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Overview

This talk is about connections between
• Ptolemy equations (arise in many places, esp. cluster

algebras)
• the A-polynomial (a knot invariant)
• hyperbolic geometry (2D and 3D)
• triangulations of manifolds (2D and 3D)
• symplectic geometry, and
• Dehn filling (an operation on 3-manifolds).



Ptolemy equations

Theorem (Claudius Ptolemaeus c. AD 160)

For any cyclic quadrilateral ABCD,

AB · CD + BC · AD = AC · BD.

Proof.
(a−b)(c−d)+(b−c)(a−d) = (a−c)(b−d).

∠ACB = ∠ADB means arg b−c
a−c = arg b−d

a−d .

Hence
arg(b − c)(a− d) = arg(a− c)(b − d).

Two (hence three) terms above have the
same argument, so their lengths sum.
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Ptolemy equations in hyperbolic geometry

Fix an orientable surface S, n > 0
cusps, χ(S) < 0.

Consider hyperbolic metrics on S:
they form T-space, Tg,n ∼= R6g−6+2n.

Also consider hyperbolic surfaces
decorated by a horocycle at each
cusp.

Space of such surfaces forms
decorated T-space T̃g,n ∼= R6g−6+3n.

Consider an ideal triangulation of S.
This requires 6g − 6 + 3n edges.
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Ptolemy equations in hyperbolic geometry

Each edge e of the triangulation has infinite length, but if we
truncate at horocycles, the length le ∈ R.

The lambda length of e is λe = e
1
2 le .

Theorem (Penner 1987)

The 6g − 6 + 3n lambda lengths of an ideal triangulation
provide a homeomorphism T̃g,n −→ R6g−6+3n

+ .

Adjusting a triangulation by a Pachner move / diagonal flip,
lambda lengths are related by the Ptolemy relation

λxλy = λaλc + λbλd .

The algebra of the λa is full of amazing
surprises.
A prototypical example of a cluster algebra
(Fomin-Zelevinsky ∼ 2000). a

c

b dx
y
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The A-polynomial — intuitive idea

Let K ⊂ S3 be a knot and consider hyperbolic structures (i.e.
constant curvature -1 metrics) on the 3-manifold M = S3\K .

Provided K prime and not satellite, there is
• a unique complete hyperbolic structure (Mostow rigidity)
• a 1-C-parameter family of hyp. structures (W. Thurston).

Work in the upper half space model of hyperbolic space H3.

H3 = {(x , y , z) ∈ R3 : z > 0}

Metric ds2 = dx2+dy2+dz2

z2

Sphere at infinity S∞
= {z = 0} ∪ {∞} ∼= C ∪ {∞} ∼= CP1.

Isom+H3 ∼= PSL2C ∼= SL2C/{±I}.
Acts by Möbius transformations on S∞

±
[
a b
c d

]
↔
(

z 7→ az+b
cz+d

)
.
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The A-polynomial — intuitive idea

If M is triangulated, a hyperbolic structure can be constructed
by hyperbolic tetrahedra so they fit together in H3.

Any hyperbolic structure gives a developing map

D : M̃ −→ H3.

This map is π1(M) equivariant, acting on M̃ by deck
transformations and on H3 by isometries.

Thus we have a holonomy representation

ρ : π1(M) −→ Isom+ H3 = PSL2C.

The peripheral subgroup π1(∂M) ∼= Z× Z has basis given by a
longitude l & meridian m.
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The A-polynomial — intuitive idea

Now l,m ∈ π1(∂M) ∼= Z× Z commute.
So ρ(l), ρ(m) ∈ PSL2C commute.

After conjugation in PSL2C,

ρ(l) = ±
[

l ∗
0 l−1

]
, ρ(m) = ±

[
m ∗
0 m−1

]
.

Question
What l ,m are possible?

Answer (Cooper-Culler-Gilet-Long-Shalen 1994)

Those l ,m satisfying the A-polynomial!

