Symplectic structures in hyperbolic 3-manifold triangulations

Daniel V. Mathews

Monash University
Daniel.Mathews@monash.edu

Oklahoma State Topology seminar 8/9 November 2022

This talk is about

This talk is about

• triangulations of 3-manifolds

This talk is about

- triangulations of 3-manifolds
- · combinatorics of curves and surfaces in 3-manifolds, and

This talk is about

- triangulations of 3-manifolds
- combinatorics of curves and surfaces in 3-manifolds, and
- symplectic geometry / linear algebra arising from it,

This talk is about

- triangulations of 3-manifolds
- combinatorics of curves and surfaces in 3-manifolds, and
- symplectic geometry / linear algebra arising from it,

with applications to hyperbolic geometry and other areas.

This talk is about

- triangulations of 3-manifolds
- combinatorics of curves and surfaces in 3-manifolds, and
- symplectic geometry / linear algebra arising from it,

with applications to hyperbolic geometry and other areas.

Paper on arxiv:

 A symplectic basis for 3-manifold triangulations 2208.06969 (joint w Purcell)

Also:

 A-polynomials, Ptolemy equations and Dehn filling 2002.10356 (joint w Howie, Purcell)

Throughout, let:

• *M* be a knot/link complement, $M = S^3 \setminus L$

- *M* be a knot/link complement, $M = S^3 \setminus L$
- ullet ${\mathcal T}$ be an ideal triangulation of ${\it M}$

- M be a knot/link complement, $M = S^3 \setminus L$
- \mathcal{T} be an ideal triangulation of M
 - ideal tetrahedra (= tetrahedra without vertices) $\Delta_1, \ldots, \Delta_N$

- M be a knot/link complement, $M = S^3 \setminus L$
- T be an ideal triangulation of M
 - ideal tetrahedra (= tetrahedra without vertices) $\Delta_1, \dots, \Delta_N$
 - edges E_1, \ldots, E_N (NB same N!)

- *M* be a knot/link complement, $M = S^3 \setminus L$
- \mathcal{T} be an ideal triangulation of M
 - ideal tetrahedra (= tetrahedra without vertices) $\Delta_1, \ldots, \Delta_N$
 - edges E_1, \ldots, E_N (NB same N!)
 - label opposite pairs of edges with a, b, c

Throughout, let:

- *M* be a knot/link complement, $M = S^3 \setminus L$
- \mathcal{T} be an ideal triangulation of M
 - ideal tetrahedra (= tetrahedra without vertices) $\Delta_1, \ldots, \Delta_N$
 - edges E_1, \ldots, E_N (NB same N!)
 - label opposite pairs of edges with a, b, c

(Results apply more generally, but for convenience...)

Then:

- Truncating $\Delta_j \rightsquigarrow \text{polyhedra decomposing } \overline{M} = s^3 \setminus N(L)$.
- Triangular faces of polyhedra triangulate boundary tori T_i .
- Each vertex of each triangle has an a, b or c label.

Example: figure-8 knot complement

When K = figure-8 knot, M decomposes into two ideal tetrahedra, with cusp triangulation shown.

Example: figure-8 knot complement

When K = figure-8 knot, M decomposes into two ideal tetrahedra, with cusp triangulation shown. Boundary curves \mathfrak{l} , \mathfrak{m} also shown.

Neumann–Zagier associated to T a vector space V.

Neumann–Zagier associated to T a vector space V.

Definition (Neumann-Zagier 1985)

Let V be the 2N-dimensional \mathbb{R} -vector space generated by

$$a_1,b_1,c_1,\ldots,a_N,b_N,c_N$$

subject to relations

$$a_i+b_i+c_i=0, \quad i=1,\ldots,N.$$

Neumann–Zagier associated to T a vector space V.

Definition (Neumann-Zagier 1985)

Let V be the 2N-dimensional \mathbb{R} -vector space generated by

$$a_1,b_1,c_1,\ldots,a_N,b_N,c_N$$

subject to relations

$$a_i + b_i + c_i = 0, \quad i = 1, ..., N.$$

There's a symplectic (antisymmetric nondegenerate) form ω on V given by $\omega(\pmb{a_i},\pmb{b_i})=\delta_{ii}.$

Neumann–Zagier associated to \mathcal{T} a vector space V.

Definition (Neumann-Zagier 1985)

Let V be the 2N-dimensional \mathbb{R} -vector space generated by

$$a_1, b_1, c_1, \ldots, a_N, b_N, c_N$$

subject to relations

$$a_i+b_i+c_i=0, \quad i=1,\ldots,N.$$

There's a symplectic (antisymmetric nondegenerate) form ω on V given by

$$\omega(\mathbf{a}_i, \mathbf{b}_i) = \delta_{ii}.$$

It follows that

$$\omega(a_i, b_i) = \omega(b_i, c_i) = \omega(c_i, a_i) = 1$$

 $\omega(b_i, a_i) = \omega(c_i, b_i) = \omega(a_i, c_i) = -1$
 $\omega = 0$ on all other pairs of generators.

Elements of V give the holonomy of certain curves in M.

• Let γ be an oriented curve in a boundary torus T.

- Let γ be an oriented curve in a boundary torus T.
- T is triangulated by faces of truncated tetrahedra

- Let γ be an oriented curve in a boundary torus T.
- T is triangulated by faces of truncated tetrahedra
- Assume γ intersects triangles generically (transversely, no backtracking).

- Let γ be an oriented curve in a boundary torus T.
- T is triangulated by faces of truncated tetrahedra
- Assume γ intersects triangles generically (transversely, no backtracking).
- Then γ consists of arcs in triangles around vertices.

Elements of V give the holonomy of certain curves in M.

- Let γ be an oriented curve in a boundary torus T.
- T is triangulated by faces of truncated tetrahedra
- Assume γ intersects triangles generically (transversely, no backtracking).
- Then γ consists of arcs in triangles around vertices.

