The algebra and topology of contact categories

Daniel V. Mathews

Monash University Daniel.Mathews@monash.edu

University of Melbourne 23 July 2018

• Tell you what a contact category is.

- Tell you what a contact category is.
- Tell you some of the properties of contact categories.
- Argue that they are elementary but interesting things.

- Tell you what a contact category is.
- Tell you some of the properties of contact categories.
- Argue that they are elementary but interesting things.
- Mention some interesting connections:
 - A_{∞} algebras
 - strand algebras
 - Floer homology
 - . . .

- Tell you what a contact category is.
- Tell you some of the properties of contact categories.
- Argue that they are elementary but interesting things.
- Mention some interesting connections:
 - A_{∞} algebras
 - strand algebras
 - Floer homology
 - . . .

Standing assumptions:

manifolds are \mathcal{C}^∞ smooth, compact, connected, oriented

Section 1: What is contact geometry?

What is a contact category?

The *contact* in "contact category" refers to 3-dimensional contact geometry.

The *contact* in "contact category" refers to 3-dimensional contact geometry.

Contact geometry is:

- A type of geometric structure (contact structure) on a manifold
- Pure (obscure?) differential geometry

The *contact* in "contact category" refers to 3-dimensional contact geometry.

Contact geometry is:

- A type of geometric structure (contact structure) on a manifold
- Pure (obscure?) differential geometry
- Symplectic geometry's sibling
- Connected to lots of fields of mathematics and physics
- In 3 dimensions, actually very combinatorial

The *contact* in "contact category" refers to 3-dimensional contact geometry.

Contact geometry is:

- A type of geometric structure (contact structure) on a manifold
- Pure (obscure?) differential geometry
- Symplectic geometry's sibling
- Connected to lots of fields of mathematics and physics
- In 3 dimensions, actually very combinatorial

Roughly a contact category consists of:

- Objects = contact structures on/near a surface S
- Morphisms = contact structures on *S* × [0, 1]

Contact geometry

Definition

A contact form on a manifold M is a 1-form α such that $\alpha \wedge (d\alpha)^n$ is a volume form.

Contact geometry

Definition

A contact form on a manifold M is a 1-form α such that $\alpha \wedge (\mathbf{d}\alpha)^n$ is a volume form.

- Cf symplectic forms (closed 2-form ω s.t. ωⁿ volume form)
- Contact forms only exist in odd dimension
- $\xi := \ker \alpha$ is a codimension-1 plane field

Contact structures

Frobenius theorem:

• $\alpha \wedge (\mathbf{d}\alpha)^n \neq 0$ means

• $\alpha \wedge (d\alpha)^n \neq 0$ means ξ is maximally non-integrable

- $\alpha \wedge (d\alpha)^n \neq 0$ means ξ is maximally non-integrable
 - any submanifold S ⊂ M²ⁿ⁺¹ tangent to ξ must have dimension ≤ n

- $\alpha \wedge (d\alpha)^n \neq 0$ means ξ is maximally non-integrable
 - any submanifold S ⊂ M²ⁿ⁺¹ tangent to ξ must have dimension ≤ n

Definition

A contact structure ξ on M^{2n+1} is a maximally non-integrable codimension-1 plane field.

- $\alpha \wedge (d\alpha)^n \neq 0$ means ξ is maximally non-integrable
 - any submanifold S ⊂ M²ⁿ⁺¹ tangent to ξ must have dimension ≤ n

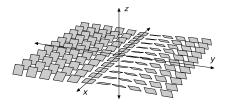
Definition

A contact structure ξ on M^{2n+1} is a maximally non-integrable codimension-1 plane field.

• In 3 dimensions, there is no surface tangent to ξ .

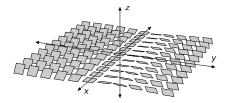
Examples

In \mathbb{R}^3 , take $\alpha = dz - y \, dx$, $\xi = \text{span} \{\partial_y, \partial_x + y \partial_z\}$

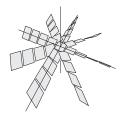


Examples

In \mathbb{R}^3 , take $\alpha = dz - y \, dx$, $\xi = \text{span} \{\partial_y, \partial_x + y \partial_z\}$

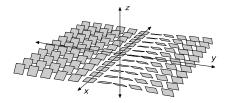


Also in \mathbb{R}^3 , take $\alpha = dz + r^2 d\theta$, $\xi = \text{span} \{\partial_r, r^2 \partial_z - \partial_\theta\}$

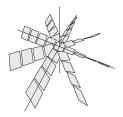


Examples

In \mathbb{R}^3 , take $\alpha = dz - y \, dx$, $\xi = \text{span} \{\partial_y, \partial_x + y \partial_z\}$



Also in \mathbb{R}^3 , take $\alpha = dz + r^2 d\theta$, $\xi = \text{span} \{\partial_r, r^2 \partial_z - \partial_\theta\}$



In S^3 = unit quaternions, take ξ_x = span {ix, jx }.

Equivalence of contact structures

The two examples on \mathbb{R}^3 are in fact equivalent/contactomorphic.

The two examples on \mathbb{R}^3 are in fact equivalent/contactomorphic.

