A-polynomials, Ptolemy varieties, and Dehn filling

Janiel V. Mathews joint with Joshua A. Howie and Jessica S. Purcell arxiv:2002.10356

Monash University Daniel.Mathews@monash.edu

University of Melbourne 15 June 2020 This talk is about connections between

- Ptolemy equations (arise in many places, esp. cluster algebras)
- the A-polynomial (a knot invariant)
- hyperbolic geometry (2D and 3D)
- triangulations of manifolds (2D and 3D)
- symplectic geometry, and
- Dehn filling (an operation on 3-manifolds).

Theorem (Claudius Ptolemaeus c. AD 160)

For any cyclic quadrilateral ABCD,

 $AB \cdot CD + BC \cdot AD = AC \cdot BD.$

Theorem (Claudius Ptolemaeus c. AD 160)

For any cyclic quadrilateral ABCD,

 $AB \cdot CD + BC \cdot AD = AC \cdot BD.$

Proof.
$$(a-b)(c-d)+(b-c)(a-d) = (a-c)(b-d).$$

Theorem (Claudius Ptolemaeus c. AD 160)

For any cyclic quadrilateral ABCD,

 $AB \cdot CD + BC \cdot AD = AC \cdot BD.$

Proof. (a-b)(c-d)+(b-c)(a-d) = (a-c)(b-d).

 $\angle ACB = \angle ADB$ means $\arg \frac{b-c}{a-c} = \arg \frac{b-d}{a-d}$.

Theorem (Claudius Ptolemaeus c. AD 160)

For any cyclic quadrilateral ABCD,

 $AB \cdot CD + BC \cdot AD = AC \cdot BD.$

Proof. (a-b)(c-d)+(b-c)(a-d) = (a-c)(b-d). $\angle ACB = \angle ADB$ means $\arg \frac{b-c}{a-c} = \arg \frac{b-d}{a-d}.$ Hence $\arg(b-c)(a-d) = \arg(a-c)(b-d).$

Theorem (Claudius Ptolemaeus c. AD 160)

For any cyclic quadrilateral ABCD,

 $AB \cdot CD + BC \cdot AD = AC \cdot BD.$

Proof.

$$(a-b)(c-d)+(b-c)(a-d)=(a-c)(b-d).$$

 $\angle ACB = \angle ADB$ means $\arg \frac{b-c}{a-c} = \arg \frac{b-d}{a-d}$.

Hence

 $\arg(b-c)(a-d) = \arg(a-c)(b-d).$

Two (hence three) terms above have the same argument, so their lengths sum.

Fix an orientable surface S, n > 0 cusps, $\chi(S) < 0$.

Fix an orientable surface S, n > 0 cusps, $\chi(S) < 0$.

Consider hyperbolic metrics on *S*: they form T-space, $\mathcal{T}_{g,n} \cong \mathbb{R}^{6g-6+2n}$.

Fix an orientable surface *S*, n > 0 cusps, $\chi(S) < 0$.

Consider hyperbolic metrics on *S*: they form T-space, $\mathcal{T}_{g,n} \cong \mathbb{R}^{6g-6+2n}$.

Also consider hyperbolic surfaces decorated by a horocycle at each cusp.

Space of such surfaces forms decorated T-space $\widetilde{T_{g,n}} \cong \mathbb{R}^{6g-6+3n}$.

Fix an orientable surface *S*, n > 0 cusps, $\chi(S) < 0$.

Consider hyperbolic metrics on *S*: they form T-space, $\mathcal{T}_{g,n} \cong \mathbb{R}^{6g-6+2n}$.

Also consider hyperbolic surfaces decorated by a horocycle at each cusp.

Space of such surfaces forms decorated T-space $\widetilde{T_{g,n}} \cong \mathbb{R}^{6g-6+3n}$.

Consider an ideal triangulation of *S*. This requires 6g - 6 + 3n edges.

Each edge *e* of the triangulation has infinite length, but if we truncate at horocycles, the length $I_e \in \mathbb{R}$.

Each edge *e* of the triangulation has infinite length, but if we truncate at horocycles, the length $l_e \in \mathbb{R}$.

The lambda length of *e* is $\lambda_e = e^{\frac{1}{2}l_e}$.

Each edge *e* of the triangulation has infinite length, but if we truncate at horocycles, the length $l_e \in \mathbb{R}$. The lambda length of *e* is $\lambda_e = e^{\frac{1}{2}l_e}$.

Theorem (Penner 1987)

The 6g - 6 + 3n lambda lengths of an ideal triangulation provide a homeomorphism $\widetilde{T_{g,n}} \longrightarrow \mathbb{R}^{6g-6+3n}_+$.

Each edge *e* of the triangulation has infinite length, but if we truncate at horocycles, the length $l_e \in \mathbb{R}$. The lambda length of *e* is $\lambda_e = e^{\frac{1}{2}l_e}$.

Theorem (Penner 1987)

The 6g - 6 + 3n lambda lengths of an ideal triangulation provide a homeomorphism $\widetilde{T_{g,n}} \longrightarrow \mathbb{R}^{6g-6+3n}_+$.

Adjusting a triangulation by a Pachner move / diagonal flip, lambda lengths are related by the Ptolemy relation

$$\lambda_{\mathbf{x}}\lambda_{\mathbf{y}} = \lambda_{\mathbf{a}}\lambda_{\mathbf{c}} + \lambda_{\mathbf{b}}\lambda_{\mathbf{d}}.$$

Each edge *e* of the triangulation has infinite length, but if we truncate at horocycles, the length $l_e \in \mathbb{R}$. The lambda length of *e* is $\lambda_e = e^{\frac{1}{2}l_e}$.

Theorem (Penner 1987)

The 6g - 6 + 3n lambda lengths of an ideal triangulation provide a homeomorphism $\widetilde{T_{g,n}} \longrightarrow \mathbb{R}^{6g-6+3n}_+$.

Adjusting a triangulation by a Pachner move / diagonal flip, lambda lengths are related by the Ptolemy relation

$$\lambda_{\mathbf{X}}\lambda_{\mathbf{Y}} = \lambda_{\mathbf{a}}\lambda_{\mathbf{c}} + \lambda_{\mathbf{b}}\lambda_{\mathbf{d}}.$$

The algebra of the λ_a is full of amazing surprises.

A prototypical example of a cluster algebra (Fomin-Zelevinsky \sim 2000).

Let $K \subset S^3$ be a knot and consider hyperbolic structures (i.e. constant curvature -1 metrics) on the 3-manifold $M = S^3 \setminus K$.

Let $K \subset S^3$ be a knot and consider hyperbolic structures (i.e. constant curvature -1 metrics) on the 3-manifold $M = S^3 \setminus K$.

Provided K prime and not satellite, there is

- a unique complete hyperbolic structure (Mostow rigidity)
- a 1-C-parameter family of hyp. structures (W. Thurston).

Let $K \subset S^3$ be a knot and consider hyperbolic structures (i.e. constant curvature -1 metrics) on the 3-manifold $M = S^3 \setminus K$.

Provided K prime and not satellite, there is

- a unique complete hyperbolic structure (Mostow rigidity)
- a 1-C-parameter family of hyp. structures (W. Thurston).

