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Overview

The point of this talk is to:

• Tell you what a contact category is.
• Tell you some of the properties of contact categories.
• Argue that they are elementary but interesting things.
• Mention some interesting connections:

• A∞ algebras
• strand algebras
• Floer homology
• . . .

Standing assumptions:
manifolds are C∞ smooth, compact, connected, oriented
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What is a contact category?

The contact in “contact category" refers to 3-dimensional
contact geometry.

Contact geometry is:
• A type of geometric structure (contact structure) on a manifold
• Pure (obscure?) differential geometry
• Symplectic geometry’s sibling
• Connected to lots of fields of mathematics and physics
• In 3 dimensions, actually very combinatorial

Roughly a contact category consists of:
• Objects = contact structures on/near a surface S
• Morphisms = contact structures on S × [0,1]
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Contact geometry

Definition
A contact form on a manifold M is a 1-form α such that
α ∧ (dα)n is a volume form.

• Cf symplectic forms (closed 2-form ω s.t. ωn volume form)

• Contact forms only exist in odd dimension
• ξ := kerα is a codimension-1 plane field
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Contact structures

Frobenius theorem:
• α ∧ (dα)n 6= 0 means

ξ is maximally non-integrable
• any submanifold S ⊂ M2n+1 tangent to ξ must have

dimension ≤ n

Definition
A contact structure ξ on M2n+1 is a maximally non-integrable
codimension-1 plane field.

• In 3 dimensions, there is no surface tangent to ξ.
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Examples

In R3, take α = dz − y dx , ξ = span {∂y , ∂x + y∂z}

Also in R3, take α = dz + r2 dθ, ξ = span {∂r , r2∂z − ∂θ}

In S3 = unit quaternions, take ξx = span {ix , jx}.
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Equivalence of contact structures

The two examples on R3 are in fact
equivalent/contactomorphic.

Definition
A contactomorphism (M1, ξ1)→ (M2, ξ2) is a diffeomorphism
f : M1 −→ M2 such that f∗ξ1 = ξ2.

In fact all contact manifolds are locally contactomorphic — no
“contact curvature".

Theorem (Darboux 1882; 3D version)

Given any M3, α and p ∈ M, there exist coordinates x , y , z near
p so that α = dz − y dx.
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Symmetries of contact structures

Contact structures have more symmetry than you might think!

Definition
A contact vector field is a vector field whose flow preserves ξ.

Theorem
There is a bijective correspondence

{Contact v. fields on (M, ξ)} ←→ {Smooth fns M → R}
X 7→ α(X )

Moreover, “a deformation of ξ is equivalent to ξ":

Theorem (Gray stability theorem 1959)

Let ξt be a smooth family (an isotopy) of contact structures on
M. Then there is an isotopy of diffeomorphisms ψt : M → M
such that ψt∗ξ0 = ξt for all t .
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Contact structures on 3-manifolds

Q: Does any given (closed) 3-manifold M have a contact structure?

A: Yes. (Martinet 1971) — from Heegaard decomposition.

Q: How many contact structures does M have?

A:∞, since non-integrability is an open condition.

Q: How many isotopy classes of contact structures are there?

A:∞: a Lutz twist (Lutz 1970s) modifies ξ near an embedded
simple closed curve and changes the homotopy class of ξ.

Theorem (Lutz-Martinet)

Every (co-oriented) 2-plane field on M is homotopic to a contact
structure.

However, such contact structures are usually overtwisted.
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Overtwisted contact geometry

Definition
An overtwisted contact structure is one that contains a specific
contact disc called an overtwisted disc.
A non-overtwisted contact structure is called tight.

Theorem (Eliashberg 1989){
Overtwisted cont. str’s on M

}
'
{

2-plane fields on M
}
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Tight contact structures on 3-manifolds

Q: How many isotopy classes of tight contact structures does M
have?

Some known answers:

If M is...
• S3: 1. (Eliashberg 1991)

• B3 with tight boundary: 1.
• Irreducible with H2(M) 6= 0: ≥ 1 (Gabai–Eliashberg–W. Thurston 1990s)

• M1#M2: number on M1 × number on M2. (Colin 2001)

• Toroidal: ∞. (Honda–Kazez–Matić 2002)

• Irreducible and atoroidal: finitely many. (Colin–Giroux–Honda 2003)

• P#P, P = Poincaré homology sphere: 0. (Etnyre–Honda 1999)

• L(p,q): complicated & known! (Honda 2000, Giroux 2001)

• Complement of Seifert surface of special alternating link:
complicated & known! (Kálmán–M. 2017)
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• Irreducible and atoroidal: finitely many. (Colin–Giroux–Honda 2003)

• P#P, P = Poincaré homology sphere: 0. (Etnyre–Honda 1999)

• L(p,q): complicated & known! (Honda 2000, Giroux 2001)

• Complement of Seifert surface of special alternating link:
complicated & known! (Kálmán–M. 2017)



Tight contact structures on 3-manifolds

Q: How many isotopy classes of tight contact structures does M
have?