Definition

A contactomorphism $(M_1, \xi_1) \rightarrow (M_2, \xi_2)$ is a diffeomorphism $f: M_1 \longrightarrow M_2$ such that $f_*\xi_1 = \xi_2$.

The two examples on \mathbb{R}^3 are in fact equivalent/contactomorphic.

Definition

A contactomorphism $(M_1, \xi_1) \rightarrow (M_2, \xi_2)$ is a diffeomorphism $f: M_1 \longrightarrow M_2$ such that $f_*\xi_1 = \xi_2$.

In fact all contact manifolds are locally contactomorphic — no "contact curvature".

Theorem (Darboux 1882; 3D version)

Given any M^3 , α and $p \in M$, there exist coordinates x, y, z near p so that $\alpha = dz - y dx$.

Contact structures have more symmetry than you might think!

Contact structures have more symmetry than you might think!

Definition

A contact vector field is a vector field whose flow preserves ξ .

Contact structures have more symmetry than you might think!

Definition

A contact vector field is a vector field whose flow preserves ξ .

Theorem There is a bijective correspondence $\{Contact v. \text{ fields on } (M, \xi)\} \iff \{Smooth \text{ fns } M \to \mathbb{R}\}$ $X \mapsto \alpha(X)$

Contact structures have more symmetry than you might think!

Definition

A contact vector field is a vector field whose flow preserves ξ .

Theorem There is a bijective correspondence

 $\begin{array}{ccc} \{\textit{Contact v. fields on } (\textit{M}, \xi)\} & \longleftrightarrow & \{\textit{Smooth fns } \textit{M} \rightarrow \mathbb{R}\} \\ \textit{X} & \mapsto & \alpha(\textit{X}) \end{array}$

Moreover, "a deformation of ξ is equivalent to ξ ":

Theorem (Gray stability theorem 1959)

Let ξ_t be a smooth family (an isotopy) of contact structures on M. Then there is an isotopy of diffeomorphisms $\psi_t \colon M \to M$ such that $\psi_{t*}\xi_0 = \xi_t$ for all t.

Q: Does any given (closed) 3-manifold *M* have a contact structure?

Q: Does any given (closed) 3-manifold *M* have a contact structure?

A: Yes. (Martinet 1971) — from Heegaard decomposition.

- Q: Does any given (closed) 3-manifold *M* have a contact structure?
- A: Yes. (Martinet 1971) from Heegaard decomposition.
- Q: How many contact structures does *M* have?

- Q: Does any given (closed) 3-manifold *M* have a contact structure?
- A: Yes. (Martinet 1971) from Heegaard decomposition.
- Q: How many contact structures does *M* have?
- A: ∞ , since non-integrability is an open condition.

- Q: Does any given (closed) 3-manifold M have a contact structure?
- A: Yes. (Martinet 1971) from Heegaard decomposition.
- Q: How many contact structures does *M* have?
- A: ∞ , since non-integrability is an open condition.
- Q: How many isotopy classes of contact structures are there?

- Q: Does any given (closed) 3-manifold M have a contact structure?
- A: Yes. (Martinet 1971) from Heegaard decomposition.
- Q: How many contact structures does *M* have?
- A: ∞ , since non-integrability is an open condition.
- Q: How many isotopy classes of contact structures are there?

A: ∞ : a *Lutz twist* (Lutz 1970s) modifies ξ near an embedded simple closed curve and changes the homotopy class of ξ .

- Q: Does any given (closed) 3-manifold *M* have a contact structure?
- A: Yes. (Martinet 1971) from Heegaard decomposition.
- Q: How many contact structures does *M* have?
- A: ∞ , since non-integrability is an open condition.
- Q: How many isotopy classes of contact structures are there?

A: ∞ : a *Lutz twist* (Lutz 1970s) modifies ξ near an embedded simple closed curve and changes the homotopy class of ξ .

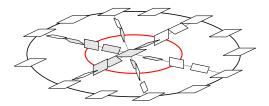
Theorem (Lutz-Martinet)

Every (co-oriented) 2-plane field on M is homotopic to a contact structure.

However, such contact structures are usually overtwisted.

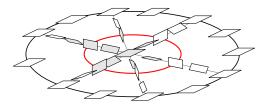
Definition

An overtwisted contact structure is one that contains a specific contact disc called an overtwisted disc. A non-overtwisted contact structure is called tight.



Definition

An overtwisted contact structure is one that contains a specific contact disc called an overtwisted disc. A non-overtwisted contact structure is called tight.



Theorem (Eliashberg 1989)

 $\{ \text{ Overtwisted cont. str's on } M \} \simeq \{ \text{ 2-plane fields on } M \}$

Q: How many *isotopy classes* of *tight* contact structures does *M* have?

Some known answers:

Q: How many *isotopy classes* of *tight* contact structures does *M* have?

- S³: 1. (Eliashberg 1991)
- B^3 with tight boundary: 1.

Q: How many *isotopy classes* of *tight* contact structures does *M* have?

- S³: 1. (Eliashberg 1991)
- B^3 with tight boundary: 1.
- Irreducible with $H_2(M)
 eq 0: \geq 1$ (Gabai–Eliashberg–W. Thurston 1990s)

Q: How many *isotopy classes* of *tight* contact structures does *M* have?