Work in the upper half space model of hyperbolic space \mathbb{H}^3 .

$$\begin{split} \mathbb{H}^{3} &= \{(x, y, z) \in \mathbb{R}^{3} \colon z > 0\} \\ \text{Metric } ds^{2} &= \frac{dx^{2} + dy^{2} + dz^{2}}{z^{2}} \\ \text{Sphere at infinity } S_{\infty} \\ &= \{z = 0\} \cup \{\infty\} \cong \mathbb{C} \cup \{\infty\} \cong \mathbb{C}P^{1}. \\ \text{Isom}^{+}\mathbb{H}^{3} \cong PSL_{2}\mathbb{C} \cong SL_{2}\mathbb{C}/\{\pm I\}. \\ \text{Acts by Möbius transformations on } S_{\infty} \\ &\pm \begin{bmatrix} a & b \\ c & d \end{bmatrix} \leftrightarrow \left(z \mapsto \frac{az + b}{cz + d}\right). \end{split}$$

If *M* is triangulated, a hyperbolic structure can be constructed by hyperbolic tetrahedra so they fit together in \mathbb{H}^3 .

If *M* is triangulated, a hyperbolic structure can be constructed by hyperbolic tetrahedra so they fit together in \mathbb{H}^3 .

Any hyperbolic structure gives a developing map

$$D: \widetilde{M} \longrightarrow \mathbb{H}^3.$$

This map is $\pi_1(M)$ equivariant, acting on \widetilde{M} by deck transformations and on \mathbb{H}^3 by isometries.

If *M* is triangulated, a hyperbolic structure can be constructed by hyperbolic tetrahedra so they fit together in \mathbb{H}^3 .

Any hyperbolic structure gives a developing map

$$D: \widetilde{M} \longrightarrow \mathbb{H}^3.$$

This map is $\pi_1(M)$ equivariant, acting on \widetilde{M} by deck transformations and on \mathbb{H}^3 by isometries.

Thus we have a holonomy representation

$$\rho \colon \pi_1(M) \longrightarrow \operatorname{Isom}^+ \mathbb{H}^3 = PSL_2\mathbb{C}.$$

If *M* is triangulated, a hyperbolic structure can be constructed by hyperbolic tetrahedra so they fit together in \mathbb{H}^3 .

Any hyperbolic structure gives a developing map

$$D: \widetilde{M} \longrightarrow \mathbb{H}^3.$$

This map is $\pi_1(M)$ equivariant, acting on \widetilde{M} by deck transformations and on \mathbb{H}^3 by isometries.

Thus we have a holonomy representation

$$\rho \colon \pi_1(M) \longrightarrow \operatorname{Isom}^+ \mathbb{H}^3 = PSL_2\mathbb{C}.$$

The peripheral subgroup $\pi_1(\partial M) \cong \mathbb{Z} \times \mathbb{Z}$ has basis given by a longitude \mathfrak{l} & meridian \mathfrak{m} .

Now $\mathfrak{l}, \mathfrak{m} \in \pi_1(\partial M) \cong \mathbb{Z} \times \mathbb{Z}$ commute. So $\rho(\mathfrak{l}), \rho(\mathfrak{m}) \in PSL_2\mathbb{C}$ commute.

Now $\mathfrak{l}, \mathfrak{m} \in \pi_1(\partial M) \cong \mathbb{Z} \times \mathbb{Z}$ commute. So $\rho(\mathfrak{l}), \rho(\mathfrak{m}) \in PSL_2\mathbb{C}$ commute. After conjugation in $PSL_2\mathbb{C}$,

$$\rho(\mathfrak{l}) = \pm \begin{bmatrix} I & * \\ 0 & I^{-1} \end{bmatrix}, \quad \rho(\mathfrak{m}) = \pm \begin{bmatrix} m & * \\ 0 & m^{-1} \end{bmatrix}.$$

Now $\mathfrak{l}, \mathfrak{m} \in \pi_1(\partial M) \cong \mathbb{Z} \times \mathbb{Z}$ commute. So $\rho(\mathfrak{l}), \rho(\mathfrak{m}) \in PSL_2\mathbb{C}$ commute. After conjugation in $PSL_2\mathbb{C}$,

$$\rho(\mathfrak{l}) = \pm \begin{bmatrix} I & * \\ 0 & I^{-1} \end{bmatrix}, \quad \rho(\mathfrak{m}) = \pm \begin{bmatrix} m & * \\ 0 & m^{-1} \end{bmatrix}.$$

Question

What *I*, *m* are possible?

Now $\mathfrak{l}, \mathfrak{m} \in \pi_1(\partial M) \cong \mathbb{Z} \times \mathbb{Z}$ commute. So $\rho(\mathfrak{l}), \rho(\mathfrak{m}) \in PSL_2\mathbb{C}$ commute. After conjugation in $PSL_2\mathbb{C}$,

$$\rho(\mathfrak{l}) = \pm \begin{bmatrix} I & * \\ 0 & I^{-1} \end{bmatrix}, \quad \rho(\mathfrak{m}) = \pm \begin{bmatrix} m & * \\ 0 & m^{-1} \end{bmatrix}.$$

Question

What *I*, *m* are possible?

Answer (Cooper-Culler-Gilet-Long-Shalen 1994)

Those *I*, *m* satisfying the A-polynomial!

 $A_{K}(I,m)=0.$

Ways to calculate the A-polynomial

- Original definition: representation theory / algebraic geometry (CCGLS 1994)
- Hyperbolic geometry (Champanerkar 2003)
- Sophisticated representation theory, Ptolemy varieties (Zickert 2016)
- Hyperbolic geometry + symplectic geometry (Dimofte 2013, HMP 2020).

Pure algebra — no hyperbolic geometry. Consider $SL_2\mathbb{C}$ representations of $\pi_1(M)$ and $\pi_1(\partial M)$.

Pure algebra — no hyperbolic geometry. Consider $SL_2\mathbb{C}$ representations of $\pi_1(M)$ and $\pi_1(\partial M)$. Let $R(M) = \{\text{homomorphisms } \rho \colon \pi_1(M) \longrightarrow SL_2\mathbb{C}\}.$

Pure algebra — no hyperbolic geometry.

Consider $SL_2\mathbb{C}$ representations of $\pi_1(M)$ and $\pi_1(\partial M)$.

Let $R(M) = \{$ homomorphisms $\rho \colon \pi_1(M) \longrightarrow SL_2\mathbb{C} \}.$

For generic $\rho \in R(M)$, the commuting matrices $\rho(\lambda), \rho(\mu)$ are diagonalisable, so can be conjugated to

$$\rho(\lambda) = \begin{bmatrix} I & 0 \\ 0 & I^{-1} \end{bmatrix}, \quad \rho(\mu) = \begin{bmatrix} m & 0 \\ 0 & m^{-1} \end{bmatrix}$$

Pure algebra — no hyperbolic geometry.

Consider $SL_2\mathbb{C}$ representations of $\pi_1(M)$ and $\pi_1(\partial M)$.

Let $R(M) = \{\text{homomorphisms } \rho \colon \pi_1(M) \longrightarrow SL_2\mathbb{C}\}.$

For generic $\rho \in R(M)$, the commuting matrices $\rho(\lambda), \rho(\mu)$ are diagonalisable, so can be conjugated to

$$\rho(\lambda) = \begin{bmatrix} I & 0 \\ 0 & I^{-1} \end{bmatrix}, \quad \rho(\mu) = \begin{bmatrix} m & 0 \\ 0 & m^{-1} \end{bmatrix}$$

The set of all such (I, m) forms a variety.

Take the union of all components which have dimension 1.

This gives a curve in \mathbb{C}^2 whose defining polynomial is $A_{\mathcal{K}}(I, m)$.

Pure algebra — no hyperbolic geometry.

