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Overview

A mathematical story involving many areas of mathematics:

Graphs — especially plane & bipartite graphs
Polytopes (in high-dimensional Rn) — and their lattice points in Zn

Knots and links (esp. special alternating links)
Dualities and trialities (of links, of polytopes, of graphs)
3-manifold topology — especially sutured 3-manifolds
Contact geometry — the odd-dim version of symplectic geometry
Floer homology — invariants based on holomorphic curves

Work of many people:
Friedl, Kálmán, Murakami, Postnikov, Rasmussen, Tutte

Recent results:
Kálmán–M, Tight contact structures on Seifert surface
complements, arXiv:1709.10304

Expository paper:
M, Polytopes, dualities, and Floer homology, arXiv:1702.03630
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Outline

1 Graphs, trinities and trees

2 Knots and links and 3-manifolds

3 Contact geometry

4 Floer homology

5 Polytopes
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Bipartite plane graphs

Let G be a bipartite plane graph.
Colour vertices blue/violet and green/emerald
Colour edges red.
Embedded in R2 ⊂ S2.
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Trinities
Now consider the following construction on G...

Add red vertices in complementary regions

Connect each red vertex to blue and green vertices around the
boundary of its region.

We can colour each edge by the unique colour distinct from endpoints.

This yields a 3-coloured graph triangulating S2.

Definition
A 3-coloured triangulation of S2 is called a trinity.
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Bipartite graphs and trinities

A trinity naturally contains three bipartite planar graphs: take all edges
of a single colour.
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Bipartite graphs and trinities

The violet graph GV , emerald graph GE , red graph GR are all bipartite
plane graphs which yield (and are subsets of) the same trinity.

GV
GE GR

So:
Bipartite plane graphs naturally come in threes (triality).

Compare to:
Plane graphs have duals, so naturally come in twos (duality).

8 / 44



Trinities and triangulations
In the triangulation of S2 from a trinity:

Each triangle contains a vertex (edge) of each colour.

In each triangle, the blue-green-red vertices (edges) are
I anticlockwise — colour the triangle white — or
I clockwise — colour the triangle black

Triangles sharing an edge must be opposite colours.
(In other words, the planar dual of the trinity is bipartite.)
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Planar duals of trinities

Consider the planar dual G∗
V of GV in a trinity.
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Planar duals of trinities

Observations on G∗
V :

G∗
V has edges bijective with violet edges.

Each edge of G∗
V crosses precisely two triangles of the trinity and

hence is naturally oriented, say black to white.

Around each vertex of G∗
V , edges alternate in and out.

G∗
V is a balanced directed planar graph.

(Balanced: in-deg = out-deg at each vertex.)

11 / 44



Planar duals of trinities

Observations on G∗
V :

G∗
V has edges bijective with violet edges.

Each edge of G∗
V crosses precisely two triangles of the trinity and

hence is naturally oriented, say black to white.
Around each vertex of G∗

V , edges alternate in and out.

G∗
V is a balanced directed planar graph.

(Balanced: in-deg = out-deg at each vertex.)

11 / 44



Planar duals of trinities

Observations on G∗
V :

G∗
V has edges bijective with violet edges.

Each edge of G∗
V crosses precisely two triangles of the trinity and

hence is naturally oriented, say black to white.
Around each vertex of G∗

V , edges alternate in and out.
G∗

V is a balanced directed planar graph.
(Balanced: in-deg = out-deg at each vertex.)

11 / 44



Arborescences

Let D be a directed graph D. Choose a root vertex r .

Definition
A (spanning) arborescence of D is a spanning tree T of D all of whose
edges point away from r.

I.e. for each vertex v of D there is a unique directed path in T from
r to v .
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Tutte’s tree trinity theorem

Theorem (Tutte, 1948)
Let D is a balanced finite directed graph. Then the number of spanning
arborescences of D does not depend on the choice of root point.

Hence we may define ρ(D), the arborescence number of D, to be the
number of spanning arborescences.

Theorem (Tutte’s tree trinity theorem, 1975)
Let G∗

V ,G
∗
E ,G

∗
R be the planar duals of the coloured graphs of a trinity.

Then
ρ(G∗

V ) = ρ(G∗
E ) = ρ(G∗

R).

Many combinatorial questions about trinities have the same answer.

