# Symplectic structures in hyperbolic 3-manifold triangulations 

Daniel V. Mathews

Monash University
Daniel.Mathews@monash.edu
Oklahoma State Topology seminar 8/9 November 2022


## Overview

This talk is about

## Overview

This talk is about

- triangulations of 3-manifolds


## Overview

This talk is about

- triangulations of 3-manifolds
- combinatorics of curves and surfaces in 3-manifolds, and


## Overview

This talk is about

- triangulations of 3-manifolds
- combinatorics of curves and surfaces in 3-manifolds, and
- symplectic geometry / linear algebra arising from it,


## Overview

This talk is about

- triangulations of 3-manifolds
- combinatorics of curves and surfaces in 3-manifolds, and
- symplectic geometry / linear algebra arising from it, with applications to hyperbolic geometry and other areas.


## Overview

This talk is about

- triangulations of 3-manifolds
- combinatorics of curves and surfaces in 3-manifolds, and
- symplectic geometry / linear algebra arising from it, with applications to hyperbolic geometry and other areas.

Paper on arxiv:

- A symplectic basis for 3-manifold triangulations 2208.06969 (joint w Purcell)

Also:

- A-polynomials, Ptolemy equations and Dehn filling 2002.10356 (joint w Howie, Purcell)


## Setup

Throughout, let:

## Setup

Throughout, let:

- $M$ be a knot/link complement, $M=S^{3} \backslash L$


## Setup

Throughout, let:

- $M$ be a knot/link complement, $M=S^{3} \backslash L$
- $\mathcal{T}$ be an ideal triangulation of $M$


## Setup

Throughout, let:

- $M$ be a knot/link complement, $M=S^{3} \backslash L$
- $\mathcal{T}$ be an ideal triangulation of $M$
- ideal tetrahedra ${ }_{(=\text {tetrahedra without vertices) }} \Delta_{1}, \ldots, \Delta_{N}$


## Setup

Throughout, let:

- $M$ be a knot/link complement, $M=S^{3} \backslash L$
- $\mathcal{T}$ be an ideal triangulation of $M$
- ideal tetrahedra (= tetrahedra without vertices) $\Delta_{1}, \ldots, \Delta_{N}$
- edges $E_{1}, \ldots, E_{N \text { (NB same N:) }}$


## Setup

Throughout, let:

- $M$ be a knot/link complement, $M=S^{3} \backslash L$
- $\mathcal{T}$ be an ideal triangulation of $M$
- ideal tetrahedra ${ }_{(=\text {tetrahedra without vertices) }} \Delta_{1}, \ldots, \Delta_{N}$
- edges $E_{1}, \ldots, E_{N \text { (NB same N:) }}$
- label opposite pairs of edges with $a, b, c$



## Setup

Throughout, let:

- $M$ be a knot/link complement, $M=S^{3} \backslash L$
- $\mathcal{T}$ be an ideal triangulation of $M$
- ideal tetrahedra (= tetrahedra without vertices) $\Delta_{1}, \ldots, \Delta_{N}$
- edges $E_{1}, \ldots, E_{N \text { (NB same N:) }}$
- label opposite pairs of edges with $a, b, c$
(Results apply more generally, but for convenience...)



## Then:

- Truncating $\Delta_{j} \rightsquigarrow$ polyhedra decomposing $\bar{M}=s^{3} \backslash N(L)$.
- Triangular faces of polyhedra triangulate boundary tori $T_{i}$.
- Each vertex of each triangle has an $a, b$ or $c$ label.



## Example: figure-8 knot complement

When $K=$ figure- 8 knot, $M$ decomposes into two ideal tetrahedra, with cusp triangulation shown.


## Example: figure-8 knot complement

When $K=$ figure- 8 knot, $M$ decomposes into two ideal tetrahedra, with cusp triangulation shown. Boundary curves $\mathfrak{l}, \mathfrak{m}$ also shown.


## The Neumann-Zagier vector space

Neumann-Zagier associated to $\mathcal{T}$ a vector space $V$.

## The Neumann-Zagier vector space

Neumann-Zagier associated to $\mathcal{T}$ a vector space $V$.

## Definition (Neumann-Zagier 1985)

Let $V$ be the $2 N$-dimensional $\mathbb{R}$-vector space generated by

$$
a_{1}, b_{1}, c_{1}, \ldots, a_{N}, b_{N}, c_{N}
$$

subject to relations

$$
a_{i}+b_{i}+c_{i}=0, \quad i=1, \ldots, N
$$

## The Neumann-Zagier vector space

Neumann-Zagier associated to $\mathcal{T}$ a vector space $V$.

