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Overview

This talk is about

• triangulations of 3-manifolds
• combinatorics of curves and surfaces in 3-manifolds, and
• symplectic geometry / linear algebra arising from it,

with applications to hyperbolic geometry and other areas.

Paper on arxiv:
• A symplectic basis for 3-manifold triangulations

2208.06969 (joint w Purcell)
Also:

• A-polynomials, Ptolemy equations and Dehn filling
2002.10356 (joint w Howie, Purcell)
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Setup

Throughout, let:

• M be a knot/link complement, M = S3\L
• T be an ideal triangulation of M

• ideal tetrahedra (= tetrahedra without vertices) ∆1, . . . ,∆N
• edges E1, . . . ,EN (NB same N!)

• label opposite pairs of edges with a,b, c

(Results apply more generally, but for convenience...)
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Setup

Then:
• Truncating ∆j ⇝ polyhedra decomposing M = S3 \ N(L).

• Triangular faces of polyhedra triangulate boundary tori Ti .
• Each vertex of each triangle has an a,b or c label.
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Example: figure-8 knot complement

When K = figure-8 knot, M decomposes into two
ideal tetrahedra, with cusp triangulation shown.

Boundary curves l, m also shown.
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The Neumann–Zagier vector space

Neumann–Zagier associated to T a vector space V .

Definition (Neumann–Zagier 1985)

Let V be the 2N-dimensional R-vector space generated by

a1,b1, c1, . . . ,aN ,bN , cN

subject to relations

ai + bi + ci = 0, i = 1, . . . ,N.

There’s a symplectic (antisymmetric nondegenerate) form ω on V given by

ω(ai ,bj) = δij .

It follows that
ω(ai , bi) = ω(bi , ci) = ω(ci , ai) = 1

ω(bi , ai) = ω(ci , bi) = ω(ai , ci) = −1

ω = 0 on all other pairs of generators.
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Combinatorial holonomy

Elements of V give the holonomy of certain curves in M.

• Let γ be an oriented curve in a boundary torus T .
• T is triangulated by faces of truncated tetrahedra
• Assume γ intersects triangles generically (transversely, no backtracking).
• Then γ consists of arcs in triangles around vertices.
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h(γ) = b h(γ) = −b

Definition
The combinatorial holonomy h(γ) ∈ V is the sum of
contributions ±aj ,bj , cj for each arc of γ.
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Combinatorial holonomy example: figure-8 knot

a1

c1
a2

a2

b2

c2

a1 a1 a1 a1

b1

b1

b1

c1

c1

c1

c1
a2 a2 a2b2

b2

b2

c2

c2

c2

a1 b1

c1
a2

b2

c2

a1 a1 a1 a1

b1

b1

b1

c1

c1

c1

c1
a2 a2 a2b2

b2

b2

c2

c2

c2

b1 b1

l

l
l

l

m m

m m

C

h(m) = −b1 + a2

h(l) = c1 − b2 + b1 − c2 + c1 − b2 + b1 − c2

= 2b1 + 2c1 − 2b2 − 2c2

= −2a1 + 2a2

h(C) = a1 + c2 + a1 + a2 + c1 + a2

= 2a1 + c1 + 2a2 + c2
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The NZ symplectic form as a 2D intersection form

Theorem (Neumann–Zagier 1985)

Let γ, δ be oriented curves on ∂M. Then

ω (h(γ),h(δ)) = 2γ · δ,

where · denotes algebraic intersection number.

Note ω counts intersections in triangles... but also fake
intersections in distinct triangles of a polyhedron!
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Example: figure-8 knot
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= ω(−b1,2b1 + 2c1) + ω(a2,−2b2 − 2c2)

= ω(−b1,−2a1) + ω(a2,2a2) = −2 = 2m · l
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A partial symplectic basis

Now suppose M has c cusps and consider particular curves:

• C1, . . . ,CN around edges E1, . . . ,EN
• meridian/longitude pairs mj , lj on each boundary torus Tj

with mj · lj = 1, for j = 1, . . . , c.
Then ω = 0 on holonomies of all such pairs except

ω(h(mj),h(lj)) = 2, j = 1,2, . . . , c.

