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Overview

This talk is about connections between

* Ptolemy equations (arise in many places, esp. cluster
algebras)

the A-polynomial (a knot invariant)
hyperbolic geometry (2D and 3D)
triangulations of manifolds (2D and 3D)
symplectic geometry, and

Dehn filling (an operation on 3-manifolds).
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Theorem (Claudius Ptolemaeus c. AD 160)

For any cyclic quadrilateral ABCD,
AB-CD+ BC-AD = AC - BD.

Proof.
(a—b)(c—d)+(b—c)(a—d) = (a—c)(b—d).

Il
L

Z/ACB = ZADB means arg 2=¢ = arg 2=

a—

Q|

Hence
arg(b—c)(a— d) = arg(a— c)(b— d).

Two (hence three) terms above have the
same argument, so their lengths sum. O
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Ptolemy equations in hyperbolic geometry

Fix an orientable surface S, n > 0

cusps, x(S) < 0.

Consider hyperbolic metrics on S: hed
they form T-space, Ty, = R89-6+2n,

Also consider hyperbolic surfaces
decorated by a horocycle at each

cusp.
Space of such surfaces forms

decorated T-space T, , = R89-6+3n,

Consider an ideal triangulation of S.
This requires 6g — 6 + 3n edges.
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Ptolemy equations in hyperbolic geometry

Each edge e of the triangulation has infinite length, but if we
truncate at horocycles, the length /; € R.
The lambda length of e is \e = e2k.

Theorem (Penner 1987)

The 6g — 6 + 3n lambda lengths of an ideal triangulation
provide a homeomorphism Ty , —» RS9 8+3",

Adjusting a triangulation by a Pachner move / diagonal flip,
lambda lengths are related by the Ptolemy relation

Ady = Aake + ApAg.

C
The algebra of the \; is full of amazing Yy
surprises. bl x / d
A prototypical example of a cluster algebra

a

(Fomin-Zelevinsky ~ 2000).
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The A-polynomial — intuitive idea

Let K ¢ S® be a knot and consider hyperbolic structures (i.e.
constant curvature -1 metrics) on the 3-manifold M = S\ K.
Provided K prime and not satellite, there is
® a unique complete hyperbolic structure (Mostow rigidity)
e a 1-C-parameter family of hyp. structures (W. Thurston).

Work in the upper half space model of hyperbolic space H?.
e = {(x,y,2) e R®: z> 0}

. o ad 2+d 2+d 2
Metric ds® = &% o
Sphere at infinity S,
={z=0}U{o0} 2 CU{o0} = CP".

Isom™H?® = PSL,C = SL,C/{+/}.
Acts by Mébius transformations on S,

+ [i Z} “ (z»—> iﬁiﬁ)
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If M is triangulated, a hyperbolic structure can be constructed
by hyperbolic tetrahedra so they fit together in HS.

Any hyperbolic structure gives a developing map
D: M —s H5.

This map is 71 (M) equivariant, acting on M by deck
transformations and on H?2 by isometries.

Thus we have a holonomy representation

p: (M) — Isom* H3 = PSL,C.

The peripheral subgroup 71(0M) = Z x Z has basis given by a
longitude [ & meridian m.



The A-polynomial — intuitive idea

Now [, m € 71(OM) = Z x Z commute.
So p(I), p(m) € PSL,C commute.



The A-polynomial — intuitive idea

Now [, m € 71(OM) = Z x Z commute.
So p(I), p(m) € PSL,C commute.
After conjugation in PSL,C,

==y ] w7 ]



The A-polynomial — intuitive idea

Now [, m € 71(OM) = Z x Z commute.
So p(I), p(m) € PSL,C commute.
After conjugation in PSL,C,

==y ] w7 ]

Question
What /, m are possible?



The A-polynomial — intuitive idea

Now [, m € 71(OM) = Z x Z commute.
So p(I), p(m) € PSL,C commute.
After conjugation in PSL,C,

==y ] w7 ]

Question
What /, m are possible?

Answer (Cooper-Culler-Gilet-Long-Shalen 1994)

Those I, m satisfying the A-polynomial!

AK(/, m) = 0.



Ways to calculate the A-polynomial

© Original definition: representation theory / algebraic
geometry
(CCGLS 1994)

® Hyperbolic geometry
(Champanerkar 2003)

® Sophisticated representation theory, Ptolemy varieties
(Zickert 2016)

@ Hyperbolic geometry + symplectic geometry
(Dimofte 2013, HMP 2020).
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Pure algebra — no hyperbolic geometry.
Consider SL,C representations of w1(M) and 71 (OM).

