bipartite graphs G_V , G_E , G_R ,

$$egin{aligned} & cs(M_{G_V},L_{G_V}) = cs(M_{G_E},L_{G_E}) = cs(M_{G_R},L_{G_R}) = ext{Magic}(G) \ & =
ho(G_V^*) =
ho(G_E^*) =
ho(G_R^*) \end{aligned}$$

24 / 44

Outline

Graphs, trinities and trees

2 Knots and links and 3-manifolds

Contact geometry

Floer homology

- The idea of Heegaard Floer homology
- Contact invariants of Seifert surface complements

5 Polytopes

Further details

Heegaard Floer homology is a theory which gives invariants of various 3-dimensional objects:

- Introduced by Ozsváth–Szabó \approx 2004
- Now many versions... for closed 3-manifolds, knots and links

Heegaard Floer homology is a theory which gives invariants of various 3-dimensional objects:

- Introduced by Ozsváth–Szabó \approx 2004
- Now many versions... for closed 3-manifolds, knots and links

Powerful invariant:

- categorifies Alexander polynomial,
- computes genus of knots,
- often hard to compute!

A (10) A (10)

Heegaard Floer homology is a theory which gives invariants of various 3-dimensional objects:

- Introduced by Ozsváth–Szabó \approx 2004
- Now many versions... for closed 3-manifolds, knots and links

Powerful invariant:

- categorifies Alexander polynomial,
- computes genus of knots,
- often hard to compute!

The version useful here:

• Sutured Floer homology (SFH) is an invariant of sutured 3-manifolds, introduced by Juhász \approx 2006.

A (1) > A (2) > A (2) > A

Heegaard Floer homology is a theory which gives invariants of various 3-dimensional objects:

- Introduced by Ozsváth–Szabó \approx 2004
- Now many versions... for closed 3-manifolds, knots and links

Powerful invariant:

- categorifies Alexander polynomial,
- computes genus of knots,
- often hard to compute!

The version useful here:

• Sutured Floer homology (SFH) is an invariant of sutured 3-manifolds, introduced by Juhász \approx 2006.

All versions *define chain complexes* in which the *differential counts pseudoholomorphic curves* in some related manifold. The *homology* then turns out to be invariant.

Sutured Floer homology and contact structures

Sutured Floer homology yields, very roughly,

 $(M, \Gamma) \longrightarrow SFH(M, \Gamma)$ Sutured 3-mfld finitely gen. abelian group

Sutured Floer homology and contact structures

Sutured Floer homology yields, very roughly,

 $(M, \Gamma) \longrightarrow SFH(M, \Gamma)$ Sutured 3-mfld finitely gen. abelian group

Properties:

- *SFH*(*M*, Γ) is *graded* (in several ways)
 - Think of SFH(M, Γ) as an array of groups
 - ► One group at each point of a lattice Z^d

伺 ト イヨト イヨト

Sutured Floer homology and contact structures

Sutured Floer homology yields, very roughly,

 $(M, \Gamma) \longrightarrow SFH(M, \Gamma)$ Sutured 3-mfld finitely gen. abelian group

Properties:

- *SFH*(*M*, Γ) is *graded* (in several ways)
 - Think of SFH(M, Γ) as an array of groups
 - ► One group at each point of a lattice Z^d
- Heegaard Floer homology gives invariants of contact structures ξ (Ozsváth–Szazó , Honda–Kazez–Matić \approx 2005):
 - contact structure ξ on $(M, \Gamma) \rightsquigarrow c(\xi) \in SFH(-M, -\Gamma)$.

Return to a plane bipartite graph G and the sutured manifold (M_G, L_G) .

Return to a plane bipartite graph *G* and the sutured manifold (M_G, L_G) . Standard contact geometry/topology questions:

- What is $SFH(M_G, L_G)$?
- What re the (isotopy classes of) tight contact structures ξ on (M_G, L_G)?
- **③** What are the contact invariants $c(\xi) \in SFH$?

Return to a plane bipartite graph *G* and the sutured manifold (M_G, L_G) . Standard contact geometry/topology questions:

- What is $SFH(M_G, L_G)$?
- What re the (isotopy classes of) tight contact structures ξ on (M_G, L_G)?
- **③** What are the contact invariants $c(\xi) \in SFH$?

Answer to Q1 is known:

Return to a plane bipartite graph *G* and the sutured manifold (M_G, L_G) . Standard contact geometry/topology questions:

- What is $SFH(M_G, L_G)$?
- What re the (isotopy classes of) tight contact structures ξ on (M_G, L_G)?
- **③** What are the contact invariants $c(\xi) \in SFH$?

