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1. (1975 IMO) Consider the number 44444444. Take the sum of its digits and call this number A. Then take the sum of the digits of A
and call it B. Find the sum of the digits of B.

2. Show that 75 + 26n2 is never a perfect square, for any integer n.

3. Show that a2 − 15ab+ b2 = 15 has no integer solutions.

4. Show that the equation
x8 + 10001y4 = 13z4 + 300

has no integer solutions.

5. (a) How many times is 3128 − 1 divisible by 2?

(b) How many times is 32n − 1 divisible by 2?

(c) How many times is 3200 − 1 divisible by 2?

(d) For any integer n, how many times is 3n − 1 divisible by 2?

6. Show that for every positive integer n not divisible by 2 or 5, there exists a multiple of n all of whose digits are 1s.

7. (1989 Junior ISF) Let m be a positive integer. Prove that there are at least 2000 numbers of the form

2s+1 + 2s+2 + · · ·+ 2s+r

(with r and s being positive integers) so that m is a factor of each of these numbers.

8. (IMO 1971 Q3) Prove that the set of integers of the form 2k−3 (k = 2, 3, . . .) contains an infinite subset in which every two members
are relatively prime.

9. (1994 AMO) Prove that for every integer x, the number

x5

5
+
x3

3
+

7x

15

is an integer.

10. Let m = (4p − 1)/3 where p > 3 is prime. Prove that 2m−1 ≡ 1 mod m.

11. Let n be a given positive integer.

(a) Prove that the sequence

2, 22, 222 , 222
2

, . . . ...

is eventually constant modulo n.

(b) Prove that the sequence

a, aa, aa
a

, aa
aa

, . . .

is eventually constant modulo n.

12. Suppose that a positive integer a and prime p satisfy p|ap − 1.

(a) Show that p2|ap − 1.

(b) Suppose further that p is odd. Show that p3|ap − 1 if and only if a ≡ 1 mod p2.

13. (a) If p is a prime, show that
(
2p
p

)
− 2 is divisible by p.

(b) If p is a prime, show that
(
2p
p

)
− 2 is divisible by p2.

(c) If p > 3 is a prime, show that
(
2p
p

)
− 2 is divisible by p3.

14. (1970 IMO Q4) Find the set of all positive integers n with the property that the set

{n, n+ 1, n+ 2, n+ 3, n+ 4, n+ 5}

can be partitioned into two sets such that the product of the numbers in one set equals the product of the numbers in the other set.

1



15. Find all pairs of positive integers (m,n) such that

n|1 +m3n +m2·3n .

16. (a) Let n be a positive integer. Prove that there are infinitely many perfect squares of the form 2na − 7, where a is a positive
integer.

(b) Let n be a positive integer. Prove that there are infinitely many perfect cubes of the form 2na−7, where a is a positive integer.

17. Show that the cyclotomic polynomial Φn(x) has degree φ(n) given by the Euler phi function.

Relatedly, show that the Euler phi function satisfies

n =
∑
d|n

φ(d).

18. Prove that there is no integer n > 1 for which n|2n − 1.

19. (1994 IMO Q4) Determine all ordered pairs (m,n) of positive integers such that

n3 + 1

mn− 1

is an integer.

20. (1990 IMO Q3) Determine all integers n > 1 such that
2n + 1

n2

is an integer.
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