Definition
The magic number Magic(GV ) of the plane bipartite graph G is ρ(G∗

V ).
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Special alternating links
Sutured 3-manifolds
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From plane graphs to knots and links

Given a plane graph G, there is a natural way to construct a knot or
link LG: the median construction.

Take a regular
neighbourhood of G in
the plane (ribbon).
Insert a negative half
twist over each edge of
G to obtain a surface
FG. Then LG = ∂FG.
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From plane bipartite graphs to special alternating links

Note LG is alternating.

Moreover, the surface FG is oriented iff G is bipartite.
So if G is a plane bipartite graph:

FG is a Seifert surface for LG (in fact, minimal genus)
The link LG is naturally oriented
LG is in fact special alternating (no nesting of Seifert circles)

A trinity yields 3 bipartite planar graphs and hence three alternating
links LGV ,LGE ,LGR with Seifert surfaces.
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From plane bipartite graphs to 3-manifolds

Given LG and FG, remove a neighbourhood N(FG) of FG to obtain an
interesting 3-manifold MG = S3\N(FG).

Dr

Topologically, N(FG) and MG are handlebodies (solid pretzels).
The boundary ∂MG naturally has a copy of LG on it.
LG splits ∂MG into two surfaces, both isotopic to FG.
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Sutured 3-manifolds

(MG,LG) has the structure of a sutured manifold.

Definition

A sutured 3-manifold (M, Γ) is a smooth oriented 3-manifold M, with
some oriented curves Γ on ∂M.
The curves Γ split ∂M into positive and negative regions,

∂M\Γ = R+ t R−, ∂R+ = −∂R− = Γ

(I.e. when you cross Γ, you go from R+ to R−.)

+ − + +? −?

From a trinity we obtain a triple of sutured manifolds

(MGV ,LGV ), (MGE ,LGE ), (MGR ,LGR ).
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Contact structures

A contact structure on a 3-manifold M is a non-integrable 2-plane field
ξ = kerα.

E.g. α = dz − y dx .
Non-integrability of ξ ⇔ α ∧ dα 6= 0.

Basic question of contact topology:
Given a 3-manifold M, understand the (isotopy classes of) contact
structures on M.
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Contact 3-manifolds

Two types of contact structures: tight and overtwisted.

An overtwisted contact structure is
one containing an overtwisted disc:

Classification of overtwisted contact structures:
{ Overtwisted contact structures on M } is weakly homotopy
equivalent to { Homotopy classes of 2-plane fields on M }
Understood via homotopy theory (Eliashberg 1989).

A tight contact structure is a non-overtwisted one:
For a closed oriented atoroidal 3-manifold M, there are finitely
many isotopy classes of tight contact structures
(Colin–Giroux–Honda 2002).
But understanding these is more subtle.
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Convex surfaces and sutures

For 3-manifolds with boundary:
sutures provide natural boundary conditions for contact structures.
Sutures Γ prescribe a contact structure up to isotopy near ∂M.

This is via Giroux’s theory of convex surfaces (1991):
Γ = dividing set.

Roughly: think of ∂M as horizontal, then
Γ is “where ξ is vertical"
R+,R− say “which side of ξ is facing up"
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Existing classification results

A classification of contact structures on (M, Γ) is an explicit description
of all contact structures on (M, Γ).

Write cs(M, Γ) for the number of (isotopy classes of) tight contact
structures on (M, Γ).
Some known classification results:

Ball B3 with one suture Γ: 1 tight contact structure, cs(B3, Γ) = 1
(Eliashberg ≈1992)
Ball B3 with more than one suture: no tight contact structures
(already overtwisted!)
Sphere S3: cs = 1 (Eliashberg 1992)
Lens spaces L(p,q): cs depends intricately on p,q (Giroux,
Honda ∼ 2000)
Solid tori with two sutures: cs depends intricately on slope of
sutures (Giroux, Honda ∼2000)
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Contact structures on Seifert surface complements

With Kálmán, we investigated this question for sutured manifolds
(MG,LG):

bipartite plane graph G sutured manifold (MG,LG).

Theorem (Kálmán-M.)
cs(MG,LG) is equal to the magic number of G.