Answer to Q1 is known:

Theorem (Juhász–Kálmán–Rasmussen (2012))

SFH(M_G , L_G) is a direct sum of a magic number of $\mathbb{Z}s$,

 $SFH(M_G, L_G) \cong \mathbb{Z}^{Magic(G)}.$

Return to a plane bipartite graph *G* and the sutured manifold (M_G, L_G) . Standard contact geometry/topology questions:

- What is $SFH(M_G, L_G)$?
- What re the (isotopy classes of) tight contact structures ξ on (M_G, L_G)?
- **③** What are the contact invariants $c(\xi) \in SFH$?

Answer to Q1 is known:

Theorem (Juhász-Kálmán-Rasmussen (2012))

 $SFH(M_G, L_G)$ is a direct sum of a magic number of $\mathbb{Z}s$,

 $SFH(M_G, L_G) \cong \mathbb{Z}^{Magic(G)}.$

Using grading of SFH, the Magic(G) \mathbb{Z} summands are naturally arranged at the lattice points of a polytope \mathcal{P}_G in \mathbb{Z}^{R-1} .

Here R = # complementary regions of G.

ヘロン 人間 とくほ とくほとう

Answer to Q2 given earlier: $cs(M_G, L_G) = Magic(G)$. But more:

Answer to Q2 given earlier: $cs(M_G, L_G) = Magic(G)$. But more:

Theorem (Kálmán–M)

The Magic(G) distinct tight contact structures ξ on (M_G, L_G) have distinct Euler classes $e(\xi) \in H^2(M_G, \partial M_G) \cong \mathbb{Z}^{R-1}$.

Answer to Q2 given earlier: $cs(M_G, L_G) = Magic(G)$. But more:

Theorem (Kálmán–M)

The Magic(*G*) distinct tight contact structures ξ on (M_G, L_G) have distinct Euler classes $e(\xi) \in H^2(M_G, \partial M_G) \cong \mathbb{Z}^{R-1}$. These Euler classes, points in \mathbb{Z}^{R-1} , are naturally arranged at the the lattice points of \mathcal{P}_G .

Answer to Q2 given earlier: $cs(M_G, L_G) = Magic(G)$. But more:

Theorem (Kálmán–M)

The Magic(G) distinct tight contact structures ξ on (M_G, L_G) have distinct Euler classes $e(\xi) \in H^2(M_G, \partial M_G) \cong \mathbb{Z}^{R-1}$. These Euler classes, points in \mathbb{Z}^{R-1} , are naturally arranged at the the lattice points of \mathcal{P}_G .

Answer to Q3 (what are contact invariants of contact structures in *SFH*?)

・ 同 ト ・ ヨ ト ・ ヨ ト

Answer to Q2 given earlier: $cs(M_G, L_G) = Magic(G)$. But more:

Theorem (Kálmán–M)

The Magic(G) distinct tight contact structures ξ on (M_G, L_G) have distinct Euler classes $e(\xi) \in H^2(M_G, \partial M_G) \cong \mathbb{Z}^{R-1}$. These Euler classes, points in \mathbb{Z}^{R-1} , are naturally arranged at the the lattice points of \mathcal{P}_G .

Answer to Q3 (what are contact invariants of contact structures in SFH?)

Theorem (Kálmán–M)

The contact invariants $c(\xi)$ of the tight contact structures ξ on (M_G, L_G) are precisely generators of the corresponding \mathbb{Z} summands of SFH.

SFH of a trinity

It follows that

$$SFH(S^3 - F_{G_V}, L_{G_V}), \quad SFH(S^3 - F_{G_E}, L_{G_E}), \quad SFH(S^3 - F_{G_R}, L_{G_R})$$

all have dimension given by magic number. Same # \mathbb{Z} summands, but arranged in different polytopes!

Outline

- Knots and links and 3-manifolds
- 3 Contact geometry
- 4 Floer homology

Further details

What are these polytopes arising in contact topology & Floer homology of (M_G, L_G) ?

What are these polytopes arising in contact topology & Floer homology of (M_G, L_G) ?

• Back to graph theory: Combinatorial theory of polytopes associated to graphs & hypergraphs (Postnikov, Kálmán).

- What are these polytopes arising in contact topology & Floer homology of (M_G, L_G) ?
 - Back to graph theory: Combinatorial theory of polytopes associated to graphs & hypergraphs (Postnikov, Kálmán).

Consider hypergraphs.