Consider $SL_2\mathbb{C}$ representations of $\pi_1(M)$ and $\pi_1(\partial M)$.

Let $R(M) = \{\text{homomorphisms } \rho \colon \pi_1(M) \longrightarrow SL_2\mathbb{C}\}.$

For generic $\rho \in R(M)$, the commuting matrices $\rho(\lambda), \rho(\mu)$ are diagonalisable, so can be conjugated to

$$\rho(\lambda) = \begin{bmatrix} I & 0 \\ 0 & I^{-1} \end{bmatrix}, \quad \rho(\mu) = \begin{bmatrix} m & 0 \\ 0 & m^{-1} \end{bmatrix}$$

The set of all such (I, m) forms a variety.

Take the union of all components which have dimension 1. This gives a curve in \mathbb{C}^2 whose defining polynomial is $A_{\mathcal{K}}(I, m)$.

Precisely (Cooper-Long 1996): Let $R_U(M) = \{\rho \in R(M) : \rho(\lambda), \rho(\mu)$ both upper triangular}. Every $\rho \in R(M)$ is conjugate to one in $R_U(M)$. Consider the map $\xi : R_U \longrightarrow \mathbb{C}^2$ which takes ρ to the top left entries of $\rho(\lambda)$ and $\rho(\mu)$. After taking components with 1-dimensional Zariski closure, $\xi(R_U)$ defines the A-polynomial.

Pure algebra — no hyperbolic geometry.

Consider $SL_2\mathbb{C}$ representations of $\pi_1(M)$ and $\pi_1(\partial M)$.

Let $R(M) = \{\text{homomorphisms } \rho \colon \pi_1(M) \longrightarrow SL_2\mathbb{C}\}.$

For generic $\rho \in R(M)$, the commuting matrices $\rho(\lambda), \rho(\mu)$ are diagonalisable, so can be conjugated to

$$\rho(\lambda) = \begin{bmatrix} I & 0 \\ 0 & I^{-1} \end{bmatrix}, \quad \rho(\mu) = \begin{bmatrix} m & 0 \\ 0 & m^{-1} \end{bmatrix}$$

The set of all such (I, m) forms a variety.

Take the union of all components which have dimension 1. This gives a curve in \mathbb{C}^2 whose defining polynomial is $A_{\mathcal{K}}(I, m)$.

There is also a $PSL_2\mathbb{C}$ A-polynomial, considering representations into $PSL_2\mathbb{C}$.

Precisely (Cooper-Long 1996): Let $R_U(M) = \{\rho \in R(M) : \rho(\lambda), \rho(\mu)$ both upper triangular}. Every $\rho \in R(M)$ is conjugate to one in $R_U(M)$. Consider the map $\xi : R_U \longrightarrow \mathbb{C}^2$ which takes ρ to the top left entries of $\rho(\lambda)$ and $\rho(\mu)$. After taking components with 1-dimensional Zariski closure, $\xi(R_U)$ defines the A-polynomial.

Approach #2: Hyperbolic geometry

 $\{\text{Hyp ideal tetrahedra}\} \cong \{z \in \mathbb{C} \colon \text{Im } z > 0\}$

Isom⁺ \mathbb{H}^3 acts triply transitively on S_{∞} . \exists ! isometry taking 3 vertices to 0, 1, ∞ . Fourth vertex then goes to *z* (cross ratio).

arg(z) = dihedral angle

Given edge/shape parameter *z*, other edges have parameters

$$z' = \frac{1}{1-z}, \quad z'' = \frac{z}{z-1}.$$

Opposite edges have same parameter.

In an ideal triangulation, tetrahedra fit together around an edge *e*.

$$\prod_{z \text{ parameter around } e} z = 1.$$

Approach #2: Hyperbolic geometry

Let $\mathcal{T} = {\Delta_i}_{i=1}^n$ be an ideal triangulation of M. Consider tetrahedron parameters $\mathbf{z} = {z_i, z'_i, z''_i}_{i=1}^n$ giving a hyperbolic structure.
Let $\mathcal{T} = {\{\Delta_i\}_{i=1}^n}$ be an ideal triangulation of M. Consider tetrahedron parameters $\mathbf{z} = {\{z_i, z'_i, z''_i\}_{i=1}^n}$ giving a hyperbolic structure.

For each edge, we have $\prod_{\text{around edge}} z = 1$: gluing equations.

For each edge, we have $\prod_{\text{around edge}} z = 1$: gluing equations.

Let $P^{\mathcal{T}}(M) = \{z \text{ satisfying gluing eqns}\} = parameter space.$ Any $z \in P^{\mathcal{T}}(M)$ with Im z > 0 describes a hyp structure on M.

For each edge, we have $\prod_{\text{around edge}} z = 1$: gluing equations.

Let $P^{\mathcal{T}}(M) = \{z \text{ satisfying gluing eqns}\} = parameter space.$ Any $z \in P^{\mathcal{T}}(M)$ with Im z > 0 describes a hyp structure on M.

A boundary/cusp torus of *M* inherits a (2D) triangulation from \mathcal{T} .

For each edge, we have $\prod_{\text{around edge}} z = 1$: gluing equations.

Let $P^{\mathcal{T}}(M) = \{z \text{ satisfying gluing eqns}\} = parameter space.$ Any $z \in P^{\mathcal{T}}(M)$ with Im z > 0 describes a hyp structure on M.

A boundary/cusp torus of *M* inherits a (2D) triangulation from \mathcal{T} .

Let \mathfrak{m} , \mathfrak{l} have holonomy l, m. I.e. $\rho(\mu) = (z \mapsto lz + \cdot)$ and $\rho(\lambda) = (z \mapsto mz + \cdot)$, where $\rho \colon \pi_1(M) \longrightarrow PSL_2\mathbb{C} \cong Mob$.

For each edge, we have $\prod_{\text{around edge}} z = 1$: gluing equations.

Let $P^{\mathcal{T}}(M) = \{z \text{ satisfying gluing eqns}\} = parameter space.$ Any $z \in P^{\mathcal{T}}(M)$ with Im z > 0 describes a hyp structure on M.

A boundary/cusp torus of *M* inherits a (2D) triangulation from \mathcal{T} .

Let \mathfrak{m} , \mathfrak{l} have holonomy l, m. I.e. $\rho(\mu) = (z \mapsto lz + \cdot)$ and $\rho(\lambda) = (z \mapsto mz + \cdot)$, where $\rho \colon \pi_1(M) \longrightarrow PSL_2\mathbb{C} \cong Mob$.

Then *I*, *m* are given by a product of parameters obtained by walking through a cusp triangulation: cusp equations.

 $m = z_{b_1}^{-1} z_{a_2}^{-1} z_{a_2} z_{c_0}, \quad l = z_{a_2} z_{b_2} z_{b_2}^{-1} z_{a_2}^{-1} b_{b_1}^{-1} z_{b_0}^{-1} z_{a_1} z_{c_0}$

There's a holonomy map

Hol:
$$P^{\mathcal{T}}(M) \longrightarrow \mathbb{C} \times \mathbb{C}$$

which maps z satisfying gluing equations to (I, m).

There's a holonomy map

Hol:
$$P^{\mathcal{T}}(M) \longrightarrow \mathbb{C} \times \mathbb{C}$$

which maps z satisfying gluing equations to (I, m).

The image Hol($P^{\mathcal{T}}(M)$) (taking components with dimension 1) is a curve in \mathbb{C}^2 with a defining polynomial H(I, m).