Observation (Dimofte 2013)

We can form a partial symplectic basis* of V , consisting of

the h(mj),h(lj), for j = 1, . . . , c
and the h(Cj) (some of them) (N − c of them)

(Symplectic basis:
vectors e1, f1, · · · , eN , fN such that ω(ei , ej) = ω(fi , fj) = 0, ω(ei , fj) = δij .)
* Up to factors of 2...
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Questions

Question 1
Can we find more curves to obtain a full symplectic basis* of V?

Question 2
Neumann-Zagier’s results are 2-dimensional, only about curves
on ∂M.
Can these results be extended into 3D?
Can they be extended to curves in the interior of M?

Yes!
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The NZ symplectic form as a 3D intersection form

Theorem 1 (M–Purcell)

Let ζ, ζ ′ be oscillating curves on M, with combinatorial
holonomies h(ζ),h(ζ ′) respectively. Then

ω
(
h(ζ),h(ζ ′)

)
= 2ζ · ζ ′

where · is the intersection form for oscillating curves.

Theorem 2 (M–Purcell)

We can construct oscillating curves Γ1, . . . , ΓN−c such that

h(mj),h(lj) for j = 1, . . . , c, and
h(Γk ),h(Ck ) for k = 1, . . . ,N − c

form a symplectic basis* for V . (Up to factors of 2.)

I.e. ω(Γj ,Ck ) = 2δjk , ω(Γj ,mk ) = ω(Γj , lk ) = ω(Γj , Γk ) = 0.
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Idea of Oscillating curves

• Generalise oriented curves in ∂M
• May dive from ∂M into the interior of M, along an edge E ,

and come out on ∂M at the other end of E .
• Have combinatorial holonomy
• Most convenient to describe formally using train tracks.
• Oscillate orientation when diving through an edge.
• Oscillation needed for well-defined intersection numbers!

h(Cj) = h(Cj) so ω(h(Cj),h(γ)) = ω(h(Cj),h(γ))
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Train tracks

Definition
A train track is a smoothly embedded graph on a surface such
that at each vertex, incident edges are all tangent, with at least
one edge on each side.

• Edges are called branches; vertices called switches.

γ0

γ2

γ1

γ0

γ2

γ1

Branches, if oriented, have intersection numbers, defined
locally at switches:

γ1 · γ2 = 1, γ2 · γ1 = −1,

γ0 · γ1 = γ1 · γ0 = γ0 · γ2 = γ2 · γ0 = 0,

Smooth oriented curves on train tracks then obtain intersection
numbers agreeing with usual algebraic intersection number.
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Branches, if oriented, have intersection numbers, defined
locally at switches:

γ1 · γ2 = 1, γ2 · γ1 = −1,

γ0 · γ1 = γ1 · γ0 = γ0 · γ2 = γ2 · γ0 = 0,

Smooth oriented curves on train tracks then obtain intersection
numbers agreeing with usual algebraic intersection number.



Train tracks for oscillating curves: motivation

A generic curve on a boundary torus intersects triangles in
arcs, so can be made to run on train tracks.
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Similarly, oscillating curves can run on train tracks. But...
• To dive into manifold, more tracks & switches required!
• Tetrahedra must be further truncated along each edge!
• Special “stations" for each orientation reversal.
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Truncated tetrahedra

Removing neighbourhood of each edge, tetrahedra are further
truncated to polyhedra

with:
• hexagonal faces glued in pairs
• hexagons on boundary tori (split further into triangle + 3 rectangles)

• rectangles along removed edges (split further into 2 rectangles)
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Truncated tetrahedra

Triangles + rectangles give a decomposition of a Heegaard
surface for M.