## Definition (Neumann-Zagier 1985)

Let $V$ be the $2 N$-dimensional $\mathbb{R}$-vector space generated by

$$
a_{1}, b_{1}, c_{1}, \ldots, a_{N}, b_{N}, c_{N}
$$

subject to relations

$$
a_{i}+b_{i}+c_{i}=0, \quad i=1, \ldots, N
$$

There's a symplectic (antisymmetric nondegenerate) form $\omega$ on $V$ given by

$$
\omega\left(a_{i}, b_{j}\right)=\delta_{i j} .
$$

## The Neumann-Zagier vector space

Neumann-Zagier associated to $\mathcal{T}$ a vector space $V$.

## Definition (Neumann-Zagier 1985)

Let $V$ be the $2 N$-dimensional $\mathbb{R}$-vector space generated by

$$
a_{1}, b_{1}, c_{1}, \ldots, a_{N}, b_{N}, c_{N}
$$

subject to relations

$$
a_{i}+b_{i}+c_{i}=0, \quad i=1, \ldots, N
$$

There's a symplectic (antisymmetric nondegenerate) form $\omega$ on $V$ given by

$$
\omega\left(a_{i}, b_{j}\right)=\delta_{i j} .
$$

It follows that

$$
\begin{gathered}
\omega\left(a_{i}, b_{i}\right)=\omega\left(b_{i}, c_{i}\right)=\omega\left(c_{i}, a_{i}\right)=1 \\
\omega\left(b_{i}, a_{i}\right)=\omega\left(c_{i}, b_{i}\right)=\omega\left(a_{i}, c_{i}\right)=-1 \\
\omega=0 \quad \text { on all other pairs of generators. }
\end{gathered}
$$

## Combinatorial holonomy

Elements of $V$ give the holonomy of certain curves in $M$.

## Combinatorial holonomy

Elements of $V$ give the holonomy of certain curves in $M$.

- Let $\gamma$ be an oriented curve in a boundary torus $T$.


## Combinatorial holonomy

Elements of $V$ give the holonomy of certain curves in $M$.

- Let $\gamma$ be an oriented curve in a boundary torus $T$.
- $T$ is triangulated by faces of truncated tetrahedra


## Combinatorial holonomy

Elements of $V$ give the holonomy of certain curves in $M$.

- Let $\gamma$ be an oriented curve in a boundary torus $T$.
- $T$ is triangulated by faces of truncated tetrahedra
- Assume $\gamma$ intersects triangles generically (transversely, no backtracking).


## Combinatorial holonomy

Elements of $V$ give the holonomy of certain curves in $M$.

- Let $\gamma$ be an oriented curve in a boundary torus $T$.
- $T$ is triangulated by faces of truncated tetrahedra
- Assume $\gamma$ intersects triangles generically (rransversely, no backracking).
- Then $\gamma$ consists of arcs in triangles around vertices.



## Combinatorial holonomy

Elements of $V$ give the holonomy of certain curves in $M$.

- Let $\gamma$ be an oriented curve in a boundary torus $T$.
- $T$ is triangulated by faces of truncated tetrahedra
- Assume $\gamma$ intersects triangles generically (transversely, no backtracking).
- Then $\gamma$ consists of arcs in triangles around vertices.



## Definition

The combinatorial holonomy $h(\gamma) \in V$ is the sum of contributions $\pm a_{j}, b_{j}, c_{j}$ for each arc of $\gamma$.

Combinatorial holonomy example: figure-8 knot


## Combinatorial holonomy example: figure-8 knot



$$
h(\mathfrak{m})=-b_{1}+a_{2}
$$

## Combinatorial holonomy example: figure-8 knot



$$
\begin{aligned}
h(\mathfrak{m}) & =-b_{1}+a_{2} \\
h(\mathfrak{l}) & =c_{1}-b_{2}+b_{1}-c_{2}+c_{1}-b_{2}+b_{1}-c_{2}
\end{aligned}
$$

Combinatorial holonomy example: figure-8 knot


$$
\begin{aligned}
h(\mathfrak{m}) & =-b_{1}+a_{2} \\
h(\mathfrak{l}) & =c_{1}-b_{2}+b_{1}-c_{2}+c_{1}-b_{2}+b_{1}-c_{2} \\
& =2 b_{1}+2 c_{1}-2 b_{2}-2 c_{2}
\end{aligned}
$$

Combinatorial holonomy example: figure-8 knot


$$
\begin{aligned}
h(\mathfrak{m}) & =-b_{1}+a_{2} \\
h(\mathfrak{l}) & =c_{1}-b_{2}+b_{1}-c_{2}+c_{1}-b_{2}+b_{1}-c_{2} \\
& =2 b_{1}+2 c_{1}-2 b_{2}-2 c_{2} \\
& =-2 a_{1}+2 a_{2}
\end{aligned}
$$