There's a holonomy map

Hol:
$$P^{\mathcal{T}}(M) \longrightarrow \mathbb{C} \times \mathbb{C}$$

which maps z satisfying gluing equations to (I, m).

The image Hol($P^{\mathcal{T}}(M)$) (taking components with dimension 1) is a curve in \mathbb{C}^2 with a defining polynomial H(I, m).

Theorem (Champanerkar 2003)

H(I, m) is a factor of the $PSL_2\mathbb{C}$ A-polynomial.

There's a holonomy map

Hol:
$$P^{\mathcal{T}}(M) \longrightarrow \mathbb{C} \times \mathbb{C}$$

which maps z satisfying gluing equations to (I, m).

The image Hol($P^{\mathcal{T}}(M)$) (taking components with dimension 1) is a curve in \mathbb{C}^2 with a defining polynomial H(I, m).

Theorem (Champanerkar 2003)

H(I, m) is a factor of the $PSL_2\mathbb{C}$ A-polynomial.

In other words, from gluing and cusp equations, eliminating the tetrahedron parameters z_i essentially gives the A-polynomial.

In an ideal tetrahedron Δ , consider assigning

$$\{ \mathsf{Edges of } \Delta \} \to \mathbb{C}^*$$

 $(jk) \mapsto \gamma_{jk}$

In an ideal tetrahedron Δ , consider assigning

 $\{ \text{Edges of } \Delta \} \rightarrow \mathbb{C}^*$ $(jk) \mapsto \gamma_{jk}$

satisfying the Ptolemy equation

 $\gamma_{03}\gamma_{12} + \gamma_{01}\gamma_{23} = \gamma_{02}\gamma_{13}.$

In an ideal tetrahedron Δ , consider assigning

 $\{ \text{Edges of } \Delta \} \to \mathbb{C}^*$ $(jk) \mapsto \gamma_{jk}$

satisfying the Ptolemy equation

 $\gamma_{03}\gamma_{12} + \gamma_{01}\gamma_{23} = \gamma_{02}\gamma_{13}.$

Consider an ideal triangulation $\mathcal{T} = \{\Delta_i\}_{i=1}^n$ of M. Take variables $\gamma_{i,jk}$, over each edge (jk) of each tetrahedron Δ_i .

In an ideal tetrahedron Δ , consider assigning

 $\{ \text{Edges of } \Delta \} \to \mathbb{C}^*$ $(jk) \mapsto \gamma_{jk}$

satisfying the Ptolemy equation

 $\gamma_{03}\gamma_{12} + \gamma_{01}\gamma_{23} = \gamma_{02}\gamma_{13}.$

Consider an ideal triangulation $\mathcal{T} = \{\Delta_i\}_{i=1}^n$ of M. Take variables $\gamma_{i,jk}$, over each edge (jk) of each tetrahedron Δ_i .

The Ptolemy variety Pt(T) is defined by the Ptolemy equation in each tetrahedron, and identification relations

 $\gamma_{i,jk}=\pm\gamma_{i',j'k'}$ (sign depends on labelling/orientation)

when edges are identified.

A Ptolemy assignment uniquely determines a boundary-unipotent representation $\pi_1(M) \longrightarrow SL_2\mathbb{C}$, giving a map $Pt(\mathcal{T}) \longrightarrow R(M)$.

A Ptolemy assignment uniquely determines a boundary-unipotent representation $\pi_1(M) \longrightarrow SL_2\mathbb{C}$, giving a map $Pt(\mathcal{T}) \longrightarrow R(M)$.

(Boundary-unipotent representation: takes peripheral subgroup into a conjugate of $N = \left\{ \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \right\} \subset SL_2\mathbb{C}$.)

A Ptolemy assignment uniquely determines a boundary-unipotent representation $\pi_1(M) \longrightarrow SL_2\mathbb{C}$, giving a map $Pt(\mathcal{T}) \longrightarrow R(M)$.

(Boundary-unipotent representation: takes peripheral subgroup into a conjugate of $N = \left\{ \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \right\} \subset SL_2\mathbb{C}$.)

Theorem (Zickert 2016)

An enhanced Ptolemy assignment uniquely determines a boundary-Borel representation $\pi_1(M) \longrightarrow SL_2\mathbb{C}$, giving a map $EPt(\mathcal{T})_{red} \longrightarrow R(M)$.

A Ptolemy assignment uniquely determines a boundary-unipotent representation $\pi_1(M) \longrightarrow SL_2\mathbb{C}$, giving a map $Pt(\mathcal{T}) \longrightarrow R(M)$.

(Boundary-unipotent representation: takes peripheral subgroup into a conjugate of $N = \left\{ \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \right\} \subset SL_2\mathbb{C}$.)

Theorem (Zickert 2016)

An enhanced Ptolemy assignment uniquely determines a boundary-Borel representation $\pi_1(M) \longrightarrow SL_2\mathbb{C}$, giving a map $EPt(\mathcal{T})_{red} \longrightarrow R(M)$.

Boundary-Borel representation: takes peripheral subgroup into a conjugate of $B = \left\{ \begin{bmatrix} x & * \\ 0 & x^{-1} \end{bmatrix} \right\} \subset SL_2\mathbb{C}.$

 $\gamma_{i,jk} = \pm L^{\bullet} M^{\bullet} \gamma_{i',j'k'}$ (powers of *L*, *M* depend on cusp triangulation)

 $\gamma_{i,jk}=\pm L^{ullet}M^{ullet}\gamma_{i',j'k'}$ (powers of L, M depend on cusp triangulation)

Hence, the A-polynomial can be found by taking Ptolemy equations in γ variables ("enhanced" with powers of *L* and *M*) and eliminating γ variables.

 $\gamma_{i,jk} = \pm L^{\bullet} M^{\bullet} \gamma_{i',j'k'}$ (powers of *L*, *M* depend on cusp triangulation)

Hence, the A-polynomial can be found by taking Ptolemy equations in γ variables ("enhanced" with powers of *L* and *M*) and eliminating γ variables.

Zickert remark: This illustrates a "duality between shapes and Ptolemy coordinates".

 $\gamma_{i,jk} = \pm L^{\bullet} M^{\bullet} \gamma_{i',j'k'}$ (powers of *L*, *M* depend on cusp triangulation)

Hence, the A-polynomial can be found by taking Ptolemy equations in γ variables ("enhanced" with powers of *L* and *M*) and eliminating γ variables.

Zickert remark: This illustrates a "duality between shapes and Ptolemy coordinates".

	Coordinates	Equations
Ptolemy var.	1 γ per edge	1 Ptolemy eqn per tetrahedron
Hyp. geom.	1 z per tetrahedron	1 gluing eqn per edge

(Note an Euler χ argument shows # tetrahedra = # edges.)

Key fact:

The combinatorics of ideal triangulations of 3-manifolds are surprisingly symplectic!

Key fact:

The combinatorics of ideal triangulations of 3-manifolds are surprisingly symplectic!

Label edges E_1, \ldots, E_n , tetrahedra $\Delta_1, \ldots, \Delta_n$. Let $a_{k,j} = \# (01)$ or (23) edges in Δ_j identified to E_k . Let $b_{k,j} = \# (02)$ or (13) edges in Δ_j identified to E_k . Let $c_{k,j} = \# (03)$ or (12) edges in Δ_j identified to E_k .

Key fact:

The combinatorics of ideal triangulations of 3-manifolds are surprisingly symplectic!