AK (l ,m) = 0.
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Ways to calculate the A-polynomial

1 Original definition: representation theory / algebraic
geometry
(CCGLS 1994)

2 Hyperbolic geometry
(Champanerkar 2003)

3 Sophisticated representation theory, Ptolemy varieties
(Zickert 2016)

4 Hyperbolic geometry + symplectic geometry
(Dimofte 2013, HMP 2020).



Approach #1 : Definition / algebra

Pure algebra — no hyperbolic geometry.
Consider SL2C representations of π1(M) and π1(∂M).

Let R(M) = {homomorphisms ρ : π1(M) −→ SL2C}.
For generic ρ ∈ R(M), the commuting matrices ρ(λ), ρ(µ) are
diagonalisable, so can be conjugated to

ρ(λ) =

[
l 0
0 l−1

]
, ρ(µ) =

[
m 0
0 m−1

]
.

The set of all such (l ,m) forms a variety.
Take the union of all components which have dimension 1.
This gives a curve in C2 whose defining polynomial is AK (l ,m).

There is also a PSL2C A-polynomial, considering
representations into PSL2C.

Precisely (Cooper-Long 1996):
Let RU (M) = {ρ ∈ R(M) : ρ(λ), ρ(µ)both upper triangular}. Every ρ ∈ R(M) is conjugate to one in RU (M).
Consider the map ξ : RU −→ C2 which takes ρ to the top left entries of ρ(λ) and ρ(µ).
After taking components with 1-dimensional Zariski closure, ξ(RU ) defines the A-polynomial.
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Approach #2: Hyperbolic geometry

{Hyp ideal tetrahedra} ∼= {z ∈ C : Im z > 0}

Isom+ H3 acts triply transitively on S∞.
∃! isometry taking 3 vertices to 0,1,∞.
Fourth vertex then goes to z (cross ratio).

arg(z) = dihedral angle

Given edge/shape parameter z, other edges
have parameters

z ′ =
1

1− z
, z ′′ =

z
z − 1

.

Opposite edges have same parameter.

In an ideal triangulation, tetrahedra fit
together around an edge e.∏

z parameter around e

z = 1.



Approach #2: Hyperbolic geometry

Let T = {∆i}ni=1 be an ideal triangulation of M.
Consider tetrahedron parameters z = {zi , z ′i , z

′′
i }ni=1 giving a

hyperbolic structure.

For each edge, we have
∏

around edge z = 1: gluing equations.

Let PT (M) = {z satisfying gluing eqns} = parameter space.
Any z ∈ PT (M) with Im z > 0 describes a hyp structure on M.

A boundary/cusp torus of M inherits a (2D) triangulation from
T .

Let m, l have holonomy l ,m.
I.e. ρ(µ) = (z 7→ lz + ·) and ρ(λ) = (z 7→ mz + ·),
where ρ : π1(M) −→ PSL2C ∼= Mob.

Then l ,m are given by a product of parameters obtained by
walking through a cusp triangulation: cusp equations.
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Approach #2: Hyperbolic geometry

There’s a holonomy map

Hol : PT (M) −→ C× C

which maps z satisfying gluing equations to (l ,m).

The image Hol(PT (M)) (taking components with dimension 1)
is a curve in C2 with a defining polynomial H(l ,m).

Theorem (Champanerkar 2003)

H(l ,m) is a factor of the PSL2C A-polynomial.

In other words, from gluing and cusp equations, eliminating the
tetrahedron parameters zi essentially gives the A-polynomial.
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Approach #3: Ptolemy varieties
In an ideal tetrahedron ∆, consider assigning

{Edges of ∆} → C∗

(jk) 7→ γjk

satisfying the Ptolemy equation

γ03γ12 + γ01γ23 = γ02γ13.
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Consider an ideal triangulation T = {∆i}ni=1 of M.
Take variables γi,jk , over each edge (jk) of each tetrahedron ∆i .