Some known answers: If M is...
• S3: 1. (Eliashberg 1991)

• B3 with tight boundary: 1.
• Irreducible with H2(M) 6= 0: ≥ 1 (Gabai–Eliashberg–W. Thurston 1990s)

• M1#M2: number on M1 × number on M2. (Colin 2001)

• Toroidal: ∞. (Honda–Kazez–Matić 2002)
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Surfaces in contact 3-manifolds

Definition
The characteristic foliation on an embedded surface S is the
1-dimensional singular foliation given by TS ∩ ξ.

Roughly, F determines the germ of ξ near S.

Definition (Giroux 1991)

An embedded surface S in a contact 3-manifold is convex if
there is a contact vector field X transverse to S.
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Convex surfaces (Giroux 1991)

Draw S horizontal, X vertical. Colour ξ’s sides black and white.

R+ : where black side faces up. R− : where white side faces up.

Definition
The dividing set Γ is where ξ is vertical: Γ = {p ∈ S : X (p) ∈ ξ}.

Γ is a smooth embedded 1-manifold transverse to F
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Convex surface theory

Giroux (1991) showed that, amazingly:
• Any embedded surface in M is C∞ close to a convex

surface.

• F is adapted to Γ: has an area-expanding flow on S\Γ
• If F ′ is another foliation adapted to Γ then there is a small

isotopy of S in M making the characteristic foliation F ′.

Moral
A contact structure near an embedded surface in a contact
3-manifold is described by the isotopy class of the dividing set.

3D contact topology is very discrete / combinatorial!
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Convex surfaces with boundary

If S has boundary, we require ∂S be tangent to ξ (Legendrian).

Two convex surfaces may meet along a Legendrian corner.

Dividing sets interleave along a corner.

The corner can be rounded; the dividing set behaves as shown.
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Interepreting dividing sets

Dividing sets detect overtwistedness near a surface!

Theorem (Giroux’s criterion, I)

The contact structure near S( 6= S2) is overtwisted iff Γ contains
a contractible closed curve.

Theorem (Giroux’s criterion, II)

The contact structure near S ≈ S2 is overtwisted iff Γ consists
of more than one curve.
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The contact category

Let S be a surface, F ⊂ ∂S a set of alternating signed points.

Definition (The contact category C(S,F ))

Objects are:
• Isotopy classes of tight dividing sets Γ on S with ∂Γ = F

• A single* object ∗ for overtwisted dividing sets.

Morphisms [Γ0] −→ [Γ1] are:
• isotopy classes of tight contact structures on S × [0,1] with

boundary conditions shown

Γ1

Γ0

• A single morphism 0[Γ0],[Γ1] for OT contact structures.
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The contact category

Definition (The contact category C(S,F ) (cont.))

• Composition [Γ0]
[ξ0]→ [Γ1]

[ξ1]→ [Γ2]: stack ξ0 and ξ1.
• Identity [Γ]→ [Γ]: the I-invariant structure on S × I.

ξ0

ξ1

Γ0

Γ1

Γ2



An example

Take (S,F ) = (D2,6 points).

5 tight objects:

e = −2 e = 0 e = 2

Morphisms?

Proposition

There exists a morphism [Γ0]→ [Γ1] iff they have the same
Euler class e(Γ0) = e(Γ1).

Definition (Euler class)

e(Γ) = e(ξΓ)[S] = χ(R+)− χ(R−)

So C(S,F ) =
⊔

e C(S,F ,e).
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An example (cont.)

Morphisms → ?

A B3 with tight boundary: so 1 tight morphism.
• Bypass

Complete set of morphisms (between tight objects):

0,1

0,1

0,1

0,

Byp

0,

Byp

0,

Byp

0

0,1

0,1
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An example (cont.)

Morphisms → ?
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Section 3:
Properties of contact categories



Bypass triangles

A bypass morphism is a morphism made by
adding a bypass to a convex surface.

Theorem (Colin, Honda)

Every morphism in C(S,F ) is a composition of bypass
morphisms.

Bypass morphisms form bypass triangles.

The composition of two is zero/overtwisted.

Composition of all three “has homotopy class −1".
Huang 2014
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Two bypasses form an overtwisted disc



An octahedron

In C(D2,8 points,e = 1) the tight objects and bypass
morphisms are:

Source: Ken Baker’s Sketches of Topology
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Triangulated structure

A contact category C(S,F ,e) has many of the properties of a
triangulated category.

Theorem (Honda?, M.)

