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Tight contact structures on Seifert surface complements

Tamás Kálmán and Daniel V. Mathews

Abstract

We consider complements of standard Seifert surfaces of special alternating links. On these
handlebodies, we use Honda’s method to enumerate those tight contact structures whose dividing
sets are isotopic to the link, and find their number to be the leading coefficient of the Alexander
polynomial. The Euler classes of the contact structures are identified with hypertrees in a certain
hypergraph. Using earlier work, this establishes a connection between contact topology and the
Homfly polynomial. We also show that the contact invariants of our tight contact structures form
a basis for sutured Floer homology. Finally, we relate our methods and results to Kauffman’s
formal knot theory.
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1. Introduction

1.1. Overview

This paper classifies tight contact structures on a particular family of sutured 3-manifolds
arising out of bipartite plane graphs. We find interesting coincidences between the numbers of
such contact structures for certain related graphs. We also connect our results to knot theory
in several ways.

In theory, the classification of tight contact structures up to isotopy on a given 3-manifold can
be reduced to a combinatorial question about dividing sets on surfaces, via work of Eliashberg,
Giroux, Honda and others (see, for example, [7, 8, 19, 28]). However, the set of 3-manifolds for
which a full classification is known remains rather small (see, for example, [20, 21, 25, 27]).
In particular, no explicit classification has been given for sutured solid tori in general (more
precisely when there are more than 2 boundary dividing curves, cf. [25, 26]); handlebodies,
even less so.

In this paper we provide a full and explicit classification of tight contact structures on an
infinite family of sutured handlebodies. Moreover, we explicitly calculate the invariants of all
these contact structures in sutured Floer homology.
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Figure 1 (colour online). A bipartite plane graph G, and the construction
yielding the link LG and surface FG.

This family of sutured 3-manifolds was studied by the first author, along with Juhász and
Rasmussen, in [37]. From a finite connected bipartite plane graph G, a sutured 3-manifold
(MG, LG) is constructed as follows. Thicken G into a ribbon in the plane and insert a negative
half-twist over each edge; this yields a minimal genus Seifert surface FG for a non-split special
alternating link LG. Then MG is obtained by splitting S3 along FG, and LG gives a set of
sutures (see Figure 1). The details of this construction, as with everything mentioned in this
introduction, will be described in more detail as we proceed.

We will show that the tight contact structures on (MG, LG) are closely related to the
combinatorics of the bipartite plane graph G. Such graphs have been studied at least since
Tutte’s 1948 work [62]. A bipartite plane graph G naturally yields a trinity, a 3-coloured
triangulation of the sphere containing three bipartite plane graphs GV , GE and GR = G. A
bipartite graph can also be regarded as a hypergraph. In fact, a bipartite graph yields two
dual or ‘transpose’ hypergraphs (and any hypergraph derives from a bipartite graph). Hence,
a trinity naturally contains six hypergraphs.

The three bipartite plane graphs GV , GE , GR are closely related. Tutte’s ‘tree trinity
theorem’ says that the planar duals G∗

V , G
∗
E , G

∗
R all have the same arborescence number ρ.

Then, the matrix-tree theorem implies that the sandpile groups of these three directed graphs
[24] all have order ρ. The three groups are in fact isomorphic [3]. In [38] the first author showed
that ρ is also equal to the number of hypertrees in any of the six hypergraphs associated to
the trinity. (A hypertree, essentially, is a vector that may arise as the degree sequence of a
spanning tree, at those vertices of the bipartite graph that correspond to hyperedges in the
hypergraph; see Section 4.) The same number ρ is given by a determinant formula of Berman
[2]. We will call ρ the magic number of the trinity.

In this paper we add to the list of questions which yield the magic number as their answer.

Theorem 1.1. The number of isotopy classes of tight contact structures on (MG, LG) is
equal to the number of hypertrees in either hypergraph of G.

Thus, each of the three graphs in a trinity yields a sutured manifold with the same number
of (isotopy classes of) tight contact structures, namely the magic number of the trinity. Our
proof of Theorem 1.1 provides an explicit construction of each tight contact structure via
spanning trees.

In [58] Postnikov proved that the set of hypertrees in a hypergraph equals the set of lattice
points of a convex polytope. We will show directly that the Euler classes of tight contact
structures on (MG, LG) are equivalent to hypertrees in (E,R) in a strong sense. Here E is one
of the two colour classes of G (the other is V ) and R is the set of its regions. The pair (E,R)
is one of the six hypergraphs of the trinity, with R as its set of hyperedges.
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Theorem 1.2. There is an affine bijection between hypertrees of (E,R) and Euler classes
of tight contact structures on (MG, LG).

In [37], the first author together with Juhász and Rasmussen studied the sutured Floer
homology of the manifolds (MG, LG). They proved that SFH(MG, LG) has a single Z summand
at each spin-c structure in its support, and that the support is affine isomorphic to the set of
hypertrees of (E,R) (or of (V,R)). We will show that the spin-c structures of the tight contact
structures on (MG, LG) coincide with the support of SFH. Moreover, the contact invariants
[32] of the tight contact structures essentially provide a basis for SFH(MG, LG).

Theorem 1.3. Each isotopy class of tight contact structures on (MG, LG) has a distinct
spin-c structure. A tight contact structure ξs for the spin-c structure s exists exactly when
SFH(−MG,−LG, s) �∼= 0. In this case the contact invariant c(ξs) is {±x}, where x generates
SFH(−MG,−LG, s) ∼= Z.

Contact invariants in SFH are only defined up to sign [31], so this is in fact a complete
description of them. This theorem quickly follows from Theorem 1.1 and the TQFT property
of sutured Floer homology [31] because every tight contact structure on (MG, LG) extends to
the unique tight contact structure on S3, cf. Proposition 7.1.

Our results are related to knot theory in at least two ways. To describe the first way, we
recall that the leading coefficient of the Alexander polynomial of LG is also given by the magic
number ρ of the trinity. This fact follows immediately from [53, Theorem 2] and it is also
a consequence of [39, Theorem 1.3]. A short proof can be given based on Kauffman’s state
expansion formula (cf. Section 3 and Proposition 8.1). We also mention the following corollary.

Corollary 1.4. The leading coefficients of the Alexander polynomials of the three special
alternating links LGV

, LGE
, LGR

of a trinity are all equal, given by the number of tight contact
structures on each of (MGV

, LGV
), (MGE

, LGE
), (MGR

, LGR
).

The Homfly polynomials of the three links (via the identity Δ(t) = P (1, t1/2 − t−1/2), where
Δ is the Alexander and P is the Homfly polynomial) induce partitions of this coefficient which
do not coincide, but each can be derived from the appropriate set of hypertrees using the
interior polynomial introduced by the first author in [38] (see [40, Corollary 1.2]. The proof
also uses results from [39].) Hence Theorem 1.3 establishes a direct connection between certain
Homfly coefficients and tight contact structures on a naturally constructed sutured manifold,
namely the complement of a minimal genus Seifert surface.

The second connection to knot theory is an application of Theorem 1.1 to the formal knot
theory of Kauffman [43]. From a universe U , we construct a bipartite plane graph GU as shown
in Figure 2. We relate the states of U to the contact topology of (MGU , LGU ) to obtain the
following result.

Theorem 1.5. The number of states of a universe U is equal to the number of isotopy
classes of tight contact structures on (MGU , LGU ).

In particular, the number of states of U is the magic number of the trinity of GU . This follows
relatively easily after noting that the two Tait graphs (the black and white graphs constructed
from a checkerboard colouring) of the universe are among the hypergraphs of the trinity. But
we obtain our result not just as a combinatorial, but as a geometric correspondence: in fact,
the Euler–Jordan trails describing the Kauffman states turn out to be the dividing curves of
the corresponding contact structures.
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Figure 2 (colour online). A formal knot theory universe U , and the bipartite
plane graph GU constructed from it.

An exposition of some of the mathematics in this paper, and related background, is also
available as [50].

1.2. Organization of the paper

In Sections 2–4 we recall some background from the disparate fields required: in Section 2,
contact topology, including sutured Floer homology and spin-c structures; in Section 3, formal
knot theory, including universes and states and in Section 4 graph theory, including results on
bipartite plane graphs, trinities, the magic number, hypergraphs and hypertrees.

In Section 5 we recall recent work of the first author and others which connects the
combinatorics of trinities and hypertrees with sutured Floer homology of the associated
sutured manifolds.

Section 6 is the main part of the paper and classifies the tight contact structures on the
sutured manifold (MG, LG). Using Giroux’s theory of convex surfaces [19] and the gluing
theorem of Honda [28], among other work, we reduce the classification of contact structures to
a combinatorial problem about dividing curves on discs in the complement S2 \G. We apply
results on bypass surgeries, hypertrees and arborescences to show that tight contact structures
are bijective with hypertrees in an appropriate hypergraph.

Having classified contact structures on (MG, LG), in Section 7 we investigate some further
details. We compute their Euler classes in terms of the corresponding hypertrees, and show
that all the contact structures include into the tight contact structure on S3. Applying the
TQFT property of SFH [31], we can then prove Theorem 1.3.

Finally, in Section 8 we consider the Alexander polynomial, and we construct the bipartite
plane graph of a formal knot theory universe. We observe that its states correspond precisely
to configurations found in Section 6, which we then show are bijective with isotopy classes of
tight contact structures, proving Theorem 1.5.

2. Contact topology background

We briefly recall concepts we will need from three-dimensional contact topology. We refer
generally to [10, 16] for an introduction to the subject.

2.1. Contact 3-manifolds

Let M be a smooth oriented 3-manifold. (Since a contact structure always induces an
orientation, we lose no generality here.) A contact structure ξ on M is a non-integrable 2-plane
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distribution on M . Such a pair (M, ξ) is called a contact 3-manifold. Locally, a contact structure
is the kernel of a 1-form α. We only consider contact structures which are (co-)orientable, that
is, in this paper all contact structures ξ have globally defined contact forms α. Given a contact
form α, we can regard each contact plane as having an ‘upwards’ and ‘downwards’-facing side:
a vector X points ‘upwards’ or ‘downwards’ with respect to ξ accordingly as α(X) is positive
or negative.

The non-integrability of ξ is equivalent to the non-vanishing of α ∧ dα. Any contact form
α for ξ has α ∧ dα of the same constant sign, relative to the orientation. In this paper we
consider only positive contact structures, that is, those for which α ∧ dα > 0. Our choice of ξ
thus determines the orientation of M and our choice of α determines a coorientation, and hence
an orientation, for ξ. In the sequel we will usually assume that such structures have been fixed.

A smooth curve C in (M, ξ) is Legendrian if it is everywhere tangent to ξ. The contact
planes along C define a framing of C. If C is homologically trivial then it bounds an orientable
surface S; this surface defines another framing of C. The Thurston–Bennequin number of C,
denoted by tb(C), is the twisting of the contact framing relative to the surface framing. More
specifically, if C ′ is a pushoff of C along a vector field transverse to ξ, then tb(C) is given by
the linking number lk(C,C ′). The Thurston–Bennequin number does not depend on the choice
of surface or pushoff or orientation of C.

An overtwisted disc is a two-dimensional disc embedded in M with Legendrian boundary
of Thurston–Bennequin number 0. A contact 3-manifold or contact structure containing an
overtwisted disc is called overtwisted. Eliashberg in [7] showed that the classification of
overtwisted contact structures on a 3-manifold M is equivalent to the classification of 2-plane
fields on M up to homotopy. A contact structure which is not overtwisted is called tight.

A smoothly embedded surface S in M has a singular one-dimensional foliation defined by
TS ∩ ξ|S , called its characteristic foliation. (Note that it is impossible for a surface to be
everywhere tangent to ξ.) For a generic surface, the singularities of this foliation are isolated
points of two possible types: elliptic (where leaves spiral into the singular point) and hyperbolic
(saddle points). The characteristic foliation on S determines the germ of the contact structure
near S [19].

As an oriented 2-plane bundle on M , the contact structure ξ has an Euler class e(ξ) ∈ H2(M).
If S is an oriented embedded closed surface in M , then e(ξ) evaluates on S and we write
e(ξ)[S] ∈ Z. The Euler class is the obstruction to the existence of a non-vanishing section of
ξ|S . It evaluates to zero on the boundary:

e(ξ)[∂M ] = 〈e(ξ), [∂M ]〉 = 〈δe(ξ), [M ]〉 = 0. (1)

Hence ξ|∂M is a trivial bundle over ∂M ; let s be a nowhere-vanishing section. Then we also have
the relative Euler class e(ξ, s) ∈ H2(M,∂M). The map H2(M,∂M) −→ H2(M) sends e(ξ, s)
to e(ξ). If S is an oriented properly embedded surface, hence with ∂S ⊂ ∂M , then e(ξ, s)[S]
is the obstruction to extending the section s|∂S to a section of ξ|S without zeroes. When the
section s is understood we write e(ξ) instead of e(ξ, s).

2.2. Convex surfaces

Convex surfaces are crucial to the contact geometry in this paper. We refer to [19, 25, 28] for
background on the subject. Let (M, ξ) be a contact manifold.

A vector field on M is called a contact vector field if its flow preserves ξ. Given a contact
form α, contact vector fields on M are naturally in bijective correspondence with smooth
functions H : M −→ R: for each such H, there is a unique contact vector field XH such that
α(XH) = H (see, for example, [16, Section 2.3]). Consequently, any contact vector field defined
on a submanifold of M extends over M .
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A closed surface S smoothly embedded in M is called convex if there is a contact vector field
on M which is transverse to S. Equivalently, by the extensibility of contact vector fields, S is
convex if there is a contact vector field, defined in a neighbourhood of S, which is transverse to
S. If S has boundary, we require it to be Legendrian: S is convex if its boundary is Legendrian
and there is a contact vector field transverse to S. Any convex surface is coorientable,
hence orientable. The contact vector field transverse to S defines a homeomorphism from
a neighbourhood of S in M to S × R, such that S maps to S × {0} and ξ is invariant under
translations in the R direction.

A convex surface S in (M, ξ) with transverse contact vector field X has a dividing set Γ,
which is defined to be the set of points on S where X is tangent to ξ; equivalently, if α is a
contact form, it is the set of points on S where α(X) = 0. In symbols,

Γ = {x ∈ S | Xx ∈ ξx} = {x ∈ S | αx(Xx) = 0}.
It can be shown that Γ is a properly embedded one-dimensional submanifold of S, transverse
to the characteristic foliation, and its isotopy class does not depend on the choice of X [19]. If
S has non-empty boundary, then ∂S consists of several leaves (possibly with singularities) of
the characteristic foliation, and Γ intersects ∂S transversely. At a point x of S not on Γ, the
vector Xx is not tangent to ξx and so αx(Xx) is either positive or negative. Accordingly, we
say x lies in the positive region R+ or negative region R− of S; together we will call R± the
signed regions. Thus

S = R+ �R− � Γ, R+ = {x ∈ S | αx(Xx) > 0}, R− = {x ∈ S | αx(Xx) < 0}.
Note that if we use the contact vector field −X instead of X, or the contact form −α instead
of α, the regions R+ and R− exchange roles. This ambiguity can be removed by fixing a
coorientation for S (and one for ξ, which we have already done), and requiring X to point
towards the positive side of S. Thus, for a cooriented convex surface in a cooriented contact
structure, R+, R− and Γ are well defined up to isotopy.

Away from Γ, that is for x ∈ R±, the tangent plane TxS can be identified with ξx via
projection along Xx. In this way, the orientation of ξ induces orientations on R±. These in turn
induce an orientation on Γ (the same by R+ and by R−). With the coorientation conventions
above, the orientation of R+ as a subset of S agrees with the orientation induced by ξ, whereas
along R− the two are opposite.

Any embedded surface in a contact manifold can be approximated by convex surfaces. This
involves isotoping the boundary so that it becomes Legendrian. On the other hand if there is a
boundary that is already Legendrian and we wish to keep it fixed, then care needs to be taken.
Suppose we have a compact, oriented, properly embedded surface S in M , with Legendrian
boundary all of whose components are such that the difference between the framings from the
contact planes and from S is non-positive. Then the surface S can be made convex by a C0-
small isotopy of a neighbourhood of its boundary (fixing ∂S), followed by a C∞-small isotopy of
S fixing this neighbourhood of the boundary ([25, Proposition 3.1], see also [42, Theorem 3.8]).
The framing condition here is essential: note that, by equation (2), a Legendrian curve with
positive Thurston–Bennequin number cannot be the boundary of a convex surface.

If S is convex with the dividing set Γ and signed regions R±, then Γ is not only transverse to
the characteristic foliation F : it divides F , in the sense that F can be directed by a vector field
which dilates an area form on R+ and contracts it on R−. In particular, elliptic singularities
in R+ become sources while those in R− become sinks; see [19] for details.

The dividing set on a convex surface S ‘essentially’ determines the contact structure near S.
More precisely, first use the contact vector field X to describe a neighbourhood of S in M as
S × R, such that S = S × {0}, the vector field X points in the positive R direction, and ξ is
invariant under translations in the R direction. Let F be any singular one-dimensional foliation
on S divided by Γ. Giroux’s flexibility theorem says that there exists a C0-small isotopy φt
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(0 � t � 1) of S in S × R, starting from the identity φ0 : S −→ S × {0}, at the end of which the
characteristic foliation on φ1S is φ1F . This means that any characteristic foliation on S divided
by Γ can be achieved by a small isotopy of S; this characteristic foliation then determines the
germ of a contact structure along S.

Since any characteristic foliation divided by Γ can be achieved by a small isotopy of S,
many collections of curves on S can be made into leaves of the characteristic foliation,
hence Legendrian curves, via a small isotopy of S. The Legendrian realization principle
[25, Theorem 3.7] says precisely which collections of curves C can be made Legendrian in
this way. Namely, a properly embedded 1-submanifold C of S can be made Legendrian if and
only if it is transverse to Γ, and non-isolating in the sense that every connected component of
S \ (Γ ∪ C) has boundary intersecting Γ. The non-isolating condition roughly means that no
point is isolated from Γ by C: any point can escape to Γ without crossing C.