Let R(M) = {homomorphisms p: m1(M) — SL,C}.

For generic p € R(M), the commuting matrices p(\), p(n) are
diagonalisable, so can be conjugated to

p(A) = [(/, ,91} () = ['g mo_d .

The set of all such (/, m) forms a variety.
Take the union of all components which have dimension 1.
This gives a curve in C? whose defining polynomial is Ax(/, m).

There is also a PSL,C A-polynomial, considering
representations into PSL,C.

Precisely (Cooper-Long 1996):

Let Ry(M) = {p € R(M): p(X\), p(p)both upper triangular}. Every p € R(M) is conjugate to one in Ry (M).
Consider themap £: Ry — €2 which takes p to the top left entries of p(X) and p(u).

After taking components with 1-dimensional Zariski closure, £(Ryy) defines the A-polynomial.



Approach #2: Hyperbolic geometry

{Hyp ideal tetrahedra} =~ {z € C: Imz > 0}

Isom™ H? acts triply transitively on S...
3! isometry taking 3 vertices to 0, 1, oc.
Fourth vertex then goes to z (cross ratio).

arg(z) = dihedral angle

Given edge/shape parameter z, other edges 2
have parameters :7
1 z ¢ ‘
/ /" __
Tz f Tz

Opposite edges have same parameter. o

In an ideal triangulation, tetrahedra fit
together around an edge e.

H z=1.

z parameter around e
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Approach #2: Hyperbolic geometry

Let 7 = {A;}]_, be an ideal triangulation of M.
Consider tetrahedron parameters z = {z;, z, z/'}7_, giving a
hyperbolic structure.

For each edge, we have [ ], qnq edge Z = 1: glUing equations.

Let P7 (M) = {z satisfying gluing eqns} = parameter space.
Any z ¢ P7(M) with Im z > 0 describes a hyp structure on M.

A boundary/cusp torus of M inherits a (2D) triangulation from
T.

Let m, [ have holonomy /, m.
le. p(u) = (z— Iz+-) and p(\) = (z — mz + ),
where p: m1(M) — PSL,C = Mob.

Then I, m are given by a product of parameters obtained by
walking through a cusp triangulation: cusp equations.



Approach #2: Hyperbolic geometry

b
0(3) 0 b,
ap

X\ 1(0)
2(0) \eA\ &

bo
2(1
bo ao
ap
by

S _ 1,111
M =2y Zz ZayZoys | = Zay2Z, 2y, Za, by, 2 Zay Z,
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Approach #2: Hyperbolic geometry

There’s a holonomy map
Hol: P7(M) — C x C

which maps z satisfying gluing equations to (/, m).

The image Hol(P7 (M)) (taking components with dimension 1)
is a curve in C? with a defining polynomial H(/, m).

Theorem (Champanerkar 2003)
H(/, m) is a factor of the PSL,C A-polynomial.

In other words, from gluing and cusp equations, eliminating the
tetrahedron parameters z; essentially gives the A-polynomial.
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Approach #3: Ptolemy varieties
In an ideal tetrahedron A, consider assigning

{Edges of A} — C*
(k) = vk !

N
satisfying the Ptolemy equation c c

Y037Y12 + 01723 = Y027Y13-

N
le)
o

Consider an ideal triangulation 7 = {A;}7 , of M.
Take variables v; j, over each edge (jk) of each tetrahedron A;.

The Ptolemy variety Pt(T) is defined by the Ptolemy equation
in each tetrahedron, and identification relations

’}’,’Jk = :tVf’,j/k’ (sign depends on Iabelling/orientation)

when edges are identified.
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Theorem (Garoufalidis-Thurston-Zickert 2015)

A Ptolemy assignment uniquely determines a
boundary-unipotent representation w1 (M) — SL,C, giving a
map Pt(T) — R(M).

Boundary-unipotent representation: takes peripheral subgroup into a conjugate of N = ! x C SL,C)
[N

Theorem (Zickert 2016)

An enhanced Ptolemy assignment uniquely determines a
boundary-Borel representation (M) — SL,C, giving a map

Boundary-Borel representation: takes peripheral subgroup into

a conjugate of B = { [g x:} } C SL,C.
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Approach #3: Ptolemy varieties

The enhanced Ptolemy variety is defined by the same variables
and Ptolemy relations, but identification relations

’Yi,jk =+ L. M.’Y,'/ Jk' (powers of L, M depend on cusp triangulation)

Hence, the A-polynomial can be found by taking Ptolemy
equations in v variables (“enhanced" with powers of L and M)
and eliminating ~ variables.