1 Mor(∗, Γ) and Mor(Γ, ∗) are trivial.

2 Any triple of morphisms Γ
1−→ Γ −→ ∗ −→ Γ is a bypass

triangle.
3 If a triple of morphisms is isomorphic to a bypass triangle,

then it is a bypass triangle.
4 Any upper cap diagram, with all morphisms arising from

bypass triangles, can be completed to an octahedron
diagram.
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Distinguished triangles

Γ
1−→ Γ −→ ∗ −→ Γ

Γ ∗Γ
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Grothendieck group

The Z2 Grothendieck group K (C) of C is the free Z2-module on
objects modulo the relation

X + Y + Z = 0 when X → Y → Z → X is bypass triangle.

Theorem (Honda?, M.)

K (C(S,F )) ∼= SFH(S × S1,F × S1)

where SFH(M, Γ) is the sutured Floer homology of the sutured
3-manifold (M, Γ).
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Section 4:
Let’s all go down the strand



Strand algebra

A strand algebra is made up of diagrams like this:

They do not look like contact geometry!

And yet they are...
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Let’s all go up the strand

Z : an oriented interval.
a = (a1 < · · · < an): a set of points on Z .

Definition
An unconstrained strand diagram is a triple (S,T , φ), where
S,T ⊆ a and φ : S → T is a non-decreasing bijection, x ≤ φ(x).

But we draw it as a diagram.

a1

a2

a3 φ : {a1,a2} → {a2,a3}
φ(a1) = a3
φ(a2) = a2

Strands never go down.

We can do the same with several intervals Z = (Z1, . . . ,Zl).
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Multiplication: the name of the game

Multiply strand diagrams by composition, if you can (else 0).

· =

Except if a Reidemeister 2 move simplifies diagram. Then 0.

· = = 0
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Differentiators gonna differentiate

The differential operator ∂ resolves each crossing.

∂
=

+ +

Again, Reidemeister 2 means 0. “Crossings resolve efficiently."

Definition/lemma
The unconstrained strand algebra A(Z,a) is the Z2 differential
graded algebra generated by strand diagrams.



Differentiators gonna differentiate

The differential operator ∂ resolves each crossing.

∂
=

+ +

Again, Reidemeister 2 means 0. “Crossings resolve efficiently."

Definition/lemma
The unconstrained strand algebra A(Z,a) is the Z2 differential
graded algebra generated by strand diagrams.



Differentiators gonna differentiate

The differential operator ∂ resolves each crossing.

∂
= + +

Again, Reidemeister 2 means 0. “Crossings resolve efficiently."

Definition/lemma
The unconstrained strand algebra A(Z,a) is the Z2 differential
graded algebra generated by strand diagrams.



Differentiators gonna differentiate

The differential operator ∂ resolves each crossing.

∂
= + +

Again, Reidemeister 2 means 0. “Crossings resolve efficiently."

Definition/lemma
The unconstrained strand algebra A(Z,a) is the Z2 differential
graded algebra generated by strand diagrams.



Differentiators gonna differentiate

The differential operator ∂ resolves each crossing.

∂
= + +

Again, Reidemeister 2 means 0. “Crossings resolve efficiently."

Definition/lemma
The unconstrained strand algebra A(Z,a) is the Z2 differential
graded algebra generated by strand diagrams.



Constraining strand diagrams

Join the points a on the intervals Z in pairs by a matching M.
The data Z = (Z,a,M) is called an arc diagram.*

Prohibit strand diagrams from beginning at paired points! Or
ending!

Such strand diagrams are Z-constrained.

*Conditions apply.
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Symmetrising strands

Observation
If D is Z-constrained and a,a′ are paired, then a horizontal
strand can be added at a iff one can also be added at a.

Dotted horizontal strands denote a sum over both choices.

= +

A diagram is symmetrised if all horizontal strands are dotted.

Definition
The strand algebra A(Z) is the sub-DGA of A(Z,a) generated
by symmetrised Z-constrained diagrams.



Symmetrising strands

Observation
If D is Z-constrained and a,a′ are paired, then a horizontal
strand can be added at a iff one can also be added at a.

Dotted horizontal strands denote a sum over both choices.

= +

A diagram is symmetrised if all horizontal strands are dotted.

Definition
The strand algebra A(Z) is the sub-DGA of A(Z,a) generated
by symmetrised Z-constrained diagrams.



Symmetrising strands

Observation
If D is Z-constrained and a,a′ are paired, then a horizontal
strand can be added at a iff one can also be added at a.

Dotted horizontal strands denote a sum over both choices.

= +

A diagram is symmetrised if all horizontal strands are dotted.

Definition
The strand algebra A(Z) is the sub-DGA of A(Z,a) generated
by symmetrised Z-constrained diagrams.



Symmetrising strands

Observation
If D is Z-constrained and a,a′ are paired, then a horizontal
strand can be added at a iff one can also be added at a.

Dotted horizontal strands denote a sum over both choices.