- A graph has edges each edge joins two vertices.
- A hypergraph has hyperedges each hyperedge joins many vertices.

What are these polytopes arising in contact topology & Floer homology of (M_G, L_G) ?

• Back to graph theory: Combinatorial theory of polytopes associated to graphs & hypergraphs (Postnikov, Kálmán).

Consider hypergraphs.

- A graph has *edges* each edge joins *two* vertices.
- A hypergraph has hyperedges each hyperedge joins many vertices.

Definition

A hypergraph is a pair (V, E), where V is a set of vertices and E is a set of hyperedges. Each hyperedge is a nonempty subset of V.

What are these polytopes arising in contact topology & Floer homology of (M_G, L_G) ?

• Back to graph theory: Combinatorial theory of polytopes associated to graphs & hypergraphs (Postnikov, Kálmán).

Consider hypergraphs.

- A graph has *edges* each edge joins *two* vertices.
- A *hypergraph* has *hyperedges* each hyperedge joins *many* vertices.

Definition

A hypergraph is a pair (V, E), where V is a set of vertices and E is a set of hyperedges. Each hyperedge is a nonempty subset of V.

Hypergraphs \sim bipartite graphs:

- A hypergraph (V, E) can be drawn as a bipartite graph Bip(V, E).
- A bipartite graph can be considered as a hypergraph (in 2 ways).

Hypertrees in hypergraphs

Bip(V, E)

Spanning tree, hypertree f $E = \{a, b, c\}$ (f(a), f(b), f(c)) = (1, 0, 2)

Hypertrees in hypergraphs

Consider spanning trees in a hypergraph (V, E).

Definition

A hypertree in (V, E) is a function $f: E \to \mathbb{N}_0$ such that there exists a spanning tree in Bip(V, E) with degree f(e) + 1 at each $e \in E$.

Hypertrees in hypergraphs

Consider spanning trees in a hypergraph (V, E).

Definition

A hypertree in (V, E) is a function $f: E \to \mathbb{N}_0$ such that there exists a spanning tree in Bip(V, E) with degree f(e) + 1 at each $e \in E$.

When (V, E) a graph, hypertrees = trees: choose edges with $f(e) = 1_{r_{o}}$

The hypertree polytope

A hypertree $f: E \longrightarrow \mathbb{N}_0$ can be regarded as a point of \mathbb{Z}^E .

Let $Q_{(V,E)} = \{ f \in \mathbb{Z}^E \mid f \text{ is a hypertree of } (V, E) \}.$

4 E N 4 E N

The hypertree polytope

A hypertree $f: E \longrightarrow \mathbb{N}_0$ can be regarded as a point of \mathbb{Z}^E .

Let $Q_{(V,E)} = \{ f \in \mathbb{Z}^E \mid f \text{ is a hypertree of } (V,E) \}.$

Theorem (Postnikov 2009, Kálmán 2013)

 $Q_{(V,E)}$ consists of a magic number of points, forming the lattice points of a convex polytope in \mathbb{R}^{E} .

同下 イヨト イヨト
The hypertree polytope

A hypertree $f: E \longrightarrow \mathbb{N}_0$ can be regarded as a point of \mathbb{Z}^E .

Let $Q_{(V,E)} = \{ f \in \mathbb{Z}^E \mid f \text{ is a hypertree of } (V,E) \}.$

Theorem (Postnikov 2009, Kálmán 2013)

 $Q_{(V,E)}$ consists of a magic number of points, forming the lattice points of a convex polytope in \mathbb{R}^{E} .

34 / 44

Hypertree polytopes and contact structures

This polytope reappears as the Euler classes of tight contact structures on (M_G, L_G) and the \mathbb{Z} summands of $SFH(M_G, L_G)$.

Proofs are constructive: we obtain explicit bijections

{contact structures on
$$(M_{G_R}, L_{G_R})$$
}
 \cong
{hypertrees on (E, R) }
 \cong
{ \mathbb{Z} summands of *SFH*(M_{G_R}, L_{G_R})}.

Outline

- Graphs, trinities and trees
- 2 Knots and links and 3-manifolds
- B) Contact geometry
- 4 Floer homology

Further details

- Classification of contact structures
- Computing contact invariants
- Details of Heegaard Floer homology

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_G, L_G)$ is given by ρ , the magic number of the trinity.

Proof ideas:

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_G, L_G)$ is given by ρ , the magic number of the trinity.

Proof ideas:

• $S^3 - F_G$ can be cut into two 3-balls by |R| convex discs D_i in the complementary regions of G

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_G, L_G)$ is given by ρ , the magic number of the trinity.