Zickert remark: This illustrates a “duality between shapes and
Ptolemy coordinates".

| Coordinates | Equations

Ptolemy var. | 1 v per edge 1 Ptolemy eqn per tetrahedron
Hyp. geom. | 1 z per tetrahedron | 1 gluing eqn per edge

(Note an Euler xy argument shows # tetrahedra = # edges.)



Approach # 4: Symplectic geometry

Key fact:

The combinatorics of ideal triangulations of 3-manifolds are
surprisingly symplectic!



Approach # 4: Symplectic geometry

Key fact:

The combinatorics of ideal triangulations of 3-manifolds are
surprisingly symplectic!

Label edges Eq, ..., Ep, tetrahedra A4, ..., Ap.

Let ax; = # (01) or (23) edges in A; identified to Ek.
Let by j = # (02) or (13) edges in A, identified to E.
Let ck; = # (03) or (12) edges in A, identified to E.



Approach # 4: Symplectic geometry

Key fact:
The combinatorics of ideal triangulations of 3-manifolds are
surprisingly symplectic!

Label edges Eq, ..., Ep, tetrahedra A4, ..., Ap.

Let ax; = # (01) or (23) edges in A; identified to Ek.
Let by j = # (02) or (13) edges in A, identified to E.
Let ck; = # (03) or (12) edges in A, identified to E.

The gluing equation for Ej is then
& g j / by i\ i L / 1"
H Zj ’ (Zj> (Zj ) or E ak,ij + bk,ij + CkJ'Zj
J=1 J=1

where Z; = log z;, Zj’ = log Z, Zj” = log zjf’.



Approach # 4: Symplectic geometry

Key fact:
The combinatorics of ideal triangulations of 3-manifolds are
surprisingly symplectic!

Label edges Eq, ..., Ep, tetrahedra A4, ..., Ap.

Let ax; = # (01) or (23) edges in A; identified to Ek.
Let by j = # (02) or (13) edges in A, identified to E.
Let ck; = # (03) or (12) edges in A, identified to E.

The gluing equation for Ej is then
& g j / by i\ i L / 1"
H Zj ’ (Zj> (Zj ) or E ak,ij + bk,ij + CkJ'Zj
J=1 J=1

where Z; = log z;, Zj/ = log Z, Zj” = log zjf’.

Since zZ/z" = —1then Z + Z' + Z" = xi: eliminate each Z”.
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Approach # 4: Symplectic geometry

Gluing equation for edge Ex becomes
n
> dkjZ + di ;Z) = 2mi(2 — ¢)
j=1

— i . [A— . . — n .
yvhere Akj = a,j — Cr,js d{w‘ = bk,,. — Ck,j aqd Ck = >_j—1Ck,j are
integers determined by triangulation combinatorics.

Applying same idea to cusp equations,

n n
> wiZi+ @z =logm—inc™, > NZ+ NZ =logl — inc'
j=1 j=1

for some integers 1y, uj, €™, Aj, A, c'.



Approach # 4: Symplectic geometry

The coefficients form the Neumann-Zagier matrix NZ.

Eq

NZ = ¢
m
[

A
l
dj 4

[ di 1

dn,1
1z

A

!

n,1
1

/
>‘1

Ap
;-
d17f7 d1,n

dn,n d[,'hn
ftn  fin

An A

RS

Ry
=i
M[



Approach # 4: Symplectic geometry

The coefficients form the Neumann-Zagier matrix NZ.

E;

NZ = ¢
m
[

Logarithmic gluing and cusp equations then become

NZ

A An

chy O Gin dip’

dn,1 ,/7,1 dn,n d,’m
pa ftn  fin
AN An A

[ Zy] [0 ] [2 — ¢y
Z; : :

=10 |tiTt|2a—g¢,

Zy log m —-c"
Z) | log/ | —c

NZ.Z=H+ irC




Approach # 4: Symplectic geometry

The coefficients form the Neumann-Zagier matrix NZ.

Eq

NZ = ¢
m
[

Logarithmic gluing and cusp equations then become

NZ

A An

dii iy A dip ]

dn,1 ,/7,1 dn,n d,’m
e fin M
AN An A,

[ Zy] [0 ] [2 — ¢y
Z : :

=10 |tiTt|2a—g¢,
Zy log m —-c"
Z) | log/ | | —c' |
NZ.Z=H+ inC

Rows of NZ lie in R?" and coordinates come in pairs...
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Take R2" with coords (Xy, y1, . . ., Xn, ¥n) and standard
symplectic form w = > dx; A dy;.

