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Standing assumptions:
manifolds are C> smooth, compact, connected, oriented
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contact geometry.

Contact geometry is:

® A type of geometric structure (contact structure) on a manifold
Pure (obscure?) differential geometry
Symplectic geometry’s sibling

L]
L]
® Connected to lots of fields of mathematics and physics
L]

In 3 dimensions, actually very combinatorial

Roughly a contact category consists of:
e Objects = contact structures on/near a surface S
¢ Morphisms = contact structures on S x [0, 1]
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Contact geometry

Definition
A contact form on a manifold M is a 1-form « such that
a A (da)" is a volume form.

o Cf SympleCtiC forms (closed 2-form w s.t. w™ volume form)
e Contact forms only exist in odd dimension
e ¢ :=kera is a codimension-1 plane field



Contact structures

Frobenius theorem:
® aA(da)” # 0 means



Contact structures

Frobenius theorem:
* aA(da)" #0means ¢ is maximally non-integrable



Contact structures

Frobenius theorem:
* aA(da)" #0means ¢ is maximally non-integrable

* any submanifold S ¢ M?"*! tangent to ¢ must have
dimension < n



Contact structures

Frobenius theorem:
* aA(da)" #0means ¢ is maximally non-integrable
* any submanifold S ¢ M?"*! tangent to ¢ must have

dimension < n
Definition
A contact structure ¢ on M?"t' js a maximally non-integrable
codimension-1 plane field.



Contact structures

Frobenius theorem:
* aA(da)" #0means ¢ is maximally non-integrable

* any submanifold S ¢ M?"*! tangent to ¢ must have
dimension < n

Definition
A contact structure € on M?™1 is a maximally non-integrable
codimension-1 plane field.

¢ In 3 dimensions, there is no surface tangent to &.
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Examples

In R3, take o = dz — y dx, & = span {9y, 0x + ¥z}

In S3 = unit quaternions, take &, = span {ix, jx}.
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Equivalence of contact structures

The two examples on R3 are in fact
equivalent/contactomorphic.

Definition

A contactomorphism (My,&1) — (Mo, &2) is a diffeomorphism
f: M1 — Mg such that f*§1 = &o.

In fact all contact manifolds are locally contactomorphic — no
“contact curvature".

Theorem (Darboux 1882; 3D version)

Given any M3, and p € M, there exist coordinates x, y, z near
p so that o = dz — y dx.
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Symmetries of contact structures

Contact structures have more symmetry than you might think!
Definition

A contact vector field is a vector field whose flow preserves &.

Theorem
There is a bijective correspondence

{Contact v. fields on (M, &)} <«+— {Smooth fns M — R}
X — a(X)

Moreover, “a deformation of £ is equivalent to £":
Theorem (Gray stability theorem 1959)

Let & be a smooth family (an isotopy) of contact structures on
M. Then there is an isotopy of diffeomorphisms y;: M — M
such that y.&q = & for all t.
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Contact structures on 3-manifolds

Q: Does any given (ioseq) 3-manifold M have a contact structure?
A: Yes. (Martinet 1971) — from Heegaard decomposition.

Q: How many contact structures does M have?

A: oo, since non-integrability is an open condition.

Q: How many isofopy classes of contact structures are there?

A: oo a Lutz twist (Lutz 1970s) modifies £ near an embedded
simple closed curve and changes the homotopy class of &.

Theorem (Lutz-Martinet)

Every (co-oriented) 2-plane field on M is homotopic to a contact
structure.

However, such contact structures are usually overtwisted.
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Overtwisted contact geometry

Definition
An overtwisted contact structure is one that contains a specific

contact disc called an overtwisted disc.
A non-overtwisted contact structure is called tight.

Theorem (Eliashberg 1989)
{ Overtwisted cont. str'son M } ~ { 2-plane fields on M }
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Tight contact structures on 3-manifolds

Q: How many isotopy classes of tight contact structures does M
have?

Some known answers: If Mis...

S83: 1. (Biashberg 1991)

B® with tight boundary: 1.

Irreducible with Hg(/\/l) 75 0: > 1 (Gabai-Eliashberg-W. Thurston 1990s)
Mi#M,: number on My x number on Mb. (colin 2001)
Toroidal: co. (Honda-Kazez-Mati¢ 2002)

Irreducible and atoroidal: finitely many. (coiin-giroux-Honda 2003)
P+#P, P = Poincaré homology sphere: 0. (einyre-tonda 1s99)
L(p, q): complicated & known! (Honda 2000, Giroux 2001)

Complement of Seifert surface of special alternating link:
complicated & known! (kaman-w. 2017)
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Surfaces in contact 3-manifolds

Definition
The characteristic foliation on an embedded surface S is the
1-dimensional singular foliation given by TS N €.