Proof ideas:

- $S^3 F_G$ can be cut into two 3-balls by |R| convex discs D_i in the complementary regions of G
- 2 A choice of dividing set Γ_i on each D_i determines at most one tight contact structure on $(S^3 F_G, L_G)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_G, L_G)$ is given by ρ , the magic number of the trinity.

Proof ideas:

- $S^3 F_G$ can be cut into two 3-balls by |R| convex discs D_i in the complementary regions of G
- 2 A choice of dividing set Γ_i on each D_i determines at most one tight contact structure on $(S^3 F_G, L_G)$.
- A spanning tree T representing a hypertree yields a dividing set on each D_i by taking the boundary of a ribbon.

イロト イポト イヨト イヨト

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_G, L_G)$ is given by ρ , the magic number of the trinity.

Proof ideas:

- $S^3 F_G$ can be cut into two 3-balls by |R| convex discs D_i in the complementary regions of G
- 2 A choice of dividing set Γ_i on each D_i determines at most one tight contact structure on $(S^3 F_G, L_G)$.
- A spanning tree T representing a hypertree yields a dividing set on each D_i by taking the boundary of a ribbon.
- Analyse bypasses (small contact isotopies) across the discs D_i between the two 3-balls, use a gluing theorem of Honda to prove no overtwisted discs exist contact structures are tight.

Theorem (Kálmán–M.)

The number of isotopy classes of tight contact structures on $(S^3 - F_G, L_G)$ is given by ρ , the magic number of the trinity.

Proof ideas:

- $S^3 F_G$ can be cut into two 3-balls by |R| convex discs D_i in the complementary regions of G
- 2 A choice of dividing set Γ_i on each D_i determines at most one tight contact structure on $(S^3 F_G, L_G)$.
- A spanning tree T representing a hypertree yields a dividing set on each D_i by taking the boundary of a ribbon.
- Analyse bypasses (small contact isotopies) across the discs D_i between the two 3-balls, use a gluing theorem of Honda to prove no overtwisted discs exist contact structures are tight.
- Skálmán's previously showed there are ρ hypertrees; show two spanning trees representing same hypertree produce isotopic contact structures.

Consider complements of tubular neighbourhood of G:

 D_0

Consider complements of tubular neighbourhood of G:

Consider complements of tubular neighbourhood of G:

Now just take one side of the plane:

Now just take one side of the plane:

Now just take one side of the plane:

A spanning tree in (E, R)

A spanning tree in (E, R) yields a dividing set

A spanning tree in (E, R) yields a dividing set

What about contact invariants of these contact structures in *SFH*? We showed there is one tight contact structure ξ for each \mathbb{Z} -summand of *SFH*, and $c(\xi)$ is known to lie in this summand.

Theorem (Kálmán–M.)

 $c(\xi)$ generates the appropriate \mathbb{Z} summand of $SFH(M_G, L_G)$.

Proof uses Honda–Kazez–Matić TQFT map on SFH:

• Each contact structure on (M_G, L_G) includes into the standard tight contact structure on S^3 .

Very rough idea of Heegaard Floer homology (of closed 3-manifold M):

Very rough idea of Heegaard Floer homology (of closed 3-manifold M):

- Take a Heegaard decomposition (Σ, α, β) of *M*.
 - Σ a closed surface of genus g

•
$$\alpha = \{\alpha_1, \dots, \alpha_g\}, \beta = \{\beta_1, \dots, \beta_g\}$$
 Heegaard curves.

Very rough idea of Heegaard Floer homology (of closed 3-manifold M):

- Take a Heegaard decomposition (Σ, α, β) of *M*.
 - Σ a closed surface of genus g
 - $\alpha = \{\alpha_1, \dots, \alpha_g\}, \beta = \{\beta_1, \dots, \beta_g\}$ Heegaard curves.
- Consider the 2*g*-dimensional symmetric product Sym^g Σ and the *g*-dimensional tori given by $\mathbb{T}_{\alpha} = \alpha_1 \times \cdots \times \alpha_g$ and $\mathbb{T}_{\beta} = \beta_1 \times \cdots \times \beta_g$ in Sym^g Σ .