- S³: 1. (Eliashberg 1991)
- B^3 with tight boundary: 1.
- Irreducible with $H_2(M)
 eq 0: \geq 1$ (Gabai–Eliashberg–W. Thurston 1990s)
- $M_1 \# M_2$: number on $M_1 \times$ number on M_2 . (Colin 2001)

Q: How many *isotopy classes* of *tight* contact structures does *M* have?

- S³: 1. (Eliashberg 1991)
- B^3 with tight boundary: 1.
- Irreducible with $H_2(M)
 eq 0: \geq 1$ (Gabai–Eliashberg–W. Thurston 1990s)
- $M_1 \# M_2$: number on $M_1 \times$ number on M_2 . (Colin 2001)
- Toroidal: ∞ . (Honda-Kazez-Matić 2002)

Q: How many *isotopy classes* of *tight* contact structures does *M* have?

- S³: 1. (Eliashberg 1991)
- B^3 with tight boundary: 1.
- Irreducible with $H_2(M)
 eq 0: \geq 1$ (Gabai–Eliashberg–W. Thurston 1990s)
- $M_1 \# M_2$: number on $M_1 \times$ number on M_2 . (Colin 2001)
- Toroidal: ∞ . (Honda-Kazez-Matić 2002)
- Irreducible and atoroidal: finitely many. (Colin-Giroux-Honda 2003)

Q: How many *isotopy classes* of *tight* contact structures does *M* have?

- S³: 1. (Eliashberg 1991)
- B^3 with tight boundary: 1.
- Irreducible with $H_2(M)
 eq 0: \geq 1$ (Gabai–Eliashberg–W. Thurston 1990s)
- $M_1 \# M_2$: number on $M_1 \times$ number on M_2 . (Colin 2001)
- Toroidal: ∞ . (Honda-Kazez-Matić 2002)
- Irreducible and atoroidal: finitely many. (Colin-Giroux-Honda 2003)
- $P \# \overline{P}$, P = Poincaré homology sphere: 0. (Etnyre-Honda 1999)

Q: How many *isotopy classes* of *tight* contact structures does *M* have?

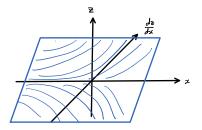
- S³: 1. (Eliashberg 1991)
- B^3 with tight boundary: 1.
- Irreducible with $H_2(M)
 eq 0: \geq 1$ (Gabai–Eliashberg–W. Thurston 1990s)
- $M_1 \# M_2$: number on $M_1 \times$ number on M_2 . (Colin 2001)
- Toroidal: ∞ . (Honda-Kazez-Matić 2002)
- Irreducible and atoroidal: finitely many. (Colin-Giroux-Honda 2003)
- $P\#\overline{P}, P = Poincaré homology sphere: 0. (Etnyre-Honda 1999)$
- L(p, q): complicated & known! (Honda 2000, Giroux 2001)

Q: How many *isotopy classes* of *tight* contact structures does *M* have?

- S³: 1. (Eliashberg 1991)
- B^3 with tight boundary: 1.
- Irreducible with $H_2(M)
 eq 0: \geq 1$ (Gabai–Eliashberg–W. Thurston 1990s)
- $M_1 \# M_2$: number on $M_1 \times$ number on M_2 . (Colin 2001)
- Toroidal: ∞ . (Honda-Kazez-Matić 2002)
- Irreducible and atoroidal: finitely many. (Colin-Giroux-Honda 2003)
- $P\#\overline{P}, P = Poincaré homology sphere: 0. (Etnyre-Honda 1999)$
- L(p, q): complicated & known! (Honda 2000, Giroux 2001)
- Complement of Seifert surface of special alternating link: complicated & known! (Kálmán–M. 2017)

Definition

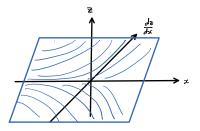
The characteristic foliation on an embedded surface *S* is the 1-dimensional singular foliation given by $TS \cap \xi$.



Roughly, \mathcal{F} determines the germ of ξ near S.

Definition

The characteristic foliation on an embedded surface S is the 1-dimensional singular foliation given by $TS \cap \xi$.



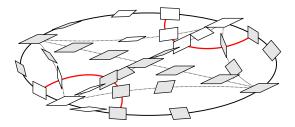
Roughly, \mathcal{F} determines the germ of ξ near S.

Definition (Giroux 1991)

An embedded surface S in a contact 3-manifold is convex if there is a contact vector field X transverse to S.

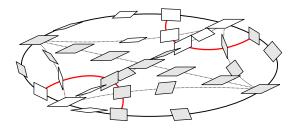
Convex surfaces (Giroux 1991)

Draw *S* horizontal, *X* vertical. Colour ξ 's sides black and white.



Convex surfaces (Giroux 1991)

Draw *S* horizontal, *X* vertical. Colour ξ 's sides black and white.



 R_+ : where black side faces up. R_- : where white side faces up.

Definition

The dividing set Γ is where ξ is vertical: $\Gamma = \{p \in S : X(p) \in \xi\}.$

 Γ is a smooth embedded 1-manifold transverse to ${\cal F}$

Convex surface theory

Giroux (1991) showed that, amazingly:

• Any embedded surface in *M* is *C*[∞] close to a convex surface.