## Combinatorial holonomy example: figure-8 knot



$$
\begin{aligned}
h(\mathfrak{m}) & =-b_{1}+a_{2} \\
h(\mathfrak{l}) & =c_{1}-b_{2}+b_{1}-c_{2}+c_{1}-b_{2}+b_{1}-c_{2} \\
& =2 b_{1}+2 c_{1}-2 b_{2}-2 c_{2} \\
& =-2 a_{1}+2 a_{2} \\
h(C) & =a_{1}+c_{2}+a_{1}+a_{2}+c_{1}+a_{2}
\end{aligned}
$$

## Combinatorial holonomy example: figure-8 knot



$$
\begin{aligned}
h(\mathfrak{m}) & =-b_{1}+a_{2} \\
h(\mathfrak{l}) & =c_{1}-b_{2}+b_{1}-c_{2}+c_{1}-b_{2}+b_{1}-c_{2} \\
& =2 b_{1}+2 c_{1}-2 b_{2}-2 c_{2} \\
& =-2 a_{1}+2 a_{2} \\
h(C) & =a_{1}+c_{2}+a_{1}+a_{2}+c_{1}+a_{2} \\
& =2 a_{1}+c_{1}+2 a_{2}+c_{2}
\end{aligned}
$$

Combinatorial holonomy example: figure-8 knot


## Combinatorial holonomy example: figure-8 knot



$$
h(\bar{C})=h(C)
$$

## The NZ symplectic form as a 2D intersection form

Theorem (Neumann-Zagier 1985)

Theorem (Neumann-Zagier 1985)
Let $\gamma, \delta$ be oriented curves on $\partial \bar{M}$. Then

$$
\omega(h(\gamma), h(\delta))=2 \gamma \cdot \delta,
$$

where - denotes algebraic intersection number.

## Theorem (Neumann-Zagier 1985)

Let $\gamma, \delta$ be oriented curves on $\partial \bar{M}$. Then

$$
\omega(h(\gamma), h(\delta))=2 \gamma \cdot \delta,
$$

where - denotes algebraic intersection number.
Note $\omega$ counts intersections in triangles... but also fake intersections in distinct triangles of a polyhedron!


Example: figure-8 knot

$h(\mathfrak{m})=-b_{1}+a_{2}, \quad h(\mathfrak{l})=-2 a_{1}+2 a_{2}, \quad h(C)=2 a_{1}+c_{1}+2 a_{2}+c_{2}$

## Example: figure-8 knot


$h(\mathfrak{m})=-b_{1}+a_{2}, \quad h(\mathfrak{l})=-2 a_{1}+2 a_{2}, \quad h(C)=2 a_{1}+c_{1}+2 a_{2}+c_{2}$
$\omega(h(\mathfrak{m}), h(\mathfrak{l}))$

## Example: figure-8 knot


$h(\mathfrak{m})=-b_{1}+a_{2}, \quad h(\mathfrak{l})=-2 a_{1}+2 a_{2}, \quad h(C)=2 a_{1}+c_{1}+2 a_{2}+c_{2}$

$$
\omega(h(\mathfrak{m}), h(\mathfrak{l}))=\omega\left(-b_{1}+a_{2},-2 a_{1}+2 a_{2}\right)
$$

## Example: figure-8 knot



$$
h(\mathfrak{m})=-b_{1}+a_{2}, \quad h(\mathfrak{l})=-2 a_{1}+2 a_{2}, \quad h(C)=2 a_{1}+c_{1}+2 a_{2}+c_{2}
$$

$$
\begin{aligned}
\omega(h(\mathfrak{m}), h(\mathfrak{l})) & =\omega\left(-b_{1}+a_{2},-2 a_{1}+2 a_{2}\right) \\
& =\omega\left(-b_{1},-2 a_{1}\right)+\omega\left(a_{2}, 2 a_{2}\right)
\end{aligned}
$$

## Example: figure-8 knot



$$
h(\mathfrak{m})=-b_{1}+a_{2}, \quad h(\mathfrak{l})=-2 a_{1}+2 a_{2}, \quad h(C)=2 a_{1}+c_{1}+2 a_{2}+c_{2}
$$

$$
\begin{aligned}
\omega(h(\mathfrak{m}), h(\mathfrak{l})) & =\omega\left(-b_{1}+a_{2},-2 a_{1}+2 a_{2}\right) \\
& =\omega\left(-b_{1},-2 a_{1}\right)+\omega\left(a_{2}, 2 a_{2}\right)=-2=2 \mathfrak{m} \cdot \mathfrak{l}
\end{aligned}
$$