= +

A diagram is symmetrised if all horizontal strands are dotted.

Definition
The strand algebra A(Z) is the sub-DGA of A(Z,a) generated
by symmetrised Z-constrained diagrams.



Symmetrising strands

Observation
If D is Z-constrained and a,a′ are paired, then a horizontal
strand can be added at a iff one can also be added at a.

Dotted horizontal strands denote a sum over both choices.

= +

A diagram is symmetrised if all horizontal strands are dotted.

Definition
The strand algebra A(Z) is the sub-DGA of A(Z,a) generated
by symmetrised Z-constrained diagrams.



Quadrangulated surfaces

Arc diagrams correspond to quadrangulated surfaces:

• a compact oriented surface with boundary Σ
• with alternating signed points F on ∂Σ, and
• properly embedded arcs in (Σ,F ) cutting Σ into squares

−
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+
-
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An isomorphism

On quadrangulated surface (Σ,Q), a natural class of “basic"
dividing sets generates a full subcategory C(Σ,Q) of C(Σ,F ).

Theorem (M.)

There is an isomorphism of Z2-algebras

H(A(Z)) ∼= CA(Σ,Q),

where
• the arc diagram Z corresponds to quadrangulated (Σ,Q)

• H(A(Z)) is the homology of A(Z)

• CA(Σ,Q) is the category algebra of C(Σ,Q).
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A∞!

Theorem (Kadeishvili 1980)

The homology of a DGA has a natural A∞ algebra structure.

Corollary

The contact category algebra CA(Σ,Q) has an A∞ structure.

Theorem (M.)

The A∞ structure on CA(Σ,Q) can be given explicitly in terms
of bypasses or strands.
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A∞ mechanics

µ3

multiply

creation

multiply

What about the full category C(Σ,F )?

Conjecture (Proved for discs by Honda–Tian, 2016)

The universal cover of C(Σ,F ) embeds into the homotopy
category of bounded chain complexes of finitely generated
projective left H(A(Z))-modules.
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Floer homology

“Floer homology" describes a large family of powerful invariants
of various types of manifolds

, all involving words like:

Holomorphic curves, PDEs, symplectic structures, almost complex structures, moduli spaces, Fredholm theory,
chain complex generated by asymptotics, Reeb orbits, differential counting holomorphic curves,

“infinite-dimensional Morse theory", “homology of the loop space", “quantum cup product",
Gromov, Witten, Floer, Eliashberg, Givental, Hofer, Ozsváth, Szabó, Lipshitz, D. Thurston, ...

Heegaard Floer homology is a powerful set of invariants of
3-manifolds, knots, links... (Oszváth–Szabó, 2004)

• The Grothendieck group K (C(S,F )) is isomorphic to
sutured Floer homology (Juhász 2006), the version for sutured
manifolds.

• Bordered Floer homology (Lipshitz–Ozsváth–D. Thurston 2014) constructs
various A∞-*-modules over the strands algebra
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Heegaard Floer homology is a powerful set of invariants of
3-manifolds, knots, links... (Oszváth–Szabó, 2004)

• The Grothendieck group K (C(S,F )) is isomorphic to
sutured Floer homology (Juhász 2006), the version for sutured
manifolds.
• Bordered Floer homology (Lipshitz–Ozsváth–D. Thurston 2014) constructs

various A∞-*-modules over the strands algebra



Thanks!

Thanks for listening!
References:

• D. V. Mathews, A-infinity algebras, strand algebras, and contact categories,
arXiv 1803.06455

• Tamás Kálmán and D. V. Mathews, Tight contact structures on Seifert surface complements
arxiv 1709.10304

• D. V. Mathews, Strand algebras and contact categories
accepted for publication in Geom. & Top., arXiv 1608.02710

• D. V. Mathews, Strings, fermions and the topology of curves on annuli
(2014) arXiv 1410.2141

• D. V. Mathews, Contact topology and holomorphic invariants via elementary combinatorics
arXiv 1212.1759.

• D. V. Mathews and E. Schoenfeld, Dimensionally-reduced sutured Floer homology as a string homology
(2012) arXiv 1210.7394.

• D. V. Mathews, Itsy bitsy topological field theory
(2012) arXiv 1201.4584.

• D. V. Mathews, Sutured TQFT, torsion, and tori
(2011) arXiv 1102.3450.

• D. V. Mathews, Sutured Floer homology, sutured TQFT and non-commutative QFT
Alg. & Geom. Top. 11 (2011) 2681–2739, arXiv 1006.5433

• D. V. Mathews, Chord diagrams, contact-topological quantum field theory, and contact categories
Alg. & Geom. Top. 10 (2010) 2091–2189, arxiv 0903.1453


	Overview
	What is contact geometry?
	Contact geometry

	What is a contact category?
	Let's all go down the strand