Giroux (1991) showed that, amazingly:

- Any embedded surface in *M* is C^{∞} close to a convex surface.
- \mathcal{F} is adapted to Γ : has an area-expanding flow on $S \setminus \Gamma$
- If *F*' is another foliation adapted to Γ then there is a small isotopy of *S* in *M* making the characteristic foliation *F*'.

Giroux (1991) showed that, amazingly:

- Any embedded surface in *M* is C^{∞} close to a convex surface.
- \mathcal{F} is adapted to Γ : has an area-expanding flow on $S \setminus \Gamma$
- If *F*' is another foliation adapted to Γ then there is a small isotopy of *S* in *M* making the characteristic foliation *F*'.

Moral

A contact structure near an embedded surface in a contact 3-manifold is described by the isotopy class of the dividing set.

3D contact topology is very discrete / combinatorial!

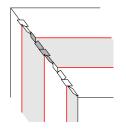
Convex surfaces with boundary

If *S* has boundary, we require ∂S be tangent to ξ (*Legendrian*).

Convex surfaces with boundary

If *S* has boundary, we require ∂S be tangent to ξ (*Legendrian*).

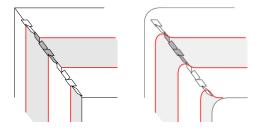
Two convex surfaces may meet along a Legendrian corner.



Dividing sets interleave along a corner.

If *S* has boundary, we require ∂S be tangent to ξ (*Legendrian*).

Two convex surfaces may meet along a Legendrian corner.



Dividing sets interleave along a corner.

The corner can be rounded; the dividing set behaves as shown.

Interepreting dividing sets

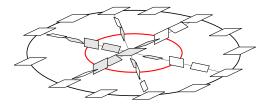
Dividing sets detect overtwistedness near a surface!

Interepreting dividing sets

Dividing sets detect overtwistedness near a surface!

Theorem (Giroux's criterion, I)

The contact structure near $S(\neq S^2)$ is overtwisted iff Γ contains a contractible closed curve.

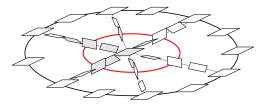


Interepreting dividing sets

Dividing sets detect overtwistedness near a surface!

Theorem (Giroux's criterion, I)

The contact structure near $S(\neq S^2)$ is overtwisted iff Γ contains a contractible closed curve.



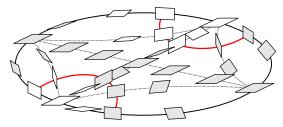
Theorem (Giroux's criterion, II)

The contact structure near $S \approx S^2$ is overtwisted iff Γ consists of more than one curve.

Section 2: What is a contact category?

Let *S* be a surface, $F \subset \partial S$ a set of alternating signed points.

Let *S* be a surface, $F \subset \partial S$ a set of alternating signed points.



Let *S* be a surface, $F \subset \partial S$ a set of alternating signed points.

Let S be a surface, $F \subset \partial S$ a set of alternating signed points.

Definition (The contact category C(S, F))

Objects are:

• Isotopy classes of tight dividing sets Γ on S with $\partial \Gamma = F$

Morphisms $[\Gamma_0] \longrightarrow [\Gamma_1]$ are:

• isotopy classes of tight contact structures on $S \times [0, 1]$ with boundary conditions shown

Let S be a surface, $F \subset \partial S$ a set of alternating signed points.

Definition (The contact category C(S, F))

Objects are:

- Isotopy classes of tight dividing sets Γ on S with $\partial \Gamma = F$
- A single* object * for overtwisted dividing sets.

Morphisms $[\Gamma_0] \longrightarrow [\Gamma_1]$ are:

• isotopy classes of tight contact structures on $S \times [0, 1]$ with boundary conditions shown

Let S be a surface, $F \subset \partial S$ a set of alternating signed points.

Definition (The contact category C(S, F))

Objects are:

- Isotopy classes of tight dividing sets Γ on S with $\partial \Gamma = F$
- A single* object * for overtwisted dividing sets.

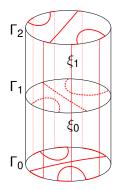
Morphisms $[\Gamma_0] \longrightarrow [\Gamma_1]$ are:

• isotopy classes of tight contact structures on $S \times [0, 1]$ with boundary conditions shown

• A single morphism $\mathbf{0}_{[\Gamma_0],[\Gamma_1]}$ for OT contact structures.

Definition (The contact category C(S, F) (cont.))

- Composition $[\Gamma_0] \xrightarrow{[\xi_0]} [\Gamma_1] \xrightarrow{[\xi_1]} [\Gamma_2]$: stack ξ_0 and ξ_1 .
- Identity $[\Gamma] \rightarrow [\Gamma]$: the I-invariant structure on $S \times I$.



Take $(S, F) = (D^2, 6 \text{ points}).$

Take $(S, F) = (D^2, 6 \text{ points})$. 5 tight objects:

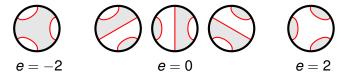
Take $(S, F) = (D^2, 6 \text{ points})$. 5 tight objects:

Morphisms?