Now suppose $M$ has $\mathfrak{c}$ cusps and consider particular curves:

## A partial symplectic basis

Now suppose $M$ has $\mathfrak{c}$ cusps and consider particular curves:

- $C_{1}, \ldots, C_{N}$ around edges $E_{1}, \ldots, E_{N}$


## A partial symplectic basis

Now suppose $M$ has $\mathfrak{c}$ cusps and consider particular curves:

- $C_{1}, \ldots, C_{N}$ around edges $E_{1}, \ldots, E_{N}$
- meridian/longitude pairs $\mathfrak{m}_{j}, \mathfrak{l}_{j}$ on each boundary torus $T_{j}$ with $\mathfrak{m}_{j} \cdot \mathfrak{l}_{j}=1$, for $j=1, \ldots, c$.


## A partial symplectic basis

Now suppose $M$ has $\mathfrak{c}$ cusps and consider particular curves:

- $C_{1}, \ldots, C_{N}$ around edges $E_{1}, \ldots, E_{N}$
- meridian/longitude pairs $\mathfrak{m}_{j}, \mathfrak{l}_{j}$ on each boundary torus $T_{j}$ with $\mathfrak{m}_{j} \cdot \mathfrak{l}_{j}=1$, for $j=1, \ldots, c$.
Then $\omega=0$ on $h$ of any two curves among these, except

$$
\omega\left(h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{l}_{j}\right)\right)=2, \quad j=1,2, \ldots, \mathfrak{c} .
$$

## A partial symplectic basis

Now suppose $M$ has $\mathfrak{c}$ cusps and consider particular curves:

- $C_{1}, \ldots, C_{N}$ around edges $E_{1}, \ldots, E_{N}$
- meridian/longitude pairs $\mathfrak{m}_{j}, \mathfrak{l}_{j}$ on each boundary torus $T_{j}$ with $\mathfrak{m}_{j} \cdot \mathfrak{l}_{j}=1$, for $j=1, \ldots, c$.
Then $\omega=0$ on $h$ of any two curves among these, except

$$
\omega\left(h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{l}_{j}\right)\right)=2, \quad j=1,2, \ldots, \mathfrak{c}
$$

Observation (Dimofte 2013)
We can form a partial symplectic basis* of $V$,

## A partial symplectic basis

Now suppose $M$ has $\mathfrak{c}$ cusps and consider particular curves:

- $C_{1}, \ldots, C_{N}$ around edges $E_{1}, \ldots, E_{N}$
- meridian/longitude pairs $\mathfrak{m}_{j}, \mathfrak{l}_{j}$ on each boundary torus $T_{j}$ with $\mathfrak{m}_{j} \cdot \mathfrak{l}_{j}=1$, for $j=1, \ldots, \mathfrak{c}$.
Then $\omega=0$ on $h$ of any two curves among these, except

$$
\omega\left(h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{l}_{j}\right)\right)=2, \quad j=1,2, \ldots, \mathfrak{c} .
$$

Observation (Dimofte 2013)
We can form a partial symplectic basis* of $V$,
(Symplectic basis:
vectors $e_{1}, f_{1}, \cdots, e_{N}, f_{N}$ such that $\left.\omega\left(e_{i}, e_{j}\right)=\omega\left(f_{i}, f_{j}\right)=0, \omega\left(e_{i}, f_{j}\right)=\delta_{i j}.\right)$

## A partial symplectic basis

Now suppose $M$ has $\mathfrak{c}$ cusps and consider particular curves:

- $C_{1}, \ldots, C_{N}$ around edges $E_{1}, \ldots, E_{N}$
- meridian/longitude pairs $\mathfrak{m}_{j}, l_{j}$ on each boundary torus $T_{j}$ with $\mathfrak{m}_{j} \cdot \mathfrak{l}_{j}=1$, for $j=1, \ldots, \mathfrak{c}$.
Then $\omega=0$ on $h$ of any two curves among these, except

$$
\omega\left(h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right)\right)=2, \quad j=1,2, \ldots, \mathfrak{c} .
$$

Observation (Dimofte 2013)
We can form a partial symplectic basis* of $V$, consisting of

$$
\text { the } h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right), \text { for } j=1, \ldots, \mathfrak{c}
$$

(Symplectic basis:
vectors $e_{1}, f_{1}, \cdots, e_{N}, f_{N}$ such that $\left.\omega\left(e_{i}, e_{j}\right)=\omega\left(f_{i}, f_{j}\right)=0, \omega\left(e_{i}, f_{j}\right)=\delta_{i j}.\right)$