Label edges
$$E_1, \ldots, E_n$$
, tetrahedra $\Delta_1, \ldots, \Delta_n$.
Let $a_{k,j} = \# (01)$ or (23) edges in Δ_j identified to E_k .
Let $b_{k,j} = \# (02)$ or (13) edges in Δ_j identified to E_k .
Let $c_{k,j} = \# (03)$ or (12) edges in Δ_j identified to E_k .

The gluing equation for E_k is then

$$\prod_{j=1}^{n} z_{j}^{a_{k,j}} \left(z_{j}' \right)^{b_{k,j}} \left(z_{j}'' \right)^{c_{k,j}} \quad \text{or} \quad \sum_{j=1}^{n} a_{k,j} Z_{j} + b_{k,j} Z_{j}' + c_{k,j} Z_{j}''$$

where $Z_j = \log z_j$, $Z'_j = \log z'_j$, $Z''_j = \log z''_j$.

Key fact:

The combinatorics of ideal triangulations of 3-manifolds are surprisingly symplectic!

Label edges
$$E_1, \ldots, E_n$$
, tetrahedra $\Delta_1, \ldots, \Delta_n$.
Let $a_{k,j} = \# (01)$ or (23) edges in Δ_j identified to E_k .
Let $b_{k,j} = \# (02)$ or (13) edges in Δ_j identified to E_k .
Let $c_{k,j} = \# (03)$ or (12) edges in Δ_j identified to E_k .

The gluing equation for E_k is then

$$\prod_{j=1}^{n} z_{j}^{a_{k,j}} \left(z_{j}' \right)^{b_{k,j}} \left(z_{j}'' \right)^{c_{k,j}} \quad \text{or} \quad \sum_{j=1}^{n} a_{k,j} Z_{j} + b_{k,j} Z_{j}' + c_{k,j} Z_{j}''$$

where $Z_j = \log z_j$, $Z'_j = \log z'_j$, $Z''_j = \log z''_j$. Since zz'z'' = -1 then $Z + Z' + Z'' = \pi i$: eliminate each Z''.

Gluing equation for edge E_k becomes

$$\sum_{j=1}^{n} d_{k,j} Z_j + d'_{k,j} Z'_j = 2\pi i (2 - c_k)$$

where $d_{k,j} = a_{k,j} - c_{k,j}$, $d'_{k,j} = b_{k,j} - c_{k,j}$ and $c_k = \sum_{j=1}^{n} c_{k,j}$ are integers determined by triangulation combinatorics.

Gluing equation for edge E_k becomes

$$\sum_{j=1}^{n} d_{k,j} Z_j + d'_{k,j} Z'_j = 2\pi i (2 - c_k)$$

where $d_{k,j} = a_{k,j} - c_{k,j}$, $d'_{k,j} = b_{k,j} - c_{k,j}$ and $c_k = \sum_{j=1}^{n} c_{k,j}$ are integers determined by triangulation combinatorics.

Applying same idea to cusp equations,

$$\sum_{j=1}^n \mu_j Z_j + \mu'_j Z'_j = \log m - i\pi c^{\mathfrak{m}}, \quad \sum_{j=1}^n \lambda_j Z_j + \lambda'_j Z'_j = \log I - i\pi c^{\mathfrak{l}}$$

for some integers $\mu_j, \mu'_j, c^{\mathfrak{m}}, \lambda_j, \lambda'_j, c^{\mathfrak{l}}$.

The coefficients form the Neumann-Zagier matrix NZ.

$$NZ = \begin{bmatrix} \Delta_{1} & \cdots & \Delta_{n} \\ d_{1,1} & d'_{1,1} & \cdots & d_{1,n} & d'_{1,n} \\ \vdots & \ddots & \vdots \\ d_{n,1} & d'_{n,1} & \cdots & d_{n,n} & d'_{n,n} \\ \mu_{1} & \mu'_{1} & \cdots & \mu_{n} & \mu'_{n} \\ \lambda_{1} & \lambda'_{1} & \cdots & \lambda_{n} & \lambda'_{n} \end{bmatrix} = \begin{pmatrix} R_{1}^{G} \\ \vdots \\ R_{n}^{G} \\ R^{m} \\ M^{l} \end{pmatrix}$$

The coefficients form the Neumann-Zagier matrix NZ.

$$NZ = \begin{bmatrix} \Delta_{1} & \cdots & \Delta_{n} \\ d_{1,1} & d'_{1,1} & \cdots & d_{1,n} & d'_{1,n} \\ \vdots & \ddots & \vdots \\ d_{n,1} & d'_{n,1} & \cdots & d_{n,n} & d'_{n,n} \\ \mu_{1} & \mu'_{1} & \cdots & \mu_{n} & \mu'_{n} \\ \lambda_{1} & \lambda'_{1} & \cdots & \lambda_{n} & \lambda'_{n} \end{bmatrix} = \begin{pmatrix} R_{1}^{G} \\ \vdots \\ R_{n}^{G} \\ R^{m} \\ M^{l} \end{pmatrix}$$

Logarithmic gluing and cusp equations then become

$$NZ \begin{bmatrix} Z_1 \\ Z'_1 \\ \vdots \\ Z_n \\ Z'_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \log m \\ \log l \end{bmatrix} + i\pi \begin{bmatrix} 2 - c_1 \\ \vdots \\ 2 - c_n \\ -c^m \\ -c^l \end{bmatrix}$$
$$NZ.Z = H + i\pi C$$

The coefficients form the Neumann-Zagier matrix NZ.

$$NZ = \begin{bmatrix} \Delta_{1} & \cdots & \Delta_{n} \\ d_{1,1} & d'_{1,1} & \cdots & d_{1,n} & d'_{1,n} \\ \vdots & \ddots & \vdots \\ d_{n,1} & d'_{n,1} & \cdots & d_{n,n} & d'_{n,n} \\ \mu_{1} & \mu'_{1} & \cdots & \mu_{n} & \mu'_{n} \\ \lambda_{1} & \lambda'_{1} & \cdots & \lambda_{n} & \lambda'_{n} \end{bmatrix} = \begin{pmatrix} R_{1}^{G} \\ \vdots \\ R_{n}^{G} \\ R^{m} \\ M^{l} \end{pmatrix}$$

Logarithmic gluing and cusp equations then become

$$NZ \begin{bmatrix} Z_1 \\ Z'_1 \\ \vdots \\ Z_n \\ Z'_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \log m \\ \log l \end{bmatrix} + i\pi \begin{bmatrix} 2 - c_1 \\ \vdots \\ 2 - c_n \\ -c^m \\ -c^l \end{bmatrix}$$
$$NZ.Z = H + i\pi C$$

Rows of *NZ* lie in \mathbb{R}^{2n} and coordinates come in pairs...

Take \mathbb{R}^{2n} with coords $(x_1, y_1, \ldots, x_n, y_n)$ and standard symplectic form $\omega = \sum dx_i \wedge dy_i$.

Take \mathbb{R}^{2n} with coords $(x_1, y_1, \ldots, x_n, y_n)$ and standard symplectic form $\omega = \sum dx_i \wedge dy_i$.

Theorem (Neumann-Zagier 1985)

All rows of NZ are symplectically orthogonal except $\omega(R^{\mathfrak{m}}, R^{\mathfrak{l}}) = 2$. In particular, all $\omega(R_{i}^{\mathfrak{G}}, R_{k}^{\mathfrak{G}}) = 0$.

Take \mathbb{R}^{2n} with coords $(x_1, y_1, \ldots, x_n, y_n)$ and standard symplectic form $\omega = \sum dx_i \wedge dy_i$.