Proposition

There exists a morphism $[\Gamma_0] \rightarrow [\Gamma_1]$ iff they have the same Euler class $e(\Gamma_0) = e(\Gamma_1)$.

Take $(S, F) = (D^2, 6 \text{ points})$. 5 tight objects:

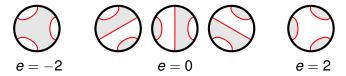


Morphisms?

Proposition

There exists a morphism $[\Gamma_0] \rightarrow [\Gamma_1]$ iff they have the same Euler class $e(\Gamma_0) = e(\Gamma_1)$.

Take $(S, F) = (D^2, 6 \text{ points})$. 5 tight objects:



Morphisms?

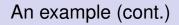
Proposition

There exists a morphism $[\Gamma_0] \rightarrow [\Gamma_1]$ iff they have the same Euler class $e(\Gamma_0) = e(\Gamma_1)$.

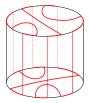
Definition (Euler class) $e(\Gamma) = e(\xi_{\Gamma})[S] = \chi(R_{+}) - \chi(R_{-})$

So $\mathcal{C}(S, F) = \bigsqcup_{e} \mathcal{C}(S, F, e)$.

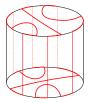




A B^3 with tight boundary: so 1 tight morphism.

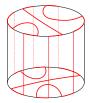


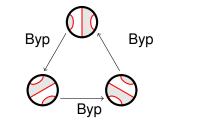
- A B^3 with tight boundary: so 1 tight morphism.
 - Bypass



- A B^3 with tight boundary: so 1 tight morphism.
 - Bypass

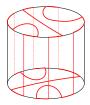
Complete set of morphisms (between tight objects):

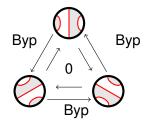




- A B^3 with tight boundary: so 1 tight morphism.
 - Bypass

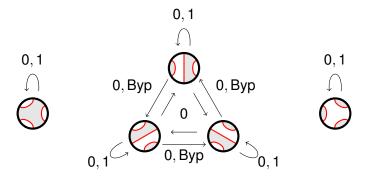
Complete set of morphisms (between tight objects):

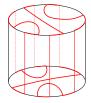




- A B^3 with tight boundary: so 1 tight morphism.
 - Bypass

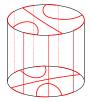
Complete set of morphisms (between tight objects):



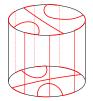


Section 3: Properties of contact categories

A *bypass morphism* is a morphism made by adding a bypass to a convex surface.



A *bypass morphism* is a morphism made by adding a bypass to a convex surface.



Theorem (Colin, Honda)

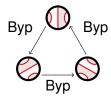
Every morphism in C(S, F) is a composition of bypass morphisms.

A *bypass morphism* is a morphism made by adding a bypass to a convex surface.

Theorem (Colin, Honda)

Every morphism in C(S, F) is a composition of bypass morphisms.

Bypass morphisms form bypass triangles.



A *bypass morphism* is a morphism made by adding a bypass to a convex surface.

Theorem (Colin, Honda)

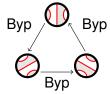
Huang 2014

Every morphism in C(S, F) is a composition of bypass morphisms.

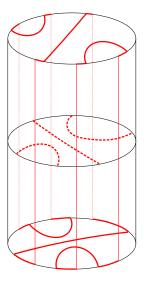
Bypass morphisms form bypass triangles.

The composition of two is zero/overtwisted.

Composition of all three "has homotopy class -1".



Two bypasses form an overtwisted disc

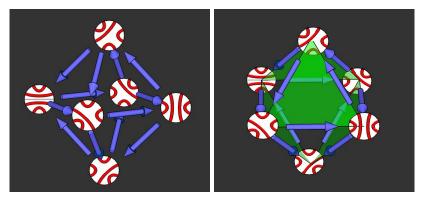


An octahedron

In $C(D^2, 8 \text{ points}, e = 1)$ the tight objects and bypass morphisms are:

An octahedron

In $C(D^2, 8 \text{ points}, e = 1)$ the tight objects and bypass morphisms are:



Source: Ken Baker's Sketches of Topology

Triangulated structure

A contact category C(S, F, e) has many of the properties of a *triangulated category*.

A contact category C(S, F, e) has many of the properties of a *triangulated category*.

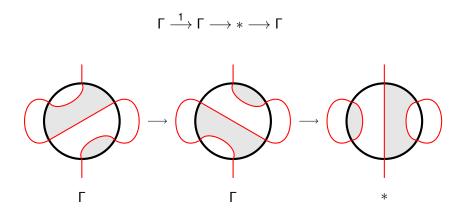
Theorem (Honda?, M.)

- **1** Mor($*, \Gamma$) and Mor($\Gamma, *$) are trivial.
- 2 Any triple of morphisms $\Gamma \xrightarrow{1} \Gamma \longrightarrow * \longrightarrow \Gamma$ is a bypass triangle.
- **3** If a triple of morphisms is isomorphic to a bypass triangle, then it is a bypass triangle.
- Any upper cap diagram, with all morphisms arising from bypass triangles, can be completed to an octahedron diagram.