## A partial symplectic basis

Now suppose $M$ has $\mathfrak{c}$ cusps and consider particular curves:

- $C_{1}, \ldots, C_{N}$ around edges $E_{1}, \ldots, E_{N}$
- meridian/longitude pairs $\mathfrak{m}_{j}, l_{j}$ on each boundary torus $T_{j}$ with $\mathfrak{m}_{j} \cdot \mathfrak{l}_{j}=1$, for $j=1, \ldots, \mathfrak{c}$.
Then $\omega=0$ on $h$ of any two curves among these, except

$$
\omega\left(h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right)\right)=2, \quad j=1,2, \ldots, \mathfrak{c} .
$$

Observation (Dimofte 2013)
We can form a partial symplectic basis* of $V$, consisting of
the $h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right)$, for $j=1, \ldots, \mathfrak{c}$ and the $h\left(C_{j}\right)$
(Symplectic basis:
vectors $e_{1}, f_{1}, \cdots, e_{N}, f_{N}$ such that $\left.\omega\left(e_{i}, e_{j}\right)=\omega\left(f_{i}, f_{j}\right)=0, \omega\left(e_{i}, f_{j}\right)=\delta_{i j}.\right)$

## A partial symplectic basis

Now suppose $M$ has $\mathfrak{c}$ cusps and consider particular curves:

- $C_{1}, \ldots, C_{N}$ around edges $E_{1}, \ldots, E_{N}$
- meridian/longitude pairs $\mathfrak{m}_{j}, l_{j}$ on each boundary torus $T_{j}$ with $\mathfrak{m}_{j} \cdot \mathfrak{l}_{j}=1$, for $j=1, \ldots, \mathfrak{c}$.
Then $\omega=0$ on $h$ of any two curves among these, except

$$
\omega\left(h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right)\right)=2, \quad j=1,2, \ldots, \mathfrak{c} .
$$

Observation (Dimofte 2013)
We can form a partial symplectic basis* of $V$, consisting of

$$
\begin{aligned}
& \text { the } h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{l}_{j}\right) \text {, for } j=1, \ldots, \mathfrak{c} \\
& \text { and the } h\left(C_{j}\right) \quad \text { (some of them) }
\end{aligned}
$$

(Symplectic basis:
vectors $e_{1}, f_{1}, \cdots, e_{N}, f_{N}$ such that $\left.\omega\left(e_{i}, e_{j}\right)=\omega\left(f_{i}, f_{j}\right)=0, \omega\left(e_{i}, f_{j}\right)=\delta_{i j}.\right)$

## A partial symplectic basis

Now suppose $M$ has $\mathfrak{c}$ cusps and consider particular curves:

- $C_{1}, \ldots, C_{N}$ around edges $E_{1}, \ldots, E_{N}$
- meridian/longitude pairs $\mathfrak{m}_{j}, l_{j}$ on each boundary torus $T_{j}$ with $\mathfrak{m}_{j} \cdot \mathfrak{l}_{j}=1$, for $j=1, \ldots, \mathfrak{c}$.
Then $\omega=0$ on $h$ of any two curves among these, except

$$
\omega\left(h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right)\right)=2, \quad j=1,2, \ldots, \mathfrak{c} .
$$

Observation (Dimofte 2013)
We can form a partial symplectic basis* of $V$, consisting of

$$
\begin{aligned}
& \text { the } h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right) \text {, for } j=1, \ldots, \mathfrak{c} \\
& \text { and the } h\left(C_{j}\right) \quad \text { (some of them) } \quad(N-\mathfrak{c} \text { of them) }
\end{aligned}
$$

(Symplectic basis:
vectors $e_{1}, f_{1}, \cdots, e_{N}, f_{N}$ such that $\left.\omega\left(e_{i}, e_{j}\right)=\omega\left(f_{i}, f_{j}\right)=0, \omega\left(e_{i}, f_{j}\right)=\delta_{i j}.\right)$

## A partial symplectic basis

Now suppose $M$ has $\mathfrak{c}$ cusps and consider particular curves:

- $C_{1}, \ldots, C_{N}$ around edges $E_{1}, \ldots, E_{N}$
- meridian/longitude pairs $\mathfrak{m}_{j}, l_{j}$ on each boundary torus $T_{j}$ with $\mathfrak{m}_{j} \cdot \mathfrak{l}_{j}=1$, for $j=1, \ldots, \mathfrak{c}$.
Then $\omega=0$ on $h$ of any two curves among these, except

$$
\omega\left(h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right)\right)=2, \quad j=1,2, \ldots, \mathfrak{c} .
$$