As noted in [12], the proof of the Legendrian realization principle in [25] applies equally
to embedded graphs in S. Namely, if a graph G embedded in S is non-isolating (meaning,
again, that every component of S \ (Γ ∪G) has boundary intersecting Γ), then G can be made
Legendrian via a small isotopy of S. Obviously, G fails to be a 1-manifold at each vertex of
degree 3 or more, so the vertices become singularities of the characteristic foliation. (In fact,
even in the case of Legendrian realizations of smooth curves there are in general singularities
of the characteristic foliation along each curve.)

A closed Legendrian curve C on a convex surface S has two natural framings: one from ξ,
and one from S or, equivalently, the contact vector field X. When C bounds a subsurface of
S, the twisting of the former with respect to the latter is tb(C). As we proceed along C, the
contact planes (always tangent to C) spin so that they are tangent to X at the points of C ∩ Γ.
Furthermore, since the flow of X preserves ξ and ξ induces the orientation of M (recall that we
assumed ξ to be a positive contact structure), at all these instances the spinning of ξ, relative
to X, is in the same direction. The two framings will coincide at every other point of C ∩ Γ
(and will be opposite at the rest). Hence the twisting of ξ with respect to S is given in absolute
value by 1

2 |C ∩ Γ|, and it is not hard to check that it is in fact − 1
2 |C ∩ Γ|. By the same token,

for the Legendrian boundary ∂S of the convex surface S with dividing set Γ, we have

tb(∂S) = − 1
2 |∂S ∩ Γ|. (2)

Since Γ essentially determines the contact structure near S, we can ask whether this contact
structure near S is tight. Giroux’s criterion gives us a precise answer in terms of the dividing
set Γ:

• if S is a sphere, then S has a tight neighbourhood if and only if Γ is connected;
• otherwise, S has a tight neighbourhood if and only if Γ has no contractible curves.

The second case covers all convex surfaces (with or without boundary) other than spheres,
including closed surfaces with positive genus. In either case, when the criterion fails, one can
Legendrian realize a contractible curve parallel to a contractible dividing curve (possibly
after applying the ‘folding’ technique of [25, Section 5.3] if necessary), resulting in an
overtwisted disc.

If S is an oriented embedded closed convex surface in (M, ξ) with dividing set Γ and signed
regions R±, then the evaluation of the Euler class e(ξ) on the homology class of S is given
by

e(ξ)[S] = χ(R+) − χ(R−), (3)

where χ denotes Euler characteristic. More generally, consider an oriented properly embedded
convex surface S, with Legendrian boundary ∂S ⊂ ∂M . Then ∂S is an oriented curve tangent
to ξ, and so tangent vectors to ∂S give a natural (homotopy class of) nowhere-vanishing section
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s∂ of ξ|∂S . If we take a nowhere-vanishing section s of ξ|∂M which agrees with this section s∂
over ∂S (that is, s|∂S = s∂), then similarly, the evaluation of e(ξ, s) on [S] is given by

e(ξ, s)[S] = χ(R+) − χ(R−).

Note that such an extension s of s∂ over ∂M need not always exist. However, if ∂S is a non-
separating curve on ∂M , then such an extension s does always exist. In this case, cutting ∂M
along the non-separating ∂S gives a connected surface U with an even number of boundary
components, and the section s∂ gives a nowhere-vanishing section of ξ|∂U which extends to
a nowhere-vanishing section of ξ|U (the obstructions to extensions from pairs of boundary
components cancel); gluing U back into ∂S we obtain the desired section s. This will be
sufficient for our purposes; see [25, Section 4.2] (also [42]) for details. More generally, if a
nowhere-vanishing section s of ξ|∂M differs over ∂S by k full twists from s∂ , then e(ξ, s) differs
from χ(R+) − χ(R−) by 2k (see also Section 2.8).

2.3. Contact structures on sutured manifolds

Rather than starting from a contact structure and considering convex surfaces with their
dividing sets and signed regions, we can start instead from surfaces and their data of Γ, R±,
and consider contact structures related to them.

Suppose we are given (S,Γ, R+, R−), where S is a smooth compact oriented surface (with or
without boundary), Γ is a properly embedded smooth oriented 1-submanifold of S, and every
component of S contains at least one component of Γ. Suppose further that R+ (respectively,
R−) is a subsurface of S oriented the same as (respectively, opposite to) S, such that
S \ Γ = R+ �R− and Γ ⊂ ∂R+, ∂R− as oriented 1-manifolds. Clearly not every smooth
oriented 1-submanifold Γ of S has such an R+ and R−; the existence of R+ and R− places
strong restrictions on Γ. However, when such R+ and R− do exist they can be deduced from
the orientations on S and Γ. We call (S,Γ) a sutured surface.

The structure of a sutured surface, being identical to the structure of a dividing set, thus
describes a contact structure in a product neighbourhood of S; see [29] for details.

We define a sutured 3-manifold (M,Γ) to be a smooth, oriented, compact 3-manifold M ,
together with an oriented 1-submanifold Γ of ∂M such that (∂M,Γ) is a sutured surface. So
a sutured structure on M provides boundary conditions for a contact structure on M . The
notion of sutured 3-manifold originated with Gabai’s study of foliations on 3-manifolds [14],
though his definition was slightly different.

Given a sutured 3-manifold (M,Γ) one has a contact structure ξ∂ defined near ∂M such that
∂M is convex and Γ is the dividing set. The orientations of Γ and M determine a (co)orientation
for ξ∂ . One can then ask how many cooriented, tight contact structures exist on M extending
ξ∂ , up to isotopy fixing the boundary. This is the problem of classification of tight contact
structures on (M,Γ).

Of course, if the dividing set Γ on ∂M fails Giroux’s criterion, then the contact structure ξ∂
near ∂M has an overtwisted disc, so there are no tight contact structures near ∂M , let alone
on M . Thus, we may assume Γ satisfies Giroux’s criterion and ξ∂ is tight. Another natural
assumption is that χ(R+) = χ(R−); indeed if there is any extension of ξ∂ , then this follows by
(1) and (3) above. Sutured manifolds with χ(R+) = χ(R−) are called balanced.

Classifications of tight contact structures are known for some sutured 3-manifolds. The most
fundamental result, due to Eliashberg, provides a classification for the 3-ball. When (M,Γ) is a
3-ball, M = B3, with a connected dividing set (so that Giroux’s criterion is satisfied and ξ∂ is
tight), Eliashberg showed there is a unique extension of ξ∂ to a tight contact structure on B3

(up to isotopy relative to the boundary): see [8, Theorem 2.1.3], also [25, Theorem 4.1]. When
Γ is disconnected, Giroux’s criterion fails, ξ∂ is overtwisted and there are no tight contact
structures on (B3,Γ).
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In a similar vein, Eliashberg proved that there is a unique (standard) tight contact structure
ξ on S3, up to isotopy [8, Theorem 2.1.1]. We take a ball neighbourhood of a point p ∈ S3; by
Darboux’s theorem p has a standard neighbourhood, which is tight. We can take the ball to
have convex boundary S, which must then have connected dividing set. Now S bounds balls on
either side, both tight. Thus, the standard tight contact structure can be obtained by gluing
together two balls bounded by convex spheres with connected dividing sets.

More generally, contact 3-manifolds can be decomposed into simpler 3-manifolds, eventually
into 3-balls, by cutting them along convex surfaces: this is the idea of the convex decomposition
theory of Honda–Kazez–Matić [29]. This theory parallels the theory of sutured manifolds,
producing a sutured manifold hierarchy as in [14]; it is closely connected to the theory of
taut foliations.

This process can also be reversed, so that a general contact 3-manifold can be obtained by
gluing together simple 3-manifolds (such as 3-balls) with convex boundary.

Since it will be useful, we state precisely how this gluing works. Let (M, ξ) be a contact
3-manifold with convex boundary; let Γ be the dividing set on ∂M and R± the signed regions.
Let U1, U2 be disjoint subsurfaces of ∂M with (possibly empty) Legendrian boundary, and let
Γi = Ui ∩ Γ, R±,i = Ui ∩R± for i = 1, 2. Suppose there is a homeomorphism φ : U1 −→ U2 such
that φ(Γ1) = −Γ2 and φ(R±,0) = −R∓,1. (The minus signs refer to reversal of orientation.)
Then we may glue U1 to U2 using φ to obtain a new 3-manifold M ′. If U1, U2 have empty
boundary then we may use Giroux flexibility to obtain foliations F1,F2 on U1, U2 related by
φ; these define germs of contact structures which glue together to obtain a contact structure
on M ′. If U1, U2 have non-empty boundary then the same procedure applies, but we must first
‘crease’ ∂M along ∂U1 and ∂U2 so that upon gluing M ′ has smooth boundary. (This yields
interleaving dividing sets, as discussed in the next section). Note that the requirement that
U1, U2 have Legendrian boundary means that ∂U1 ∪ ∂U2 must be Legendrian realizable, that
is, transverse to Γ and non-isolating.

2.4. Edge-rounding and bypasses

We will need to consider what happens when convex surfaces intersect transversely. Let S1, S2

be convex surfaces in the contact manifold (M, ξ), with dividing sets Γ1,Γ2. Suppose S1 and
S2 intersect transversely along a Legendrian curve C. (Hence Γ1 and Γ2 are both transverse to
C.) As described in [25, Section 3.3.2], S1 and S2, together with their transverse contact vector
fields, can be arranged so that the dividing sets Γ1 and Γ2 do not intersect but interleave along
C. (Note that if C is closed, then this implies |C ∩ Γ1| = |C ∩ Γ2|. Since S1 and S2 induce the
same framing on C, this also follows from the analysis in Section 2.2.)

If C is part of the boundary of both S1 and S2, then we can consider S1 ∪ S2 as a connected
surface with a corner along C. We may round the corner at C to obtain a smooth convex
embedded surface in M , which is identical to S1 ∪ S2 outside a small neighbourhood of C,
and which in this neighbourhood has a standard form, including a standard transverse contact
vector field. In particular, the dividing curves of Γ1 and Γ2 are rounded as shown in Figure 3.
The procedure works just as well in reverse: we may ‘crease’ a convex surface, to obtain a
surface with a corner with equivalent contact topology.

In a similar fashion, if (M, ξ) is a contact 3-manifold with convex boundary which is smooth,
except for corners on ∂M along closed Legendrian curves, we can apply a corner-rounding
procedure and obtain a 3-manifold M ′ with boundary and a contact structure ξ′ = ξ|M ′ ; as
∂M ′ and ∂M can be made arbitrarily close, there is a natural bijective correspondence between
isotopy classes (relative to boundary) of contact structures on M and on M ′. Thus M and M ′

have equivalent contact topology.
Motivated by these edge-rounding and creasing procedures, we can regard a surface with

corners along closed curves, interleaving sutures along the creases, and appropriately defined
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Figure 3 (colour online). Edge-rounding and creasing.

Figure 4 (colour online). A bypass.

positive and negative subsurfaces, as a generalized sutured surface; we refer to this notion as
a sutured surface with corners. When (∂M,Γ) is a sutured surface with corners, we refer to
(M,Γ) as a sutured manifold with corners. Upon performing edge-rounding, a sutured surface
with corners becomes a bona fide sutured surface, and a sutured manifold with corners becomes
a bona fide sutured manifold.

Another type of adjustment to contact structures and dividing sets comes from bypass
addition. A bypass is a particular contact 3-manifold with boundary: it is half of a thickened
overtwisted disc. More precisely, consider a convex overtwisted disc D with dividing set
consisting of a single closed loop γ and Legendrian boundary with Thurston–Bennequin number
0. Then D × [0, 1] is a 3-manifold, with boundary D × {0, 1} ∪ ∂D × [0, 1], corners along
∂D × {0, 1}, and with a contact structure so that the dividing set is γ × {0, 1} ∪ ∂D × {1/2}. A
bypass is obtained by slicing this object through a diameter times [0,1]. This ‘sliced’ rectangle
is the base of the bypass. On the base, the dividing set consists of three arcs of the form
{·} × [0, 1]; see Figure 4.

An attaching arc on a convex surface S is an embedded arc on S which intersects the dividing
set Γ at precisely three points, namely its two endpoints and one interior point. An attaching arc
c has a neighbourhood N in S which contains precisely three arcs of Γ. Using Giroux flexibility,
we can achieve a characteristic foliation on N which coincides with the characteristic foliation
on the base of a bypass.

Thus, given a contact 3-manifold (M, ξ) with convex boundary, we can attach a bypass
to the boundary along an attaching arc c on ∂M . The result is a slightly larger contact 3-
manifold (M ′, ξ′). It has corners on its boundary, but these can be rounded so as to obtain
a convex boundary; see Figure 5. As M ′ is ‘M with a bump on the boundary’, clearly M ′ is
homeomorphic to M . However in general the two contact manifolds are not contactomorphic.

The effect of a bypass attachment on the dividing set is shown in Figures 5 and 6 and we
refer to it as outwards bypass surgery along c. If one side of the surface (such as ‘upwards’
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Figure 5 (colour online). Attaching a bypass.

Figure 6 (colour online). Effect of bypass addition on the dividing set.

or ‘downwards’) and the attaching arc are specified, then that determines the effect of bypass
surgery. In such cases we call the surgery upwards or downwards bypass surgery, respectively.

Note how ‘attachment’ is an operation on contact manifolds and ‘surgery’ is one on sutured
surfaces, and the latter does not determine the former. In other words, it is not enough to
keep track only of dividing sets. For instance, if we perform the three operations of Figure 6
in sequence, the dividing set returns to its original configuration. However after two steps,
the bypasses join to form an overtwisted disk. So the resulting contact structure is always
overtwisted; in fact, in general it is not even homotopic to the original contact structure [34].

Also note that while bypass surgery certainly changes the dividing set Γ into a new dividing
set Γ′, the resulting Γ′ may be isotopic to Γ after just one step. In this case the resulting
(M ′, ξ′) is in fact contactomorphic to (M, ξ) [28, Lemma 2.10] and we say the bypass is a
trivial bypass.
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Bypass addition is, in a certain sense, the smallest non-trivial change that can be made to
a contact 3-manifold. It does not change the topology of the manifold, but it can change the
isotopy class of the contact structure. Indeed, the operation of bypass surgery on a dividing
set is the simplest local change one can make to a dividing set which maintains the Euler class
evaluation χ(R+) − χ(R−) on the surface.

Apart from adding bypasses to the exterior of a contact 3-manifold, we can also subtract
them. Let c be an attaching arc on ∂M . We say that a bypass exists inside M along c if
there exists a submanifold (N, ξ|N ) ⊂ (M, ξ) which is contactomorphic to a bypass, via a
contactomorphism which identifies the base of the bypass with N ∩ ∂M , where N ∩ ∂M is
a neighbourhood of c on ∂M . That is, a bypass exists inside M along c if we may ‘dig out’ a
bypass, digging down from (a neighbourhood of) c as the base of the bypass.

If a bypass exists inside M along c, it is unique in an appropriate sense, as we prove below.
Related ideas appear in the ‘bypass sliding lemma’ of [30, Lemma 2.1].

In general, given a contact 3-manifold (M, ξ) with convex boundary, dividing set Γ on ∂M ,
and attaching arc c, it may be difficult to tell whether a bypass exists inside M along c.
However, some things may be said: see [46, Section 3.2] for further discussion. We can easily
describe what the dividing set would be after removing the bypass: it is the result of performing
the inverse operation of outwards bypass surgery, which we call inwards bypass surgery along
c. If a bypass exists in M along c, and then we attach (outside M) a bypass along c, then the
two bypasses join to give an overtwisted disc. If ξ is tight, and the result of inwards bypass
surgery along c is a dividing set which fails Giroux’s criterion, hence with an overtwisted
neighbourhood, then no bypass exists inside M along c.

On the other hand, if performing inwards bypass surgery along c results in a dividing set
Γ′ isotopic to the original Γ, then a bypass exists and removing the bypass gives a contact
3-manifold (M ′, ξ′) contactomorphic to the original (M, ξ). Indeed, in this case (M, ξ)
is obtained from (M ′, ξ′) by a trivial bypass attachment. Thus, ‘trivial bypasses always
exist’. Honda–Kazez–Matić flippantly refer to this idea as the ‘right to life’ principle (see
[28, Lemma 2.9], [30, Proposition 2.2]).

Although bypass addition or subtraction requires the realization of an attaching arc as
Legendrian, and the realization of the characteristic foliation nearby to agree with that on the
base of a bypass, in practice we treat attaching arcs as purely topological objects. Indeed, our
definition of attaching arc above says nothing about the arc being Legendrian.

In fact, attaching arcs in practice are considered up to isotopy: an isotopy of attaching arcs
is an isotopy of arcs through attaching arcs. This practice is justified because if c and c′ are
attaching arcs on the boundary of a contact 3-manifold with convex boundary, then the contact
structures, with c or c′ realized as above, are equivalent in the following sense.

Lemma 2.1. Let c, c′ be isotopic attaching arcs on the boundary of a contact 3-manifold
(M, ξ0) with boundary dividing set Γ. Let F ,F ′ be singular foliations on ∂M which are divided
by Γ and which Legendrian realize c and c′ respectively. Let ξ, ξ′ be contact structures on M
obtained from ξ0 via Giroux flexibility to achieve F ,F ′ as characteristic foliations on ∂M .
Then, up to adjustment of the characteristic foliation on ∂M using Giroux flexibility, there is
a contactomorphism (M, ξ) ∼= (M, ξ′) which is isotopic to the identity, preserves Γ, and sends
c to c′.