The Ptolemy variety Pt(T ) is defined by the Ptolemy equation
in each tetrahedron, and identification relations

γi,jk = ±γi ′,j ′k ′ (sign depends on labelling/orientation)

when edges are identified.
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Approach #3: Ptolemy varieties

Theorem (Garoufalidis-Thurston-Zickert 2015)

A Ptolemy assignment uniquely determines a
boundary-unipotent representation π1(M) −→ SL2C, giving a
map Pt(T ) −→ R(M).

(Boundary-unipotent representation: takes peripheral subgroup into a conjugate of N =

{[
1 ∗
0 1

]}
⊂ SL2C.)

Theorem (Zickert 2016)

An enhanced Ptolemy assignment uniquely determines a
boundary-Borel representation π1(M) −→ SL2C, giving a map
EPt(T )red −→ R(M).

Boundary-Borel representation: takes peripheral subgroup into

a conjugate of B =

{[
x ∗
0 x−1

]}
⊂ SL2C.
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Approach #3: Ptolemy varieties

The enhanced Ptolemy variety is defined by the same variables
and Ptolemy relations, but identification relations

γi,jk = ±L•M•γi ′,j ′k ′ (powers of L,M depend on cusp triangulation)

Hence, the A-polynomial can be found by taking Ptolemy
equations in γ variables (“enhanced" with powers of L and M)
and eliminating γ variables.

Zickert remark: This illustrates a “duality between shapes and
Ptolemy coordinates".

Coordinates Equations
Ptolemy var. 1 γ per edge 1 Ptolemy eqn per tetrahedron
Hyp. geom. 1 z per tetrahedron 1 gluing eqn per edge

(Note an Euler χ argument shows # tetrahedra = # edges.)
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Approach # 4: Symplectic geometry

Key fact:

The combinatorics of ideal triangulations of 3-manifolds are
surprisingly symplectic!

Label edges E1, . . . ,En, tetrahedra ∆1, . . . ,∆n.
Let ak ,j = # (01) or (23) edges in ∆j identified to Ek .
Let bk ,j = # (02) or (13) edges in ∆j identified to Ek .
Let ck ,j = # (03) or (12) edges in ∆j identified to Ek .

The gluing equation for Ek is then

n∏
j=1

zak,j
j

(
z ′j
)bk,j

(
z ′′j
)ck,j

or
n∑

j=1

ak ,jZj + bk ,jZ ′j + ck ,jZ ′′j

where Zj = log zj , Z ′j = log z ′j , Z ′′j = log z ′′j .

Since zz ′z ′′ = −1 then Z + Z ′ + Z ′′ = πi : eliminate each Z ′′.
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Approach # 4: Symplectic geometry

Gluing equation for edge Ek becomes

n∑
j=1

dk ,jZj + d ′k ,jZ
′
j = 2πi(2− ck )

where dk ,j = ak ,j − ck ,j , d ′k ,j = bk ,j − ck ,j and ck =
∑n

j=1 ck ,j are
integers determined by triangulation combinatorics.

Applying same idea to cusp equations,

n∑
j=1

µjZj + µ′jZ
′
j = log m − iπcm,

n∑
j=1

λjZj + λ′jZ
′
j = log l − iπcl

for some integers µj , µ
′
j , c

m, λj , λ
′
j , c

l.
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Approach # 4: Symplectic geometry

The coefficients form the Neumann-Zagier matrix NZ .

NZ =



∆1 ··· ∆n

E1 d1,1 d ′1,1 · · · d1,n d ′1,n
...

...
. . .

...
En dn,1 d ′n,1 · · · dn,n d ′n,n
m µ1 µ′1 · · · µn µ′n
l λ1 λ′1 · · · λn λ′n

 =


RG

1
...

RG
n

Rm

M l



Logarithmic gluing and cusp equations then become

NZ


Z1
Z ′1
...