Hence for a trinity with a triple of bipartite graphs GV ,GE ,GR,

cs(MGV ,LGV ) = cs(MGE ,LGE ) = cs(MGR ,LGR ) = Magic(G)

= ρ(G∗
V ) = ρ(G∗

E ) = ρ(G∗
R)

cs

( )
= cs

( )
= cs

( )
.
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Outline

1 Graphs, trinities and trees

2 Knots and links and 3-manifolds

3 Contact geometry

4 Floer homology
The idea of Heegaard Floer homology
Contact invariants of Seifert surface complements

5 Polytopes

6 Further details
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Heegaard Floer homology

Heegaard Floer homology is a theory which gives invariants of various
3-dimensional objects:

Introduced by Ozsváth–Szabó ≈ 2004
Now many versions... for closed 3-manifolds, knots and links

Powerful invariant:
categorifies Alexander polynomial,
computes genus of knots,
often hard to compute!

The version useful here:
Sutured Floer homology (SFH) is an invariant of sutured
3-manifolds, introduced by Juhász ≈ 2006.

All versions define chain complexes in which the differential counts
pseudoholomorphic curves in some related manifold.
The homology then turns out to be invariant.
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Sutured Floer homology and contact structures

Sutured Floer homology yields, very roughly,

(M, Γ)  SFH(M, Γ)
Sutured 3-mfld finitely gen. abelian group

Properties:
SFH(M, Γ) is graded (in several ways)

I Think of SFH(M, Γ) as an array of groups
I One group at each point of a lattice Zd

Heegaard Floer homology gives invariants of contact structures ξ
(Ozsváth–Szazó , Honda–Kazez–Matić ≈ 2005):

I contact structure ξ on (M, Γ) c(ξ) ∈ SFH(−M,−Γ).
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Contact invariants of Seifert surface complements

Return to a plane bipartite graph G and the sutured manifold (MG,LG).

Standard contact geometry/topology questions:
1 What is SFH(MG,LG)?
2 What re the (isotopy classes of) tight contact structures ξ on

(MG,LG)?
3 What are the contact invariants c(ξ) ∈ SFH?

Answer to Q1 is known:

Theorem (Juhász–Kálmán–Rasmussen (2012))
SFH(MG,LG) is a direct sum of a magic number of Zs,

SFH(MG,LG) ∼= ZMagic(G).

Using grading of SFH, the Magic(G) Z summands are naturally
arranged at the lattice points of a polytope PG in ZR−1.

Here R = # complementary regions of G.
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SFH for bipartite graph complement

Answer to Q2 given earlier: cs(MG,LG) = Magic(G). But more:

Theorem (Kálmán–M)
The Magic(G) distinct tight contact structures ξ on (MG,LG) have
distinct Euler classes e(ξ) ∈ H2(MG, ∂MG) ∼= ZR−1.
These Euler classes, points in ZR−1, are naturally arranged at the the
lattice points of PG.

Answer to Q3
(what are contact invariants of contact structures in SFH?)

Theorem (Kálmán–M)
The contact invariants c(ξ) of the tight contact structures ξ on (MG,LG)
are precisely generators of the corresponding Z summands of SFH.
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SFH of a trinity

It follows that

SFH(S3 − FGV ,LGV ), SFH(S3 − FGE ,LGE ), SFH(S3 − FGR ,LGR )

all have dimension given by magic number.
Same # Z summands, but arranged in different polytopes!

SFH

( )
∼= SFH

( )
∼= SFH

( )
.
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6 Further details

31 / 44



Polytopes from hypergraphs

What are these polytopes arising in contact topology & Floer homology
of (MG,LG)?

Back to graph theory: Combinatorial theory of polytopes
associated to graphs & hypergraphs (Postnikov, Kálmán).

Consider hypergraphs.
A graph has edges — each edge joins two vertices.
A hypergraph has hyperedges — each hyperedge joins many
vertices.

Definition
A hypergraph is a pair (V ,E), where V is a set of vertices and E is a
set of hyperedges. Each hyperedge is a nonempty subset of V .

Hypergraphs ∼ bipartite graphs:
A hypergraph (V ,E) can be drawn as a bipartite graph Bip(V ,E).
A bipartite graph can be considered as a hypergraph (in 2 ways).
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Hypertrees in hypergraphs

a b

c

Bip(V ,E)
E = {a,b, c}

a b

c

Spanning tree, hypertree f
(f (a), f (b), f (c)) = (1,0,2)

Consider spanning trees in a hypergraph (V ,E).