2
dz

A

A

=
XA/

Roughly, F determines the germ of £ near S.
Definition (Giroux 1991)

An embedded surface S in a contact 3-manifold is convex if
there is a contact vector field X transverse to S.
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Convex surfaces (Giroux 1991)

Draw S horizontal, X vertical. Colour £’s sides black and white.

R, : where black side faces up. R_ : where white side faces up.
Definition
The dividing set T is where £ is vertical: T = {p € S: X(p) € &}.

I is a smooth embedded 1-manifold transverse to F
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Convex surface theory

Giroux (1991) showed that, amazingly:

e Any embedded surface in M is C* close to a convex
surface.

e Fis adapted to I': has an area-expanding flow on S\I'

e |f 7' is another foliation adapted to I then there is a small
isotopy of S in M making the characteristic foliation 7.

Moral

A contact structure near an embedded surface in a contact
3-manifold is described by the isotopy class of the dividing set.

3D contact topology is very discrete / combinatorial!
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Convex surfaces with boundary

If S has boundary, we require S be tangent to ¢ (Legendrian).

Two convex surfaces may meet along a Legendrian corner.

Dividing sets interleave along a corner.

The corner can be rounded; the dividing set behaves as shown.
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Interepreting dividing sets

Dividing sets detect overtwistedness near a surface!

Theorem (Giroux’s criterion, )

The contact structure near S(# S?) is overtwisted iff T contains
a contractible closed curve.

Theorem (Giroux’s criterion, Il)

The contact structure near S ~ S? s overtwisted iff T consists
of more than one curve.
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The contact category
Let S be a surface, F C 0S a set of alternating signed points.

Definition (The contact category C(S, F))

Objects are:
® [sotopy classes of tight dividing sets T on S with T = F
¢ A single* object « for overtwisted dividing sets.
Morphisms o] — [['1] are:

* jsotopy classes of tight contact structures on S x [0, 1] with
boundary conditions shown

* A single morphism Oir; r,; for OT contact structures.



The contact category

Definition (The contact category C(S, F) (cont.))

e Composition [[o] 9 [r1] ¥ [r,]: stack & and &;.
® [dentity [I| — [I]: the I-invariant structure on S x 1.

Esf

AS
\
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An example

Take (S, F) = (D?, 6 points).
5 tight objects:

O 00O O

e=-2
Morphisms?
Proposition
There exists a morphism [['o] — [I'1] iff they have the same
Euler class e(l'g) = e(I'1).
Definition (Euler class)
e(I") = e(¢r)[S] = x(R+) — x(R-)
SoC(S,F)=1].C(S,F,e).
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An example (cont.)

Morphisms @ — @ ?

A B® with tight boundary: so 1 tight morphism.
e Bypass

Complete set of morphisms (petween tight objects):
0,1

0
A 0,By @ 0, By A
é) AN é,
&@);@\3

0,1 0.Byp 0,1
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Bypass triangles

A bypass morphism is a morphism made by
adding a bypass to a convex surface.

Theorem (Colin, Honda)

Every morphism in C(S, F) is a composition of bypass
morphisms.

Bypass morphisms form bypass triangles.
The composition of two is zero/overtwisted. Byp ®\Byp

Composition of all three “has homotopy class —1". @ @

Huang 2014



Two bypasses form an overtwisted disc




An octahedron

In C(D?, 8 points, e = 1) the tight objects and bypass
morphisms are:



An octahedron

In C(D?, 8 points, e = 1) the tight objects and bypass
morphisms are:

Source: Ken Baker’s Sketches of Topology
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Triangulated structure

A contact category C(S, F, e) has many of the properties of a
triangulated category.

Theorem (Honda?, M.)

© Mor(x,T) and Mor(T, «) are trivial.

® Any triple of morphisms I e r—x«—Tisa bypass
triangle.

® If a triple of morphisms is isomorphic to a bypass triangle,
then it is a bypass triangle.

@ Any upper cap diagram, with all morphisms arising from
bypass triangles, can be completed to an octahedron
diagram.
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Distinguished triangles

Fr— T




Grothendieck group

The Z, Grothendieck group K(C) of C is the free Z,-module on
objects modulo the relation

X+Y+Z=0when X - Y — Z — X s bypass triangle.