Definition

The <u>combinatorial holonomy</u> $h(\gamma) \in V$ is the sum of contributions $\pm a_i$, b_i , c_i for each arc of γ .

$$h(\mathfrak{m})=-b_1+a_2$$

$$h(\mathfrak{m}) = -b_1 + a_2$$

 $h(\mathfrak{l}) = c_1 - b_2 + b_1 - c_2 + c_1 - b_2 + b_1 - c_2$

$$h(\mathfrak{m}) = -b_1 + a_2$$

 $h(\mathfrak{l}) = c_1 - b_2 + b_1 - c_2 + c_1 - b_2 + b_1 - c_2$
 $= 2b_1 + 2c_1 - 2b_2 - 2c_2$

$$h(\mathfrak{m}) = -b_1 + a_2$$

 $h(\mathfrak{l}) = c_1 - b_2 + b_1 - c_2 + c_1 - b_2 + b_1 - c_2$
 $= 2b_1 + 2c_1 - 2b_2 - 2c_2$
 $= -2a_1 + 2a_2$

$$h(\mathfrak{m}) = -b_1 + a_2$$

$$h(\mathfrak{l}) = c_1 - b_2 + b_1 - c_2 + c_1 - b_2 + b_1 - c_2$$

$$= 2b_1 + 2c_1 - 2b_2 - 2c_2$$

$$= -2a_1 + 2a_2$$

$$h(C) = a_1 + c_2 + a_1 + a_2 + c_1 + a_2$$

$$h(\mathfrak{m}) = -b_1 + a_2$$

$$h(\mathfrak{l}) = c_1 - b_2 + b_1 - c_2 + c_1 - b_2 + b_1 - c_2$$

$$= 2b_1 + 2c_1 - 2b_2 - 2c_2$$

$$= -2a_1 + 2a_2$$

$$h(C) = a_1 + c_2 + a_1 + a_2 + c_1 + a_2$$

$$= 2a_1 + c_1 + 2a_2 + c_2$$

$$h(\overline{C}) = h(C)$$

Theorem (Neumann–Zagier 1985)

Theorem (Neumann–Zagier 1985)

Let γ, δ be oriented curves on $\partial \overline{M}$. Then

$$\omega\left(h(\gamma),h(\delta)\right)=2\gamma\cdot\delta,$$

where · denotes algebraic intersection number.

Theorem (Neumann-Zagier 1985)

Let γ, δ be oriented curves on $\partial \overline{M}$. Then

$$\omega\left(h(\gamma),h(\delta)\right)=2\gamma\cdot\delta,$$

where · denotes algebraic intersection number.

Note ω counts intersections in triangles... but also fake intersections in distinct triangles of a polyhedron!

$$h(\mathfrak{m}) = -b_1 + a_2, \quad h(\mathfrak{l}) = -2a_1 + 2a_2, \quad h(C) = 2a_1 + c_1 + 2a_2 + c_2$$

$$h(\mathfrak{m}) = -b_1 + a_2, \quad h(\mathfrak{l}) = -2a_1 + 2a_2, \quad h(C) = 2a_1 + c_1 + 2a_2 + c_2$$

$$\omega(h(\mathfrak{m}),h(\mathfrak{l}))$$

$$h(\mathfrak{m}) = -b_1 + a_2, \quad h(\mathfrak{l}) = -2a_1 + 2a_2, \quad h(C) = 2a_1 + c_1 + 2a_2 + c_2$$

$$\omega(h(\mathfrak{m}),h(\mathfrak{l}))=\omega(-b_1+a_2,-2a_1+2a_2)$$

$$h(\mathfrak{m}) = -b_1 + a_2, \quad h(\mathfrak{l}) = -2a_1 + 2a_2, \quad h(C) = 2a_1 + c_1 + 2a_2 + c_2$$

$$\omega(h(\mathfrak{m}), h(\mathfrak{l})) = \omega(-b_1 + a_2, -2a_1 + 2a_2)$$

= $\omega(-b_1, -2a_1) + \omega(a_2, 2a_2)$

$$h(\mathfrak{m}) = -b_1 + a_2, \quad h(\mathfrak{l}) = -2a_1 + 2a_2, \quad h(C) = 2a_1 + c_1 + 2a_2 + c_2$$

$$\omega(h(\mathfrak{m}), h(\mathfrak{l})) = \omega(-b_1 + a_2, -2a_1 + 2a_2)$$

= $\omega(-b_1, -2a_1) + \omega(a_2, 2a_2) = -2 = 2\mathfrak{m} \cdot \mathfrak{l}$

Now suppose M has $\mathfrak c$ cusps and consider particular curves:

Now suppose M has $\mathfrak c$ cusps and consider particular curves:

• C_1, \ldots, C_N around edges E_1, \ldots, E_N

Now suppose M has \mathfrak{c} cusps and consider particular curves:

- C_1, \ldots, C_N around edges E_1, \ldots, E_N
- meridian/longitude pairs \mathfrak{m}_j , \mathfrak{l}_j on each boundary torus T_j with $\mathfrak{m}_j \cdot \mathfrak{l}_j = 1$, for $j = 1, \ldots, \mathfrak{c}$.

Now suppose M has \mathfrak{c} cusps and consider particular curves:

- C_1, \ldots, C_N around edges E_1, \ldots, E_N
- meridian/longitude pairs \mathfrak{m}_j , \mathfrak{l}_j on each boundary torus T_j with $\mathfrak{m}_j \cdot \mathfrak{l}_j = 1$, for $j = 1, \ldots, \mathfrak{c}$.

Then $\omega = 0$ on h of any two curves among these, except

$$\omega(h(\mathfrak{m}_j),h(\mathfrak{l}_j))=2,\quad j=1,2,\ldots,\mathfrak{c}.$$

Now suppose M has c cusps and consider particular curves:

- C_1, \ldots, C_N around edges E_1, \ldots, E_N
- meridian/longitude pairs \mathfrak{m}_j , \mathfrak{l}_j on each boundary torus T_j with $\mathfrak{m}_j \cdot \mathfrak{l}_j = 1$, for $j = 1, \ldots, \mathfrak{c}$.

Then $\omega = 0$ on h of any two curves among these, except

$$\omega(h(\mathfrak{m}_j),h(\mathfrak{l}_j))=2,\quad j=1,2,\ldots,\mathfrak{c}.$$

Observation (Dimofte 2013)

We can form a partial symplectic basis* of V,

Now suppose M has $\mathfrak c$ cusps and consider particular curves:

- C_1, \ldots, C_N around edges E_1, \ldots, E_N
- meridian/longitude pairs \mathfrak{m}_j , \mathfrak{l}_j on each boundary torus T_j with $\mathfrak{m}_i \cdot \mathfrak{l}_j = 1$, for $j = 1, \ldots, \mathfrak{c}$.