Theorem (Neumann-Zagier 1985)

All rows of NZ are symplectically orthogonal except
w(R™, R") = 2. In particular, all w(RZ, RZ) = 0.
The n gluing rows R].G span a subsapce of dimension n — 1.

E.g. a triangulation of trefoil complement.

Ao Ay Ao
Eozo) 10 -1 -1 -2 -2

Es)1 0 1 10 0 1

NZ= EiEp | -1 —1 0 1 2 1

m -1 -1 0 -1 00

[ 1 -2 1 -1 00
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Observation (Dimofte 2013)

The rows of NZ extend to a symplectic basis of R?".

We can form a symplectic matrix

G L where

R; R;

: w(F) . RE) = b
1

J— [:
2R) 1

NZ=1RG [~ SY =
R™ RG
M R™
1R all other rows w-orthogonal.
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Approach # 4: Symplectic geometry

Observation (Dimofte 2013)

The rows of NZ extend to a symplectic basis of R?".

We can form a symplectic matrix

G L where
R R!
: w(Al, RZ) = 6k

NZ=|pge|~ SY= ]

m N _
R™ RC | w(R ’ER) =1
M R™
1R all other rows w-orthogonal.

Note the /. are very not unique!
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Dimofte 2013: Change variables using symplectic basis! Let

Gi

=8Y.Z=S8Y
Gn—1
M

L 3L

.
z

Zn

[ Zn]

RCGZ
Rl Z
R™Z
1R'Z

Then change variables from Z/-,Zj’ tol;, Gj, L, M! One I, for

each edge (except one).
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Dimofte 2013: Change variables using symplectic basis! Let

G (2,7
X Z G = REZ
= SY.Z=8Y|: i.e = AZ
—ore= : Y M = Rz
Gn—1 Zn 1, — 1R Z
M _Zr,7_ 2 2
| 5L |

Then change variables from Z/-,Zj’ tol;, Gj, L, M! One I, for
each edge (except one).

Gluing & cusp equations now become very simple

Gk =ir(2—-c¢k), M=logm—irc™, L=logl— irc".



Approach # 4: Symplectic geometry

Dimofte 2013: Change variables using symplectic basis! Let

G 2]

X Z G = REZ
=SYZ=8Y|:| e - Az
—ohe= Y M = Rz

Gn-1 Zn 1, — 1g~z

M _Zr,7_ 2 2

L 3L |

Then change variables from Z/-,Zj’ tol;, Gj, L, M! One I, for
each edge (except one).

Gluing & cusp equations now become very simple

Gk =ir(2—-c¢k), M=logm—irc™, L=logl— irc".

However numerous difficulties remain.
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* Implement the equation z/ = 11—4 ie. ef = 1
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* Need to write Z;, Z/ interms of [';, G;, L, M, i.e. invert SY.
e Half the entries of SY (i.e. /7.) require work to calculate.

e The R are not unique.
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Approach # 4: Symplectic geometry

Difficulties eliminating variables to obtain A-polynomial:
H A 1
* Implement the equation z; = =z T

* Need to write Z;, Z/ interms of [';, G;, L, M, i.e. invert SY.
e Half the entries of SY (i.e. /7.) require work to calculate.

. /
l.e. eZ/ =

e The R are not unique.
Dimofte gave several examples and calculations.

Claim (HMP)

All these issues can be resolved simultaneously and
systematically, “inverting without inverting".

Each equation z/ = 1% becomes a Ptolemy equation in
/ Zj

~j = €', up to signs and powers of /, m.
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Write ;) for variable of edge (jk) of A; (one edge has v = 1).
The Ptolemy equation for A, is

+1*m*i01)vice3) £ I°M*vio2)i(13) — Yi03)Yi(iz) = 0
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Eliminating the ~ variables from the Ptolemy equations results
in a polynomial which is a factor of the PSL(2, C) A-polynomial.
These equations are equivalent to Champanerkar’s equations.



Approach # 4: Symplectic geometry

Write ;) for variable of edge (jk) of A; (one edge has v = 1).
The Ptolemy equation for A, is

+1*m*i01)vice3) £ I°M*vio2)i(13) — Yi03)Yi(iz) = 0

1B,/,ﬂ Aj B,,ﬁ l; ' . ' .
(—=1)717 2 m2 5501yvie3) + (—1)717 2 M2 vj02)7vi(13) — Vi(03)Vi(12) = O

Theorem (HMP)

Eliminating the ~ variables from the Ptolemy equations results
in a polynomial which is a factor of the PSL(2, C) A-polynomial.
These equations are equivalent to Champanerkar’s equations.