In particular, a bypass B exists inside (M, ξ) along c if and only if a bypass B′ exists inside
(M, ξ′) along c′, regardless of how we Legendrian realize c or c′. Moreover, M \B and M \B′

are contactomorphic.

Proof. Let S be a convex surface in a contact manifold with dividing set Γ and a pair of
isotopic attaching arcs c, c′. The isotopy from c to c′ extends to an isotopy of diffeomorphisms φt

of S, where t ∈ [0, 1] and φ0 is the identity on S. Furthermore, φt(Γ) = Γ for all t, and φ1(c) = c′.
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Figure 7 (colour online). Inner (left) and outer (right) attaching arcs on a tight ∂B3.

The family φt gives rise to a diffeomorphism of S × [0, 1] defined by Φ(x, t) = (φt(x), t); note
that this Φ restricts to the identity on S × {0}, satisfies Φ(Γ × {t}) = Γ × {t} for all t, and
acts on S × {1} via φ1, hence Φ(c× {1}) = c′ × {1}. Moreover, Φ is isotopic to the identity on
S × [0, 1] via the isotopy of diffeomorphisms Φs(x, t) = (φst(x), t) for s ∈ [0, 1]. Note Φ0 is the
identity on S × [0, 1], whereas Φ1 = Φ, and for all s and t, we have Φs(Γ × {t}) = Γ × {t}. The
restriction of Φs to S × {1} is precisely the isotopy φt, taking c to c′ and preserving Γ.

Now identify this S × [0, 1] with a small invariant neighbourhood of ∂M in (M, ξ), with ∂M
identified with S × {1}. Let η = Φ∗ξ. Then η is a contact structure on S × [0, 1]. Denoting by
t the coordinate on [0,1], by assumption ∂

∂t is a contact vector field for ξ transverse to each
S × {t}, so Φ∗ ∂

∂t is a contact vector field for η transverse to each S × {t}. Hence each S × {t}
is convex in η with dividing set Γ.

Extending Φ by the identity away from ∂M , we obtain a contactomorphism Φ: (M, ξ) −→
(M,η), where η is defined to agree with ξ away from ∂M . This Φ is isotopic to the identity,
takes c to c′, and preserves Γ. Using Giroux flexibility, we can then adjust η near ∂M , but
fixing c′, to achieve the boundary foliation F ′. The resulting contact structure is isotopic to
ξ′, and hence we obtain the desired contactomorphism. This contactomorphism is the identity
away from a small invariant neighbourhood of the boundary, and so will take a bypass B along
c to a bypass B′ along c′ in such a way that M \B and M \B′ are contactomorphic. �

One useful application of these ideas is when our contact 3-manifold is a tight 3-ball B,
with connected dividing set Γ on ∂B. Any attaching arc c on ∂B must be in one of the
two configurations shown in Figure 7. In the first case, a bypass added along c produces a
disconnected dividing set, hence an overtwisted contact structure, but a bypass exists inside B
along c by the right-to-life principle. In the second case, we obtain precisely opposite results: a
bypass added along c is a trivial bypass, so results in a tight contact structure, but no bypass
exists inside B along c, as inwards bypass surgery produces a disconnected dividing set. We
call the attaching arc inner or outer accordingly.

2.5. Honda’s theorem

From the above discussion follows a general principle for classifying the tight contact structures
on a sutured 3-manifold (M,Γ), via decomposition along convex surfaces. This is Honda’s
theorem of [28], which built on work of Kanda [41], Torisu [59] and Colin [4, 5].

Roughly, the idea is as follows. Suppose we can cut M along a properly embedded surface S
to obtain another, simpler 3-manifold M ′. We assume that we have a complete understanding
of the tight contact structures on M ′, and use this understanding to give a classification of all
tight contact structures on M .

When we say we assume a ‘complete’ understanding of contact structures on M ′, we really
mean complete! We need to know, for every possible set of sutures Γ′ on ∂M ′: a complete
classification of all tight contact structures ξ′ on (M ′,Γ′); for each such contact structure ξ′,
the locations of all attaching arcs on ∂M ′ where bypasses exist inside M ′; and also for each
such contact structure ξ′, the effect of adding a bypass along any attaching arc. The idea is that
if we know all this information about M ′, then this is enough to give us similar information
for M . In particular, any tight contact structure ξ on (M,Γ) will restrict to a tight contact
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structure ξ′ on (M ′,Γ′) for some Γ′, and hence ξ can be constructed from the fully understood
ξ′ on (M ′,Γ′). There may be several ξ′ on (M ′,Γ′), with various Γ′, which glue up to give
contact structures isotopic to ξ on (M,Γ). But the idea is that if ξ′1, ξ

′
2 on M ′ glue up to give

contact isotopic contact structures ξ1, ξ2 on M , then, starting from ξ1, we can move bypasses
through S in M , until we obtain ξ2. And the effect of moving these bypasses is equivalent to
bypass addition and subtraction on M ′, which is fully understood.

Let us now be a bit more precise. Consider a sutured 3-manifold (M,Γ). Then Γ defines a
contact structure ξ∂ near ∂M . We consider a compact, oriented, properly embedded surface S in
M , along which we wish to cut in the manner of convex decomposition theory as in Section 2.3.
Hence we require that ∂S ⊂ ∂M satisfy the condition in the Legendrian realization principle.
In fact, we assume the slightly stronger condition that each component of ∂S intersects Γ non-
trivially.

Then, given any contact structure ξ on (M,Γ), we can make S convex as described in
Section 2.2; note that, after making ∂S Legendrian, the non-positive (in fact, negative) twisting
of ξ along ∂S follows from the previous assumption.

We consider the possible dividing sets ΓS which can arise on S. Any such ΓS must interleave
with the dividing set Γ along ∂S, as discussed in Section 2.4. The set of isotopy classes of such
ΓS is countable. Let us fix one such isotopy class.

Cutting M along S produces a manifold with boundary and corners; the boundary consists
of ∂M and two copies of S; each copy of S meets ∂M along the corners. Considering sutures
Γ on ∂M and ΓS on each copy of S, we obtain a sutured manifold with corners. Rounding the
corners yields a sutured 3-manifold which we denote with (M ′,Γ′); so Γ′ is obtained from Γ
and the two copies of ΓS by edge-rounding.

By assumption, we can then enumerate the isotopy classes of tight contact structures on
(M ′,Γ′). A contact structure ξ′ on (M ′,Γ′) determines a contact structure ξ on (M,Γ) by
gluing the two copies of S on ∂M ′ back together as discussed in Section 2.3. Moreover, every
(isotopy class of) contact structure ξ on (M,Γ) arises by gluing up some ξ′ on some (M ′,Γ′)
in this way.

Definition 2.2. Let (M,Γ) be a sutured 3-manifold, so that Γ defines a contact structure
near ∂M . Let S be an embedded surface in M all of whose boundary components are Legendrian
in ∂M . Then a configuration on (M,Γ, S) is a pair (ΓS , ξ

′), where

• ΓS is a set of curves on S, up to isotopy, whose endpoints interleave with Γ ∩ ∂S along ∂S,
so that cutting M along S, drawing sutures ΓS on both copies of S, and edge-rounding
yields a sutured manifold (M ′,Γ′); and

• ξ′ is an (isotopy class of) contact structure on (M ′,Γ′).

We denote the set of all configurations on (M,Γ, S) by C(M,Γ, S).

Note that in a configuration (ΓS , ξ
′), neither ΓS nor the resulting Γ′ need to satisfy Giroux’s

criterion, and even if they do, ξ′ can be overtwisted. On the other hand, if (M,Γ) is balanced,
then automatically so is (M ′,Γ′). This is because if a connected component of S \ ΓS belongs
to R+ along one copy of S, then the identical set along the other copy of S belongs to R−. In
order to discuss the classification of contact structures, we introduce the following notation.

Definition 2.3. Let (M,Γ) be a sutured 3-manifold.

(i) Denote by T (M,Γ) the set of isotopy classes of tight contact structures on (M,Γ).
(ii) Define T∗(M,Γ) = T (M,Γ) ∪ {∗}, where ∗ is an extra element which we use to denote

overtwisted contact structures.
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A tight contact structure on (M,Γ) gives an element of T (M,Γ), and any contact structure
whatsoever on (M,Γ) gives an element of T∗(M,Γ).

The above discussion constructs a map F : C(M,Γ, S) −→ T∗(M,Γ), which takes a configu-
ration (ΓS , ξ

′) to the element of T∗(M,Γ) corresponding to the contact structure obtained by
gluing together the two copies of S on the boundary of (M ′, ξ′). The argument above shows
that F is surjective. But F may not be injective: many configurations may lead to isotopic
contact structures on (M,Γ).

By studying bypasses, we can find which configurations correspond to tight contact
structures, and which configurations correspond to isotopic tight contact structures. For
instance, suppose that F (ΓS , ξ

′) = ξ, and a bypass exists in (M ′, ξ′) along an attaching arc c
on one of the two copies of S. Then if we remove this bypass from M ′, and attach a bypass
to the other copy of c (on the other copy of S), we obtain another configuration (Γ′

S , η
′). Here

Γ′
S differs from ΓS by a bypass surgery along c. This configuration gives a contact structure η

on M isotopic to the original ξ: indeed, ξ and η differ only in that a bypass has been passed
through S. Thus F (ΓS , ξ

′) = F (Γ′
S , η

′). We refer to this ‘passing a bypass’ as a ‘state transition’
between configurations, as defined below.

Definition 2.4. Let (ΓS , η) and (Γ′
S , η

′) be configurations on (M,Γ, S). There is a state
transition (ΓS , η) −→ (Γ′

S , η
′) if

(i) η′ can be obtained from η by removing a bypass from η along an attaching arc c on one
copy of S, and attaching a bypass along the other copy of c on the other copy of S, and

(ii) the effect of the bypass removal and attachment on the dividing set yields Γ′
S on each

copy of S.

A configuration C = (ΓS , ξ
′), where ξ′ is overtwisted, will definitely glue up to give an

overtwisted contact structure on M ; but if ξ′ is tight, gluing it up may give a tight or overtwisted
contact structure on M . Hence we make the following definition.

Definition 2.5. A configuration C = (ΓS , ξ
′) ∈ C(M,Γ, S) is potentially tight if ξ′ is tight.

We call C overtwisted if ξ′ is overtwisted.

The essence of Honda’s theorem is that (under certain natural conditions) state transitions
effected by bypass operations are enough to connect any configurations representing the same
contact structure on (M,Γ), giving a precise meaning to the idea that bypass addition is
the smallest non-trivial operation on a contact manifold. Formally, we make the following
definitions.

Definition 2.6. The configuration graph G(M,Γ, S) is a directed graph with vertices given
by the configurations C ∈ C(M,Γ, S), and directed edges given by the state transitions.

The graph G(M,Γ, S) is in fact bidirected: a bypass that has been pushed across S can
be pushed right back. In other words, we may think of G(M,Γ, S) as an undirected graph.
Some vertices of G(M,Γ, S) are potentially tight; we now define a notion of tightness that will
correspond to the contact-topological notion.

Definition 2.7. We say that a connected component of G(M,Γ, S) is tight if every
configuration in the component is potentially tight. A configuration is called tight if it lies
in a tight component of G(M,Γ, S). Let G0(M,Γ, S) be the subgraph of G(M,Γ, S) consisting
of its tight components.
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The statement of Honda’s theorem is as follows.

Theorem 2.8 (Honda [28]). Let (M,Γ) be an irreducible sutured 3-manifold, so that Γ
defines a contact structure near ∂M . Let S be a properly embedded, incompressible surface in
M , all of whose boundary components (possibly there are none) are Legendrian and intersect
Γ non-trivially. Then there is a bijection π0(G0(M,Γ, S)) −→ T (M,Γ), induced by the gluing
map F above.

Here π0(G0) refers to the set of connected components of G0(M,Γ, S), that is, to the set of
tight components of G(M,Γ, S).

The bijection in Honda’s theorem is essentially a quotient of the map F : C(M,Γ, S) −→
T∗(M,Γ) defined above. Since two configurations related by a state transition give isotopic
contact structures, F descends to a map π0(G(M,ΓS)) −→ T∗(M,Γ). Overtwisted config-
urations map to ∗, as do any configurations connected to them by state transitions. A
potentially tight configuration from which state transitions can only reach other potentially
tight configurations yields a tight contact structure. Equivalently, if there is an overtwisted disc
in a contact structure, we can eventually push it away from S via bypass operations, reaching
a configuration on M ′ that is overtwisted. Any two configurations which correspond to isotopic
contact structures on (M,Γ) are related by bypass operations and an isotopy in M ′.

If we understand the contact topology of M ′, then we can, at least in principle, construct the
graph G(M,Γ, S), and then the theorem provides an understanding of the contact topology of
M .

An arbitrary sutured 3-manifold (M,Γ) can be successively decomposed as above, until we
arrive at a collection of balls. Thus, in principle at least, our understanding of the contact
topology of B3 can (eventually) give an understanding of the contact topology of (M,Γ).

For us M will always be a handlebody, S a disjoint union of discs and M ′ the disjoint union
of two balls, M ′ = M+ �M−. As we have discussed, the contact topology of a ball B is quite
simple. Namely, if the dividing set Γ on ∂B is connected then there is a unique (isotopy class
of) tight contact structure on (B,Γ), and every attaching arc is inner or outer.

Thus, in this case, if C = (ΓS , ξ
′) is a potentially tight configuration, then ΓS must consist

of a chord diagram on each disc of S (any closed curves would produce an overtwisted contact
structure), such that, when corners are rounded, we obtain a connected dividing set on each of
∂M+ and ∂M−; and ξ′ must belong to the unique isotopy class of tight contact structures on
M+ and M−. Since there is a unique such ξ′, up to isotopy, we can specify our configurations
simply by ΓS .

2.6. Dividing sets in contact cylinders

It will be important later to consider some contact structures on a specific and simple family
of sutured 3-manifolds: solid cylinders D2 × I, with ‘vertical’ sutures on the ‘side’ ∂D2 × I. It
turns out that fixing sutures on the side, and considering possible dividing sets on the ‘top’
and ‘bottom’ discs D2 × {0, 1}, leads to an interesting structure, studied by the second author
in [46, 47].

More precisely, take the closed disc D2, so D2 × [0, 1] is topologically a ball, with corners
along ∂D2 × {0, 1}. Consider sutures on this manifold, interleaving along the corners, as
follows. Let n be a positive integer and let F be a set of 2n points on ∂D2. Take sets of
sutures Γ0,Γ1 respectively on D2 × {0}, D2 × {1} with boundaries F × {0}, F × {1}. Take
sutures on ∂D2 × I consisting of 2n vertical curves {·} × [0, 1], interleaving with the curves of
the Γi.

Following [46], we denote this cylinder, a sutured manifold with corners, by M(Γ0,Γ1). As
usual, the sutures define a contact structure ξ∂ near the boundary.
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If Γ0 or Γ1 contains a closed curve then ξ∂ is overtwisted; if Γ0,Γ1 contain no closed curves
then they are chord diagrams, and ξ∂ may be tight or overtwisted. If, after edge-rounding, the
dividing set consists of a single closed curve, then ξ∂ is tight and there is a unique (isotopy
class of) tight contact structure on the ball extending ξ∂ . On the other hand, if after edge-
rounding the dividing set is disconnected, then ξ∂ is overtwisted, and there is no tight contact
structure on M(Γ0,Γ1). We refer to M(Γ0,Γ1) as tight or overtwisted, respectively, as in
[46, Definition 3.5]. It is not hard to show that M(Γ,Γ) is tight for any chord diagram Γ.

In [46, Lemma 3.1], the second author proved the following. It is a version of the isotopy
discretization principle; see also [4, 28].

Lemma 2.9 [46]. If M(Γ,Γ′) is tight, then the tight contact structure so obtained on the
solid cylinder is contactomorphic to M(Γ,Γ) with a finite set of bypass attachments.

In particular, if M(Γ,Γ′) is tight, then attaching the bypasses of Lemma 2.9 in sequence, we
obtain a sequence of dividing sets

Γ = Γ0,Γ1, . . . ,Γm = Γ′,

where for each i � 0, the set Γi+1 is obtained from Γi by an upwards bypass surgery. Each
M(Γ,Γi) obtains a contact structure by attaching the first i of these bypasses to M(Γ,Γ).
Being contactomorphic to a subcylinder of the tight M(Γ,Γ′), each M(Γ,Γi) is tight.

We shall need the following lemma later.

Lemma 2.10. If M(Γ0,Γ) and M(Γ0,Γ′) are both tight, then there is a sequence of chord
diagrams

Γ = Γ1,Γ2, . . . ,Γm = Γ′,

where each Γi+1 is obtained from Γi by a bypass surgery, and each M(Γ0,Γi) is tight.

Proof. The previous paragraph, applied to M(Γ0,Γ), provides a sequence of dividing sets
Γ0, . . . ,Γm = Γ such that for each i � 0, the set Γi+1 is obtained from Γi by an upwards bypass
surgery, and each M(Γ0,Γi) is tight. The same argument on M(Γ0,Γ′) yields a sequence of
dividing sets Γ0 = Γ′

0, . . . ,Γ
′
l = Γ′ such that for each i � 0, the set Γ′

i+1 is obtained from Γ′
i by

an upwards bypass surgery, and each M(Γ0,Γ′
i) is tight. Putting these two sequences together

gives the sequence

Γ = Γm,Γm−1, . . . ,Γ1,Γ0 = Γ′
0,Γ

′
1, . . . ,Γ

′
l = Γ′,

which has the desired properties. Note the first m bypass surgeries are downwards, and the
last l surgeries are upwards. �

2.7. Sutured Floer homology and contact invariants

Sutured Floer homology is an invariant of balanced sutured 3-manifolds, introduced by Juhász
in [35], extending the (hat version of) Heegaard Floer homology of Ozsváth–Szabó [54–57] for
closed 3-manifolds.