Then $\omega = 0$ on h of any two curves among these, except

$$\omega(h(\mathfrak{m}_j),h(\mathfrak{l}_j))=2, \quad j=1,2,\ldots,\mathfrak{c}.$$

Observation (Dimofte 2013)

We can form a partial symplectic basis* of V,

(Symplectic basis:

Now suppose M has $\mathfrak c$ cusps and consider particular curves:

- C_1, \ldots, C_N around edges E_1, \ldots, E_N
- meridian/longitude pairs \mathfrak{m}_j , \mathfrak{l}_j on each boundary torus T_j with $\mathfrak{m}_i \cdot \mathfrak{l}_j = 1$, for $j = 1, \ldots, \mathfrak{c}$.

Then $\omega = 0$ on h of any two curves among these, except

$$\omega(h(\mathfrak{m}_j),h(\mathfrak{l}_j))=2,\quad j=1,2,\ldots,\mathfrak{c}.$$

Observation (Dimofte 2013)

We can form a partial symplectic basis* of V, consisting of

the
$$h(\mathfrak{m}_j), h(\mathfrak{l}_j), \text{ for } j = 1, \ldots, \mathfrak{c}$$

(Symplectic basis:

Now suppose M has \mathfrak{c} cusps and consider particular curves:

- C_1, \ldots, C_N around edges E_1, \ldots, E_N
- meridian/longitude pairs \mathfrak{m}_j , \mathfrak{l}_j on each boundary torus T_j with $\mathfrak{m}_i \cdot \mathfrak{l}_j = 1$, for $j = 1, \ldots, \mathfrak{c}$.

Then $\omega = 0$ on h of any two curves among these, except

$$\omega(h(\mathfrak{m}_j),h(\mathfrak{l}_j))=2, \quad j=1,2,\ldots,\mathfrak{c}.$$

Observation (Dimofte 2013)

We can form a partial symplectic basis* of V, consisting of

the
$$h(\mathfrak{m}_j), h(\mathfrak{l}_j), \text{ for } j=1,\ldots,\mathfrak{c}$$
 and the $h(C_j)$

(Symplectic basis:

Now suppose M has \mathfrak{c} cusps and consider particular curves:

- C_1, \ldots, C_N around edges E_1, \ldots, E_N
- meridian/longitude pairs \mathfrak{m}_j , \mathfrak{l}_j on each boundary torus T_j with $\mathfrak{m}_i \cdot \mathfrak{l}_j = 1$, for $j = 1, \ldots, \mathfrak{c}$.

Then $\omega = 0$ on h of any two curves among these, except

$$\omega(h(\mathfrak{m}_j),h(\mathfrak{l}_j))=2, \quad j=1,2,\ldots,\mathfrak{c}.$$

Observation (Dimofte 2013)

We can form a partial symplectic basis* of V, consisting of

the
$$h(\mathfrak{m}_j), h(\mathfrak{l}_j), \text{ for } j=1,\ldots,\mathfrak{c}$$

and the $h(C_j)$ (some of them)

(Symplectic basis:

Now suppose M has $\mathfrak c$ cusps and consider particular curves:

- C_1, \ldots, C_N around edges E_1, \ldots, E_N
- meridian/longitude pairs \mathfrak{m}_j , \mathfrak{l}_j on each boundary torus T_j with $\mathfrak{m}_i \cdot \mathfrak{l}_j = 1$, for $j = 1, \ldots, \mathfrak{c}$.

Then $\omega = 0$ on h of any two curves among these, except

$$\omega(h(\mathfrak{m}_j),h(\mathfrak{l}_j))=2,\quad j=1,2,\ldots,\mathfrak{c}.$$

Observation (Dimofte 2013)

We can form a partial symplectic basis* of V, consisting of

the
$$h(\mathfrak{m}_j), h(\mathfrak{l}_j), \text{ for } j=1,\ldots,\mathfrak{c}$$
 and the $h(C_j)$ (some of them) $(N-\mathfrak{c})$ of them)

(Symplectic basis:

Now suppose M has $\mathfrak c$ cusps and consider particular curves:

- C_1, \ldots, C_N around edges E_1, \ldots, E_N
- meridian/longitude pairs \mathfrak{m}_j , \mathfrak{l}_j on each boundary torus T_j with $\mathfrak{m}_i \cdot \mathfrak{l}_j = 1$, for $j = 1, \ldots, \mathfrak{c}$.

Then $\omega = 0$ on h of any two curves among these, except

$$\omega(h(\mathfrak{m}_j),h(\mathfrak{l}_j))=2, \quad j=1,2,\ldots,\mathfrak{c}.$$

Observation (Dimofte 2013)

We can form a partial symplectic basis* of V, consisting of

the
$$h(\mathfrak{m}_j), h(\mathfrak{l}_j), \text{ for } j=1,\ldots,\mathfrak{c}$$
 and the $h(C_j)$ (some of them) $(N-\mathfrak{c})$ of them)

(Symplectic basis:

Now suppose M has $\mathfrak c$ cusps and consider particular curves:

- C_1, \ldots, C_N around edges E_1, \ldots, E_N
- meridian/longitude pairs \mathfrak{m}_j , \mathfrak{l}_j on each boundary torus T_j with $\mathfrak{m}_i \cdot \mathfrak{l}_j = 1$, for $j = 1, \ldots, \mathfrak{c}$.

Then $\omega = 0$ on h of any two curves among these, except

$$\omega(h(\mathfrak{m}_i),h(\mathfrak{l}_i))=2, \quad j=1,2,\ldots,\mathfrak{c}.$$

Observation (Dimofte 2013)

We can form a partial symplectic basis* of V, consisting of

the
$$h(\mathfrak{m}_j), h(\mathfrak{l}_j)$$
, for $j = 1, \ldots, \mathfrak{c}$
and the $h(C_i)$ (some of them) $(N - \mathfrak{c})$ of them)

(Symplectic basis:

vectors $e_1, f_1, \dots, e_N, f_N$ such that $\omega(e_i, e_j) = \omega(f_i, f_j) = 0$, $\omega(e_i, f_j) = \delta_{ij}$.)

* Up to factors of 2...

Question 1

Can we find more curves to obtain a full symplectic basis* of V?

Question 1

Can we find more curves to obtain a full symplectic basis* of V?