Key ideas:
e Symplectic matrices are easy to invert!
e Symplectic algebra gives freedom to choose nice

e Neumann (1990) guarantees integer solutions of
NZ.B = C.
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Thus,
e refining symplectic techniques (Dimofte, approach # 4)
® based on hyp geom approach (# 2, Champanerkar)

¢ yields Ptolemy varieties very similar to those arising from
representation theory approach (#3, Zickert).



Unifying approaches

Thus,
e refining symplectic techniques (Dimofte, approach # 4)
® based on hyp geom approach (# 2, Champanerkar)

¢ yields Ptolemy varieties very similar to those arising from
representation theory approach (#3, Zickert).

Further questions:
¢ Are our Ptolemy equations equivalent to those of Zickert?
* The signs are given by a vector B = (B4, Bj,. .., By, By)
satisfying NZ.B = C. Connections to taut triangulations

(Lackenby 2000) or taut angle structures? (Burton,
Hodgson, Kang, Rubinstein, Segerman, Tillmann, ...)
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1-cusped M(p/q).
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Application: Dehn filling

Consider a 2-component link in S® consisting of knots Ky, Kj.

M = S®\(Ky U K1), Dehn fill Ky along a slope p/q: obtain
1-cusped M(p/q).

M,,q can be triangulated using layered solid tori.
(Jaco-Rubinstein 2006, Guéritaud-Schleimer 2010).

These triangulations look like diagonal flips in a 2D
triangulation of the cusp torus — just as in hyperbolic surface
cluster algebra.
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Theorem (HMP)

We can triangulate M4 so that the Ptolemy equations in the
layered solid torus take the form
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Dehn filling

The A-polynomial Ptolemy equations can be a

taken to coincide, up to signs, with those in

the cusp torus cluster algebra. b b
a

Theorem (HMP)

We can triangulate M4 so that the Ptolemy equations in the
layered solid torus take the form

0y + 5 — 5 = 0.

The + or — can be read off from he word in Ls & Rs for the
filling.



Example: Whitehead link filling and twist knots

1/1 = trefoil

—1=44 knot



Example: Whitehead link filling and twist knots

The Whitehead link complement has an ideal triangulation with
3 tetrahedra away from Dehn-filled Ky, 3 Ptolemy equations:
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Figure-8 (-1 or LL filling): layered solid torus has 2 tetrahedra.

2 2
0=7371+7% — Ve

2 2
0=—72% +7 — 7

Fold up the layered solid torus, set 79 = Vo-



Example: Whitehead link filling and twist knots

The Whitehead link complement has an ideal triangulation with
3 tetrahedra away from Dehn-filled Ky, 3 Ptolemy equations:
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5, (1/2 or LR filling): opposite folding, set vy = 1.
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The Whitehead link complement has an ideal triangulation with
3 tetrahedra away from Dehn-filled Ky, 3 Ptolemy equations:

0= —LM "vamp —LM7273/1%C —“/ic, 0= —My3v00 — LM*W?,O —7Yav2, 0= wfx — Yoo3 —73
Figure-8 (-1 or LL filling): layered solid torus has 2 tetrahedra.
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5, (1/2 or LR filling): opposite folding, set vy = 1.
72 (1/3 or LRL filling): one more tet, fold identifying v1,2 = 0.
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Example: Whitehead link filling and twist knots

The Whitehead link complement has an ideal triangulation with
3 tetrahedra away from Dehn-filled Ky, 3 Ptolemy equations:

0= —LM "vamp —LM7273/1%C —“/ic, 0= —My3v00 — LM*W?,O —7Yav2, 0= wfx — Yoo3 —73
Figure-8 (-1 or LL filling): layered solid torus has 2 tetrahedra.

2 2
0=7371+7% — Ve

0=~ +F — 7%
Fold up the layered solid torus, set 79 = Vo-

5, (1/2 or LR filling): opposite folding, set vy = 1.
72 (1/3 or LRL filling): one more tet, fold identifying v1,2 = 0.

2 _ 2
0="00v1/2+7 — 0

92 (1/4 or LRLL filling): one more tet, fold identifying v 3 = 7o-

2 2
0=—71v13+7/2—
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Thus we can write Ptolemy equations simultaneously for knots
obtained by a Dehn fillings of a 2-component link!

Thanks for listening!
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