We refer to [35] for a full definition of SFH. It suffices here to mention a few details. To
define SFH(M,Γ), we start by taking a Heegaard diagram for (M,Γ) consisting of a surface
Σ and curves αi, βj . This means that thickening Σ to Σ × [0, 1] and performing surgery along
each αi × {0} and βj × {1} yields M , and, furthermore, Γ = ∂Σ × {1/2}. The signed region
R+ consists of the surgered Σ × {1} and ∂Σ × (1/2, 1); similarly R− consists of the surgered
Σ × {0} and ∂Σ × (0, 1/2).

The αi and βj form asymptotic conditions for holomorphic curves in Σ × I × R (using the
cylindrical reformulation of Lipshitz [44]). Sutured Floer homology is the homology of a chain
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complex generated by these asymptotic conditions (precisely, complete intersections of αi ∩ βj ;
note that the balanced condition implies that the α- and β-curves form equinumerous sets),
with a differential defined by counts of rigid holomorphic curves.

Originally defined over Z2 coefficients, SFH(M,Γ) can be extended to work with Z

coefficients or twisted coefficients [17, 45, 49]. In this paper we always consider Z coefficients.
Whatever coefficient ring is used, SFH(M,Γ) is a bigraded module over this ring. The first

grading is by spin-c structures on (M,Γ). That is,

SFH(M,Γ) =
⊕

s∈Spinc(M,Γ)

SFH(M,Γ, s).

Spin-c structures on M are in bijective correspondence with H2(M,∂M). In Section 2.8 we
discuss in detail spin-c structures and their relationship to the Euler class. The second (Maslov)
grading is a relative Z2 homological grading and is determined by a homology orientation on
H∗(M,R−); we do not need it in this paper and refer to [13, Section 2.4] for details.

Most importantly for our purposes, a contact structure ξ on (M,Γ) gives rise to a
contact invariant (or contact element or contact class) c(ξ) in SFH; see [32, 33, 56]. This
generalizes the situation in Heegaard Floer homology of closed manifolds. Precisely, c(ξ) lies in
SFH(−M,−Γ), where the minus signs refer to reversed orientation. The contact invariant has
a (±1) ambiguity: it is a well-defined element when Z2 coefficients are used, but with integer or
twisted coefficients it is given by a pair of elements c(ξ) = {±a}, for some a ∈ SFH(−M,−Γ)
[31]. Of course if 0 ∈ c(ξ), then c(ξ) has a single element, as ±0 = 0. In that case we will write
c(ξ) = 0. In general we write c(ξ) = ±a.

The contact invariant c(ξ) can be constructed using the Giroux correspondence between open
book decompositions and contact structures ([11, 22]; see also [9, 32] for the sutured case),
building a Heegaard decomposition from an open book supporting ξ, and taking a specific
associated element of Floer homology. We refer to [33] for the closed case and [32] for the
sutured case.

We mention some properties of contact elements. When ξ is overtwisted, c(ξ) = 0 [32].
The following TQFT-like property was proved by Honda–Kazez–Matić [31] over Z coefficients,
further discussed in [48, Section 8.2] and extended to twisted coefficients in [49, Theorem 4.14].
Suppose we have a balanced sutured manifold (M ′,Γ′) lying in the interior of another balanced
sutured manifold (M,Γ). The ‘intermediate’ region between M ′ and M is naturally a sutured
manifold (M − IntM ′,Γ ∪ −Γ′). Let ξ be a contact structure on this intermediate sutured
manifold. Then there is a natural map

Φξ : SFH(−M ′,−Γ′) −→ SFH(−M,−Γ),

well defined up to an overall sign. A contact structure ξ′ on (M ′,Γ′) naturally extends to a
contact structure ξ′ ∪ ξ on (M,Γ), and Φξ takes c(ξ′) to c(ξ′ ∪ ξ). Thus inclusions of sutured
manifolds, with a contact structure between them, naturally give linear maps on sutured Floer
homology, which are natural with respect to contact elements.

At the end of the next section we discuss how the Euler class of a contact structure relates to
the spin-c grading of its contact invariant in sutured Floer homology. But first we must discuss
spin-c structures themselves.

2.8. Spin-c structures and the Euler class

We briefly review spin-c structures here, and refer to [55, 61] for details.
A spin-c structure on a closed, connected, oriented 3-manifold M is a homology class of

non-vanishing vector fields on M . Two (non-vanishing) vector fields are homologous if they are
homotopic through non-vanishing vector fields in the complement of a 3-ball in M . Equivalently,
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they are homologous if they are homotopic in the complement of finitely many disjoint 3-balls
in M . We denote the set of all spin-c structures on M by Spinc(M).

There are several equivalent definitions useful for our purposes. If M has a Riemannian
metric then we may restrict to unit vector fields. Further, unit vector fields v are naturally
identified with oriented 2-plane fields ζv by taking the orthogonal complement. If we fix a
trivialization τ of the tangent bundle TM , a unit vector field v gives a map fv : M −→ S2.
Each of the unit vector field v, oriented 2-plane bundle ζv or map fv determines all the others,
and a homotopy of one is equivalent to a homotopy of the others. So a spin-c structure can
also be defined as any one of these, up to homotopy in the complement of one (or finitely
many) balls.

Obstruction-theoretically, if we give M the structure of a CW complex, then for v1, v2 (or
fv1 , fv2 or ζv1 , ζv2) to be homologous means that they are homotopic on the 2-skeleton of M .
The obstruction to such a homotopy lies in H2(M ; Z), and vanishes if and only if fv1 , fv2 induce
the same maps on cohomology, that is, f∗

v1
= f∗

v2
: H2(S2; Z) −→ H2(M ; Z). Since H2(S2; Z) ∼=

Z, letting μ be an arbitrarily chosen generator of H2(S2; Z), the spin-c structure of fv is
determined by the cohomology class f∗

v (μ); furthermore all cohomology classes in H2(M ; Z)
can arise from spin-c structures in this way. So the assignment δτ : Spinc(M) −→ H2(M ; Z)
which sends v �→ f∗

v (μ) is a bijection. This assignment depends on the trivialization τ , but the
difference δτ (v1) − δτ (v2) ∈ H2(M ; Z) does not; it only depends on v1 and v2 [55]. Switching to
multiplicative notation, we write [v1]/[v2] ∈ H2(M ; Z) ∼= H1(M ; Z) for this (co)homology class.

Thus, Spinc(M) is naturally an affine space over H2(M ; Z), and different trivializations of
TM give different identifications between Spinc(M) and H2(M ; Z). The action of H2(M ; Z) ∼=
H1(M ; Z) on a spin-c structure represented by a non-vanishing vector field v can be given
explicitly: one can ‘add’ a homology class h ∈ H1(M ; Z) to the spin-c structure of v by
performing Reeb turbularization, which is a certain modification of v in the neighbourhood of
an embedded curve representing h [60].

Juhász in [35, Section 4] considered spin-c structures on sutured 3-manifolds. Letting (M,Γ)
denote a connected balanced sutured 3-manifold, we define a vector field ν0 on ∂M . This vector
field points out of M along R+, into M along R−, and is tangent to ∂M along Γ, transverse
to Γ and pointing from R− to R+. The set of such vector fields forms a contractible space and
up to homotopy among such vector fields ν0 is well defined.

We consider non-vanishing vector fields on M which extend ν0. Two such vector fields on
M are again homologous if they are homotopic, through non-vanishing extensions of ν0, in
the complement of an open ball (or finitely many open balls) in the interior of M . A spin-c
structure on (M,Γ) is a homology class of non-zero vector fields on M which restrict to ν0 on
∂M . The set of spin-c structures on (M,Γ) is denoted by Spinc(M,Γ).

The set Spinc(M,Γ) is an affine space over H2(M,∂M) ∼= H1(M). Again we may speak
equally of a vector field v extending ν0, an orthogonal 2-plane bundle ζv (using a Riemannian
metric) extending ν⊥0 (which in turn can be taken to be T (∂M) along ∂M , outside of
a neighbourhood of Γ), or a function fv : M −→ S2 extending fν0 : ∂M −→ S2 (using a
trivialization of TM). To say that v1, v2 (or fv1 , fv2 or ζv1 , ζv2) are homologous means that
they are homotopic on the 2-skeleton of M , relative to the boundary where they agree. Thus
the obstruction to such a homotopy lies in H2(M,∂M). The obstruction vanishes if fv1 , fv2

induce the same maps on cohomology, f∗
v1

= f∗
v2

: H2(S2) −→ H2(M). Since fv1 , fv2 agree on
∂M , the map f∗

v1
− f∗

v2
has image in H2(M,∂M). Again this difference does not depend on

the choice of trivialization, and the action of H1(M) on Spinc(M,Γ) can be achieved explicitly
by Reeb turbularization.

It follows from the above that an oriented 2-plane bundle ζ on a closed oriented 3-manifold M
(such as a contact structure) belongs to a spin-c structure, and Spinc(M) is affine over H2(M).
But ζ also has an Euler class in H2(M). It will be important in the sequel to understand the
relationship between these two invariants.
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It is well known that the Euler class e(ζ) of an oriented 2-plane bundle ζ on a CW complex
X only depends on the homotopy class of ζ. Moreover, e(ζ) is the obstruction to finding a non-
vanishing section of the bundle over the 2-skeleton of X (see, for example, [51, Theorem 12.5]).

Hence two oriented 2-plane fields on M in the same spin-c class have the same Euler class.
Since non-vanishing vector fields and oriented 2-plane fields, and their homotopies, correspond
via orthogonal complements, we may abuse notation and write e(v) = e(ζ) ∈ H2(M) for a non-
vanishing vector field v, where ζ = v⊥. Vector fields in the same spin-c class have the same
Euler class, so we may then write e(s) = e(v), where s is the spin-c class of v.

Consider a two-dimensional vector bundle ζ, orthogonal to the unit vector field u. Then the
Euler class e(ζ) is the obstruction [u]/[−u] to a homotopy from −u to the opposite vector field
u over the 2-skeleton. Indeed, a homotopy exists if and only if ‘it knows where to cross ζ’. Let
us also recall that the spin-c structures [u] + h and [−u] − h, where h ∈ H1(M), can always
be represented by a non-vanishing vector field v and its opposite −v, respectively; see [60]
for details.

This means that if we ‘add’ a homology class h to a spin-c class s, then we add 2h to its
Euler class (more precisely, its Poincaré dual):

e(s + h) = 2PD(h) + e(s); (4)

see [60, Theorem 5.3.1] for full details. (Note we write the action of H1
∼= H2 on spin-c

structures additively, whereas Turaev writes it multiplicatively.)
Turaev also effectively treats the sutured case, considering non-vanishing vector fields on

a 3-manifold M with boundary, which point into M on a subset R− ⊂ ∂M and out on
R+ ⊂ ∂M ; these are precisely the balanced sutured manifolds with vector fields extending
ν0, whose homology classes form Spinc(M,Γ). For such vector fields u and v, the obstruction
[u]/[v] to a homotopy over the 2-skeleton lies in H2(M,∂M) ∼= H1(M). Non-vanishing vector
fields extending ν0 (or equivalently, oriented 2-plane fields extending ν⊥0 ) also have Euler
class lying in H2(M,∂M), and again we may speak of the Euler class of a spin-c structure
on (M,Γ). We again obtain equation (4), where now s ∈ Spinc(M,Γ), h ∈ H1(M), and
e(s), e(s + h) ∈ H2(M,∂M).

As mentioned earlier, SFH(M,Γ) splits as a direct sum
⊕

s SFH(M,Γ, s) over spin-c
structures s ∈ Spinc(M,Γ). We have also seen that if ξ is a contact structure on (M,Γ), then
there is a contact invariant c(ξ) ⊂ SFH(−M,−Γ). On the other hand, a 2-plane field such as
ξ determines a spin-c class sξ (that is, the spin-c class of ξ⊥). It would be natural for c(ξ) to
lie in the spin-c summand of SFH(−M,−Γ) corresponding to the spin-c class of ξ. This is in
fact the case; it appears as [36, Proposition 9.4].

Proposition 2.11. Let ξ be a contact structure on the balanced sutured manifold (M,Γ),
with spin-c structure sξ. Then c(ξ) ⊂ SFH(−M,−Γ, sξ).

3. Background on formal knot theory

We now give a brief discussion of some aspects of Kauffman’s formal knot theory; for further
details we refer to [43].

Consider a connected, unoriented knot diagram where crossing data are forgotten. This yields
a connected plane graph where each vertex has degree 4. Using Euler’s formula, one can show
that the number of complementary regions of the graph exceeds the number of vertices by 2.

A universe is a connected planar graph, where each vertex has degree 4, and two adjacent
complementary regions are labelled with stars; see Figure 8. Thus in a universe, the number
of vertices equals the number of unstarred regions. One can draw a universe in the plane so
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Figure 8. Left: a universe U based on the Figure 8 knot. Centre: a state of U .
Right: The corresponding Euler–Jordan trail.

Figure 9. A vertex of a universe can be split in two possible ways.

Figure 10. Splitting a vertex according to a state marker.

that the graph consists of an immersion of some circles into R
2, with all intersections being

transverse double points.
At each vertex v of a universe U , four edges meet and between them lie four quadrants,

that is, corners of regions. (The four regions involved need not be distinct.) A marker at v is
a choice of one of the four quadrants at v.

A state of a universe U is a choice of marker at each vertex of U , so that each unstarred
region contains a marker. Thus a state of U provides a bijection between vertices of U and
(adjacent) unstarred regions of U ; see Figure 8 (centre).

It is sometimes useful to split the crossings in a universe. A splitting of a universe U at a
vertex v replaces a neighbourhood of v with two non-intersecting arcs in one of two possible
ways, as shown in Figure 9. If v has a state marker, the marker specifies a splitting as shown
in Figure 10.

If every vertex of U is split in some way, then the result will be a collection of loops, that
is, non-intersecting embedded circles, in the plane. If there is just one such loop, then we call
it an Euler–Jordan trail or just a trail. That is, a trail is a single loop obtained by splitting
each vertex.

The splitting at each vertex provided by the markers of a state produces a trail; see Figure 8
(right). Conversely, a splitting of each vertex of U that produces a trail arises from a state of
U . Thus there is a bijective correspondence between states of U and trails on U , known as the
state-trail correspondence.

A transposition is a transition between states of a universe U , which involves switching two
state markers under certain circumstances. Suppose v and w are distinct vertices of U . Suppose
further that two regions R1, R2 near v are also regions near w, so that the situation is as shown
in Figure 11. Now suppose s1 is a state of U where the vertex v has marker in R1 and w
has marker in R2, as shown. Then the assignment s2 obtained by switching the markers at v
and w so that v has marker in R2 and w has marker in R1 is also a state, and we say s2 is
obtained from s1 by a transposition. We say the transposition is clockwise since, in switching
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Figure 11. A state transposition. The two vertices v, w are both adjacent to regions R1, R2.
There may be other vertices and edges of the universe in the shaded box.

from s1 to s2, markers have moved 90◦ clockwise around v and w. Conversely, from s2 there is
a counterclockwise transposition to s1.

The set of states on a universe U has an interesting structure. We form a directed graph LU
whose vertices are the states of U , and which has a directed edge from s1 to s2 if the state s2

can be obtained from s1 by a clockwise transposition. More generally we write s1 � s2 if there
is a directed path from s1 to s2 in LU . Kauffman’s clock theorem [43] (in its slightly extended
form due to Gilmer and Litherland [18]) says that LU is in fact a lattice: the relation � is a
partial order on states, and any two states have a least upper bound and greatest lower bound
with respect to this order.

4. Background on hypertrees and trinities

4.1. Plane graphs and trinities

Let G be a finite plane graph, possibly with multiple edges. That is, G has a fixed embedding
in R

2 ⊂ R
3; we may also compactify and regard G as embedded in S2 ⊂ S3. If G is connected

then all its complementary regions are homeomorphic to discs. By placing a new vertex in each
region and connecting it to the surrounding vertices, we obtain a triangulation of S2.

The same vertices are used in the construction of the dual graph G∗. The spanning trees of
G and G∗ are closely related. Each spanning tree T of G yields a dual spanning tree T ∗ of G∗;
the edges of T ∗ are precisely those edges of G∗ that correspond to edges of G not contained in
T . Conversely, each spanning tree of G∗ yields a dual spanning tree of G; the spanning trees
of G and G∗ are in bijective correspondence via planar duality.

In this paper we are mostly concerned with the case when G is bipartite. Then, as discussed
below, G∗ is naturally directed and the triangulation constructed from G is properly 3-coloured.
Such a structure was studied by Tutte in [62]. We present some background here and refer to
[38, Section 9] for further details.

Denote the two vertex classes of G by V and E; call them violet and emerald. Place a red
vertex in each region of G; call this set of vertices R. Then the triangulation above is such that
its 1-skeleton is a tripartite plane graph: there are three vertex classes/colours V,E,R, and
each edge joins vertices of different colours. We colour each edge by the unique colour different
from its endpoints.

Each triangle has its three vertices of the three distinct colours. (The same is true of its
edges.) Such a structure — a triangulation of S2 with a three-colouring of the vertices — is
called a trinity; see Figure 12, for example. In each triangle of the trinity, the vertices are
coloured violet, emerald and red in clockwise or anticlockwise order; thus triangles come in two
types, and we colour them black or white accordingly. Further, two triangles sharing an edge
are of opposite colours; in other words, the dual graph to the triangulation is bipartite.

A trinity contains three connected bipartite plane graphs, consisting of the subgraphs given
by the edges of each colour [37, 38]. The violet graph GV has violet edges and vertex classes E,
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Figure 12 (colour online). The trinity constructed from the bipartite planar graph of Figure 1.