Theorem (Neumann-Zagier 1985)

All rows of NZ are symplectically orthogonal except $\omega(R^{\mathfrak{m}}, R^{\mathfrak{l}}) = 2$. In particular, all $\omega(R_{j}^{G}, R_{k}^{G}) = 0$. The n gluing rows R_{j}^{G} span a subsapce of dimension n - 1.

Take \mathbb{R}^{2n} with coords $(x_1, y_1, \ldots, x_n, y_n)$ and standard symplectic form $\omega = \sum dx_i \wedge dy_i$.

Theorem (Neumann-Zagier 1985)

All rows of NZ are symplectically orthogonal except $\omega(R^{\mathfrak{m}}, R^{\mathfrak{l}}) = 2$. In particular, all $\omega(R_{j}^{G}, R_{k}^{G}) = 0$. The n gluing rows R_{j}^{G} span a subsapce of dimension n - 1.

E.g. a triangulation of trefoil complement.

$$NZ = \begin{array}{ccccccccc} E_{0(23)} & & \Delta_1 & & \Delta_2 \\ E_{3/1} & & & 1 & 0 & -1 & -1 & -2 & -2 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ -1 & -1 & 0 & 1 & 2 & 1 \\ -1 & -1 & 0 & -1 & 0 & 0 \\ t & & -1 & -2 & 1 & -1 & 0 & 0 \end{array}$$

Observation (Dimofte 2013)

The rows of *NZ* extend to a symplectic basis of \mathbb{R}^{2n} .
Observation (Dimofte 2013)

The rows of *NZ* extend to a symplectic basis of \mathbb{R}^{2n} .

We can form a symplectic matrix

$$NZ = \begin{pmatrix} R_1^G \\ \vdots \\ R_n^G \\ R^m \\ M^l \end{pmatrix} \rightsquigarrow SY = \begin{pmatrix} R_1^I \\ R_1^G \\ \vdots \\ R_{n-1}^G \\ R_{n-1}^G \\ R_{n-1}^m \\ \frac{1}{2}R^l \end{pmatrix}$$

Observation (Dimofte 2013)

The rows of *NZ* extend to a symplectic basis of \mathbb{R}^{2n} .

We can form a symplectic matrix

$$NZ = \begin{pmatrix} R_1^G \\ \vdots \\ R_n^G \\ R^m \\ M^{\mathfrak{l}} \end{pmatrix} \rightsquigarrow SY = \begin{pmatrix} R_1^G \\ R_1^G \\ \vdots \\ R_{n-1}^G \\ R_{n-1}^G \\ R^m \\ \frac{1}{2}R^{\mathfrak{l}} \end{pmatrix}$$

where

$$\omega(\mathbf{R}_{j}^{\Gamma}, \mathbf{R}_{k}^{G}) = \delta_{j,k}$$

 $\omega(\mathbf{R}^{\mathfrak{m}}, \frac{1}{2}\mathbf{R}^{\mathfrak{l}}) = 1$

all other rows ω -orthogonal.

Observation (Dimofte 2013)

The rows of *NZ* extend to a symplectic basis of \mathbb{R}^{2n} .

We can form a symplectic matrix

$$NZ = \begin{pmatrix} R_1^G \\ \vdots \\ R_n^G \\ R^m \\ M^{\mathfrak{l}} \end{pmatrix} \rightsquigarrow SY = \begin{pmatrix} R_1^G \\ R_1^G \\ \vdots \\ R_{n-1}^{\mathfrak{l}} \\ R_{n-1}^{\mathfrak{m}} \\ R_{n-1}^{\mathfrak{m}} \\ R_{n-1}^{\mathfrak{m}} \end{pmatrix}$$

where

$$\omega(\mathbf{R}_{j}^{\mathsf{\Gamma}}, \mathbf{R}_{k}^{\mathsf{G}}) = \delta_{j,k}$$

 $\omega(\mathbf{R}^{\mathfrak{m}}, \frac{1}{2}\mathbf{R}^{\mathfrak{l}}) = 1$

all other rows ω -orthogonal.

Note the R_i^{Γ} are very not unique!

Dimofte 2013: Change variables using symplectic basis!

Dimofte 2013: Change variables using symplectic basis! Let

$$\begin{bmatrix} \Gamma_{1} \\ G_{1} \\ \vdots \\ \Gamma_{n-1} \\ G_{n-1} \\ M \\ \frac{1}{2}L \end{bmatrix} = SY.Z = SY \begin{bmatrix} Z_{1} \\ Z'_{1} \\ \vdots \\ Z_{n} \\ Z'_{n} \end{bmatrix} \quad \text{i.e.} \begin{cases} G_{k} = R_{k}^{G}Z \\ \Gamma_{k} = R_{k}^{G}Z \\ M = R^{m}Z \\ \frac{1}{2}L = \frac{1}{2}R^{l}Z \end{cases}$$

Then change variables from Z_j, Z'_j to $\Gamma_j, G_j, L, M!$ One Γ_j for each edge (except one).

Dimofte 2013: Change variables using symplectic basis! Let

$$\begin{bmatrix} \Gamma_{1} \\ G_{1} \\ \vdots \\ \Gamma_{n-1} \\ G_{n-1} \\ M \\ \frac{1}{2}L \end{bmatrix} = SY.Z = SY \begin{bmatrix} Z_{1} \\ Z'_{1} \\ \vdots \\ Z_{n} \\ Z'_{n} \end{bmatrix} \quad \text{i.e.} \begin{cases} G_{k} = R_{k}^{G}Z \\ \Gamma_{k} = R_{k}^{G}Z \\ M = R^{m}Z \\ \frac{1}{2}L = \frac{1}{2}R^{i}Z \end{cases}$$

Then change variables from Z_j, Z'_j to $\Gamma_j, G_j, L, M!$ One Γ_j for each edge (except one).

Gluing & cusp equations now become very simple

$$G_k = i\pi(2-c_k), \quad M = \log m - i\pi c^m, \quad L = \log I - i\pi c^l.$$

Dimofte 2013: Change variables using symplectic basis! Let

$$\begin{bmatrix} \Gamma_{1} \\ G_{1} \\ \vdots \\ \Gamma_{n-1} \\ G_{n-1} \\ M \\ \frac{1}{2}L \end{bmatrix} = SY.Z = SY \begin{bmatrix} Z_{1} \\ Z'_{1} \\ \vdots \\ Z_{n} \\ Z'_{n} \end{bmatrix} \quad \text{i.e.} \begin{cases} G_{k} = R_{k}^{G}Z \\ \Gamma_{k} = R_{k}^{G}Z \\ M = R^{m}Z \\ \frac{1}{2}L = \frac{1}{2}R^{i}Z \end{cases}$$

Then change variables from Z_j, Z'_j to $\Gamma_j, G_j, L, M!$ One Γ_j for each edge (except one).

Gluing & cusp equations now become very simple

$$G_k = i\pi(2-c_k), \quad M = \log m - i\pi c^{\mathfrak{m}}, \quad L = \log I - i\pi c^{\mathfrak{l}}.$$

However numerous difficulties remain.

Difficulties eliminating variables to obtain A-polynomial:

- Implement the equation $z'_j = \frac{1}{1-z_j}$, i.e. $e^{Z'_j} = \frac{1}{1-e^{Z'_j}}$.
- Need to write Z_j, Z'_j in terms of Γ_j, G_j, L, M , i.e. invert SY.
- Half the entries of SY (i.e. R_i^{Γ}) require work to calculate.
- The R_i^{Γ} are not unique.