Zn
Z ′n

 =


0
...
0

log m
log l

+ iπ


2− c1

...
2− cn
−cm

−cl


NZ .Z = H + iπC

Rows of NZ lie in R2n and coordinates come in pairs...
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Approach # 4: Symplectic geometry

Take R2n with coords (x1, y1, . . . , xn, yn) and standard
symplectic form ω =

∑
dxi ∧ dyi .

Theorem (Neumann-Zagier 1985)

All rows of NZ are symplectically orthogonal except
ω(Rm,Rl) = 2. In particular, all ω(RG

j ,R
G
k ) = 0.

The n gluing rows RG
j span a subsapce of dimension n − 1.

E.g. a triangulation of trefoil complement.

NZ =



∆0 ∆1 ∆2

E0(23) 1 0 −1 − 1 −2 − 2
E3/1 0 1 1 0 0 1

E2/1+E1/0 −1 − 1 0 1 2 1
m −1 − 1 0 − 1 0 0
l −1 − 2 1 − 1 0 0


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Observation (Dimofte 2013)

The rows of NZ extend to a symplectic basis of R2n.

We can form a symplectic matrix

NZ =


RG

1
...

RG
n

Rm

M l

 SY =



RΓ
1

RG
1
...

RΓ
n−1

RG
n−1

Rm

1
2Rl



where

ω(RΓ
j ,R

G
k ) = δj,k

ω(Rm,
1
2

Rl) = 1

all other rows ω-orthogonal.

Note the RΓ
j are very not unique!
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Approach # 4: Symplectic geometry

Dimofte 2013: Change variables using symplectic basis!

Let

Γ1
G1
...

Γn−1
Gn−1

M
1
2L


= SY .Z = SY


Z1
Z ′1
...

Zn
Z ′n

 i.e.


Gk = RG

k Z
Γk = RΓ

k Z
M = Rm Z
1
2L = 1

2Rl Z

Then change variables from Zj ,Z ′j to Γj ,Gj ,L,M! One Γj for
each edge (except one).

Gluing & cusp equations now become very simple

Gk = iπ(2− ck ), M = log m − iπcm, L = log l − iπcl.

However numerous difficulties remain.
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Approach # 4: Symplectic geometry

Difficulties eliminating variables to obtain A-polynomial:
• Implement the equation z ′j = 1

1−zj
, i.e. eZ ′j = 1

1−eZj
.

• Need to write Zj ,Z ′j in terms of Γj ,Gj ,L,M, i.e. invert SY .

• Half the entries of SY (i.e. RΓ
j ) require work to calculate.

• The RΓ
j are not unique.

Dimofte gave several examples and calculations.

Claim (HMP)

All these issues can be resolved simultaneously and
systematically, “inverting without inverting".

Each equation z ′j = 1
1−zj

becomes a Ptolemy equation in

γj = eΓj , up to signs and powers of l ,m.
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Approach # 4: Symplectic geometry

Write γi(jk) for variable of edge (jk) of ∆i (one edge has γ = 1).
The Ptolemy equation for ∆i is

±l•m•γi(01)γi(23) ± l•m•γi(02)γi(13) − γi(03)γi(12) = 0

(−1)B′j l−
µi
2 m

λi
2 γi(01)γi(23) + (−1)Bj l−

µ′i
2 m

λ′i
2 γi(02)γi(13) − γi(03)γi(12) = 0.

Theorem (HMP)

Eliminating the γ variables from the Ptolemy equations results
in a polynomial which is a factor of the PSL(2,C) A-polynomial.
These equations are equivalent to Champanerkar’s equations.

Key ideas:
• Symplectic matrices are easy to invert!
• Symplectic algebra gives freedom to choose nice RΓ

j .
• Neumann (1990) guarantees integer solutions of

NZ .B = C.
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Unifying approaches

Thus,
• refining symplectic techniques (Dimofte, approach # 4)
• based on hyp geom approach (# 2, Champanerkar)
• yields Ptolemy varieties very similar to those arising from

representation theory approach (#3, Zickert).