• M = Handlebody ∪ Compresson body
• with handlebody decomposed into truncated tetrahdra
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Train tracks for oscillating curves

Red dots: stations for reversing direction.
⇝ “Enhanced" train tracks.



Train tracks for oscillating curves
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Oscillating curves

Let τ be the (enhanced) train tracks on the triangulation T

Definition
An abstract oscillating curve on τ is a labelling of each branch
γ of τ by an integer nγ such that:

• at each switch v ,
∑

γ ϵγnγ = 0 (i.e. #in = #out )
• at each station, ϵγnγ + ϵγ̂nγ̂ = ϵδnδ + ϵ

δ̂
n
δ̂
.

where ϵγ = 1 (resp. −1) if γ is oriented towards a vertex.

δ̂

γγ̂

δ

Edge
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Oscillating curves

Definition
An oscillating curve on τ

is a cyclic sequence of oriented
(forward/backwards) branches and vertices

v0, γ0, v1, γ1, . . . , vn = v0, γn = γ0

such that
• each γj has ends at vj and vj+1,
• at a switch vj , the branches γj−1, γj approach from opposite

sides
• γj−1 and γj have different orientations precisely when they

lie at opposite ends of a station.
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Example: figure-8 knot complement

To draw oscillating curves...
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Example: figure-8 knot complement
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Intersection number

Intersection number of oscillating curves is defined locally:

• At switches (conventional!)

γ1 · γ2 = 1, γ2 · γ1 = −1,

γ0 · γ1 = γ1 · γ0 = γ0 · γ2 = γ2 · γ0 = 0,

• at stations (unconventional!)

γ · δ = −1, δ · γ = 1,

δ̂ · γ̂ = −1, γ̂ · δ̂ = 1.
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δ
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Combinatorial holonomy of oscillating curves

Definition
The combinatorial holonomy h(ζ) ∈ V of an (abstract)
oscillating curve ζ is the sum of contributions ±aj ,bj , cj for each
arc of ζ in a triangle.

(And nothing from arcs in rectangles / diving into the manifold / passing
through stations!)
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c
γ

h(γ) = b h(γ) = −b

δ̂

γγ̂

δ

Edge

h(γ) = h(γ̂) = h(δ) = h(δ̂) = 0
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The NZ symplectic form as a 3D intersection form

Theorem 1 (M–Purcell)

Let ζ, ζ ′ be (abstract) oscillating curves on M, with
combinatorial holonomies h(ζ),h(ζ ′) respectively. Then

ω
(
h(ζ),h(ζ ′)

)
= 2ζ · ζ ′

where · is the intersection form for oscillating curves.

Note:
• h(ζ) only counts a,b, c

contributions along boundary tori,
not in interior!

• ω counts intersections in
triangles... but also fake
intersections in distinct triangles
of a polyhedron!
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Symplectic basis

Theorem 2 (M–Purcell)

We can construct oscillating curves Γ1, . . . , ΓN−c such that

h(mj),h(lj) for j = 1, . . . , c, and
h(Γk ),h(Ck ) for k = 1, . . . ,N − c

form a symplectic basis* for V . (*Up to factors of 2.)

After theorem 1, need to find oscillating curves Γj such that

Γj ·mk = Γj ·mk = 0, Γj · Ck = δjk .
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Symplectic basis example: Whitehead link

The Whitehead link complement has a decomposition
into 5 ideal tetrahedra.

One cusp is triangulated as shown.
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Applications to hyperbolic geometry

Link complements often have hyperbolic structures (Thurston).

• A unique complete hyperbolic structure.
• A 1-complex-parameter family of incomplete deformations.

Thurston approach (1980s):
• Each ideal tetrahedron ∆i has a shape parameter zi

(cross ratio of 4 ideal vertices).
• There are natural shape parameters zi , z ′

i , z
′′
i for a,b, c

edges (all related).
• In particular ziz ′

i z
′′
i = −1 so we can use z, z ′ only.