Figure 13 (colour online). A trinity, together with the dual graph G∗
V

of GV drawn in dotted blue.

R; the emerald graph GE has emerald edges and vertex classes R, V ; the red graph GR has red
edges and vertex classes V , E. Any one of these three graphs yields an equivalent triangulation
of S2 and hence the same trinity. In other words, as is obvious from the definition, the roles of
the three colours in a trinity are perfectly symmetric. Conversely (and to further underscore
the last point), given a triangulation of S2 with bipartite dual, one can always find a proper
3-colouring of its vertices (that is, with each edge joining vertices of different colours) endowing
the triangulation with the structure of a trinity. This is an old result, proven, for example, in
[38, Proposition 9.4].

4.2. Arborescence number and Tutte’s tree trinity theorem

Let us fix a trinity with vertex sets V,E,R as above, and let n denote the number of its white
triangles. Each red edge lies on the boundary of precisely one white triangle, and each white
triangle has precisely one red edge, so the number of red edges is n. By the same argument the
number of black triangles, the number of violet edges, and the number of emerald edges are
also n. So there are 3n edges and 2n faces in the triangulation, whence Euler’s formula gives
|V | + |E| + |R| − 3n + 2n = 2; thus the total number of vertices exceeds the number of white
triangles by 2.

Consider the dual graph G∗
V of GV . The vertex set of G∗

V is V , and each edge of G∗
V runs

through a black and a white triangle, crossing exactly one edge of GV ; see Figure 13. This
allows us to orient the edges of G∗

V to point from black to white, giving G∗
V the structure of a

directed plane graph (possibly with loops and multiple edges). An equivalent way of defining
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the direction is to say that each edge of G∗
V runs between an emerald vertex to its left and a

red vertex to its right.
Each violet vertex is surrounded by triangles which alternate in colour between black and

white. Hence at each vertex of G∗
V , edges are alternately incoming and outgoing; in particular,

the in-degree and out-degree are equal. A directed graph where each vertex has equal in-degree
and out-degree is called Eulerian or balanced. Of course, G∗

R and G∗
E are also balanced directed

plane graphs.
We may fix a white triangle t0 of the trinity as a root or outer triangle, and call the three

adjacent vertices v0 ∈ V , e0 ∈ E, r0 ∈ R the root violet, emerald, and red vertices, respectively.
For any directed graph D with a root vertex r, a (spanning) arborescence of D is a spanning
tree T of D all of whose edges point away from r; that is, for each vertex v of D the unique
path in T between r and v has all edges oriented from r to v.

When D is a balanced finite directed graph, van Aardenne-Ehrenfest and de Bruijn in [64]
showed that its number of spanning arborescences does not depend on the choice of root vertex.
Moreover, this number is also equal to the number of spanning trees all of whose edges point
towards the root, wherever the root may be. We call this number the arborescence number
ρ(D) of D.

Tutte’s tree trinity theorem [62] generalizes planar duality of spanning trees (reviewed in
Section 4.1) to the statement that the arborescence numbers of G∗

V , G
∗
E , G

∗
R agree:

ρ(G∗
V ) = ρ(G∗

E) = ρ(G∗
R).

We will call this number the magic number of the trinity. Tutte gave a ‘trijective’ proof of his
result in [63]. That is, he arranged all arborescences in triples, one from each graph, where each
triple is described in the form of a bijection between non-outer white triangles and adjacent
non-root vertices. Berman [2] formulated this as an expression for the magic number as the
determinant of an (n− 1) × (n− 1) adjacency matrix. The latter formula was refined by the
first author [38] to enumerate the hypertrees in the corresponding hypergraphs. We explain
these notions in the next section.

4.3. Hypergraphs and hypertrees

A hypergraph is a pair H = (V,E), where V is a set of vertices and E is a (multi-)set of
hyperedges. A hyperedge is a non-empty subset of V . A multiset is used to allow for hyperedges
with multiplicity. When each hyperedge contains precisely two vertices, a hypergraph reduces
to a graph in the usual sense (with no loop edges but possibly with multiple edges).

A hypergraph H naturally determines a bipartite graph BipH, which has vertex classes V
and E; an edge connects v ∈ V to e ∈ E in BipH if and only if the hyperedge e contains v.
Conversely, given a bipartite graph G with vertex classes V0, V1, we may form a hypergraph
G = (V0, V1) with vertex set V0 and hyperedge set V1: for v1 ∈ V1, the hyperedge v1 contains
all vertices in V0 to which v1 is connected in G. We may also reverse the roles of V0 and
V1, forming a hypergraph G′ = (V1, V0) with vertex set V1 and hyperedge set V0, constructed
in similar fashion. Note that BipG = BipG′ = G. We say that the hypergraphs G and G′ are
induced by the bipartite graph G. The two hypergraphs G and G′ are called abstract dual or
transpose to one another: the abstract dual of a hypergraph is given by reversing the roles of
vertices and hyperedges, and the incidence matrix of one is the transpose of the other. These
considerations are independent of planar embeddings.

There is another notion of duality related to hypergraphs, one that was implicit in the
previous two subsections. When BipH is given as a plane graph, one may replace the set V of
vertices with the set R of complementary regions, while keeping the same set E of hyperedges.
The containment relation is defined in the obvious way, by adjacency in the violet graph GV ;
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in other words, Bip(R,E) = GV . Note how this generalizes the way one takes the dual of a
usual plane graph. We will indeed call (R,E) the planar dual of (V,E).

When we have a connected plane bipartite graph — or equivalently, a trinity — we can use
both these notions of duality. Indeed, a trinity naturally contains six hypergraphs. For if we
take a trinity with vertex classes V,E,R, then we have the three plane graphs GV , GE , GR

described above, and each of these determines two hypergraphs. Denoting planar duality with
a star, and abstract duality with a bar, letting H = (V,E) gives the six hypergraphs as

H = (V,E), H∗ = (R,E), H∗ = (E,R), H∗∗ = H∗
= (V,R), H∗

= (R, V ), H = (E, V ).

Returning to the not-necessarily-planar context, we define a hypertree in a hypergraph H =
(V,E) as a function f : E −→ Z�0 such that there exists a spanning tree in the bipartite graph
BipH with degree f(e) + 1 at each node e ∈ E. Such a spanning tree in BipH is said to realize
the hypertree f .

Note that in any hypertree, for any e ∈ E we have 0 � f(e) � |e| − 1. When H is just a
graph, so every e ∈ E satisfies |e| = 2, a hypertree reduces to a tree: each f(e) = 0 or 1 and a
tree is chosen by selecting those edges with f(e) = 1.

A function E −→ Z�0 can be regarded as an element of Z
E ⊂ R

E . Thus the set of hypertrees
of H = (V,E) can be regarded as a subset of the |E|-dimensional integer lattice Z

E , and it
turns out to be the set of lattice points of a convex polytope QH ⊂ R

E [58]; see, for example,
[38, Theorem 3.4] for a description of QH by linear inequalities. Let us write BH = QH ∩ Z

E

for the set of hypertrees in H. For an arbitrary pair of abstract-dual hypergraphs, Postnikov
[58] showed that their hypertrees are equinumerous. In symbols,

|BH| = |BH|. (5)

Given a bipartite plane graph G with vertex classes V0, V1, we can form the two induced
abstract-dual hypergraphs G0 = (V1, V0) and G1 = (V0, V1). We can also form the planar dual
G∗ of G (as a graph; this is not to be confused with planar dual hypergraphs). We saw that
G∗ is a balanced directed graph. The first author showed [38, Theorem 10.1] that the number
of hypertrees in G0, and (either by the same proof, or as a consequence of (5)) the number of
hypertrees in G1, is equal to the arborescence number of G∗. In symbols,

ρ(G∗) = |BG0 | = |BG1 |.

In a trinity, then, the arborescence numbers of all three planar duals and the number of
hypertrees of all six hypergraphs are equal:

ρ(G∗
V ) = ρ(G∗

E) = ρ(G∗
R) = |B(V,E)| = |B(E,V )| = |B(E,R)| = |B(R,E)| = |B(R,V )| = |B(V,R)|.

5. Special alternating links and sutured Floer homology

Work of the first author with Juhász and Rasmussen established a connection between
hypertrees in trinities and sutured Floer homology. We review a few relevant details here.

5.1. Links and sutured manifolds from trinities

Suppose we have an oriented link L ⊂ S3, and a Seifert surface R for L, so ∂R = L. Splitting
S3 open along R produces a 3-manifold with boundary consisting of two homeomorphic copies
of R, which we denote by R±. Taking L = ∂R± as a set of sutures and R± as signed regions
yields a balanced sutured 3-manifold S3(R).

Now from a plane graph G, we may construct a surface FG bounding an alternating link
LG via the median construction. Take a regular neighbourhood U of G in R

2, which can be
considered as a union of discs around each vertex of G, and a band along each edge. Then
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insert a negative half twist in each band of U to obtain FG, and let LG = ∂FG. The link LG is
a union of arcs of circles around vertices of G, and arcs twisting around the edges of G. It may
be drawn so that its crossings correspond bijectively to edges of G. Since LG twists negatively
around each edge, the diagram obtained of LG is alternating; see Figure 1, for example.

Drawn in this way, a side of FG is facing up at each vertex of G. If two vertices are connected
by an edge, then opposite sides of FG are facing up at them. Hence FG is orientable if and
only if G is bipartite, in which case the vertex classes may be distinguished by which side of
FG faces up. In fact, if G is bipartite then LG is naturally oriented as the boundary of FG, and
FG is a Seifert surface for LG. The orientation of LG is such that the arcs of circles around
vertices run anticlockwise or clockwise according to the vertex class.

The primary objects of study in this paper are sutured 3-manifolds (MG, LG) obtained from
the general construction of S3(R) performed on the Seifert surface R = FG and oriented link
L = LG, associated to a connected bipartite plane graph G.

Let the vertex classes of G be V and E and colour them violet and emerald, respectively.
For definiteness, orient LG to run anticlockwise around violet vertices, and clockwise around
emerald vertices. Then the orientation on FG agrees with that of S2 near violet vertices, and
disagrees near emerald vertices.

Since FG deformation retracts onto G, the manifold MG is homeomorphic to S3 −N(G),
where N(G) is a regular neighbourhood of the graph G in S3. In particular, the manifold is
a handlebody.

The median construction provides a diagram for LG which is alternating and special: every
Seifert circle is innermost in S2. (Each Seifert circle runs around a single vertex of G in S2,
so all are innermost.) Applying Seifert’s algorithm to an alternating diagram always yields a
minimal genus Seifert surface [6, 15, 52], and applying Seifert’s algorithm to LG yields FG.

In sum, the surface FG obtained from the median construction on the connected bipartite
plane graph G is a minimal genus Seifert surface for the non-split special alternating link LG.
A converse of this result is also true: any minimal genus Seifert surface of a non-split prime
special alternating link arises as FG from the median construction on a connected bipartite
plane graph G [1, 23].

5.2. Sutured L-spaces and SFH support

There are certain sutured 3-manifolds (M,Γ) where, for each spin-c structure s, sutured Floer
homology is either zero or Z, that is, SFH(M,Γ, s) ∼= Z or 0. The sutured 3-manifolds (MG, LG)
considered in this paper are of this type.

Friedl–Juhász–Rasmussen in [13] define a sutured L-space to be a balanced sutured
3-manifold (M,Γ) such that SFH(M,Γ) is torsion free and supported in a single Z2

homological grading. It follows immediately that for every spin-c structure s ∈ Spinc(M,Γ),
the abelian group SFH(M,Γ, s) is trivial or free. Friedl–Juhász–Rasmussen in fact showed
[13, Corollary 1.7] that each SFH(M,Γ, s) is either trivial or isomorphic to Z.

Thus, for a sutured L-space, to understand SFH(M,Γ), it is sufficient to know, for each
spin-c structure s, whether the group SFH(M,Γ, s) is trivial. That is, it is sufficient to know
the support of SFH(M,Γ), which is defined as

Supp(M,Γ) = {s ∈ Spinc(M,Γ) | SFH(M,Γ, s) �= 0}.

Examples of sutured L-spaces come from Seifert surfaces for links. Given an oriented link
L ⊂ S3 and a Seifert surface R, consider the balanced sutured 3-manifold S3(R) discussed in
the previous subsection, obtained by splitting S3 along R. In [13, Corollary 6.11] it is shown
that if L is a non-split alternating link and R is a minimal genus Seifert surface, then S3(R) is
a sutured L-space. Thus S3(FG) = (MG, LG) is a sutured L-space, and hence SFH(MG, LG)
consists of a direct sum of infinite cyclic groups, one for each spin-c structure in Supp(MG, LG).
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The same remains true if we switch the orientation either of MG or of LG, or both; mirroring
or orientation reversal does not change the fact that we have a non-split alternating link with
a minimal genus Seifert surface. (The claim also follows formally via [13, Proposition 2.18],
which describes the effects of such orientation changes in general.)

5.3. Sutured Floer homology and hypergraphs

In [37], the first author, with Juhász and Rasmussen, showed that for manifolds (MG, LG),
the support of sutured Floer homology essentially coincides with the set of hypertrees in a
hypergraph associated to G. For the precise statement, let G be a connected bipartite plane
graph, with vertex classes V and E and complementary regions R. Let us form a trinity coloured
in violet, emerald and red as in Section 4.1.

On the one hand, we have the hypergraphs associated to the trinity, and hypertrees in them,
as discussed in Section 4.3. For current purposes it is useful to consider the hypergraphs (E,R)
and (V,R), which are planar duals.

On the other hand, we may perform the median construction on G and split S3 along the
resulting Seifert surface to obtain the sutured L-space (MG, LG), whose sutured Floer homology
is determined by its support. The main result of [37] is that the support Supp(MG, LG) and
the sets of hypertrees B(E,R), B(V,R) are essentially the same:

Supp(MG, LG) ∼= B(E,R)
∼= −B(V,R).

To make these equivalences precise, first note that B(E,R)
∼= −B(V,R) means that these two

sets in Z
R are translates of each other. It is in fact a general property of planar dual hypergraphs

H and H∗ that the convex polytopes QH and QH∗ are reflections of each other in a certain
point [38], so that BH and −BH∗ are translates.

As for Supp(MG, LG), it lies in Spinc(MG, LG), which is affine over H1(MG). As we discuss
in detail below in Section 6.1, cutting the handlebody MG along |R| discs, one disc in each
complementary region of G, breaks MG into two balls, one above and one below the plane of the
diagram, so MG has genus |R| − 1 and H1(MG) ∼= Z

|R|−1. In the equivalence Supp(MG, LG) ∼=
B(E,R), the affine Z

|R|−1 space Spinc(MG, LG) is identified with an affine hyperplane of Z
R.

We will describe this explicitly when it is needed in Section 7.2. In particular, we will see then
that hypertrees lie along a hyperplane because the sum of their coordinates is a constant, just
as the number of edges in a spanning tree of a given graph is constant.

6. Contact structures on plane bipartite graph complements

We now come to the main objective of the paper, which is to consider tight contact structures
on the sutured manifolds (MG, LG) of Section 5.1. As before, let G be a connected bipartite
plane graph, with colour classes V and E, and complementary regions R.

6.1. From graph to sutured manifold

We first analyse (MG, LG) in detail, and develop some notation which will be useful in the
sequel. The set S2 \G consists of |R| open discs; we denote the closures of these discs by D̃r,
for each r ∈ R; see Figure 14 (left).

Now, consider G in three dimensions, with G ⊂ S2 ⊂ S3. Then S2 splits S3 into two open
3-balls, one lying above and one below the plane R

2 ⊂ S2 of our diagrams. Let the closures of
these two balls be B+ and B−, respectively. So B+, B− are closed balls whose intersection is
S2.

Recall that MG is given by S3 with a neighbourhood N(G) of G removed. The neighbourhood
N(G) can be regarded as a union of open balls about the vertices of G, and tubes about the
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Figure 14 (colour online). Left: Bipartite plane graph G, and a complementary disc region D̃r.
Right: The sutured manifold (MG, LG). Violet and emerald vertices of G are shown. The boundary
∂MG = ∂N(G) is indicated in brown. The sutures/link LG is drawn in black. A decomposing disc
Dr for (MG, LG) is shaded in grey. Two half-tubes H+

ε are shown, shaded in brown, about two
edges, which meet consecutively at a violet vertex v; the polygon H+

v is shaded in violet.

edges of G. The sutures consist of the link LG, which is drawn on the boundary of N(G);
see Figure 14 (right). It will be useful to decompose the boundary ∂N(G) = ∂MG into closed
polygons as follows.

• A cylinder Hε around each edge ε of G, which is further split into two rectangles
H+

ε = Hε ∩B+ and H−
ε = Hε ∩B−.

• Two polygons H+
v , H−

v around each vertex v of G of degree at least 2. The polygons
H+

v , H−
v lie in B+, B−, respectively. Each polygon H±

v has its number of sides equal to the
degree of the vertex v in G. Each side of H±

v is shared with a rectangle H±
ε , for an edge ε

incident to v.

Figure 14 (right) shows two rectangles H+
ε and a polygon H+

v , which is a triangle since the
vertex in the example has degree 3.

As shown, we can take the cylinders Hε so that two cylinders Hε, Hε′ about two distinct edges
ε �= ε′ meet if and only if the edges ε, ε′ have a common endpoint v, and ε, ε′ are consecutive
edges around v. In this case, Hε and Hε′ intersect in a single point near v, which is also a
vertex of H+

v and H−
v ; see Figure 14 (right).

When G has a vertex v of degree 1, the endpoint of an edge ε, we take Hε to be the boundary
of a ‘sock’-shaped neighbourhood; but by cutting along a semicircular arc (transverse to S2)
near v, at the closed end of the sock, we can regard Hε as a cylinder with one end glued up
by identifications. Again we obtain two rectangles H±

ε ; the two vertices of H+
ε near v, and the

two vertices of H−
ε near v, are all identified.