Question 2

Neumann-Zagier's results are 2-dimensional, only about curves on $\partial \overline{M}$.

Can these results be extended into 3D?

Can they be extended to curves in the interior of \overline{M} ?

Question 1

Can we find more curves to obtain a full symplectic basis* of V?

Question 2

Neumann-Zagier's results are 2-dimensional, only about curves on $\partial \overline{M}$.

Can these results be extended into 3D?

Can they be extended to curves in the interior of \overline{M} ?

Theorem 1 (M-Purcell)

Let ζ, ζ' be oscillating curves on \overline{M} , with combinatorial holonomies $h(\zeta), h(\zeta')$ respectively. Then

$$\omega\left(h(\zeta),h(\zeta')\right)=2\zeta\cdot\zeta'$$

where \cdot is the intersection form for oscillating curves.

Theorem 1 (M-Purcell)

Let ζ, ζ' be <u>oscillating curves</u> on \overline{M} , with combinatorial holonomies $h(\zeta), h(\zeta')$ respectively. Then

$$\omega\left(h(\zeta),h(\zeta')\right)=2\zeta\cdot\zeta'$$

where \cdot is the intersection form for oscillating curves.

Theorem 2 (M-Purcell)

We can construct oscillating curves $\Gamma_1,\ldots,\Gamma_{N-\mathfrak{c}}$ such that

$$h(\mathfrak{m}_j), h(\mathfrak{l}_j)$$
 for $j = 1, \dots, \mathfrak{c}$, and $h(\Gamma_k), h(C_k)$ for $k = 1, \dots, N - \mathfrak{c}$

form a symplectic basis* for V. (Up to factors of 2.)

Theorem 1 (M-Purcell)

Let ζ, ζ' be <u>oscillating curves</u> on \overline{M} , with combinatorial holonomies $h(\zeta), h(\zeta')$ respectively. Then

$$\omega\left(h(\zeta),h(\zeta')\right)=2\zeta\cdot\zeta'$$

where \cdot is the intersection form for oscillating curves.

Theorem 2 (M-Purcell)

We can construct oscillating curves $\Gamma_1, \dots, \Gamma_{N-c}$ such that

$$h(\mathfrak{m}_j), h(\mathfrak{l}_j)$$
 for $j=1,\ldots,\mathfrak{c},$ and $h(\Gamma_k), h(C_k)$ for $k=1,\ldots,N-\mathfrak{c}$

form a symplectic basis* for V. (Up to factors of 2.)

I.e.
$$\omega(\Gamma_i, C_k) = 2\delta_{ik}$$
, $\omega(\Gamma_i, \mathfrak{m}_k) = \omega(\Gamma_i, \mathfrak{l}_k) = \omega(\Gamma_i, \Gamma_k) = 0$.

• Generalise oriented curves in $\partial \overline{M}$

- Generalise oriented curves in $\partial \overline{M}$
- May dive from $\partial \overline{M}$ into the interior of \overline{M} , along an edge E, and come out on $\partial \overline{M}$ at the other end of E.

- Generalise oriented curves in $\partial \overline{M}$
- May dive from $\partial \overline{M}$ into the interior of \overline{M} , along an edge E, and come out on $\partial \overline{M}$ at the other end of E.
- Have combinatorial holonomy

- Generalise oriented curves in $\partial \overline{M}$
- May dive from $\partial \overline{M}$ into the interior of \overline{M} , along an edge E, and come out on $\partial \overline{M}$ at the other end of E.
- Have combinatorial holonomy
- Most convenient to describe formally using train tracks.

- Generalise oriented curves in $\partial \overline{M}$
- May dive from $\partial \overline{M}$ into the interior of \overline{M} , along an edge E, and come out on $\partial \overline{M}$ at the other end of E.
- Have combinatorial holonomy
- Most convenient to describe formally using train tracks.
- Oscillate orientation when diving through an edge.

- Generalise oriented curves in $\partial \overline{M}$
- May dive from $\partial \overline{M}$ into the interior of \overline{M} , along an edge E, and come out on $\partial \overline{M}$ at the other end of E.
- Have combinatorial holonomy
- Most convenient to describe formally using train tracks.
- Oscillate orientation when diving through an edge.
- Oscillation needed for well-defined intersection numbers!

- Generalise oriented curves in $\partial \overline{M}$
- May dive from $\partial \overline{M}$ into the interior of \overline{M} , along an edge E, and come out on $\partial \overline{M}$ at the other end of E.
- Have combinatorial holonomy
- Most convenient to describe formally using train tracks.
- Oscillate orientation when diving through an edge.
- Oscillation needed for well-defined intersection numbers!

Idea of Oscillating curves

- Generalise oriented curves in $\partial \overline{M}$
- May <u>dive</u> from $\partial \overline{M}$ into the interior of \overline{M} , along an edge E, and come out on $\partial \overline{M}$ at the other end of E.
- Have combinatorial holonomy
- Most convenient to describe formally using train tracks.
- Oscillate orientation when diving through an edge.
- Oscillation needed for well-defined intersection numbers! $h(\overline{C_j}) = h(C_j)$ so $\omega(h(C_j), h(\gamma)) = \omega(h(\overline{C_j}), h(\gamma))$

Train tracks

Definition

A <u>train track</u> is a smoothly embedded graph on a surface such that at each vertex, incident edges are all tangent, with at least one edge on each side.

• Edges are called <u>branches</u>; vertices called <u>switches</u>.

Definition

A <u>train track</u> is a smoothly embedded graph on a surface such that at each vertex, incident edges are all tangent, with at least one edge on each side.

Edges are called <u>branches</u>; vertices called <u>switches</u>.

Branches, if oriented, have intersection numbers, defined locally at switches:

$$\begin{aligned} \gamma_1 \cdot \gamma_2 &= 1, \gamma_2 \cdot \gamma_1 = -1, \\ \gamma_0 \cdot \gamma_1 &= \gamma_1 \cdot \gamma_0 = \gamma_0 \cdot \gamma_2 = \gamma_2 \cdot \gamma_0 = 0, \end{aligned}$$

Definition

A <u>train track</u> is a smoothly embedded graph on a surface such that at each vertex, incident edges are all tangent, with at least one edge on each side.

• Edges are called branches; vertices called switches.