Distinguished triangles

 $\Gamma \stackrel{1}{\longrightarrow} \Gamma \longrightarrow * \longrightarrow \Gamma$

Distinguished triangles



The \mathbb{Z}_2 *Grothendieck group* $K(\mathcal{C})$ of \mathcal{C} is the free \mathbb{Z}_2 -module on objects modulo the relation

X + Y + Z = 0 when $X \rightarrow Y \rightarrow Z \rightarrow X$ is bypass triangle.

The \mathbb{Z}_2 *Grothendieck group* $K(\mathcal{C})$ of \mathcal{C} is the free \mathbb{Z}_2 -module on objects modulo the relation

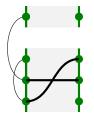
X + Y + Z = 0 when $X \rightarrow Y \rightarrow Z \rightarrow X$ is bypass triangle.

Theorem (Honda?, M.)

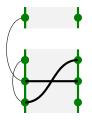
 $K(\mathcal{C}(S,F)) \cong SFH(S \times S^1, F \times S^1)$

where $SFH(M, \Gamma)$ is the sutured Floer homology of the sutured 3-manifold (M, Γ) .

Section 4: Let's all go down the strand A strand algebra is made up of diagrams like this:



A strand algebra is made up of diagrams like this:



They do not look like contact geometry!

And yet they are...

- Z: an oriented interval.
- $\mathbf{a} = (a_1 < \cdots < a_n)$: a set of points on Z.

- Z: an oriented interval.
- $\mathbf{a} = (a_1 < \cdots < a_n)$: a set of points on Z.

Definition

An *unconstrained strand diagram* is a triple (S, T, ϕ) , where $S, T \subseteq a$ and $\phi: S \to T$ is a non-decreasing bijection, $x \le \phi(x)$.

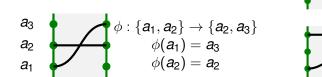
Z: an oriented interval.

$$\mathbf{a} = (a_1 < \cdots < a_n)$$
: a set of points on Z.

Definition

An *unconstrained strand diagram* is a triple (S, T, ϕ) , where $S, T \subseteq \mathbf{a}$ and $\phi: S \to T$ is a non-decreasing bijection, $x \le \phi(x)$.

But we draw it as a diagram.



Strands never go down.

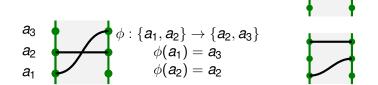
Z: an oriented interval.

$$\mathbf{a} = (a_1 < \cdots < a_n)$$
: a set of points on Z.

Definition

An *unconstrained strand diagram* is a triple (S, T, ϕ) , where $S, T \subseteq \mathbf{a}$ and $\phi \colon S \to T$ is a non-decreasing bijection, $x \le \phi(x)$.

But we draw it as a diagram.

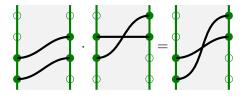


Strands never go down.

We can do the same with several intervals $\mathbf{Z} = (Z_1, \dots, Z_l)$.

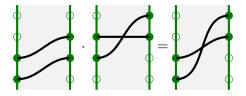
Multiplication: the name of the game

Multiply strand diagrams by composition, if you can (else 0).

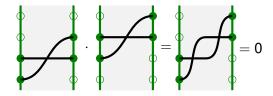


Multiplication: the name of the game

Multiply strand diagrams by composition, if you can (else 0).

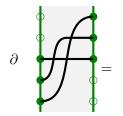


Except if a Reidemeister 2 move simplifies diagram. Then 0.

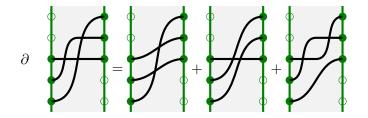


The differential operator ∂ resolves each crossing.

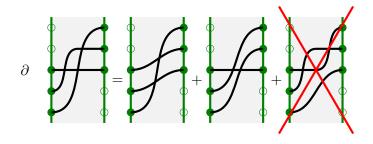
The differential operator ∂ resolves each crossing.



The differential operator ∂ resolves each crossing.

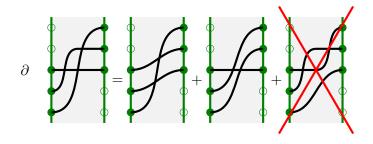


The differential operator ∂ resolves each crossing.



Again, Reidemeister 2 means 0. "Crossings resolve efficiently."

The differential operator ∂ resolves each crossing.



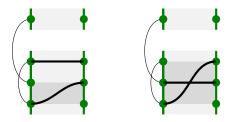
Again, Reidemeister 2 means 0. "Crossings resolve efficiently."

Definition/lemma

The *unconstrained strand algebra* $\mathcal{A}(\mathbf{Z}, \mathbf{a})$ is the \mathbb{Z}_2 differential graded algebra generated by strand diagrams.

Constraining strand diagrams

Join the points **a** on the intervals **Z** in pairs by a matching *M*. The data $\mathcal{Z} = (\mathbf{Z}, \mathbf{a}, M)$ is called an *arc diagram*.^{*}

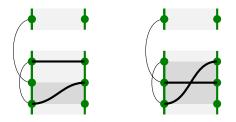


^{*}Conditions apply.

