THE EULER-FERMAT THEOREM AND GROUP THEORY

DANIEL MATHEWS

The aim is to prove the following theorem:

Theorem 0.1. If (a, n) = 1 then $a^{\phi(n)} \equiv 1 \pmod{n}$ where $\phi(n)$ is the Euler phi function, ie the number of positive integers less than n which are relatively prime to n.

Lemma 0.2. Let the elements of $\{1, 2, ..., n\}$ which are relatively prime to n, be denoted as S. Then, under multiplication modulo n, S forms a group under multiplication.

Recall that proving S is a group just means proving three things:

- (i) If $a, b, \in S$ then $ab \in S$ (the closure requirement).
- (ii) There is an element $e \in S$ such that for all $a \in S$, ae = ea = a (the identity requirement).
- (iii) If $a \in S$ then there is an element denoted $a^{-1} \in S$, called the inverse of a, such that $aa^{-1} = a^{-1}a = e$, the identity (the inverse requirement).

Before going on, note that, in dealing with multiplication modulo n, obviously it is true that ab = ba — ie the group is *commutative*. We cannot make this assumption with groups in general, though.

Proof. (i) If a, b are relatively prime to n, then ab is relatively prime to n — simply consider their prime factorisations. Any prime appearing in the factorisation of n cannot appear in a or b, hence not in ab.

Further, the property of 'being relatively prime to n' is preserved upon adding/subtracting multiples of n — this is part of the Euclidean algorithm. So ab, modulo n, will be a member of S.

- (ii) This is obviously true if we take $e = 1 \pmod{n}$. (Hereafter we will write 1 instead of e)
- (iii) Take any $a \in S$. Since (a, n) = 1, we know that there exist x, y such that ax + ny = 1 (Euclidean algorithm). But then $ax \equiv 1 \pmod{n}$, so x is an inverse for a.

Definition 0.3. The *order* of an element a in a group G is the least $n \in \mathbb{N}$ such that $a^n = 1$.

Lemma 0.4. $a^m = 1$ iff m is a multiple of the order of a.

Proof. Let n be the order of a. So $a^n = 1$ and for a positive integer k

$$a^{kn} = \frac{k \text{ times}}{a^n a^n \cdots a^n} = \frac{k \text{ times}}{1 \cdot 1 \cdots 1} = 1$$

Date: February 2002.

DANIEL MATHEWS

Hence if m is a multiple of n, then $a^m = 1$.

For the converse, consider the sequence $1, a, a^2, \ldots, a^n, a^{n+1}, \ldots$

Since $a^n = 1$, and is the least power to do so (by the definition of order), we have $a^n = 1$, $a^{n+1} = a$, $a^{n+2} = a^2$, and so on. In general $a^{kn+l} = a^l$. That is, the sequence cycles exactly every n elements, and no more often.

If some $a^m = 1$ but m is not a multiple of n, then there must be some $m' \le n$ with $a^{m'} = 1$. This is a contradiction.

Having set up a couple of group-theoretic ideas, we now prove a more general theorem relating the order of an element to the size of the group. This is *Lagrange's theorem* and actually extends to all subgroups of a group.

In thinking about elements and their orders, perhaps a good example is the integers modulo 11, and the group consisting of the relatively prime integers 1,2,3,4,5,6,7,8,9,10 $(\phi(11) = 10)$ under multiplication modulo 11. For instance, if we look at $1, 4, 4^2, \ldots$ we find that $4^5 = 1$, but if we take the sequence 2^k we find the order of 2 is 10. Similarly the order of 10 is 2 and the order of 1 is 1. So bear that in mind while reading the theorem and its proof...

Theorem 0.5 (Lagrange's Theorem). Let G be a group with m elements and let $a \in G$. Then the order of a is a factor of m.

Proof. Let the order of a be n.

Define $x, y \in G$ to be *equivalent*, denoted $x \sim y$, if $xy^{-1} = a^k$ for some integer k, ie $x = a^k y$. This relation divides G up into classes of equivalent elements — and each element of G is in some equivalence class (even if it is the only element in its class!).

The trick is to show all the equivalence classes are the same size (if you try a few examples, such as modulo 11, you will quickly find this is the case). So we have a lemma.

Lemma 0.6. Every equivalence class is a set of the form

$$\left\{x, xa, xa^2, \dots, xa^{n-1}\right\}$$

for some particular $x \in G$ and where n is the order of a.

Proof. Take an equivalence class E and an element x in it. Then every element y of E satisfies $x \sim y$, that is $y = xa^k$. But now $xa^k = xa^l$ iff $x^{-1}xa^k = x^{-1}xa^l$, ie $a^k = a^l$, ie $a^{k-l} = 1$, so k-l is a multiple of n.

So $\{x, xa, xa^2, \ldots, xa^{n-1}\}$ are all distinct, and any other element xa^k is equal to one of these elements.

Hence the equivalence class is as claimed.

Corollary 0.7. Every equivalence class has the same number of elements, n, the order of a.

Returning to the proof of Lagrange's theorem, we see that the group G is divided into equivalence classes with n elements. Hence the total number of elements in the group m is a multiple of n.

So the order of a is a factor of m, as required.

From Lagrange's theorem, the Euler-Fermat theorem falls out.

Corollary 0.8. Take a group G with m elements and $a \in G$. Then $a^m = 1$.

Proof. Let n be the order of a. Then n is a factor of m be Lagrange's theorem, so by Lemma 0.4, $a^m = 1$.

Now we can easily prove the Euler-Fermat theorem! The group of elements relatively prime to n, under multiplication modulo n, forms a group. The number of elements in the group is $\phi(n)$. So if (a, n) = 1, then a is a member of the group, and by the above corollary, $a^{\phi(n)}$ is equal to the identity element, which means $a^{\phi(n)} = 1 \mod n$

$$a^{\phi(n)} \equiv 1 \mod n.$$