Branches, if oriented, have intersection numbers, defined locally at switches:

$$\gamma_1 \cdot \gamma_2 = 1, \gamma_2 \cdot \gamma_1 = -1,$$

$$\gamma_0 \cdot \gamma_1 = \gamma_1 \cdot \gamma_0 = \gamma_0 \cdot \gamma_2 = \gamma_2 \cdot \gamma_0 = 0,$$

Smooth oriented curves on train tracks then obtain intersection numbers agreeing with usual algebraic intersection number.

A generic curve on a boundary torus intersects triangles in arcs, so can be made to run on train tracks.

A generic curve on a boundary torus intersects triangles in arcs, so can be made to run on train tracks.

Similarly, oscillating curves can run on train tracks. But...

A generic curve on a boundary torus intersects triangles in arcs, so can be made to run on train tracks.

Similarly, oscillating curves can run on train tracks. But...

• To dive into manifold, more tracks & switches required!

A generic curve on a boundary torus intersects triangles in arcs, so can be made to run on train tracks.

Similarly, oscillating curves can run on train tracks. But...

- To dive into manifold, more tracks & switches required!
- Tetrahedra must be further truncated along each edge!

A generic curve on a boundary torus intersects triangles in arcs, so can be made to run on train tracks.

Similarly, oscillating curves can run on train tracks. But...

- To dive into manifold, more tracks & switches required!
- Tetrahedra must be further truncated along each edge!
- Special "stations" for each orientation reversal.

Removing neighbourhood of each edge, tetrahedra are further truncated to polyhedra

Removing neighbourhood of each edge, tetrahedra are further truncated to polyhedra with:

· hexagonal faces glued in pairs

Removing neighbourhood of each edge, tetrahedra are further truncated to polyhedra with:

- hexagonal faces glued in pairs
- hexagons on boundary tori (split further into triangle + 3 rectangles)

Removing neighbourhood of each edge, tetrahedra are further truncated to polyhedra with:

- hexagonal faces glued in pairs
- hexagons on boundary tori (split further into triangle + 3 rectangles)
- rectangles along removed edges (split further into 2 rectangles)

Triangles + rectangles give a decomposition of a Heegaard surface for *M*.

- *M* = Handlebody ∪ Compresson body
- with handlebody decomposed into truncated tetrahdra

Let au be the (enhanced) train tracks on the triangulation $\mathcal T$

Let au be the (enhanced) train tracks on the triangulation $\mathcal T$

Definition

An abstract oscillating curve on τ

Let au be the (enhanced) train tracks on the triangulation $\mathcal T$

Definition

An <u>abstract oscillating curve</u> on τ is a labelling of each branch γ of τ by an integer n_γ such that:

Let au be the (enhanced) train tracks on the triangulation $\mathcal T$

Definition

An <u>abstract oscillating curve</u> on τ is a labelling of each branch γ of τ by an integer n_γ such that:

• at each switch $v, \sum_{\gamma} \epsilon_{\gamma} n_{\gamma} = 0$ (i.e. #in = #out)

Let au be the (enhanced) train tracks on the triangulation $\mathcal T$

Definition

An <u>abstract oscillating curve</u> on τ is a labelling of each branch γ of τ by an integer n_γ such that:

• at each switch v, $\sum_{\gamma} \epsilon_{\gamma} n_{\gamma} = 0$ (i.e. #in = #out)

where $\epsilon_{\gamma}=$ 1 (resp. -1) if γ is oriented towards (resp. away from) a vertex.

Let au be the (enhanced) train tracks on the triangulation $\mathcal T$

Definition

An <u>abstract oscillating curve</u> on τ is a labelling of each branch γ of τ by an integer n_γ such that:

- at each switch v, $\sum_{\gamma} \epsilon_{\gamma} n_{\gamma} = 0$ (i.e. #in = #out)
- at each station, $\epsilon_{\gamma} n_{\gamma} + \epsilon_{\widehat{\gamma}} n_{\widehat{\gamma}} = \epsilon_{\delta} n_{\delta} + \epsilon_{\widehat{\delta}} n_{\widehat{\delta}}$.

where $\epsilon_{\gamma}=1$ (resp. -1) if γ is oriented towards (resp. away from) a vertex.

Definition

An $\underline{\text{oscillating curve}}$ on τ

Definition

An <u>oscillating curve</u> on τ is a cyclic sequence of oriented (forward/backwards) branches and vertices

$$v_0, \gamma_0, v_1, \gamma_1, \dots, v_n = v_0, \gamma_n = \gamma_0$$

such that

Definition

An <u>oscillating curve</u> on τ is a cyclic sequence of oriented (forward/backwards) branches and vertices

$$v_0, \gamma_0, v_1, \gamma_1, \ldots, v_n = v_0, \gamma_n = \gamma_0$$

such that

• each γ_j has ends at v_j and v_{j+1} ,

Definition

An <u>oscillating curve</u> on τ is a cyclic sequence of oriented (forward/backwards) branches and vertices

$$v_0, \gamma_0, v_1, \gamma_1, \ldots, v_n = v_0, \gamma_n = \gamma_0$$

such that

- each γ_j has ends at v_j and v_{j+1} ,
- at a switch v_j, the branches γ_{j-1}, γ_j approach from opposite sides

Definition

An <u>oscillating curve</u> on τ is a cyclic sequence of oriented (forward/backwards) branches and vertices

$$v_0, \gamma_0, v_1, \gamma_1, \ldots, v_n = v_0, \gamma_n = \gamma_0$$

such that

- each γ_i has ends at v_i and v_{i+1} ,
- at a switch v_j , the branches γ_{j-1}, γ_j approach from opposite sides
- γ_{j-1} and γ_j have different orientations precisely when they lie at opposite ends of a station.

Example: figure-8 knot complement

To draw oscillating curves...