Constraining strand diagrams

Join the points **a** on the intervals **Z** in pairs by a matching *M*. The data $\mathcal{Z} = (\mathbf{Z}, \mathbf{a}, M)$ is called an *arc diagram*.^{*}

Prohibit strand diagrams from beginning at paired points! Or ending!

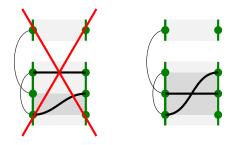


Conditions apply.

Constraining strand diagrams

Join the points **a** on the intervals **Z** in pairs by a matching *M*. The data $\mathcal{Z} = (\mathbf{Z}, \mathbf{a}, M)$ is called an *arc diagram*.^{*}

Prohibit strand diagrams from beginning at paired points! Or ending!

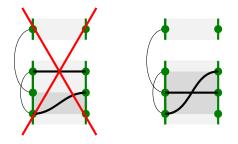


Conditions apply.

Constraining strand diagrams

Join the points **a** on the intervals **Z** in pairs by a matching *M*. The data $\mathcal{Z} = (\mathbf{Z}, \mathbf{a}, M)$ is called an *arc diagram*.^{*}

Prohibit strand diagrams from beginning at paired points! Or ending!

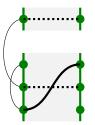


Such strand diagrams are \mathcal{Z} -constrained.

^{*}Conditions apply.

Observation

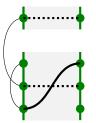
If *D* is \mathcal{Z} -constrained and *a*, *a*' are paired, then a horizontal strand can be added at *a* iff one can also be added at *a*.



Observation

If *D* is \mathcal{Z} -constrained and *a*, *a*' are paired, then a horizontal strand can be added at *a* iff one can also be added at *a*.

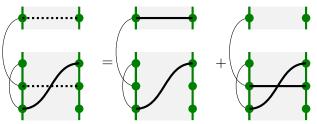
Dotted horizontal strands denote a sum over both choices.



Observation

If *D* is \mathcal{Z} -constrained and *a*, *a*' are paired, then a horizontal strand can be added at *a* iff one can also be added at *a*.

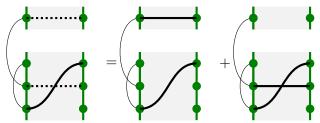
Dotted horizontal strands denote a sum over both choices.



Observation

If *D* is \mathcal{Z} -constrained and *a*, *a*' are paired, then a horizontal strand can be added at *a* iff one can also be added at *a*.

Dotted horizontal strands denote a sum over both choices.

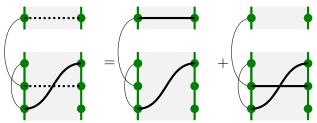


A diagram is *symmetrised* if all horizontal strands are dotted.

Observation

If *D* is \mathcal{Z} -constrained and *a*, *a*' are paired, then a horizontal strand can be added at *a* iff one can also be added at *a*.

Dotted horizontal strands denote a sum over both choices.



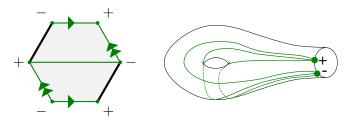
A diagram is *symmetrised* if all horizontal strands are dotted.

Definition

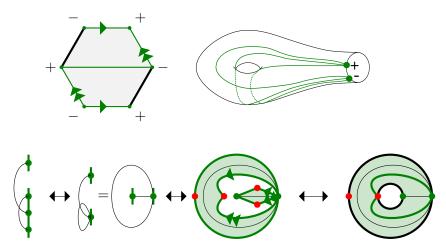
The strand algebra $\mathcal{A}(\mathcal{Z})$ is the sub-DGA of $\mathcal{A}(\mathbf{Z}, \mathbf{a})$ generated by symmetrised \mathcal{Z} -constrained diagrams.

- a compact oriented surface with boundary Σ
- with alternating signed points F on $\partial \Sigma$, and
- properly embedded arcs in (Σ, F) cutting Σ into squares

- a compact oriented surface with boundary Σ
- with alternating signed points F on $\partial \Sigma$, and
- properly embedded arcs in (Σ, F) cutting Σ into squares



- a compact oriented surface with boundary Σ
- with alternating signed points F on $\partial \Sigma$, and
- properly embedded arcs in (Σ, F) cutting Σ into squares



An isomorphism

On quadrangulated surface (Σ, Q) , a natural class of "basic" dividing sets generates a full subcategory $C(\Sigma, Q)$ of $C(\Sigma, F)$.

An isomorphism

On quadrangulated surface (Σ, Q) , a natural class of "basic" dividing sets generates a full subcategory $C(\Sigma, Q)$ of $C(\Sigma, F)$.

Theorem (M.)

There is an isomorphism of \mathbb{Z}_2 -algebras

```
H(\mathcal{A}(\mathcal{Z})) \cong CA(\Sigma, Q),
```

where

- the arc diagram \mathcal{Z} corresponds to quadrangulated (Σ, Q)
- $H(\mathcal{A}(\mathcal{Z}))$ is the homology of $\mathcal{A}(\mathcal{Z})$
- CA(Σ, Q) is the category algebra of C(Σ, Q).