In each complementary region r ∈ R of G, we had a disc D̃r. However, not all of D̃r lies in
MG. We denote the intersection of D̃r with MG by Dr; so Dr is a closed disc which is a slightly
shrunken version (deformation retract) of D̃r; again see Figure 14 (right). Note that Dr is a
properly embedded compressing disc in MG.

Now the sutures/link LG can be drawn on the boundary ∂MG = ∂N(G) so that they lie
entirely in the tubes Hε, and do not pass into the interior of any polygon H±

v about any
vertex. In fact, they can be drawn so as to pass through every vertex of every rectangle H±

ε ,
and intersect the interior of each H±

ε in a single arc, which runs diagonally across the rectangle,
twisting negatively around the edge ε of G.
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If we cut MG along all the discs Dr, over all r ∈ R, then MG is cut into two balls B± ∩MG

which we denote by M±. The components of the sutures LG lying in M+ are the arcs of LG

drawn on each H+
ε , and the components of LG lying in M− are the arcs drawn on each H−

ε .
Consider an r ∈ R, which corresponds to a complementary disc region D̃r of G, and a disc

Dr ⊂ MG. Recall that Dr ⊂ D̃r. Proceeding around the boundary of D̃r, there is a sequence
of vertices and edges of G, with the vertices alternating in colour between violet and emerald;
let there be n vertices of each colour. Correspondingly, proceeding around the boundary of
Dr, there is a sequence of arcs of rectangles H±

ε . The sutures LG intersect ∂Dr in precisely
2n points, which are all vertices of rectangles H±

ε . The points of LG ∩ ∂Dr are naturally in
bijection with the vertices around the boundary of the complementary region r, that is, with
the vertices on ∂D̃r.

Thus there is a natural homeomorphism D̃r −→ Dr which takes each vertex v (violet or
emerald) on ∂D̃r to a vertex of the polygons H±

v on ∂MG about v; and which takes each edge
ε of G on D̃r to a common edge of the rectangles H±

ε .

6.2. Applying the gluing theorem

To classify tight contact structures on (MG, LG), we will decompose MG along the discs Dr to
obtain the two balls M+,M−. In other words, we apply Theorem 2.8 to the sutured manifold
(M,Γ) = (MG, LG), cutting surface S = �r∈RDr, and cut-up manifold M ′ = M+ ∪M−.

As a handlebody, (MG, LG) is a compact, oriented, irreducible sutured 3-manifold. We may
take a contact structure ξ∂ near ∂MG such that ∂MG is convex, with dividing set LG. Recall
(Section 5.1) that we orient FG so that it carries the orientation of S2 near violet vertices,
and the opposite orientation near emerald vertices; accordingly LG runs anticlockwise around
violet vertices, and clockwise around emerald vertices.

The surface S is properly embedded and incompressible in MG. Every component of ∂Dr

intersects LG non-trivially; indeed |∂Dr ∩ LG| is the number of vertices around the boundary
of the complementary region r. We will denote this number by 2nr; so the boundary of r
contains nr violet and nr emerald vertices. In particular, the Legendrian realization principle
applies to ∂S and we may take the contact structure ξ∂ near ∂MG so that ∂S is Legendrian.

The hypotheses of Honda’s gluing Theorem 2.8 are thus satisfied, and so there is a bijection
between the tight components of the configuration graph G(MG, LG, S), and the set T (MG, LG)
of isotopy classes of tight contact structures on (MG, LG).

Since cutting MG along the discs S = �r∈RDr yields the very simple manifold M ′ = M+ ∪
M− consisting of two balls, we will be able to use the gluing theorem, together with our
knowledge of the contact topology of 3-balls, to obtain a classification of the tight contact
structures on (MG, LG).

We thus turn to an analysis of configurations on (MG, LG, S).

6.3. Analysing configurations

From Definition 2.2, a configuration on (MG, LG, S) is a pair (ΓS , ξ
′), where ΓS is an (isotopy

class of) set of sutures on S, and ξ′ is an (isotopy class of) contact structure on the sutured
manifold (M ′,Γ′) obtained by cutting M along S, drawing sutures ΓS on both copies of S,
and edge-rounding.

A dividing set ΓS on S consists of a dividing set Γr on each disc Dr. Since M ′ consists of
the balls M+ and M−, each ξ′ is either overtwisted, or the unique tight contact structure on
each of the balls M+ and M− with the given boundary conditions.

We just saw that for a complementary region r ∈ R of G, the disc Dr has boundary ∂Dr

intersecting the sutures LG at 2nr points near the 2nr vertices (nr violet and nr emerald)
around ∂D̃r. The dividing set Γr must therefore have endpoints interleaving with the 2nr

points of LG ∩ ∂Dr. In particular, ∂Γr contains a point fr,ε for each edge ε on the boundary of
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Figure 15 (colour online). A configuration on (MG, LG, S). The dividing sets LG on ∂MG, and
ΓS on S, are both drawn in black. Intersection points of LG with S are marked with black dots,
which interleave with the points of ∂ΓS .

Figure 16 (colour online). Dividing sets on M+. Left: dividing set from ΓS and LG.
Right: Effect of rounding.

D̃r, which lies on the cylinder Hε. We can regard fr,ε as a point on H+
ε ∩H−

ε , midway along
ε; each fr,ε thus lies near a crossing of LG.

If any Γr contains a closed curve, then the configuration is overtwisted. So in a potentially
tight configuration, each Γr consists of a collection of disjoint arcs, joining the points fr,ε
associated to the boundary edges ε of r; see Figure 15, for example.

Given a dividing set ΓS on S, we obtain dividing sets on ∂M+ and ∂M−. The dividing set on
∂M+ (respectively, ∂M−) consists of the arcs of LG in each rectangle H+

ε (respectively, H−
ε ),

together with the arcs of ΓS . This gives (M ′,ΓS ∪ LG) the structure of a sutured manifold
with corners along ∂S = �r∈R∂Dr.

Upon rounding the corners, the dividing sets become a collection Γ′ of smooth curves. If
we obtain a single connected curve on both ∂M+ and ∂M−, then there is a potentially
tight configuration (ΓS , ξ

′), where ξ′ is the unique isotopy class of tight contact structures
on (M ′,Γ′). If the sutures obtained on ∂M+ or ∂M− are disconnected, then there are no
potentially tight configurations.

We consider the rounding process on M+ in detail; see Figure 16. For each edge ε of G,
there is a diagonal arc γ+

ε of LG on the rectangle H+
ε , making a negative half-twist around ε.

There are two regions r, r′ on either side of ε (possibly r = r′), with discs Dr, Dr′ and dividing
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sets Γr,Γr′ . A dividing curve γr of Γr ends at a point fr,ε on H+
ε , and a dividing curve γr′ of

Γr′ ends at a point fr′,ε on H+
ε . Rounding the corners (cf. Section 2.4, especially Figure 3) on

either side of H+
ε results simply in straightening γr, γ

+
ε , γr′ into a single arc which proceeds

directly across the rounded H+
ε .

Similarly, rounding the corners of M−, the dividing curves γr and γr′ are connected with
an arc γ−

ε on H−
ε and the result is to straighten γr, γ

−
ε , γr′ into a single arc which proceeds

directly across the rounded H−
ε .

Thus rounding corners simply has the effect of connecting up the dividing curves Γr on each
disc Dr directly across the rectangles H±

ε . Hence, we can effectively ignore the dividing curves
on ∂MG. In fact, we can effectively ignore the entire neighbourhood N(G) of G, and simply
draw the dividing sets Γr on the larger discs D̃r, the complementary regions of G, and connect
the dividing sets directly across the edges of G. The same diagram then describes the dividing
curves on M+ or M−. We have now proved the following lemma.

Lemma 6.1. Let ΓS = �r∈RΓr be a dividing set on S = �r∈RDr. The following are
equivalent:

(i) after edge-rounding, ΓS ∪ (LG ∩M+) yields a connected curve on ∂M+;
(ii) after edge-rounding, ΓS ∪ (LG ∩M−) yields a connected curve on ∂M−;
(iii) drawing each Γr on the complementary regions D̃r of G and connecting them across

each edge of G yields a connected curve in the plane.

If any (hence all) of the above equivalent conditions apply to ΓS , then there is a unique
potentially tight configuration (ΓS , ξ

′), where ξ′ is the unique isotopy class of tight contact
structures on (M ′,Γ′), and we call ΓS potentially tight accordingly. On the other hand, if the
conditions do not apply, there are only overtwisted contact structures on (M ′,Γ′), and only
overtwisted configurations with dividing set ΓS . Thus, as discussed in Section 2.5, potentially
tight configurations on (MG, LG, S) can be described simply by the dividing set ΓS and they
correspond precisely to the potentially tight dividing sets ΓS .

We now turn our attention to the state transitions of Definition 2.4. Perhaps the key contact-
topological property of (MG, LG) is that it turns out to be impossible to have a state transition
from a potentially tight to an overtwisted configuration.

Proposition 6.2. If C is potentially tight, and there is a state transition from C to C ′,
then C ′ is potentially tight.

Proof. Consider two configurations C = (ΓS , ξ) and C ′ = (Γ′
S , ξ

′), where ΓS = �r∈RΓr and
Γ′
S = �r∈RΓ′

r, and let C be potentially tight. Then ΓS gives connected dividing sets on ∂M+

and ∂M− after rounding edges. The existence of a transition C −→ C ′ means that ξ′ is obtained
from ξ by passing a bypass across some disc Dr; in particular, Γ′

r is obtained from Γr by bypass
surgery on some attaching arc a on Dr.

Without loss of generality suppose that the bypass is removed from M+ and added to M−.
Then, as discussed in Section 2.4, Γ′

S is obtained from ΓS by inwards bypass surgery along a
in ∂M+, and outwards bypass surgery along a in ∂M−. As a bypass exists in M+ along a, it
is an inner attaching arc for M+. Hence performing inwards bypass surgery on ∂M+ along a
results in a connected dividing set on M+ (after rounding edges); so by Lemma 6.1 then Γ′

S is
a potentially tight dividing set.

Now inwards bypass surgery on ∂M+ is equivalent to outwards bypass surgery on ∂M−.
Applying Lemma 6.1 again, since inwards bypass surgery yields a connected dividing set on
M+, outwards bypass surgery on ∂M− along a must result in a connected dividing set on M−.
Hence a is outer for M−.
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Given a tight ball, removing a bypass along an inner attaching arc, or adding a bypass along
an outer attaching arc, results in another tight ball. Thus ξ′ is tight, and C ′ is potentially
tight. �

Recall from Section 2.5 that the configuration graph G(MG, LG, S) (Definition 2.6) has
vertices given by configurations in C(MG, LG, S), and edges given by state transitions.
Further, a component of G(MG, LG, S) is tight if all its configurations are potentially tight; a
configuration is tight if it lies in a tight component (Definition 2.7). Proposition 6.2 says that
there is no edge connecting a potentially tight configuration with an overtwisted configuration,
so we immediately obtain the following.

Proposition 6.3. All potentially tight configurations on (MG, LG, S) are tight.

In light of this result, in our context we can simply refer to potentially tight configurations,
or their dividing sets, as tight. We also obtain an additional nice fact about state transitions
in (MG, LG, S).

Lemma 6.4. Let ΓS = �r∈RΓr be a tight configuration and let a be an attaching arc on
some Dr. Then there exists precisely one state transition involving a bypass with attaching arc
a.

Proof. Consider the dividing set Γ′ obtained by edge-rounding on ∂M ′. With respect to Γ′,
the arc a is inner on precisely one of M+ or M−; without loss of generality suppose M+. Then,
as in the proof of Proposition 6.2, a is outer on M−. So there is a state transition removing a
bypass from M+, and attaching it to M−, along a, but not the other way. The statement now
follows from Lemma 2.1. �

6.4. Scheme of the proof

We have now essentially reduced the proof of Theorem 1.1 to a purely combinatorial problem.
So we pause at this point to give an overview of the remaining portion of the proof.

To classify the tight contact structures on (MG, LG), by the gluing theorem we must
compute π0(G0(MG, LG, S)), the connected components of the graph of tight configurations.
By Proposition 6.3, there is no distinction between potentially tight and tight configurations.
We only need to determine which tight configurations are connected to which others by state
transitions. The tight configurations are given by dividing sets on each complementary disc
D̃r without closed curves (that is, chord diagrams or crossingless matchings) which join across
edges of G to give a connected curve. The transitions are bypass surgeries localized on a single
Dr.

Our goal is to show that there is a bijection between the components of G0(MG, LG, S), and
hypertrees in (E,R). We prove this as follows.

• In Section 6.5 we introduce a special class of configurations associated to spanning trees
of GV , which we call ‘tree-hugging’. We show tree-hugging configurations are tight.
• In Section 6.6 we show that the Euler class of a tree-hugging configuration is determined by

the associated hypertree of (E,R). Hence two tree-hugging dividing sets with distinct associated
hypertrees cannot be connected by state transitions.
• In Section 6.7 we show that any tight configuration is connected to a tree-hugging

configuration by state transitions.
• Finally, in Section 6.8 we show that tree-hugging dividing sets with the same associated

hypertree are connected by state transitions.
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Figure 17 (colour online). Construction of the dividing set ΓT from a spanning tree T of GV .
Left: the tree T and the graph G = GR; the neighbourhood U is shaded. Right: T and ΓT drawn
on the cutting discs S of (MG, LG). The polygons H±

e are drawn about emerald vertices on ∂MG.
Note that the dividing set so obtained on each disc agrees with the dividing set in Figure 16.

Thus, every component of G0(MG, LG, S) contains tree-hugging configurations, all represent-
ing the same hypertree; and every hypertree is represented by a configuration. This gives the
desired bijection.

6.5. Configurations from spanning trees

Let, as usual, G be a connected plane bipartite graph, with colour classes V and E, and
complementary regions R. As we saw in Section 4.3, G is part of a trinity, where one of
the six hypergraphs is (E,R) with vertices E (emerald vertices of G) and hyperedges R
(complementary regions, that is, faces, of G). The associated bipartite graph is the violet
graph GV of Section 4.1, with vertex classes E and R, the latter viewed as one red vertex in
each face of G.

At a red vertex r ∈ R the trinity has 2nr alternating violet and emerald edges, and so
the degree of r in GV is nr. Consider a hypertree f : R −→ Z�0 of (E,R) and an associated
spanning tree T of GV with degree f(r) + 1 at each r ∈ R. (Note 1 � f(r) + 1 � nr.) We now
derive a configuration ΓT , via its dividing set, from the spanning tree T .

We construct ΓT as the boundary of a tubular neighbourhood U of T in S2. The curve
∂U ⊂ S2 intersects each complementary region D̃r in a collection of arcs. The endpoints of
the arcs lie on ∂D̃r and interleave with the violet and emerald vertices; see Figure 17(left),
for example.

As seen in Section 6.1, the decomposing discs Dr of MG are slightly shrunken deformation
retracts of the D̃r, with natural homeomorphisms D̃r −→ Dr taking each vertex v to a vertex of
the polygons H±

v on ∂MG about v. Consider the images of T and U under this homeomorphism
to regard them as lying on each Dr.

Thus, on each Dr, the tree T consists of the red vertex r, together with f(r) + 1 edges
connecting r to points of ∂Dr which are vertices of the polygons H±

e near some emerald vertices
e. The neighbourhood U of T , in each Dr, consists of a ‘central component’, the boundary of a
regular neighbourhood of the edges of T just described, together with ‘outer components’, each
being a small neighbourhood of a vertex of Dr corresponding to an emerald vertex to which
r is not adjacent in T . The endpoints of the arcs of ∂U interleave with the points of LG ∩ S,
and hence can be taken to be the points fr,ε associated to the incidences between faces r and
edges ε of G; see Figure 17 (right).
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We denote the curve so obtained on S = �r∈RDr as ΓT . Since T is a spanning tree, it
is clear that ΓT satisfies condition (iii) of Lemma 6.1. Therefore it also satisfies the other
conditions and, as explained after the lemma, we may refer to ΓT as the dividing set of a
(tight) configuration. Because ΓT runs close to the tree T , we name these configurations as
follows.

Definition 6.5. The configuration ΓT is called the T -hugging configuration; we say ΓT

hugs T . A potentially tight configuration ΓS is called tree-hugging if it hugs some tree. A
contact structure ξ on (MG, LG) is tree-hugging if it arises from a tree-hugging configuration.

Note that a contact structure ξ on (MG, LG) (more precisely, its isotopy class) in general
corresponds to many configurations, some of which may be tree-hugging and some not; as long
as one such configuration is tree-hugging, we say ξ is tree-hugging. From the discussion above
and Proposition 6.3, the following is clear.

Proposition 6.6. Tree-hugging contact structures are tight.

6.6. Hypertrees and Euler class

Recall from Section 5.1 that LG and FG are assigned orientations so that, in our diagrams, LG

runs anticlockwise around violet vertices, and clockwise around emerald vertices.
Since M− lies below the projection plane, ∂M− has outwards normal pointing upwards out of

the projection plane, and induces the usual orientation on R
2. Hence violet vertices (actually

the polygons H−
v at such vertices v) correspond to positive regions on ∂M−, and emerald

vertices (actually their polygons H−
e ) correspond to negative regions. Conversely, ∂M+ has

violet vertices (polygons H+
v ) corresponding to negative regions, and emerald vertices (H+

e )
corresponding to positive regions.

We orient the discs Dr according to the projection plane, hence as subsets of ∂M−. Recall
that the endpoints of any dividing set on Dr are the points fr,ε, one for each edge ε around
the boundary of the region r; the point fr,ε lies midway along ε, on the tube Hε around ε.
The points fr,ε split ∂Dr into arcs, and each such arc is associated to a vertex v around the
boundary of r. (Precisely, each arc intersects a single pair of polygons H±

v , at one of their
shared vertices.) The colour of v alternates between violet and emerald. Since Dr is oriented
as ∂M−, the arcs near violet vertices lie in R+, and the arcs near emerald vertices lie in R−;
here R± refer to the signed regions of an arbitrary dividing set on Dr ⊂ ∂M−.