• Hyperbolic structures can be found by solving gluing
equations, one for each edge E :∏

z parameter around E

= 1.

• Longitude and meridian have holonomy L,M which can be
expressed as products of zi , z ′

i variables.
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Applications to hyperbolic geometry

Cooper-Culler-Gilet-Long-Shalen (1994), Champanerkar (2003):
• L,M satisfy a polynomial relation, the A-polynomial

A(L,M) = 0.

Neumann-Zagier (1985):
• Combinatorial holonomy h(C) of a closed curve C on a

boundary torus is closely related to its geometric holonomy
in a hyperbolic structure.

• Roughly, ai ,bi , ci components of combinatorial holonomy
of h(C) ∈ V are exponents of zi , z ′

i , z
′′
i in holonomy of C.

Dimofte (2013):
• With a symplectic basis, we can change variables from

zi , z ′
i , z

′′
i ...

• Write equations for hyperbolic structure in terms of new
variables...

• γE (for edges E), L,M (longitude/meridian holonomy).
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Applications to hyperbolic geometry

Howie–M–Purcell:
• Resulting equations are Ptolemy equations, one for each

tetrahedron:

γ03γ12 = ±L•M•γ01γ23 ± L•M•γ02γ13.

(Very similar to enhanced Ptolemy variety of Zickert 2016.)

0

1

2

3

a
a

b

b

cc

Howie–M–Purcell–Thompson, Thompson:
• These equations are often tractable! Like cluster algebras!
• Can sometimes obtain explicit formulas for A-polynomial.

M–Purcell (in progress):
• The γ variables have an interpretation as complex lambda

lengths in spin hyperbolic geometry.
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More Applications

Garoufalidis–Le, Dimofte, Gukov...
• Quantising the A-polynomial should produce a

non-commutative polynomial annihilating coloured Jones
polynomials (AJ conjecture).

Also:
• Space of hyperbolic structures (Neumann-Zagier, Choi)
• Hyperbolic volumes of Dehn fillings (Neumann-Zagier)
• Normal surfaces

(Luo, Garoufalidis–Hodgson–Hoffman-Rubinsten)
• Representation theory (Goerner, Zickert, Garoufalidis, ...)
• Chern-Simons theory

(Neumann, Dimofte, Garoufalidis, Gukov, ...)



Idea of proof of Theorem 1

To show ω(h(ζ),h(ζ ′) = 2ζ · ζ ′...
Express both ω(h(ζ),h(ζ ′)) and ζ · ζ ′ as sums over faces.
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Idea of proof of Theorem 1

2ζ · ζ ′ =
∑
∆

n∆(ab)n′
∆(bc) − n∆(bc)n′

∆(ab)

+
∑
7,7̂

∑
(k ,l,m)

nk (n′
kl − n′

km + n̂′
kl − n̂′

km)

+ n′
k (−nkl + nkm − n̂kl + n̂km)

+
∑
7,7̂

∑
(k ,l,m)

−nkln′
km + nkmn′

kl − n̂kmn̂′
kl + n̂kl n̂′

km

+
∑
7,7̂

∑
(k ,l,m)

nkln′
lk − nlkn′

kl − n̂kl n̂′
lk + n̂lk n̂′

kl .



Idea of proof of Theorem 1

ω
(
h(ζ),h(ζ ′)

)
=

∑
∆

n∆(ab)n′
∆(bc) − n∆(bc)n′

∆(ab)

+
∑
7

∑
(k ,l,m)

nk (n′
lk − n′

mk )− n′
k (nlk − nmk )

+
∑
7

∑
(k ,l,m)

(nkl + nkm)(n′
lk + n′

lm)

− (n′
kl + n′

km)(nlk + nlm).

Show these are equal!



Thanks for listening!