Difficulties eliminating variables to obtain A-polynomial:

- Implement the equation $z'_j = \frac{1}{1-z_j}$, i.e. $e^{Z'_j} = \frac{1}{1-e^{Z'_j}}$.
- Need to write Z_j, Z'_j in terms of Γ_j, G_j, L, M , i.e. invert SY.
- Half the entries of SY (i.e. R_i^{Γ}) require work to calculate.
- The R_i^{Γ} are not unique.

Dimofte gave several examples and calculations.

Difficulties eliminating variables to obtain A-polynomial:

- Implement the equation $z'_j = \frac{1}{1-z_i}$, i.e. $e^{Z'_j} = \frac{1}{1-e^{Z'_j}}$.
- Need to write Z_j, Z'_j in terms of Γ_j, G_j, L, M , i.e. invert SY.
- Half the entries of SY (i.e. R_i^{Γ}) require work to calculate.
- The R_i^{Γ} are not unique.

Dimofte gave several examples and calculations.

Claim (HMP)

All these issues can be resolved simultaneously and systematically, "inverting without inverting".

Each equation $z'_j = \frac{1}{1-z_j}$ becomes a Ptolemy equation in $\gamma_j = e^{\Gamma_j}$, up to signs and powers of *I*, *m*.

Write $\gamma_{i(jk)}$ for variable of edge (jk) of Δ_i (one edge has $\gamma = 1$). The Ptolemy equation for Δ_i is

 $\pm l^{\bullet} m^{\bullet} \gamma_{i(01)} \gamma_{i(23)} \pm l^{\bullet} m^{\bullet} \gamma_{i(02)} \gamma_{i(13)} - \gamma_{i(03)} \gamma_{i(12)} = 0$

Write $\gamma_{i(jk)}$ for variable of edge (jk) of Δ_i (one edge has $\gamma = 1$). The Ptolemy equation for Δ_i is

$$\pm l^{\bullet} m^{\bullet} \gamma_{i(01)} \gamma_{i(23)} \pm l^{\bullet} m^{\bullet} \gamma_{i(02)} \gamma_{i(13)} - \gamma_{i(03)} \gamma_{i(12)} = 0$$

$$(-1)^{B'_{j}} l^{-\frac{\mu_{j}}{2}} m^{\frac{\lambda_{j}}{2}} \gamma_{i(01)} \gamma_{i(23)} + (-1)^{B_{j}} l^{-\frac{\mu'_{j}}{2}} m^{\frac{\lambda'_{j}}{2}} \gamma_{i(02)} \gamma_{i(13)} - \gamma_{i(03)} \gamma_{i(12)} = 0.$$

Write $\gamma_{i(jk)}$ for variable of edge (jk) of Δ_i (one edge has $\gamma = 1$). The Ptolemy equation for Δ_i is

$$\pm l^{\bullet} m^{\bullet} \gamma_{i(01)} \gamma_{i(23)} \pm l^{\bullet} m^{\bullet} \gamma_{i(02)} \gamma_{i(13)} - \gamma_{i(03)} \gamma_{i(12)} = 0$$

$$(-1)^{B'_{i}} l^{-\frac{\mu_{i}}{2}} m^{\frac{\lambda_{i}}{2}} \gamma_{i(01)} \gamma_{i(23)} + (-1)^{B_{j}} l^{-\frac{\mu'_{i}}{2}} m^{\frac{\lambda'_{i}}{2}} \gamma_{i(02)} \gamma_{i(13)} - \gamma_{i(03)} \gamma_{i(12)} = 0.$$

Theorem (HMP)

Eliminating the γ variables from the Ptolemy equations results in a polynomial which is a factor of the PSL(2, \mathbb{C}) A-polynomial. These equations are equivalent to Champanerkar's equations.

Write $\gamma_{i(jk)}$ for variable of edge (jk) of Δ_i (one edge has $\gamma = 1$). The Ptolemy equation for Δ_i is

$$\pm l^{\bullet} m^{\bullet} \gamma_{i(01)} \gamma_{i(23)} \pm l^{\bullet} m^{\bullet} \gamma_{i(02)} \gamma_{i(13)} - \gamma_{i(03)} \gamma_{i(12)} = 0$$

$$(-1)^{B'_{i}} l^{-\frac{\mu_{i}}{2}} m^{\frac{\lambda_{i}}{2}} \gamma_{i(01)} \gamma_{i(23)} + (-1)^{B_{j}} l^{-\frac{\mu'_{i}}{2}} m^{\frac{\lambda'_{i}}{2}} \gamma_{i(02)} \gamma_{i(13)} - \gamma_{i(03)} \gamma_{i(12)} = 0.$$

Theorem (HMP)

Eliminating the γ variables from the Ptolemy equations results in a polynomial which is a factor of the PSL(2, \mathbb{C}) A-polynomial. These equations are equivalent to Champanerkar's equations.

Key ideas:

- Symplectic matrices are easy to invert!
- Symplectic algebra gives freedom to choose nice R_i.
- Neumann (1990) guarantees integer solutions of NZ.B = C.

Unifying approaches

Thus,

- refining symplectic techniques (Dimofte, approach # 4)
- based on hyp geom approach (# 2, Champanerkar)
- yields Ptolemy varieties very similar to those arising from representation theory approach (#3, Zickert).

Thus,

- refining symplectic techniques (Dimofte, approach # 4)
- based on hyp geom approach (# 2, Champanerkar)
- yields Ptolemy varieties very similar to those arising from representation theory approach (#3, Zickert).

Further questions:

- Are our Ptolemy equations equivalent to those of Zickert?
- The signs are given by a vector $B = (B_1, B'_1, ..., B_n, B'_n)$ satisfying NZ.B = C. Connections to taut triangulations (Lackenby 2000) or taut angle structures? (Burton, Hodgson, Kang, Rubinstein, Segerman, Tillmann, ...)

Application: Dehn filling

Consider a 2-component link in S^3 consisting of knots K_0, K_1 . $M = S^3 \setminus (K_0 \cup K_1)$, Dehn fill K_0 along a slope p/q: obtain 1-cusped M(p/q).

Application: Dehn filling

Consider a 2-component link in S^3 consisting of knots K_0, K_1 .

 $M = S^3 \setminus (K_0 \cup K_1)$, Dehn fill K_0 along a slope p/q: obtain 1-cusped M(p/q).

 $M_{p/q}$ can be triangulated using layered solid tori. (Jaco-Rubinstein 2006, Guéritaud-Schleimer 2010).

Application: Dehn filling

Consider a 2-component link in S^3 consisting of knots K_0, K_1 .

 $M = S^3 \setminus (K_0 \cup K_1)$, Dehn fill K_0 along a slope p/q: obtain 1-cusped M(p/q).

 $M_{p/q}$ can be triangulated using layered solid tori. (Jaco-Rubinstein 2006, Guéritaud-Schleimer 2010).

These triangulations look like diagonal flips in a 2D triangulation of the cusp torus — just as in hyperbolic surface cluster algebra.

Dehn filling

The A-polynomial Ptolemy equations can be taken to coincide, up to signs, with those in the cusp torus cluster algebra.

Dehn filling

The A-polynomial Ptolemy equations can be taken to coincide, up to signs, with those in the cusp torus cluster algebra.