・ロト ・四ト ・ヨト ・ヨト

Very rough idea of Heegaard Floer homology (of closed 3-manifold M):

- Take a Heegaard decomposition (Σ, α, β) of *M*.
 - Σ a closed surface of genus g
 - $\alpha = \{\alpha_1, \dots, \alpha_g\}, \beta = \{\beta_1, \dots, \beta_g\}$ Heegaard curves.
- Consider the 2*g*-dimensional symmetric product Sym^g Σ and the *g*-dimensional tori given by T_α = α₁ × · · · × α_g and T_β = β₁ × · · · × β_g in Sym^g Σ.
- Form a chain complex generated by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$

Very rough idea of Heegaard Floer homology (of closed 3-manifold M):

- Take a Heegaard decomposition (Σ, α, β) of *M*.
 - Σ a closed surface of genus g
 - $\alpha = \{\alpha_1, \dots, \alpha_g\}, \beta = \{\beta_1, \dots, \beta_g\}$ Heegaard curves.
- Consider the 2*g*-dimensional symmetric product Sym^g Σ and the *g*-dimensional tori given by $\mathbb{T}_{\alpha} = \alpha_1 \times \cdots \times \alpha_g$ and $\mathbb{T}_{\beta} = \beta_1 \times \cdots \times \beta_g$ in Sym^g Σ .
- Form a chain complex generated by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$
- Consider *holomorphic curves* in Sym^g Σ i.e. $u: S \rightarrow Sym^g \Sigma$ satisfying Cauchy–Riemann equations, where S is a Riemann surface.

・ロン ・ 四 と ・ ヨ と ・ ヨ

Very rough idea of Heegaard Floer homology (of closed 3-manifold M):

- Take a Heegaard decomposition (Σ, α, β) of *M*.
 - Σ a closed surface of genus g
 - $\alpha = \{\alpha_1, \dots, \alpha_g\}, \beta = \{\beta_1, \dots, \beta_g\}$ Heegaard curves.
- Consider the 2*g*-dimensional symmetric product Sym^g Σ and the *g*-dimensional tori given by T_α = α₁ × · · · × α_g and T_β = β₁ × · · · × β_g in Sym^g Σ.
- Form a chain complex generated by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$
- Consider *holomorphic curves* in Sym^g Σ i.e. $u: S \rightarrow Sym^g \Sigma$ satisfying Cauchy–Riemann equations, where S is a Riemann surface.
- For $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$, consider holomorphic curves "from" \mathbf{x} "to" \mathbf{y} in Sym^g Σ

イロン イロン イヨン イヨン 三日

Very rough idea of Heegaard Floer homology (of closed 3-manifold M):

- Take a Heegaard decomposition (Σ, α, β) of *M*.
 - Σ a closed surface of genus g
 - $\alpha = \{\alpha_1, \dots, \alpha_g\}, \beta = \{\beta_1, \dots, \beta_g\}$ Heegaard curves.
- Consider the 2*g*-dimensional symmetric product Sym^g Σ and the *g*-dimensional tori given by T_α = α₁ × · · · × α_g and T_β = β₁ × · · · × β_g in Sym^g Σ.
- Form a chain complex generated by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$
- Consider holomorphic curves in Sym^g Σ i.e. u: S → Sym^g Σ satisfying Cauchy–Riemann equations, where S is a Riemann surface.
- For $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$, consider holomorphic curves "from" \mathbf{x} "to" \mathbf{y} in Sym^g Σ
- Such curves which are suitably rigid give a boundary operator ∂ and ∂² = 0.

イロン イボン イヨン 一日

Very rough idea of Heegaard Floer homology (of closed 3-manifold M):

- Take a Heegaard decomposition (Σ, α, β) of *M*.
 - Σ a closed surface of genus g
 - $\alpha = \{\alpha_1, \dots, \alpha_g\}, \beta = \{\beta_1, \dots, \beta_g\}$ Heegaard curves.
- Consider the 2*g*-dimensional symmetric product Sym^g Σ and the *g*-dimensional tori given by T_α = α₁ × · · · × α_g and T_β = β₁ × · · · × β_g in Sym^g Σ.
- Form a chain complex generated by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$
- Consider holomorphic curves in Sym^g Σ i.e. u: S → Sym^g Σ satisfying Cauchy–Riemann equations, where S is a Riemann surface.
- For $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$, consider holomorphic curves "from" \mathbf{x} "to" \mathbf{y} in Sym^g Σ
- Such curves which are suitably rigid give a boundary operator ∂ and ∂² = 0.
- *HF*(*M*) is the homology of this complex and is an invariant of *M* (independent of all other choices).

Thanks for listening!

References:

- Kálmán and Mathews, *Tight contact structures on Seifert surface complements*, arXiv:1709.10304
- Mathews, Polytopes, dualities, and Floer homology, arXiv:1702.03630