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The aim is to prove the following theorem:

Theorem 0.1. If (a, n) = 1 then aφ(n) ≡ 1 (mod n) where φ(n) is the Euler phi
function, ie the number of positive integers less than n which are relatively prime
to n.

Lemma 0.2. Let the elements of {1, 2, . . . , n} which are relatively prime to n,
be denoted as S. Then, under multiplication modulo n, S forms a group under
multiplication.

Recall that proving S is a group just means proving three things:

(i) If a, b,∈ S then ab ∈ S (the closure requirement).
(ii) There is an element e ∈ S such that for all a ∈ S, ae = ea = a (the

identity requirement).
(iii) If a ∈ S then there is an element denoted a−1 ∈ S, called the inverse of a,

such that aa−1 = a−1a = e, the identity (the inverse requirement).

Before going on, note that, in dealing with multiplication modulo n, obviously
it is true that ab = ba — ie the group is commutative. We cannot make this
assumption with groups in general, though.

Proof. (i) If a, b are relatively prime to n, then ab is relatively prime to n —
simply consider their prime factorisations. Any prime appearing in the
factorisation of n cannot appear in a or b, hence not in ab.

Further, the property of ‘being relatively prime to n’ is preserved upon
adding/subtracting multiples of n — this is part of the Euclidean algo-
rithm. So ab, modulo n, will be a member of S.

(ii) This is obviously true if we take e = 1 (modulo n). (Hereafter we will
write 1 instead of e)

(iii) Take any a ∈ S. Since (a, n) = 1, we know that there exist x, y such that
ax+ ny = 1 (Euclidean algorithm). But then ax ≡ 1 (mod n), so x is an
inverse for a.

�

Definition 0.3. The order of an element a in a group G is the least n ∈ N such
that an = 1.

Lemma 0.4. am = 1 iff m is a multiple of the order of a.

Proof. Let n be the order of a. So an = 1 and for a positive integer k

akn =
k times︷ ︸︸ ︷

anan · · · an
=

k times︷ ︸︸ ︷
1 · 1 · · · 1

= 1

Date: February 2002.

1



2 DANIEL MATHEWS

Hence if m is a multiple of n, then am = 1.
For the converse, consider the sequence 1, a, a2, . . . , an, an+1, . . ..
Since an = 1, and is the least power to do so (by the definition of order), we

have an = 1, an+1 = a, an+2 = a2, and so on. In general akn+l = al. That is, the
sequence cycles exactly every n elements, and no more often.

If some am = 1 but m is not a multiple of n , then there must be some m′ ≤ n
with am

′
= 1. This is a contradiction. �

Having set up a couple of group-theoretic ideas, we now prove a more general
theorem relating the order of an element to the size of the group. This is Lagrange’s
theorem and actually extends to all subgroups of a group.

In thinking about elements and their orders, perhaps a good example is the inte-
gers modulo 11, and the group consisting of the relatively prime integers 1,2,3,4,5,6,7,8,9,10
(φ(11) = 10) under multiplication modulo 11. For instance, if we look at 1, 4, 42, . . .
we find that 45 = 1, but if we take the sequence 2k we find the order of 2 is 10.
Similarly the order of 10 is 2 and the order of 1 is 1. So bear that in mind while
reading the theorem and its proof...

Theorem 0.5 (Lagrange’s Theorem). Let G be a group with m elements and let
a ∈ G. Then the order of a is a factor of m.

Proof. Let the order of a be n.
Define x, y ∈ G to be equivalent, denoted x ∼ y, if xy−1 = ak for some integer

k, ie x = aky. This relation divides G up into classes of equivalent elements — and
each element of G is in some equivalence class (even if it is the only element in its
class!).

The trick is to show all the equivalence classes are the same size (if you try a few
examples, such as modulo 11, you will quickly find this is the case). So we have a
lemma.

Lemma 0.6. Every equivalence class is a set of the form{
x, xa, xa2, . . . , xan−1

}
for some particular x ∈ G and where n is the order of a.

Proof. Take an equivalence class E and an element x in it. Then every element y
of E satisfies x ∼ y, that is y = xak. But now xak = xal iff x−1xak = x−1xal, ie
ak = al, ie ak−l = 1, so k − l is a multiple of n.

So {x, xa, xa2, . . . , xan−1} are all distinct, and any other element xak is equal to
one of these elements.

Hence the equivalence class is as claimed. �

Corollary 0.7. Every equivalence class has the same number of elements, n, the
order of a.

Returning to the proof of Lagrange’s theorem, we see that the group G is divided
into equivalence classes with n elements. Hence the total number of elements in
the group m is a multiple of n.

So the order of a is a factor of m, as required. �

From Lagrange’s theorem, the Euler-Fermat theorem falls out.

Corollary 0.8. Take a group G with m elements and a ∈ G. Then am = 1.
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Proof. Let n be the order of a. Then n is a factor of m be Lagrange’s theorem, so
by Lemma 0.4, am = 1. �

Now we can easily prove the Euler-Fermat theorem! The group of elements
relatively prime to n, under multiplication modulo n, forms a group. The number
of elements in the group is φ(n). So if (a, n) = 1, then a is a member of the group,
and by the above corollary, aφ(n) is equal to the identity element, which means

aφ(n) ≡ 1 mod n.