Observation (Dimofte 2013)
We can form a partial symplectic basis* of $V$, consisting of

$$
\begin{aligned}
& \text { the } h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right) \text {, for } j=1, \ldots, \mathfrak{c} \\
& \text { and the } h\left(C_{j}\right) \quad \text { (some of them) } \quad(N-\mathfrak{c} \text { of them) }
\end{aligned}
$$

(Symplectic basis:
vectors $e_{1}, f_{1}, \cdots, e_{N}, f_{N}$ such that $\left.\omega\left(e_{i}, e_{j}\right)=\omega\left(f_{i}, f_{j}\right)=0, \omega\left(e_{i}, f_{j}\right)=\delta_{i j}.\right)$

## A partial symplectic basis

Now suppose $M$ has $\mathfrak{c}$ cusps and consider particular curves:

- $C_{1}, \ldots, C_{N}$ around edges $E_{1}, \ldots, E_{N}$
- meridian/longitude pairs $\mathfrak{m}_{j}, l_{j}$ on each boundary torus $T_{j}$ with $\mathfrak{m}_{j} \cdot \mathfrak{l}_{j}=1$, for $j=1, \ldots, \mathfrak{c}$.
Then $\omega=0$ on $h$ of any two curves among these, except

$$
\omega\left(h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right)\right)=2, \quad j=1,2, \ldots, \mathfrak{c} .
$$

Observation (Dimofte 2013)
We can form a partial symplectic basis* of $V$, consisting of

$$
\begin{aligned}
& \text { the } h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right) \text {, for } j=1, \ldots, \mathfrak{c} \\
& \text { and the } h\left(C_{j}\right) \quad \text { (some of them) } \quad(N-\mathfrak{c} \text { of them) }
\end{aligned}
$$

(Symplectic basis:
vectors $e_{1}, f_{1}, \cdots, e_{N}, f_{N}$ such that $\left.\omega\left(e_{i}, e_{j}\right)=\omega\left(f_{i}, f_{j}\right)=0, \omega\left(e_{i}, f_{j}\right)=\delta_{i j}.\right)$

* Up to factors of 2...


## Questions

## Questions

Question 1
Can we find more curves to obtain a full symplectic basis* of $V$ ?

## Questions

## Question 1

Can we find more curves to obtain a full symplectic basis* of $V$ ?

## Question 2

Neumann-Zagier's results are 2-dimensional, only about curves on $\partial \bar{M}$.
Can these results be extended into 3D?
Can they be extended to curves in the interior of $\bar{M}$ ?

## Questions

## Question 1

Can we find more curves to obtain a full symplectic basis* of $V$ ?

## Question 2

Neumann-Zagier's results are 2-dimensional, only about curves on $\partial \bar{M}$.
Can these results be extended into 3D?
Can they be extended to curves in the interior of $\bar{M}$ ?
Yes!

## The NZ symplectic form as a 3D intersection form

## The NZ symplectic form as a 3D intersection form

## Theorem 1 (M-Purcell)

Let $\zeta, \zeta^{\prime}$ be oscillating curves on $\bar{M}$, with combinatorial holonomies $h(\zeta), h\left(\zeta^{\prime}\right)$ respectively. Then

$$
\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)\right)=2 \zeta \cdot \zeta^{\prime}
$$

where $\cdot$ is the intersection form for oscillating curves.

## The NZ symplectic form as a 3D intersection form

## Theorem 1 (M-Purcell)

Let $\zeta, \zeta^{\prime}$ be oscillating curves on $\bar{M}$, with combinatorial holonomies $h(\zeta), h\left(\zeta^{\prime}\right)$ respectively. Then

$$
\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)\right)=2 \zeta \cdot \zeta^{\prime}
$$

where $\cdot$ is the intersection form for oscillating curves.

## Theorem 2 (M-Purcell)

We can construct oscillating curves $\Gamma_{1}, \ldots, \Gamma_{N-c}$ such that

$$
\begin{gathered}
h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right) \text { for } j=1, \ldots, \mathfrak{c}, \text { and } \\
h\left(\Gamma_{k}\right), h\left(C_{k}\right) \text { for } k=1, \ldots, N-\mathfrak{c}
\end{gathered}
$$

form a symplectic basis* for $V$. (Up to factors of 2. .)

## The NZ symplectic form as a 3D intersection form

## Theorem 1 (M-Purcell)

Let $\zeta, \zeta^{\prime}$ be oscillating curves on $\bar{M}$, with combinatorial holonomies $h(\zeta), h\left(\zeta^{\prime}\right)$ respectively. Then

$$
\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)\right)=2 \zeta \cdot \zeta^{\prime}
$$

where $\cdot$ is the intersection form for oscillating curves.