A configuration (ΓS , ξ
′) glues into a contact structure ξ with Euler class

e(ξ) ∈ H2(MG, ∂MG). Since the homology classes [Dr] generate H2(MG, ∂MG), it suffices to
evaluate e(ξ) on these discs. We compute each e(ξ)[Dr] implicitly with respect to a section of ξ
over ∂MG which is positively tangent to the oriented Legendrian boundary ∂Dr, as discussed
in Section 2.2. (Each ∂Dr is non-separating on ∂MG. Note we may use different boundary
sections for different discs.)

If (ΓS , ξ
′), or just ΓS , is a tight configuration, we can refer to the Euler class e(ξ′) as the

Euler class of the configuration and denote it with e(ΓS).
Now let T be a spanning tree of GV with hypertree f : R −→ Z�0 and let ΓT be the

T -hugging configuration. Recall that the degree of T at a red vertex r is f(r) + 1, and the
degree of r in GV is nr. We now calculate the Euler class e(ΓT ).

Lemma 6.7. Let T be a spanning tree of GV with hypertree f , and let ΓT be the T -hugging
configuration. Then

e(ΓT )[Dr] = 2f(r) − nr + 1.
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Proof. According to (3) we have e(ΓT )[Dr] = χ(R+) − χ(R−), where R± are the signed
complementary regions of ΓT on Dr. As R+ and R− consist of discs, it suffices to count the
number of components in R+ and R−. As discussed above, regions near violet (respectively,
emerald) vertices lie in R+ (respectively, R−).

Using the homeomorphism D̃r
∼= Dr, we can regard ΓT as drawn on D̃r rather than Dr,

which makes for simpler notation; the region R+ (respectively, R−) then contains the violet
(respectively, emerald) vertices.

Now T ∩ D̃r consists of the f(r) + 1 edges connecting r to emerald vertices, together with the
remaining nr − f(r) − 1 emerald vertices not connected to r. As discussed in Section 6.5, the
regular neighbourhood U of T intersects D̃r in a central component (a regular neighbourhood
of the f(r) + 1 edges emanating from r) and nr − f(r) − 1 outer components.

Thus, the regular neighbourhood U of T has nr − f(r) components in Dr, which are the
components of R−. Now ΓT consists of nr dividing curves drawn on D̃r, cutting D̃r into nr + 1
components. Hence R+ has f(r) + 1 components, and e(ΓT )[Dr] = 2f(r) − nr + 1. �

Therefore the Euler class of ΓT determines the hypertree of T , and vice versa. Hence,
although several spanning trees might correspond to the same hypertree, all such spanning
trees yield tree-hugging configurations with the same Euler class. Moreover, state transitions
do not affect the Euler class of the contact structure induced by configurations (either on M ′

or on MG). From this we immediately obtain the following proposition.

Proposition 6.8. Let T1, T2 be spanning trees of GV with associated hypertrees
f1, f2 : R −→ Z�0. If the tree-hugging configurations ΓT1 ,ΓT2 are related by state transitions,
then f1 = f2.

6.7. Tight contact structures are tree-hugging

We have seen that tree-hugging contact structures are tight. This section is devoted to proving
the converse.

Proposition 6.9. Any tight contact structure on (MG, LG) is tree-hugging.

The proof amounts to showing that any tight configuration is related by state transitions to
a tree-hugging configuration. We prove this directly.

We first give a characterization of tree-hugging configurations. We saw in Section 6.6 that
in a tight configuration ΓS = �r∈RΓr, each Γr consists of nr dividing curves, cutting Dr into
positive and negative regions R+ and R−. The 2nr endpoints of Γr are the points fr,ε associated
to the edges ε of G around the boundary of r. These points fr,ε cut ∂Dr into 2nr arcs, which
alternately lie in R+ and R−; we call these arcs the positive and negative signed arcs of ∂Dr.
Viewed on D̃r via the homeomorphism D̃r

∼= Dr, each positive (respectively, negative) arc
contains exactly one violet (respectively, emerald) vertex.

Each component of R+ (respectively, R−) is a disc containing some number of positive
(respectively, negative) signed arcs in its boundary.

Definition 6.10. The valence v(c) of a component c of R± is the number of signed arcs in
its boundary.

Note that a component of R± has valence 1 if and only if its boundary consists of a single
signed arc, and a single dividing curve on Dr. Since each of the nr positively (respectively,
negatively) signed arcs counts precisely 1 towards the valence of precisely one component of
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R+ (respectively, R−), the sum of the valences over all components c− of R− is nr; similarly
for the components c+ of R+: ∑

c−

v(c−) =
∑
c+

v(c+) = nr. (6)

Lemma 6.11. A tight configuration ΓS = �r∈RΓr is tree-hugging if and only if in each disc
Dr, all components of R−, with at most one exception, have valence 1.

Thus tree-hugging configurations have minimal valence 1 in as many components of R− as
possible, and concentrate ‘excess valence’ above 1 into a single component.

Proof. Throughout this proof we view each Γr on D̃r, via the homeomorphism D̃r
∼= Dr.

Suppose ΓS = ΓT hugs T , a spanning tree of GV with hypertree f : R −→ Z�0. Then the
region R− of D̃r is a neighbourhood of T ∩ D̃r, and only its central component can have valence
more than 1.

Conversely, suppose ΓS is a tight configuration such that on each D̃r, all components of R−
have valence 1, with at most one exception. We will find a spanning tree T of GV such that
ΓS hugs T .

Consider an element r ∈ R and the dividing set Γr on D̃r. Take a component of R− with
maximal valence and call it the ‘central component’; this component has some emerald vertices
on its boundary which we call ‘centrally connected’. Every non-central component of R− has
valence 1; we call these ‘outer components’. An outer component must have boundary consisting
of a single negative arc, and a single arc of Γr, and must therefore be a regular neighbourhood
of an emerald vertex in D̃r.

After an isotopy of Γr relative to endpoints if necessary, we may assume the red vertex r
lies in the central component, and the edges of GV from r to the centrally connected emerald
vertices also lie in the central component.

Let Tr be the graph consisting of the red vertex r, the edges from r to the centrally connected
emerald vertices, and all the emerald vertices on ∂D̃r. Let T be the subgraph of GV obtained
by taking the union of all the Tr.

On each D̃r, the region R− deformation retracts onto Tr. The union of these deformation
retractions, over all r ∈ R, shows that when Γr is drawn in the complementary region D̃r of
G and connected across the edges of G, the negative region R− deformation retracts onto T .
Indeed, ΓS is the boundary of a regular neighbourhood of T .

Since ΓS is a tight configuration, by Lemma 6.1, when each Γr is drawn on D̃r and connected
across the edges of G, we obtain a single connected curve. Hence the R− so obtained on S2 is a
single disc, which deformation retracts onto T . So T is a tree and, since it contains all emerald
and red vertices, a spanning tree of GV . As ΓS is the boundary of a regular neighbourhood of
T , it hugs T . �

To prove Proposition 6.9, we demonstrate a sequence of state transitions, starting from any
tight configuration, and ending at a configuration satisfying the conditions of Lemma 6.11.
The idea is to successively concentrate excess valence into fewer components of R−, as in the
following lemma.

Lemma 6.12. Let ΓS = �r∈RΓr be a tight configuration. Suppose that, for some r0 ∈ R,
there are two components of R− on Dr0 with valence > 1. Let V be the maximum valence
of the components of R− on Dr0 . Then there is a state transition from ΓS to another tight
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Figure 18. Increasing maximum valence. The region c has maximum valence V, so there are V
dividing curves along its boundary, namely the common border with c+i , and V − 1 other dividing
curves, shown at the bottom of the diagram. Performing either downwards (left) or upwards
(right) bypass surgery yields a region with valence at least V + 1.

configuration Γ′
S = �r∈RΓ′

r, which is identical to ΓS outside of Dr0 , and such that on Dr0 , the
maximum valence of a component of R− is greater than V.

Proof. Let c be a component of R− on Dr0 with maximal valence V. Its boundary consists
of V negative arcs on ∂Dr0 , and V arcs of Γr0 . On the other side of each of these V arcs of
Γr0 lie components c+1 , . . . , c

+
V of R+ adjacent to c; and in turn these positive components are

adjacent to negative components c−1 , c
−
2 , . . . , c

−
M (other than c) for some non-negative integer

M .
We claim that some c−j has valence v(c−j ) > 1. If not, then every c−j has valence 1, so no

positive regions other than the c+i can be adjacent to the c−j , and c, c−1 , . . . , c
−
M must be a

complete list of the components of R−. This contradicts the existence of two components
with valence greater than 1. So there exist i and j such that the components c, c+i , c

−
j are

consecutively adjacent and v(c−j ) > 1.
Now let a be an attaching arc which begins on the common boundary of c and c+i , runs

through c+i and c−j , and ends on a distinct (not adjacent to c+i ) dividing curve on the boundary
of c−j . (Note that a component of R− and a component of R+ can share at most one boundary
arc.) (See Figure 18.)

By Lemma 6.4, there is one (and only one) state transition from ΓS along a. This state
transition goes from ΓS to another tight configuration Γ′

S = �r∈RΓ′
r, which only differs from

ΓS in effecting a bypass surgery along a. Now we observe that, whichever direction we perform
bypass surgery along a, we obtain a component with valence strictly greater than V. �

Proof of Proposition 6.9. Let ξ be a tight contact structure on (MG, LG) corresponding to
a configuration ΓS = �r∈RΓr. Consider a disc Dr with dividing set Γr and negative region R−.
If there are two components of R− with valence � 2, then we repeatedly apply Lemma 6.12,
successively performing state transitions to tight configurations, at each stage increasing the
maximum valence of the components of R− on Dr.

By (6), the sum of the valences of the components of R− remains constant, so Lemma 6.12
cannot be applied indefinitely. Thus, eventually we arrive at a tight configuration where all
components of R− on Dr have valence 1, with at most one exception.

Doing the same for each disc Dr, we arrive at a configuration Γ′
S which satisfies the condition

of Lemma 6.11, hence is tree-hugging. As Γ′
S is obtained from ΓS by a sequence of state

transitions, Γ′
S also yields the contact structure ξ, so ξ is tree-hugging. �
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6.8. Spanning trees with the same hypertree yield equivalent structures

In this section we prove the following proposition.

Proposition 6.13. Let T, T ′ be spanning trees of GV with the same associated
hypertree f : R −→ Z�0. Then the tree-hugging configurations ΓT ,ΓT ′ are related by state
transitions.

Thus, two tree-hugging configurations with the same hypertree yield the same (isotopy class
of) contact structure. Proposition 6.13 is proved in the following two steps.

Lemma 6.14. Let T, T ′ be spanning trees of GV with the same associated hypertree f .
Then there is a sequence T = T0, T1, . . . , Tn = T ′ of spanning trees of GV , where each Ti has
associated hypertree f , and each Ti+1 is obtained from Ti by removing one edge and adding
one edge.

Lemma 6.15. Let T, T ′ be spanning trees of GV with associated hypertree f , where
T ′ is obtained from T by removing one edge and adding one edge. Then the tree-hugging
configurations ΓT ,ΓT ′ are related by a sequence of state transitions.

In Lemma 6.14, as Ti+1 is obtained from Ti, the edge removed is adjacent to some red vertex
r; the edge added must also be adjacent to r, in order to maintain degree f(r) + 1 at r. Thus,
the operation which yields Ti+1 from Ti is localized at a single red vertex r. Lemma 6.14
follows from a theorem of the first author; its proof is essentially contained in the proof of
Theorem 10.1 of [38], and we summarize the relevant arguments here.

Consider the planar dual G∗
V of the violet graph GV , as discussed in Section 4.2. Its vertex set

is V , and its edges are naturally directed from black to white triangles of the trinity. Spanning
trees of GV and G∗

V are in bijective correspondence via planar duality.
We choose a root vertex v0 ∈ V of G∗

V and consider arborescences in G∗
V . Recall (Section 4.2)

that an arborescence is a spanning tree whose edges point away from the root; and that in
a balanced directed graph such as G∗

V , the number of arborescences does not depend on the
choice of root.

In [38, Theorem 10.1] (adapted to present notation), the first author constructed a bijection
from arborescences of G∗

V to hypertrees in (E,R). Given an arborescence A in G∗
V , take the

dual A∗, which is a spanning tree of GV , and consider its hypertree fA : R −→ Z�0 in (E,R).
It is shown that the map A �→ fA is a bijection.

For present purposes, we only need to consider the proof that A �→ fA is surjective. The
task is to take a hypertree f : R −→ Z�0 of (E,R) and to find an arborescence A of G∗

V

such that fA = f . In order to find A, we start from an arbitrary spanning tree T of GV with
hypertree f ; its dual T ∗ is a spanning tree of G∗

V but may not be an arborescence. A sequence
of modifications is then made to T ∗, and hence to T , yielding a sequence of spanning trees
T = T0, T1, . . . , Tn = T ′ arriving at a tree T ′ such that T ′∗ is an arborescence. Each modification
consists of removing a single edge of T ∗

i (namely, one of the closest edges to the root where T ∗
i

fails to be an arborescence), and adding another edge; this corresponds to adding and removing
an edge of Ti. This is done in such a way that all Ti represent the same hypertree f . Thus
f = fT ′∗ and we can take the arborescence A = T ′∗.

We summarize what we need from the above argument in the following theorem.

Theorem 6.16. Let T be a spanning tree of GV realizing the hypertree f : R −→ Z�0.
Choose a root vertex v0 ∈ V . Then there is a sequence T = T0, T1, . . . , Tn of spanning trees of
GV , such that
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(i) each Ti+1 is obtained from Ti by adding one edge and removing one edge;
(ii) each Ti realizes the hypertree f ; and
(iii) T ∗

n is an arborescence.

Proof of Lemma 6.14. Choose a root vertex v0 ∈ V arbitrarily, so that we may speak of
arborescences in G∗

V . Given the spanning trees T, T ′, Theorem 6.16 provides sequences of
spanning trees T = T0, T1, . . . , Tm and T ′ = T ′

0, T
′
1, . . . , T

′
n, where each Ti+1 (respectively, T ′

i+1)
is obtained from Ti (respectively, T ′

i ) by adding one edge and removing one edge, each Ti and
T ′
i has hypertree f , and T ∗

m, T
′∗
n are arborescences.

Now T ∗
m and T

′∗
n are arborescences arising from the same hypertree f , that is, f = fT∗

m
=

fT ′∗
n

. As discussed above, [38, Theorem 10.1] claims that the map A �→ fA is bijective, so
T ∗
m = T

′∗
n and hence Tm = T ′

n. We conclude that the sequence

T = T0, T1, . . . , Tm = T ′
n, T

′
n−1, . . . , T

′
0 = T ′

has the desired properties. �

Now we turn to the proof of Lemma 6.15. So suppose we have spanning trees T, T ′ of GV

with the same hypertree f , where T ′ is obtained from T by removing an edge and adding an
edge. As discussed above, the removed edge and the added edge must both be incident to the
same red vertex r0. Hence the tree-hugging configurations ΓT ,ΓT ′ agree on each disc Dr other
than Dr0 . Denote the common restriction of ΓT and ΓT ′ to the (‘external’) discs other than
Dr0 by ΓX .

We must show that there is a sequence of state transitions from ΓT to ΓT ′ . In fact, we will
prove the following stronger result.

Proposition 6.17. Let Γ,Γ′ be dividing sets on the disc Dr0 such that Γ ∪ ΓX and Γ′ ∪ ΓX

are tight configurations. Then there is a sequence of state transitions, which only involve bypass
surgeries on Dr0 , from Γ ∪ ΓX to Γ′ ∪ ΓX .

The key idea is that this statement is essentially identical to Lemma 2.10 about tight contact
structures on cylinders. But first, we show how configurations such as Γ ∪ ΓX correspond to
contact structures on cylinders.

First we recall Lemma 6.1, that is that a dividing set ΓS is tight if and only if, drawing
each Γr on the complementary region D̃r of G and connecting them across the edges of G, we
obtain a connected curve on the compactified plane S2.

In such a diagram of the configurations Γ ∪ ΓX and Γ′ ∪ ΓX , the dividing sets differ on the
disc D̃r0 but are identical on the other complementary regions of G. We can thus regard Dr0 as
the interior of a circle C on S2, and the other complementary regions as forming the exterior
of this circle. Then Γ,Γ′ are dividing sets on the interior of C, and ΓX is a dividing set on the
exterior of C.

Creasing the sphere S2 along two parallel copies of C, we can obtain a sutured manifold
with corners of the form M(·, ·), as discussed in Section 2.6. We can do this in such a way that
the dividing sets on the interior and exterior of the circle C become the dividing sets on the
top and bottom of the cylinder respectively.

Thus, we can crease the sphere so that the configuration Γ ∪ ΓX yields the cylinder
M(Γ∗

X ,Γ), and the configuration Γ′ ∪ ΓX yields the cylinder M(Γ∗
X ,Γ′). Here Γ∗

X is the
common dividing set on the bottom of the cylinders, obtained from the dividing set ΓX on the
exterior of C after creasing the sphere into a cylinder.
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Proof of Proposition 6.17. As Γ ∪ ΓX is a tight configuration, drawing Γ ∪ ΓX on S2 in the
complementary regions of G yields a single connected curve; and then creasing into a cylinder
as discussed yields a tight cylinder M(Γ∗

X ,Γ). Similarly, M(Γ∗
X ,Γ′) is tight.