Example: figure-8 knot complement

Intersection number of oscillating curves is defined locally:

Intersection number of oscillating curves is defined locally:

At switches (conventional!)

$$\gamma_1 \cdot \gamma_2 = 1, \gamma_2 \cdot \gamma_1 = -1,$$

$$\gamma_0 \cdot \gamma_1 = \gamma_1 \cdot \gamma_0 = \gamma_0 \cdot \gamma_2 = \gamma_2 \cdot \gamma_0 = 0,$$

Intersection number of oscillating curves is defined locally:

At switches (conventional!)

$$\begin{split} \gamma_1 \cdot \gamma_2 &= 1, \gamma_2 \cdot \gamma_1 = -1, \\ \gamma_0 \cdot \gamma_1 &= \gamma_1 \cdot \gamma_0 = \gamma_0 \cdot \gamma_2 = \gamma_2 \cdot \gamma_0 = 0, \end{split}$$

at stations (unconventional!)

$$\gamma \cdot \delta = -1, \delta \cdot \gamma = 1,$$
$$\widehat{\delta} \cdot \widehat{\gamma} = -1, \widehat{\gamma} \cdot \widehat{\delta} = 1.$$

Intersection number of oscillating curves is defined locally:

At switches (conventional!)

$$\begin{aligned} \gamma_1 \cdot \gamma_2 &= 1, \gamma_2 \cdot \gamma_1 = -1, \\ \gamma_0 \cdot \gamma_1 &= \gamma_1 \cdot \gamma_0 = \gamma_0 \cdot \gamma_2 = \gamma_2 \cdot \gamma_0 = 0, \end{aligned}$$

at stations (unconventional!)

$$\gamma \cdot \delta = -1, \delta \cdot \gamma = 1,$$

 $\widehat{\delta} \cdot \widehat{\gamma} = -1, \widehat{\gamma} \cdot \widehat{\delta} = 1.$

Combinatorial holonomy of oscillating curves

Definition

The <u>combinatorial holonomy</u> $h(\zeta) \in V$ of an (abstract) oscillating curve ζ is the sum of contributions $\pm a_j$, b_j , c_j for each arc of ζ in a triangle.

Combinatorial holonomy of oscillating curves

Definition

The <u>combinatorial holonomy</u> $h(\zeta) \in V$ of an (abstract) oscillating curve ζ is the sum of contributions $\pm a_j$, b_j , c_j for each arc of ζ in a triangle.

(And nothing from arcs in rectangles / diving into the manifold / passing through stations!)

$$h(\gamma) = h(\widehat{\gamma}) = h(\delta) = h(\widehat{\delta}) = 0$$

The NZ symplectic form as a 3D intersection form

Theorem 1 (M-Purcell)

Let ζ, ζ' be (abstract) oscillating curves on \overline{M} , with combinatorial holonomies $h(\zeta), h(\zeta')$ respectively. Then

$$\omega\left(h(\zeta),h(\zeta')\right)=2\zeta\cdot\zeta'$$

where \cdot is the intersection form for oscillating curves.

The NZ symplectic form as a 3D intersection form

Theorem 1 (M-Purcell)

Let ζ, ζ' be (abstract) oscillating curves on \overline{M} , with combinatorial holonomies $h(\zeta), h(\zeta')$ respectively. Then

$$\omega\left(h(\zeta),h(\zeta')\right)=2\zeta\cdot\zeta'$$

where \cdot is the intersection form for oscillating curves.

Note:

 h(ζ) only counts a, b, c contributions along boundary tori, not in interior!

The NZ symplectic form as a 3D intersection form

Theorem 1 (M-Purcell)

Let ζ, ζ' be (abstract) oscillating curves on \overline{M} , with combinatorial holonomies $h(\zeta), h(\zeta')$ respectively. Then

$$\omega\left(h(\zeta),h(\zeta')\right)=2\zeta\cdot\zeta'$$

where \cdot is the intersection form for oscillating curves.

Note:

- h(ζ) only counts a, b, c contributions along boundary tori, not in interior!
- ω counts intersections in triangles... but also fake intersections in distinct triangles of a polyhedron!

Symplectic basis

Theorem 2 (M–Purcell)

We can construct oscillating curves $\Gamma_1, \ldots, \Gamma_{N-c}$ such that

$$h(\mathfrak{m}_j), h(\mathfrak{l}_j)$$
 for $j = 1, ..., \mathfrak{c}$, and $h(\Gamma_k), h(C_k)$ for $k = 1, ..., N - \mathfrak{c}$

form a symplectic basis* for V. (*Up to factors of 2.)

Symplectic basis

Theorem 2 (M-Purcell)

We can construct oscillating curves $\Gamma_1, \ldots, \Gamma_{N-c}$ such that

$$h(\mathfrak{m}_j), h(\mathfrak{l}_j)$$
 for $j = 1, \dots, \mathfrak{c}$, and $h(\Gamma_k), h(C_k)$ for $k = 1, \dots, N - \mathfrak{c}$

form a symplectic basis* for V. (*Up to factors of 2.)

After theorem 1, need to find oscillating curves Γ_i such that

$$\Gamma_j \cdot \mathfrak{m}_k = \Gamma_j \cdot \mathfrak{l}_k = 0, \quad \Gamma_j \cdot C_k = \delta_{jk}.$$

Symplectic basis

Theorem 2 (M-Purcell)

We can construct oscillating curves $\Gamma_1, \ldots, \Gamma_{N-c}$ such that

$$h(\mathfrak{m}_j), h(\mathfrak{l}_j)$$
 for $j = 1, \dots, \mathfrak{c}$, and $h(\Gamma_k), h(C_k)$ for $k = 1, \dots, N - \mathfrak{c}$

form a symplectic basis* for V. (*Up to factors of 2.)

After theorem 1, need to find oscillating curves Γ_i such that

$$\Gamma_{j} \cdot \mathfrak{m}_{k} = \Gamma_{j} \cdot \mathfrak{l}_{k} = 0, \quad \Gamma_{j} \cdot C_{k} = \delta_{jk}.$$

$$\downarrow \mathfrak{m}$$

$$h \quad g \quad c \quad f \quad o \quad e \quad h$$

$$\downarrow \mathfrak{m}$$

$$h \quad g \quad c \quad f \quad o \quad e \quad h$$

$$\downarrow \mathfrak{m}$$

$$h \quad \mathcal{C}_{j} \quad \mathcal{C}_{j$$

Symplectic basis example: Whitehead link

The Whitehead link complement has a decomposition into 5 ideal tetrahedra.

Symplectic basis example: Whitehead link

The Whitehead link complement has a decomposition into 5 ideal tetrahedra.

One cusp is triangulated as shown.

Link complements often have <u>hyperbolic structures</u> (Thurston).

Link complements often have hyperbolic structures (Thurston).

- A unique complete hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

Link complements often have hyperbolic structures (Thurston).

- A <u>unique complete</u> hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

Link complements often have hyperbolic structures (Thurston).