Theorem (Kadeishvili 1980)

The homology of a DGA has a natural A_{∞} algebra structure.

Theorem (Kadeishvili 1980)

The homology of a DGA has a natural A_{∞} algebra structure.

Corollary

The contact category algebra $CA(\Sigma, Q)$ has an A_{∞} structure.

Theorem (Kadeishvili 1980)

The homology of a DGA has a natural A_∞ algebra structure.

Corollary

The contact category algebra $CA(\Sigma, Q)$ has an A_{∞} structure.

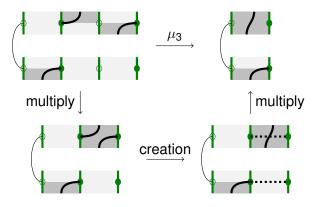
Theorem (M.)

The A_{∞} structure on $CA(\Sigma, Q)$ can be given explicitly in terms of bypasses or strands.

A_{∞} mechanics

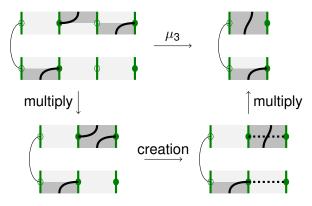


A_∞ mechanics



What about the full category $C(\Sigma, F)$?

A_∞ mechanics



What about the full category $C(\Sigma, F)$?

Conjecture (Proved for discs by Honda–Tian, 2016)

The universal cover of $C(\Sigma, F)$ embeds into the homotopy category of bounded chain complexes of finitely generated projective left $H(\mathcal{A}(\mathcal{Z}))$ -modules.

"Floer homology" describes a large family of powerful invariants of various types of manifolds

"Floer homology" describes a large family of powerful invariants of various types of manifolds, all involving words like:

"Floer homology" describes a large family of powerful invariants of various types of manifolds, all involving words like:

Holomorphic curves, PDEs, symplectic structures, almost complex structures, moduli spaces, Fredholm theory, chain complex generated by asymptotics, Reeb orbits, differential counting holomorphic curves, "infinite-dimensional Morse theory", "homology of the loop space", "quantum cup product", Gromov, Witten, Floer, Eliashberg, Givental, Hofer, Ozsváth, Szabó, Lipshitz, D. Thurston, ...

"Floer homology" describes a large family of powerful invariants of various types of manifolds, all involving words like:

Holomorphic curves, PDEs, symplectic structures, almost complex structures, moduli spaces, Fredholm theory, chain complex generated by asymptotics, Reeb orbits, differential counting holomorphic curves, "infinite-dimensional Morse theory", "homology of the loop space", "quantum cup product", Gromov, Witten, Floer, Eliashberg, Givental, Hofer, Ozsváth, Szabó, Lipshitz, D. Thurston, ...

Heegaard Floer homology is a powerful set of invariants of 3-manifolds, knots, links... (Oszváth–Szabó, 2004)

"Floer homology" describes a large family of powerful invariants of various types of manifolds, all involving words like:

Holomorphic curves, PDEs, symplectic structures, almost complex structures, moduli spaces, Fredholm theory, chain complex generated by asymptotics, Reeb orbits, differential counting holomorphic curves, "infinite-dimensional Morse theory", "homology of the loop space", "quantum cup product", Gromov, Witten, Floer, Eliashberg, Givental, Hofer, Ozsváth, Szabó, Lipshitz, D. Thurston, ...

Heegaard Floer homology is a powerful set of invariants of 3-manifolds, knots, links... (Oszváth–Szabó, 2004)

- The Grothendieck group $K(\mathcal{C}(S, F))$ is isomorphic to sutured Floer homology (Juhász 2006), the version for sutured manifolds.
- Bordered Floer homology (Lipshitz–Ozsváth–D. Thurston 2014) constructs various A_{∞} -*-modules over the strands algebra

Thanks for listening!

References:

- D. V. Mathews, A-infinity algebras, strand algebras, and contact categories, arXiv 1803.06455
- Tamás Kálmán and D. V. Mathews, Tight contact structures on Seifert surface complements arxiv 1709.10304
- D. V. Mathews, Strand algebras and contact categories accepted for publication in Geom. & Top., arXiv 1608.02710
- D. V. Mathews, Strings, fermions and the topology of curves on annuli (2014) arXiv 1410.2141
- D. V. Mathews, Contact topology and holomorphic invariants via elementary combinatorics arXiv 1212.1759.
- D. V. Mathews and E. Schoenfeld, Dimensionally-reduced sutured Floer homology as a string homology (2012) arXiv 1210.7394.
- D. V. Mathews, Itsy bitsy topological field theory (2012) arXiv 1201.4584.
- D. V. Mathews, Sutured TQFT, torsion, and tori (2011) arXiv 1102.3450.
- D. V. Mathews, Sutured Floer homology, sutured TQFT and non-commutative QFT Alg. & Geom. Top. 11 (2011) 2681–2739, arXiv 1006.5433
- D. V. Mathews, Chord diagrams, contact-topological quantum field theory, and contact categories Alg. & Geom. Top. 10 (2010) 2091–2189, arxiv 0903.1453