Applying Lemma 2.10 then yields a sequence of chord diagrams Γ = Γ1, . . . ,Γm = Γ′, where
each Γi+1 is obtained from Γi by a bypass surgery, and each M(Γ∗

X ,Γi) is tight.
Rounding the cylinder back into the original compactified plane S2, each Γi ∪ ΓX yields a

connected dividing set on the plane, consisting of Γi drawn in Dr0 and the same ΓX drawn on
the other complementary regions. Thus each Γi ∪ ΓX is a tight configuration.

Since each Γi+1 ∪ ΓX is obtained from Γi ∪ ΓX by a bypass surgery on Dr0 , and is tight,
these bypass surgeries correspond to transitions where an actual bypass is removed from one of
the two balls of M ′ along an inner attaching arc on Dr0 , and a bypass is added to the other ball
of M ′ along the same (now outer) attaching arc. (See the discussion at the end of Section 2.4.)
This provides the desired sequence of state transitions. �

Lemma 6.15 and Proposition 6.13 now follow straightforwardly.

Proof of Lemma 6.15. The tree-hugging dividing sets ΓT ,ΓT ′ have common restriction ΓX

outside Dr0 ; let their restrictions to Dr0 be Γ0,Γ′
0, respectively. Applying Proposition 6.17 to

Γ0,Γ′
0 and ΓX yields the desired sequence of state transitions from Γ0 ∪ ΓX = ΓT to Γ′

0 ∪ ΓX =
ΓT ′ . �

Proof of Proposition 6.13. Given spanning trees T, T ′ of GV with the same hypertree
f , Lemma 6.14 provides a sequence of spanning trees T = T0, . . . , Tn = T ′ of GV , all with
hypertree f , where each Ti+1 is obtained from Ti by removing one edge and adding another.
Lemma 6.15 then provides a sequence of state transitions from each ΓTi

to ΓTi+1 , which together
yield the desired sequence of state transitions from ΓT to ΓT ′ . �

6.9. Concluding the proof

We now put the pieces together and complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The gluing Theorem 2.8, applied to the decomposition of (MG, LG)
along S = �r∈RDr into M ′ = M+ ∪M− as discussed in Section 6.2, says that isotopy classes
of tight contact structures on (MG, LG) are in bijection with π0(G0(MG, LG, S)), the tight
connected components of the configuration graph. By Proposition 6.3, potentially tight
configurations are tight. By Lemma 6.1 then tight configurations are dividing sets which,
when drawn in the complementary regions of G and connected across the edges of G, yield a
connected curve.

Each spanning tree T of GV yields a tree-hugging configuration ΓT (Section 6.5), which
is tight (Proposition 6.6). Conversely, every tight contact structure is tree-hugging (Propo-
sition 6.9). In other words, all tight configurations are connected via state transitions to
tree-hugging configurations.

Each spanning tree of GV has a corresponding hypertree f : R −→ Z�0 in (E,R). Spanning
trees with distinct hypertrees yield configurations which have distinct Euler class, hence are
not related by state transitions (Proposition 6.8), but spanning trees with the same hypertree
yield configurations which are related by state transitions (Proposition 6.13).

Thus, the connected components of G0(MG, LG, S) are in bijective correspondence with
hypertrees in (E,R), and by [38], discussed in Section 4.3, the number of hypertrees is the
same in any of the six hypergraphs induced from the trinity of G. �

Note that the proof is explicit: given a hypertree f , we take a corresponding spanning tree
T , and the tree-hugging configuration ΓT gives the corresponding contact structure. Let us
denote the isotopy class of contact structures corresponding to f by ξf .
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7. Properties of the contact structures

7.1. Inclusion into the 3-sphere

All along, we have implicitly considered (MG, LG) as a submanifold of S3. We now consider
the inclusion (MG, LG) ↪→ S3 explicitly.

Proposition 7.1. For each hypertree f : R −→ Z�0, the contact structure ξf extends from
(MG, LG) to a tight contact structure on S3.

Proof. Take a spanning tree T of GV representing f , and a T -hugging configuration ΓT =
�r∈RΓr. Using the homeomorphism D̃r

∼= Dr of Section 6.1, draw each Γr on D̃r. As Γr is
tree-hugging, connecting up the dividing sets on each D̃r across the edges of G yields the usual
single connected dividing curve Γ̃ on S2.

Take a contact structure ξst on S3 so that S2 is convex with connected dividing set Γ̃, and
the two balls B± on either side have their unique (up to isotopy) tight contact structure. Thus
(see Section 2.3) ξst is the unique (up to isotopy) tight contact structure on S3.

The graph G ⊂ S2 is transverse to Γ̃ and is non-isolating: the components of S2 \ (Γ̃ ∪G)
are precisely the components into which each D̃r is cut by the dividing set ΓT , and these all
intersect Γ̃. Hence the Legendrian realization principle (for graphs, as discussed in Section 2.2)
applies, and after a small isotopy of S2 we may assume that G is Legendrian embedded in S2.

Consider a regular neighbourhood NG of G in S3. We can take NG so that ∂NG is
convex, NG ∩ S2 is a regular neighbourhood of G in S2, and ∂NG ∩ S2 is a set of Legendrian
curves bounding this neighbourhood. For instance, take a regular neighbourhood NG, use the
Legendrian realization principle along S2 to perturb it so ∂NG ∩ S2 is Legendrian, then perturb
∂NG holding ∂NG ∩ S2 fixed to be convex. For this last step, note that since every face of G
in S2 has at least two sides, and every component of ∂NG ∩ S2 gets the same framing from S2

as from NG, the framing condition of Section 2.2 is satisfied.
Since the contact planes make a negative half-turn along each edge of G, the dividing set on

∂NG is isotopic to LG.
Now consider removing NG from S3. This yields MG, and the tight contact structure ξst on

S3 restricts to a contact structure ξst|MG
on (MG, LG). As the restriction of a tight contact

structure, ξst|MG
is also tight. Moreover, the dividing set obtained on each Dr is isotopic to

the original Γr. So ξst|MG
is given by the tree-hugging configuration ΓT , hence isotopic to ξf .

Thus ξf is a restriction of the tight contact structure ξst on S3, which is another way of saying
that ξf extends to ξst. �

7.2. Euler classes and spin-c structures

We now consider the Euler classes e(ξf ) ∈ H2(MG, ∂MG) of our tight contact structures. With
the conventions discussed in Section 6.6, the following is immediate.

Proposition 7.2. For each f ∈ B(E,R), the Euler class e(ξf ) is given on the generators [Dr]
by

e(ξf )[Dr] = 2f(r) − nr + 1.

Proof. Indeed, by Proposition 6.13 and the definition of ξf , each spanning tree T
representing f is such that ξf is isotopic to (or rather, the class ξf contains) a contact structure
with a T -hugging dividing set. Then we may apply Lemma 6.7. �

Now H2(MG, ∂MG) ∼= H1(MG) ∼= Z
|R|−1, as MG is a handlebody of genus |R| − 1. So we

expect a relation between the |R| evaluations e(ξf )[Dr]. In a similar vein, the |R| values f(r)
of the hypertree f : R −→ Z�0 also obey a relation. These are given in the next proposition.
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Proposition 7.3. For any hypertree f of (E,R),∑
r∈R

f(r) = |E| − 1 (7)

∑
r∈R

e(ξf )[Dr] = |E| − |V |. (8)

Proof. For equation (7), we recall the following short proof from [38]. A spanning tree T of
GV = Bip(E,R) representing f has degree f(r) + 1 at each r ∈ R. Each edge is incident with
precisely one red vertex, so summing f(r) + 1 over all r ∈ R gives the total number of edges
in T . It has |E| + |R| vertices and hence |E| + |R| − 1 edges. We obtain

∑
r∈R(f(r) + 1) =

|E| + |R| − 1, which yields (7).
To prove equation (8), we sum e(ξf )[Dr] = 2f(r) − nr + 1 over all r ∈ R. Consider the

triangulation that is the trinity of G. At each red vertex there are 2nr triangles, nr white
and nr black. Thus

∑
r∈R nr = n, where n is the number of white or black triangles. As

discussed in Section 4.2, |V | + |E| + |R| − n− 2 = 0. Hence our sum is 2(|E| − 1) − n + |R| =
|E| − |V |. �

Let (xr)r∈R denote coordinates on Z
R. Define the rank (|R| − 1) affine hyperplane H in Z

R

by ∑
r∈R

xr = |E| − 1.

Each hypertree f : R −→ Z�0 in (E,R) can be regarded as a point of Z
R, and equation (7)

says that in fact f lies on H. (Similarly, there is an embedding H2(MG, ∂MG) ↪→ Z
R given by

h �→ (h[Dr])r∈R and under this embedding H2(MG, ∂MG) lies on the affine hyperplane with
equation

∑
r∈R xr = |E| − |V |.)

The proof of Theorem 1.2 is now straightforward.

Proof of Theorem 1.2. Propositions 7.2 and 7.3 imply that the bijection which sends a
hypertree f to the Euler class e(ξf ) extends to an affine isomorphism H −→ H2(MG, ∂MG). �

As discussed in Section 4.3, the points B(E,R)of Z
R corresponding to hypertrees of (E,R)

generate a lattice polytope Q(E,R). We have just shown that in fact B(E,R) ⊂ Q(E,R) ⊂ H.
Turning to spin-c structures, as discussed in Section 2.8, Spinc(MG, LG) is an affine space over

H2(MG, ∂MG) ∼= H1(MG) ∼= Z
|R|−1. We can now elaborate on our explanation in Section 5.3

of the main result of the first author, with Juhász and Rasmussen, in [37]. That result says
that

Supp(MG, LG) ∼= B(E,R),

where Supp(MG, LG) ⊂ Spinc(MG, LG) is the support of SFH(MG, LG). The equivalence here
refers to an identification of the rank (|R| − 1) affine space Spinc(MG, LG) with the affine
hyperplane H ⊂ Z

R.
Thus we see that both (Euler classes of) tight contact structures and the support of SFH

are combinatorially equivalent to hypertrees. In the next section we make this equivalence
more geometric.

7.3. Contact invariants

We now consider the contact invariants c(ξf ) of each of the tight contact structures ξf
on (MG, LG). We combine the TQFT property of SFH (reviewed in Section 2.7) with
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Proposition 7.1. Letting ξG be a contact structure on a neighbourhood of G such that
ξst = ξf ∪ ξG, we obtain a homomorphism of graded abelian groups

ΦξG : SFH(−MG,−LG) −→ ĤF (−S3).

Since ĤF (−S3) ∼= Z and c(ξst) = ±1, we have ΦξGc(ξf ) = ±1. Hence c(ξf ) = {±x} for some
non-zero primitive element x of SFH(−MG,−LG).

Now recall from [13], as discussed in Section 5.2, that (±MG,±LG) are sutured
L-spaces, so for each s ∈ Supp(MG, LG), we have SFH(MG, LG, s) ∼= Z. Likewise, for each
s ∈ Supp(−MG,−LG) we have SFH(−MG,−LG, s) ∼= Z. (In fact, by [13, Proposition 2.18],
the two supports coincide.) If ξf has spin-c structure s, then by Proposition 2.11,
c(ξf ) ⊂ SFH(−MG,−LG, s). As c(ξf ) �= {0}, we then have s ∈ Supp(−MG,−LG). Since the
only non-zero primitive elements in Z are ±1, we immediately obtain the following.

Lemma 7.4. If ξ is a tight contact structure on (MG, LG) with spin-c structure s, then
c(ξ) = {±1} ⊂ Z ∼= SFH(−MG,−LG, s).

We have seen that if f, f ′ ∈ B(E,R) are distinct hypertrees, then ξf , ξf ′ have distinct Euler
classes, by Proposition 7.2. We now consider their spin-c structures.

Lemma 7.5. If f, f ′ are distinct hypertrees, then the spin-c structures sf , sf ′ of ξf , ξf ′

are distinct.

Proof. As Spinc(−MG,−LG) is affine over H2(−MG, ∂(−MG)) = H2(MG, ∂MG), we have
sf ′ − sf ∈ H2(MG, ∂MG). Since e(ξf ) �= e(ξf ′), by (4) applied to u = sf and h = PD(sf ′ − sf )
we have

0 �= e(ξf ′) − e(ξf ) = e(sf ′) − e(sf ) = 2(sf ′ − sf ).

As H2(MG, ∂MG) ∼= Z
|R|−1 is torsion-free, sf ′ �= sf follows. �

Proof of Theorem 1.3. Two distinct (non-isotopic) contact structures ξf , ξf ′ on (MG, LG)
have distinct hypertrees f, f ′, hence by Lemma 7.5 they have distinct spin-c structures.

The number of (isotopy classes of) tight contact structures on (MG, LG) is given by
|B(E,R)|. All these contact structures ξf , over f ∈ B(E,R), have distinct spin-c struc-
tures, and their contact invariants c(ξf ) are all non-zero and primitive in the sutured
Floer homology groups that correspond to those spin-c structures; cf. Proposition 2.11.
Hence the c(ξf ) lie in |B(E,R)| distinct spin-c summands of SFH(−MG,−LG). But since
|Supp(−MG,−LG)| = |Supp(MG, LG)| = |B(E,R)|, the spin-c structures of the ξf must be
precisely Supp(−MG,−LG). That is, a tight contact structure ξ with spin-c structure s exists
if and only if SFH(−MG,−LG, s) is non-trivial. In this case, SFH(−MG,−LG, s) ∼= Z and
Lemma 7.4 says c(ξ) = {±x}, where x is a generator. �

8. Contact structures and knot theory

In this final section we consider applications of our results to knot theory, starting with
the Alexander polynomial. Let G be a connected plane bipartite graph, so that the median
construction gives a special alternating link LG. Recall that the planar dual graph G∗ is
naturally oriented. We denote the Alexander polynomial of a link L by ΔL(t). The following
observation is due to Murasugi and Stoimenow [53].
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Proposition 8.1. The leading coefficient of ΔLG
is equal to the arborescence number ρ(G∗)

of the planar dual G∗. (That is, by definition, to the magic number of the trinity of G.)

The proof is based on Kauffman’s state summation formula for Δ. The states may be
described as a dual pair of spanning trees, one in G and one in G∗. The contribution of
the former turns out to be neutral (the same for all states), whereas the latter tree maximizes
the exponent of t if and only if it is an arborescence. As always for alternating diagrams, terms
do not cancel.

Now we are in a position to prove one of the last two claims made in the Introduction.

Proof of Corollary 1.4. We have seen that the arborescence number is equal for all three
dual graphs of a trinity, given by the magic number. Proposition 8.1 says that the leading
coefficient of each Alexander polynomial is also the magic number, and Theorem 1.1 says this
is also the number of isotopy classes tight contact structures on the corresponding sutured
manifolds. �

Finally we prove Theorem 1.5, by applying the above results to a universe in Kauffman’s
formal knot theory, as discussed in Section 3.

Let U be a (connected) universe. Our first observation is that there is naturally a trinity
associated to U . Place red vertices R at the vertices of U . Consider the planar dual graph G of
U . Like any knot diagram, the complementary regions of U have a checkerboard colouring, so
G is naturally a bipartite planar graph. Let its colour classes be violet V and emerald E; see
Figure 2.

Each complementary region of G corresponds to a vertex of U ; as each vertex of U has degree
4, each region of G has four sides. Joining each red vertex to the two violet and two emerald
vertices on the boundary of its region yields the trinity, of which G is the red graph.

Next, consider the sutured manifold (MG, LG), using the notation of Section 6. A potentially
tight configuration is given by a dividing set ΓS = �r∈RΓr, where S = �r∈RDr and Γr is a
chord diagram on the disc Dr, with endpoints midway between violet and emerald vertices on
the boundary of Dr. By Lemma 6.1, a collection of chord diagrams on each Dr is potentially
tight if and only if, drawing them in the complementary regions D̃r of G and connecting them
across each edge of G results in a single connected curve. By Proposition 6.3, potentially tight
and tight are equivalent.

Now in the graph G arising from a universe U , each complementary region has precisely four
sides. So each chord diagram Γr has precisely two chords. Hence, on each disc Dr, there are
two possible chord diagrams (up to isotopy). We may also observe that the two possible chord
diagrams on Dr are precisely given by the two splittings of U at the vertex r.

Proposition 8.2. Splitting vertices of U according to markers provides a bijection between
states of U and tight configurations of (MG, LG, S).

Proof. The state-trail correspondence discussed in Section 3 says that splitting vertices
according to markers provides a bijection from states to trails on U , that is, choices of splittings
at each vertex of U so as to obtain a single loop.

A tight configuration, on the other hand, consists of a choice of chord diagram Γr in each
disc D̃r so that the Γr connect across each edge of G to give a single connected curve. This
corresponds precisely to a choice of splitting at each vertex of U so as to obtain a single loop,
that is, a trail. �

Figure 19 shows a trail on U , which can be regarded as a tight configuration of (MG, LG).
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Figure 19 (colour online). The trail on the figure-eight universe of Figure 8
can also be regarded as a configuration.

Now we observe that, when each Γr consists of only two chords, there are no non-trivial
bypass surgeries on Γr. Hence there are no state transitions between tight configurations. So
G0(MG, LG, S) has vertices given by the tight configurations, and no edges.

Moreover, the two possible dividing sets on each Dr have Euler classes 1 and −1. So each
tight configuration on (MG, LG, S) has a distinct Euler class. We can now prove Theorem 1.5.

Proof of Theorem 1.5. Let U be a universe, G the bipartite planar graph obtained as the
planar dual of U , and (MG, LG) the corresponding sutured 3-manifold. By Proposition 8.2, tight
configurations on (MG, LG) are in bijective correspondence with states of U . As G0(MG, LG, S)
has no edges, each tight configuration yields a distinct isotopy class of tight contact structures,
giving a bijection between states of U and isotopy classes of tight contact structures on
(MG, LG). �
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