- A <u>unique complete</u> hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

Thurston approach (1980s):

• Each ideal tetrahedron Δ_i has a shape parameter z_i (cross ratio of 4 ideal vertices).

Link complements often have hyperbolic structures (Thurston).

- A unique complete hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

- Each ideal tetrahedron Δ_i has a shape parameter z_i (cross ratio of 4 ideal vertices).
- There are natural shape parameters z_i, z'_i, z''_i for a, b, c edges (all related).

Link complements often have hyperbolic structures (Thurston).

- A <u>unique complete</u> hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

- Each ideal tetrahedron Δ_i has a shape parameter z_i (cross ratio of 4 ideal vertices).
- There are natural shape parameters z_i, z'_i, z''_i for a, b, c edges (all related).
- In particular $z_i z_i' z_i'' = -1$ so we can use z, z' only.

Link complements often have hyperbolic structures (Thurston).

- A unique complete hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

- Each ideal tetrahedron Δ_i has a shape parameter z_i (cross ratio of 4 ideal vertices).
- There are natural shape parameters z_i, z'_i, z''_i for a, b, c edges (all related).
- In particular $z_i z_i' z_i'' = -1$ so we can use z, z' only.
- Hyperbolic structures can be found by solving gluing equations, one for each edge E:

$$\prod_{Z ext{ parameters around } E} z = 1$$
 .

Link complements often have hyperbolic structures (Thurston).

- A unique complete hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

Thurston approach (1980s):

- Each ideal tetrahedron Δ_i has a <u>shape parameter</u> z_i (cross ratio of 4 ideal vertices).
- There are natural shape parameters z_i, z'_i, z''_i for a, b, c edges (all related).
- In particular $z_i z_i' z_i'' = -1$ so we can use z, z' only.
- Hyperbolic structures can be found by solving gluing equations, one for each edge E:

$$\prod_{Z ext{ parameters around } E} z = 1.$$

• Longitude and meridian have holonomy L, M which can be expressed as products of z_i , z'_i variables.

Cooper-Culler-Gilet-Long-Shalen (1994), Champanerkar (2003):

• L, M satisfy a polynomial relation, the <u>A-polynomial</u> A(L, M) = 0.

Cooper-Culler-Gilet-Long-Shalen (1994), Champanerkar (2003):

• L, M satisfy a polynomial relation, the <u>A-polynomial</u> A(L, M) = 0.

Neumann-Zagier (1985):

- <u>Combinatorial</u> holonomy h(C) of a closed curve C on a boundary torus is closely related to its <u>geometric</u> holonomy in a hyperbolic structure.
- Roughly, a_i, b_i, c_i components of combinatorial holonomy of h(C) ∈ V are exponents of z_i, z'_i, z''_i in holonomy of C.

Cooper-Culler-Gilet-Long-Shalen (1994), Champanerkar (2003):

• L, M satisfy a polynomial relation, the <u>A-polynomial</u> A(L, M) = 0.

Neumann-Zagier (1985):

- <u>Combinatorial</u> holonomy h(C) of a closed curve C on a boundary torus is closely related to its <u>geometric</u> holonomy in a hyperbolic structure.
- Roughly, a_i, b_i, c_i components of combinatorial holonomy of h(C) ∈ V are exponents of z_i, z'_i, z''_i in holonomy of C.

Dimofte (2013):

• With a symplectic basis, we can <u>change variables</u> from z_i, z'_i, z''_i ...

Cooper-Culler-Gilet-Long-Shalen (1994), Champanerkar (2003):

• L, M satisfy a polynomial relation, the <u>A-polynomial</u> A(L, M) = 0.

Neumann-Zagier (1985):

- <u>Combinatorial</u> holonomy h(C) of a closed curve C on a boundary torus is closely related to its <u>geometric</u> holonomy in a hyperbolic structure.
- Roughly, a_i, b_i, c_i components of combinatorial holonomy of h(C) ∈ V are exponents of z_i, z'_i, z''_i in holonomy of C.

Dimofte (2013):

- With a symplectic basis, we can <u>change variables</u> from z_i, z'_i, z''_i ...
- Write equations for hyperbolic structure in terms of new variables...

Cooper-Culler-Gilet-Long-Shalen (1994), Champanerkar (2003):

• L, M satisfy a polynomial relation, the <u>A-polynomial</u> A(L, M) = 0.

Neumann-Zagier (1985):

- <u>Combinatorial</u> holonomy h(C) of a closed curve C on a boundary torus is closely related to its <u>geometric</u> holonomy in a hyperbolic structure.
- Roughly, a_i, b_i, c_i components of combinatorial holonomy of h(C) ∈ V are exponents of z_i, z'_i, z''_i in holonomy of C.

Dimofte (2013):

- With a symplectic basis, we can <u>change variables</u> from z_i, z'_i, z''_i ...
- Write equations for hyperbolic structure in terms of new variables...
- γ_E (for edges E), L, M (longitude/meridian holonomy).

Howie-M-Purcell:

 Resulting equations are <u>Ptolemy equations</u>, one for each tetrahedron:

$$\gamma_{03}\gamma_{12} = \pm L^{\bullet}M^{\bullet}\gamma_{01}\gamma_{23} \pm L^{\bullet}M^{\bullet}\gamma_{02}\gamma_{13}.$$

(Very similar to enhanced Ptolemy variety of Zickert 2016.)

Howie-M-Purcell:

 Resulting equations are <u>Ptolemy equations</u>, one for each tetrahedron:

$$\gamma_{03}\gamma_{12} = \pm L^{\bullet}M^{\bullet}\gamma_{01}\gamma_{23} \pm L^{\bullet}M^{\bullet}\gamma_{02}\gamma_{13}.$$

(Very similar to enhanced Ptolemy variety of Zickert 2016.)

Howie–M–Purcell–Thompson, Thompson:

- These equations are often tractable! Like cluster algebras!
- Can sometimes obtain explicit formulas for A-polynomial.

Howie-M-Purcell:

 Resulting equations are <u>Ptolemy equations</u>, one for each tetrahedron:

$$\gamma_{03}\gamma_{12} = \pm L^{\bullet}M^{\bullet}\gamma_{01}\gamma_{23} \pm L^{\bullet}M^{\bullet}\gamma_{02}\gamma_{13}.$$

(Very similar to enhanced Ptolemy variety of Zickert 2016.)