Further questions:
• Are our Ptolemy equations equivalent to those of Zickert?
• The signs are given by a vector B = (B1,B′1, . . . ,Bn,B′n)

satisfying NZ .B = C. Connections to taut triangulations
(Lackenby 2000) or taut angle structures? (Burton,
Hodgson, Kang, Rubinstein, Segerman, Tillmann, ...)
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Application: Dehn filling

Consider a 2-component link in S3 consisting of knots K0,K1.

M = S3\(K0 ∪ K1), Dehn fill K0 along a slope p/q: obtain
1-cusped M(p/q).

Mp/q can be triangulated using layered solid tori.
(Jaco-Rubinstein 2006, Guéritaud-Schleimer 2010).

These triangulations look like diagonal flips in a 2D
triangulation of the cusp torus — just as in hyperbolic surface
cluster algebra.
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Dehn filling

The A-polynomial Ptolemy equations can be
taken to coincide, up to signs, with those in
the cusp torus cluster algebra.

a

a

b bx
y

Theorem (HMP)

We can triangulate Mp/q so that the Ptolemy equations in the
layered solid torus take the form

±γxγy + γ2
a − γ2

b = 0.

The + or − can be read off from he word in Ls & Rs for the
filling.
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Example: Whitehead link filling and twist knots

2/1

3/1

1/0

3/2 = m007
1/1 = trefoil

1/2=52 knot

1/3=72 knot

−1=41 knot

−1/2=61 knot

−1/3=81 knot

T0

T1

T2
L

R

L

L

RR

h0
o1

p1

= s1

h1

L92

s0

o0

p0



Example: Whitehead link filling and twist knots
The Whitehead link complement has an ideal triangulation with
3 tetrahedra away from Dehn-filled K0, 3 Ptolemy equations:

0 = −LM−1
γaγ2− LM−2

γ3/1γ∞−γ
2
∞, 0 = −Mγ3γ∞− LM−1

γ
2
∞−γaγ2, 0 = γ

2
∞−γ∞γ3−γ

2
a .

Figure-8 (-1 or LL filling): layered solid torus has 2 tetrahedra.

0 = γ3γ1 + γ
2
2 − γ

2
∞

0 = −γ2γ0 + γ
2
1 − γ

2
∞

Fold up the layered solid torus, set γ0 = γ∞.

52 (1/2 or LR filling): opposite folding, set γ0 = γ1.
72 (1/3 or LRL filling): one more tet, fold identifying γ1/2 = γ0.

0 = γ∞γ1/2 + γ
2
1 − γ

2
0

92 (1/4 or LRLL filling): one more tet, fold identifying γ1/3 = γ0.

0 = −γ1γ1/3 + γ
2
1/2 − γ

2
0
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Example: Whitehead link filling and twist knots

Thus we can write Ptolemy equations simultaneously for knots
obtained by a Dehn fillings of a 2-component link!

Thanks for listening!

References:
• Champanerkar, A-polynomial and Bloch invariants of hyperbolic 3-manifolds, 2003
• Cooper, Culler, Gilet, Long, Shalen, Plane curves associated to character varieties of 3-manifolds, 1994
• Cooper, Long, Remarks on the A-polynomial of a knot, 1996
• Dimofte, Quantum Riemann surfaces in Chern-Simons theory, 2013
• Garoufalidis, D. Thurston, Zickert, The complex volume of SL(n,C)-representations of 3-manifolds, 2015
• Guéritaud, Schleimer, Canonical triangulations of Dehn fillings, 2010
• Jaco, Rubinstein, Layered triangulations of 3-manifolds, 2006
• Lackenby, Taut ideal triangulations of 3-manifolds, 2000
• Neumann, Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic 3-manifolds, 1990
• Neumann, Zagier, Volumes of hyperbolic three-manifolds, 1985
• Penner, The decorated Teichmüller space of punctured surfaces, 1987
• Zickert, Ptolemy coordinates, Dehn invariant and the A-polynomial, 2016
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