## Theorem 2 (M-Purcell)

We can construct oscillating curves $\Gamma_{1}, \ldots, \Gamma_{N-c}$ such that

$$
\begin{gathered}
h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right) \text { for } j=1, \ldots, \mathfrak{c}, \text { and } \\
h\left(\Gamma_{k}\right), h\left(C_{k}\right) \text { for } k=1, \ldots, N-\mathfrak{c}
\end{gathered}
$$

form a symplectic basis* for $V$. (Up to factors of 2. )
I.e. $\omega\left(\Gamma_{j}, C_{k}\right)=2 \delta_{j k}, \quad \omega\left(\Gamma_{j}, \mathfrak{m}_{k}\right)=\omega\left(\Gamma_{j}, \mathfrak{l}_{k}\right)=\omega\left(\Gamma_{j}, \Gamma_{k}\right)=0$.

## Idea of Oscillating curves

## Idea of Oscillating curves

- Generalise oriented curves in $\partial \bar{M}$


## Idea of Oscillating curves

- Generalise oriented curves in $\partial \bar{M}$
- May dive from $\partial \bar{M}$ into the interior of $\bar{M}$, along an edge $E$, and come out on $\partial \bar{M}$ at the other end of $E$.



## Idea of Oscillating curves

- Generalise oriented curves in $\partial \bar{M}$
- May dive from $\partial \bar{M}$ into the interior of $\bar{M}$, along an edge $E$, and come out on $\partial \bar{M}$ at the other end of $E$.
- Have combinatorial holonomy



## Idea of Oscillating curves

- Generalise oriented curves in $\partial \bar{M}$
- May dive from $\partial \bar{M}$ into the interior of $\bar{M}$, along an edge $E$, and come out on $\partial \bar{M}$ at the other end of $E$.
- Have combinatorial holonomy
- Most convenient to describe formally using train tracks.



## Idea of Oscillating curves

- Generalise oriented curves in $\partial \bar{M}$
- May dive from $\partial \bar{M}$ into the interior of $\bar{M}$, along an edge $E$, and come out on $\partial \bar{M}$ at the other end of $E$.
- Have combinatorial holonomy
- Most convenient to describe formally using train tracks.
- Oscillate orientation when diving through an edge.



## Idea of Oscillating curves

- Generalise oriented curves in $\partial \bar{M}$
- May dive from $\partial \bar{M}$ into the interior of $\bar{M}$, along an edge $E$, and come out on $\partial \bar{M}$ at the other end of $E$.
- Have combinatorial holonomy
- Most convenient to describe formally using train tracks.
- Oscillate orientation when diving through an edge.
- Oscillation needed for well-defined intersection numbers!



## Idea of Oscillating curves

- Generalise oriented curves in $\partial \bar{M}$
- May dive from $\partial \bar{M}$ into the interior of $\bar{M}$, along an edge $E$, and come out on $\partial \bar{M}$ at the other end of $E$.
- Have combinatorial holonomy
- Most convenient to describe formally using train tracks.
- Oscillate orientation when diving through an edge.
- Oscillation needed for well-defined intersection numbers!



## Idea of Oscillating curves

- Generalise oriented curves in $\partial \bar{M}$
- May dive from $\partial \bar{M}$ into the interior of $\bar{M}$, along an edge $E$, and come out on $\partial \bar{M}$ at the other end of $E$.
- Have combinatorial holonomy
- Most convenient to describe formally using train tracks.
- Oscillate orientation when diving through an edge.
- Oscillation needed for well-defined intersection numbers! $h\left(\overline{C_{j}}\right)=h\left(C_{j}\right)$ so $\omega\left(h\left(C_{j}\right), h(\gamma)\right)=\omega\left(h\left(\overline{C_{j}}\right), h(\gamma)\right)$



## Train tracks

## Definition

A train track is a smoothly embedded graph on a surface such that at each vertex, incident edges are all tangent, with at least one edge on each side.

- Edges are called branches; vertices called switches.



## Train tracks

## Definition

A train track is a smoothly embedded graph on a surface such that at each vertex, incident edges are all tangent, with at least one edge on each side.

- Edges are called branches; vertices called switches.


Branches, if oriented, have intersection numbers, defined locally at switches:

$$
\begin{gathered}
\gamma_{1} \cdot \gamma_{2}=1, \gamma_{2} \cdot \gamma_{1}=-1 \\
\gamma_{0} \cdot \gamma_{1}=\gamma_{1} \cdot \gamma_{0}=\gamma_{0} \cdot \gamma_{2}=\gamma_{2} \cdot \gamma_{0}=0
\end{gathered}
$$

## Train tracks

## Definition

A train track is a smoothly embedded graph on a surface such that at each vertex, incident edges are all tangent, with at least one edge on each side.