Howie-M-Purcell-Thompson, Thompson:

- These equations are often tractable! Like cluster algebras!
- Can sometimes obtain explicit formulas for A-polynomial.

M-Purcell (in progress):

• The γ variables have an interpretation as complex lambda lengths in spin hyperbolic geometry.

An oscillating curve γ lives on the Heegaard surface Σ . It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.

An oscillating curve γ lives on the Heegaard surface Σ . It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.

"Bipartite" double cover:

analogous to bipartite double cover of a graph

An oscillating curve γ lives on the Heegaard surface Σ . It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.

"Bipartite" double cover:

- analogous to bipartite double cover of a graph
- two copies (+, -) of each cusp
- tubes around edges of $\mathcal T$ connect + to copies of cusp

An oscillating curve γ lives on the Heegaard surface Σ . It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.

"Bipartite" double cover:

- analogous to bipartite double cover of a graph
- two copies (+, -) of each cusp
- tubes around edges of $\mathcal T$ connect + to copies of cusp
- $\widetilde{\gamma}$ is oriented as $\pm \gamma$ on \pm cusps

An oscillating curve γ lives on the Heegaard surface Σ . It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.

"Bipartite" double cover:

- analogous to bipartite double cover of a graph
- two copies (+, −) of each cusp
- tubes around edges of \mathcal{T} connect + to copies of cusp
- $\widetilde{\gamma}$ is oriented as $\pm \gamma$ on \pm cusps

Joint in progress with Huang & Purcell:

• $\widetilde{\gamma} \in H_1^-(\widetilde{\Sigma})$, the (-1)-eigenspace for involution on $\widetilde{\Sigma}$

An oscillating curve γ lives on the Heegaard surface Σ . It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.

"Bipartite" double cover:

- analogous to bipartite double cover of a graph
- two copies (+, −) of each cusp
- tubes around edges of \mathcal{T} connect + to copies of cusp
- $\widetilde{\gamma}$ is oriented as $\pm \gamma$ on \pm cusps

Joint in progress with Huang & Purcell:

- $\widetilde{\gamma} \in H_1^-(\widetilde{\Sigma})$, the (-1)-eigenspace for involution on $\widetilde{\Sigma}$
- ω agrees with intersection form on $H_1^-(\widetilde{\Sigma})$

An oscillating curve γ lives on the Heegaard surface Σ . It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.

"Bipartite" double cover:

- analogous to bipartite double cover of a graph
- two copies (+,-) of each cusp
- tubes around edges of \mathcal{T} connect + to copies of cusp
- $\widetilde{\gamma}$ is oriented as $\pm \gamma$ on \pm cusps

Joint in progress with Huang & Purcell:

- $\widetilde{\gamma} \in H_1^-(\widetilde{\Sigma})$, the (-1)-eigenspace for involution on $\widetilde{\Sigma}$
- ω agrees with intersection form on $H_1^-(\widetilde{\Sigma})$
- Agrees with work of Dimofte–van der Veen: $H_1^-(\widetilde{\Sigma}) \cong V$.

More Applications

Garoufalidis-Le, Dimofte, Gukov...

 Quantising the A-polynomial should produce a non-commutative polynomial annihilating coloured Jones polynomials (AJ conjecture).

Also:

- Space of hyperbolic structures (Neumann-Zagier, Choi)
- Hyperbolic volumes of Dehn fillings (Neumann-Zagier)
- Normal surfaces (Luo, Garoufalidis—Hodgson—Hoffman-Rubinsten)
- Representation theory (Goerner, Zickert, Garoufalidis, ...)
- Chern-Simons theory (Neumann, Dimofte, Garoufalidis, Gukov, ...)

To show $\omega(h(\zeta), h(\zeta') = 2\zeta \cdot \zeta' \dots$ Express both $\omega(h(\zeta), h(\zeta'))$ and $\zeta \cdot \zeta'$ as sums over faces.

To show $\omega(h(\zeta), h(\zeta') = 2\zeta \cdot \zeta' \dots$ Express both $\omega(h(\zeta), h(\zeta'))$ and $\zeta \cdot \zeta'$ as sums <u>over faces</u>.

To show $\omega(h(\zeta), h(\zeta') = 2\zeta \cdot \zeta' \dots$ Express both $\omega(h(\zeta), h(\zeta'))$ and $\zeta \cdot \zeta'$ as sums <u>over faces</u>.

$$\begin{split} 2\zeta \cdot \zeta' &= \sum_{\Delta} n_{\Delta(ab)} n'_{\Delta(bc)} - n_{\Delta(bc)} n'_{\Delta(ab)} \\ &+ \sum_{\bigcirc, \widehat{\bigcirc}} \sum_{(k,l,m)} n_k (n'_{kl} - n'_{km} + \widehat{n}'_{kl} - \widehat{n}'_{km}) \\ &+ n'_k (-n_{kl} + n_{km} - \widehat{n}_{kl} + \widehat{n}_{km}) \\ &+ \sum_{\bigcirc, \widehat{\bigcirc}} \sum_{(k,l,m)} -n_{kl} n'_{km} + n_{km} n'_{kl} - \widehat{n}_{km} \widehat{n}'_{kl} + \widehat{n}_{kl} \widehat{n}'_{km} \\ &+ \sum_{\bigcirc, \widehat{\bigcirc}} \sum_{(k,l,m)} n_{kl} n'_{lk} - n_{lk} n'_{kl} - \widehat{n}_{kl} \widehat{n}'_{lk} + \widehat{n}_{lk} \widehat{n}'_{kl}. \end{split}$$

$$\begin{split} \omega\left(h(\zeta),h(\zeta')\right) &= \sum_{\Delta} n_{\Delta(ab)} n'_{\Delta(bc)} - n_{\Delta(bc)} n'_{\Delta(ab)} \\ &+ \sum_{Q} \sum_{(k,l,m)} n_{k} (n'_{lk} - n'_{mk}) - n'_{k} (n_{lk} - n_{mk}) \\ &+ \sum_{Q} \sum_{(k,l,m)} (n_{kl} + n_{km}) (n'_{lk} + n'_{lm}) \\ &- (n'_{kl} + n'_{km}) (n_{lk} + n_{lm}). \end{split}$$

Show these are equal!

Why the weird intersection form for oscillating curves?

Thanks for listening!