Grothendieck group

The Z, Grothendieck group K(C) of C is the free Z,-module on
objects modulo the relation

X+Y+Z=0when X - Y — Z — X s bypass triangle.
Theorem (Honda?, M.)

K(C(S,F)) = SFH(S x S',F x §")

where SFH(M,T) is the sutured Floer homology of the sutured
3-manifold (M, T).
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A strand algebra is made up of diagrams like this:

¢

They do not look like contact geometry!

And yet they are...
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a #(ar) = as
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Strands never go down.



Let’s all go up the strand

Z: an oriented interval.
a=(a; <--- < ap): asetof pointson Z.

Definition

An unconstrained strand diagram is a triple (S, T, ¢), where
S, T Caand ¢: S — T is a non-decreasing bijection, x < ¢(x).

But we draw it as a diagram.

I

a3 ¢:{a1, a2} — {az, as}
a #(ar) = as
as Qb(aZ) = ap

Strands never go down.

We can do the same with several intervals Z = (£, ..., Z)).
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Multiplication: the name of the game

Multiply strand diagrams by composition, if you can (else 0).

AV

Except if a Reidemeister 2 move simplifies diagram. Then 0.

Al
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Differentiators gonna differentiate

The differential operator 0 resolves each crossing.

P

Again, Reidemeister 2 means 0. “Crossings resolve efficiently."

Definition/lemma

The unconstrained strand algebra A(Z,a) is the Z, differential
graded algebra generated by strand diagrams.
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Join the points a on the intervals Z in pairs by a matching M.
The data Z = (Z,a, M) is called an arc diagram.”

¢ ¢
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Constraining strand diagrams

Join the points a on the intervals Z in pairs by a matching M.
The data Z = (Z,a, M) is called an arc diagram.”

Prohibit strand diagrams from beginning at paired points! Or
ending!

Such strand diagrams are Z-constrained.

"Conditions apply.
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strand can be added at a iff one can also be added at a.
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Symmetrising strands

Observation

If D is Z-constrained and a, & are paired, then a horizontal
strand can be added at a iff one can also be added at a.

Dotted horizontal strands denote a sum over both choices.

¢

A diagram is symmetrised if all horizontal strands are dotted.
Definition

The strand algebra A(Z2) is the sub-DGA of A(Z,a) generated
by symmetrised Z-constrained diagrams.
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Quadrangulated surfaces

Arc diagrams correspond to quadrangulated surfaces:
® a compact oriented surface with boundary ¥
e with alternating signed points F on 9%, and
¢ properly embedded arcs in (X, F) cutting X into squares

— -

+ - o ———
3

— -

L@ ©



An isomorphism

On quadrangulated surface (X, Q), a natural class of “basic"
dividing sets generates a full subcategory C(X, Q) of C(X, F).
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An isomorphism

On quadrangulated surface (X, Q), a natural class of “basic"
dividing sets generates a full subcategory C(X, Q) of C(X, F).

/
(] \k

Theorem (M.)

There is an isomorphism of Z»-algebras
H(A(Z)) = CA(%L, Q),

where
e the arc diagram Z corresponds to quadrangulated (X, Q)
* H(A(Z2)) is the homology of A(Z)
e CA(X, Q) is the category algebra of C(X, Q).
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Corollary

The contact category algebra CA(X, Q) has an A, structure.

Theorem (M.)

The A, structure on CA(X, Q) can be given explicitly in terms
of bypasses or strands.
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Conjecture (Proved for discs by Honda—Tian, 2016)

The universal cover of C(X, F) embeds into the homotopy
category of bounded chain complexes of finitely generated
projective left H(A(Z))-modules.
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of various types of manifolds, all involving words like:
Holomorphic curves, PDEs, symplectic structures, almost complex structures, moduli spaces, Fredholm theory,
chain complex generated by asymptotics, Reeb orbits, differential counting holomorphic curves,

“infinite-dimensional Morse theory", “homology of the loop space", “quantum cup product”,
Gromov, Witten, Floer, Eliashberg, Givental, Hofer, Ozsvath, Szabo, Lipshitz, D. Thurston, ...

Heegaard Floer homology is a powerful set of invariants of
3-manifolds, knots, links... (oszvath-szabs, 2004)

¢ The Grothendieck group K(C(S, F)) is isomorphic to
sutured Floer homology wunasz 2008, the version for sutured
manifolds.

e Bordered Floer homology (ipshitz-0zsvath-b. Thurston 2014y CONStructs
various A..-*-modules over the strands algebra



Thanks!

Thanks for listening!
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