Definition
A hypertree in (V ,E) is a function f : E → N0 such that there exists a
spanning tree in Bip(V ,E) with degree f (e) + 1 at each e ∈ E.

When (V ,E) a graph, hypertrees = trees: choose edges with f (e) = 1.
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The hypertree polytope

A hypertree f : E −→ N0 can be regarded as a point of ZE .

Let Q(V ,E) = {f ∈ ZE | f is a hypertree of (V ,E) }.

Theorem (Postnikov 2009, Kálmán 2013)
Q(V ,E) consists of a magic number of points, forming the lattice points
of a convex polytope in RE .

a b

c

Bip(V ,E)
E = {a,b, c}

a b

c

Spanning tree, hypertree f
(f (a), f (b), f (c)) = (1,0,2)

(0, 0, 3)

(3, 0, 0) (0, 3, 0)

(1, 0, 2)

7 hypertrees
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Hypertree polytopes and contact structures

This polytope reappears as the Euler classes of tight contact
structures on (MG,LG) and the Z summands of SFH(MG,LG).

Proofs are constructive: we obtain explicit bijections

{contact structures on (MGR ,LGR )}
∼=

{hypertrees on (E ,R)}
∼=

{Z summands of SFH(MGR ,LGR )}.
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2 Knots and links and 3-manifolds

3 Contact geometry

4 Floer homology

5 Polytopes

6 Further details
Classification of contact structures
Computing contact invariants
Details of Heegaard Floer homology
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Proof of classification of contact structures

Theorem (Kálmán–M.)
The number of isotopy classes of tight contact structures on
(S3 − FG,LG) is given by ρ, the magic number of the trinity.

Proof ideas:

1 S3 − FG can be cut into two 3-balls by |R| convex discs Di in the
complementary regions of G

2 A choice of dividing set Γi on each Di determines at most one tight
contact structure on (S3 − FG,LG).

3 A spanning tree T representing a hypertree yields a dividing set
on each Di by taking the boundary of a ribbon.

4 Analyse bypasses (small contact isotopies) across the discs Di
between the two 3-balls, use a gluing theorem of Honda to prove
no overtwisted discs exist — contact structures are tight.

5 Kálmán’s previously showed there are ρ hypertrees; show two
spanning trees representing same hypertree produce isotopic
contact structures.
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Contact structures on trinities

Consider complements of tubular neighbourhood of G:

D0

D1 D2

D3
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Contact structures on trinities

Now just take one side of the plane:
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Contact structures on trinities

A spanning tree in (E ,R)
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Contact structures on trinities

Now round corners and consider dividing set: it is a neighbourhood of
tree, hence connected, so gives tight 3-balls.
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Contact invariants of sutured manifold trinities

What about contact invariants of these contact structures in SFH?
We showed there is one tight contact structure ξ for each Z-summand
of SFH, and c(ξ) is known to lie in this summand.

Theorem (Kálmán–M.)
c(ξ) generates the appropriate Z summand of SFH(MG,LG).

Proof uses Honda–Kazez–Matić TQFT map on SFH:
Each contact structure on (MG,LG) includes into the standard tight
contact structure on S3.
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Rough idea of Heegaard Floer homology

Very rough idea of Heegaard Floer homology (of closed 3-manifold M):

Take a Heegaard decomposition (Σ, α, β) of M.
I Σ a closed surface of genus g
I α = {α1, . . . , αg}, β = {β1, . . . , βg} Heegaard curves.

Consider the 2g-dimensional symmetric product Symg Σ and the
g-dimensional tori given by Tα = α1 × · · · × αg and
Tβ = β1 × · · · × βg in Symg Σ.
Form a chain complex generated by intersection points Tα ∩ Tβ
Consider holomorphic curves in Symg Σ i.e. u : S → Symg Σ
satisfying Cauchy–Riemann equations, where S is a Riemann
surface.
For x,y ∈ Tα ∩ Tβ, consider holomorphic curves “from" x “to" y in
Symg Σ
Such curves which are suitably rigid give a boundary operator ∂
and ∂2 = 0.
ĤF (M) is the homology of this complex and is an invariant of M
(independent of all other choices).
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Thanks for listening!
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