Theorem (HMP)

We can triangulate $M_{p/q}$ so that the Ptolemy equations in the layered solid torus take the form

$$\pm \gamma_x \gamma_y + \gamma_a^2 - \gamma_b^2 = 0.$$

Dehn filling

The A-polynomial Ptolemy equations can be taken to coincide, up to signs, with those in the cusp torus cluster algebra.

Theorem (HMP)

We can triangulate $M_{p/q}$ so that the Ptolemy equations in the layered solid torus take the form

$$\pm \gamma_x \gamma_y + \gamma_a^2 - \gamma_b^2 = 0.$$

The + or - can be read off from he word in Ls & Rs for the filling.

The Whitehead link complement has an ideal triangulation with 3 tetrahedra away from Dehn-filled K_0 , 3 Ptolemy equations:

 $0=-\textit{LM}^{-1}\gamma_{a}\gamma_{2}-\textit{LM}^{-2}\gamma_{3/1}\gamma_{\infty}-\gamma_{\infty}^{2}, \quad 0=-\textit{M}\gamma_{3}\gamma_{\infty}-\textit{LM}^{-1}\gamma_{\infty}^{2}-\gamma_{a}\gamma_{2}, \quad 0=\gamma_{\infty}^{2}-\gamma_{\infty}\gamma_{3}-\gamma_{a}^{2}.$

The Whitehead link complement has an ideal triangulation with 3 tetrahedra away from Dehn-filled K_0 , 3 Ptolemy equations:

$$0 = -LM^{-1}\gamma_a\gamma_2 - LM^{-2}\gamma_{3/1}\gamma_\infty - \gamma_\infty^2, \quad 0 = -M\gamma_3\gamma_\infty - LM^{-1}\gamma_\infty^2 - \gamma_a\gamma_2, \quad 0 = \gamma_\infty^2 - \gamma_\infty\gamma_3 - \gamma_a^2.$$

Figure-8 (-1 or LL filling): layered solid torus has 2 tetrahedra.

$$\begin{split} 0 &= \gamma_3 \gamma_1 + \gamma_2^2 - \gamma_\infty^2 \\ 0 &= -\gamma_2 \gamma_0 + \gamma_1^2 - \gamma_\infty^2 \end{split}$$

Fold up the layered solid torus, set $\gamma_0 = \gamma_\infty$.

The Whitehead link complement has an ideal triangulation with 3 tetrahedra away from Dehn-filled K_0 , 3 Ptolemy equations:

$$0 = -LM^{-1}\gamma_a\gamma_2 - LM^{-2}\gamma_{3/1}\gamma_\infty - \gamma_\infty^2, \quad 0 = -M\gamma_3\gamma_\infty - LM^{-1}\gamma_\infty^2 - \gamma_a\gamma_2, \quad 0 = \gamma_\infty^2 - \gamma_\infty\gamma_3 - \gamma_a^2.$$

Figure-8 (-1 or LL filling): layered solid torus has 2 tetrahedra.

$$\begin{split} 0 &= \gamma_3 \gamma_1 + \gamma_2^2 - \gamma_\infty^2 \\ 0 &= -\gamma_2 \gamma_0 + \gamma_1^2 - \gamma_\infty^2 \end{split}$$

Fold up the layered solid torus, set $\gamma_0 = \gamma_\infty$.

5₂ (1/2 or LR filling): opposite folding, set $\gamma_0 = \gamma_1$.

The Whitehead link complement has an ideal triangulation with 3 tetrahedra away from Dehn-filled K_0 , 3 Ptolemy equations:

$$0 = -LM^{-1}\gamma_a\gamma_2 - LM^{-2}\gamma_{3/1}\gamma_\infty - \gamma_\infty^2, \quad 0 = -M\gamma_3\gamma_\infty - LM^{-1}\gamma_\infty^2 - \gamma_a\gamma_2, \quad 0 = \gamma_\infty^2 - \gamma_\infty\gamma_3 - \gamma_a^2.$$

Figure-8 (-1 or LL filling): layered solid torus has 2 tetrahedra.

$$\begin{split} 0 &= \gamma_3 \gamma_1 + \gamma_2^2 - \gamma_\infty^2 \\ 0 &= -\gamma_2 \gamma_0 + \gamma_1^2 - \gamma_\infty^2 \end{split}$$

Fold up the layered solid torus, set $\gamma_0 = \gamma_\infty$.

5₂ (1/2 or LR filling): opposite folding, set $\gamma_0 = \gamma_1$.

7₂ (1/3 or LRL filling): one more tet, fold identifying $\gamma_{1/2} = \gamma_0$.

$$0=\gamma_{\infty}\gamma_{1/2}+\gamma_1^2-\gamma_0^2$$

The Whitehead link complement has an ideal triangulation with 3 tetrahedra away from Dehn-filled K_0 , 3 Ptolemy equations:

$$0 = -LM^{-1}\gamma_a\gamma_2 - LM^{-2}\gamma_{3/1}\gamma_\infty - \gamma_\infty^2, \quad 0 = -M\gamma_3\gamma_\infty - LM^{-1}\gamma_\infty^2 - \gamma_a\gamma_2, \quad 0 = \gamma_\infty^2 - \gamma_\infty\gamma_3 - \gamma_a^2,$$

Figure-8 (-1 or LL filling): layered solid torus has 2 tetrahedra.

$$\begin{split} 0 &= \gamma_3 \gamma_1 + \gamma_2^2 - \gamma_\infty^2 \\ 0 &= -\gamma_2 \gamma_0 + \gamma_1^2 - \gamma_\infty^2 \end{split}$$

Fold up the layered solid torus, set $\gamma_0 = \gamma_\infty$.

5₂ (1/2 or LR filling): opposite folding, set $\gamma_0 = \gamma_1$. 7₂ (1/3 or LRL filling): one more tet, fold identifying $\gamma_{1/2} = \gamma_0$.

$$0=\gamma_{\infty}\gamma_{1/2}+\gamma_1^2-\gamma_0^2$$

9₂ (1/4 or LRLL filling): one more tet, fold identifying $\gamma_{1/3} = \gamma_0$.

$$0 = -\gamma_1 \gamma_{1/3} + \gamma_{1/2}^2 - \gamma_0^2$$

Thus we can write Ptolemy equations simultaneously for knots obtained by a Dehn fillings of a 2-component link!

Thus we can write Ptolemy equations simultaneously for knots obtained by a Dehn fillings of a 2-component link!

Thanks for listening!

Thus we can write Ptolemy equations simultaneously for knots obtained by a Dehn fillings of a 2-component link!

Thanks for listening!

References:

- Champanerkar, A-polynomial and Bloch invariants of hyperbolic 3-manifolds, 2003
- Cooper, Culler, Gilet, Long, Shalen, Plane curves associated to character varieties of 3-manifolds, 1994
- Cooper, Long, Remarks on the A-polynomial of a knot, 1996
- Dimofte, Quantum Riemann surfaces in Chern-Simons theory, 2013
- Garoufalidis, D. Thurston, Zickert, The complex volume of SL(n, C)-representations of 3-manifolds, 2015
- Guéritaud, Schleimer, Canonical triangulations of Dehn fillings, 2010
- Jaco, Rubinstein, Layered triangulations of 3-manifolds, 2006
- Lackenby, Taut ideal triangulations of 3-manifolds, 2000
- Neumann, Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic 3-manifolds, 1990
- Neumann, Zagier, Volumes of hyperbolic three-manifolds, 1985
- Penner, The decorated Teichmüller space of punctured surfaces, 1987
- Zickert, Ptolemy coordinates, Dehn invariant and the A-polynomial, 2016