- Edges are called branches; vertices called switches.


Branches, if oriented, have intersection numbers, defined locally at switches:

$$
\begin{gathered}
\gamma_{1} \cdot \gamma_{2}=1, \gamma_{2} \cdot \gamma_{1}=-1, \\
\gamma_{0} \cdot \gamma_{1}=\gamma_{1} \cdot \gamma_{0}=\gamma_{0} \cdot \gamma_{2}=\gamma_{2} \cdot \gamma_{0}=0,
\end{gathered}
$$

Smooth oriented curves on train tracks then obtain intersection numbers agreeing with usual algebraic intersection number.

## Train tracks for oscillating curves: motivation

A generic curve on a boundary torus intersects triangles in arcs, so can be made to run on train tracks.


## Train tracks for oscillating curves: motivation

A generic curve on a boundary torus intersects triangles in arcs, so can be made to run on train tracks.


Similarly, oscillating curves can run on train tracks. But...

## Train tracks for oscillating curves: motivation

A generic curve on a boundary torus intersects triangles in arcs, so can be made to run on train tracks.


Similarly, oscillating curves can run on train tracks. But...

- To dive into manifold, more tracks \& switches required!


## Train tracks for oscillating curves: motivation

A generic curve on a boundary torus intersects triangles in arcs, so can be made to run on train tracks.


Similarly, oscillating curves can run on train tracks. But...

- To dive into manifold, more tracks \& switches required!
- Tetrahedra must be further truncated along each edge!


## Train tracks for oscillating curves: motivation

A generic curve on a boundary torus intersects triangles in arcs, so can be made to run on train tracks.


Similarly, oscillating curves can run on train tracks. But...

- To dive into manifold, more tracks \& switches required!
- Tetrahedra must be further truncated along each edge!
- Special "stations" for each orientation reversal.


## Truncated tetrahedra

Removing neighbourhood of each edge, tetrahedra are further truncated to polyhedra


## Truncated tetrahedra

Removing neighbourhood of each edge, tetrahedra are further truncated to polyhedra with:

- hexagonal faces glued in pairs


Removing neighbourhood of each edge, tetrahedra are further truncated to polyhedra with:

- hexagonal faces glued in pairs
- hexagons on boundary tori (split turther into triangle +3 rectangles)



## Truncated tetrahedra

Removing neighbourhood of each edge, tetrahedra are further truncated to polyhedra with:

- hexagonal faces glued in pairs
- hexagons on boundary tori (split turther into triangle +3 rectangles)
- rectangles along removed edges (split further into 2 rectangles)



## Truncated tetrahedra

Triangles + rectangles give a decomposition of a Heegaard surface for $M$.

- $M=$ Handlebody $\cup$ Compresson body
- with handlebody decomposed into truncated tetrahdra



## Train tracks for oscillating curves

## Train tracks for oscillating curves

## Train tracks for oscillating curves



Red dots: stations for reversing direction.
$\rightsquigarrow$ "Enhanced" train tracks.

Train tracks for oscillating curves


## Train tracks for oscillating curves



## Oscillating curves

Let $\tau$ be the (enhanced) train tracks on the triangulation $\mathcal{T}$

## Oscillating curves

Let $\tau$ be the (enhanced) train tracks on the triangulation $\mathcal{T}$

## Definition

An abstract oscillating curve on $\tau$

## Oscillating curves

Let $\tau$ be the (enhanced) train tracks on the triangulation $\mathcal{T}$

## Definition

An abstract oscillating curve on $\tau$ is a labelling of each branch $\gamma$ of $\tau$ by an integer $n_{\gamma}$ such that:

## Oscillating curves

Let $\tau$ be the (enhanced) train tracks on the triangulation $\mathcal{T}$

## Definition

An abstract oscillating curve on $\tau$ is a labelling of each branch
$\gamma$ of $\tau$ by an integer $n_{\gamma}$ such that:

- at each switch $v, \sum_{\gamma} \epsilon_{\gamma} n_{\gamma}=0$ (i.e. $\#$ in $=\#$ out )


## Oscillating curves

Let $\tau$ be the (enhanced) train tracks on the triangulation $\mathcal{T}$

## Definition

An abstract oscillating curve on $\tau$ is a labelling of each branch
$\gamma$ of $\tau$ by an integer $n_{\gamma}$ such that:

- at each switch $v, \sum_{\gamma} \epsilon_{\gamma} n_{\gamma}=0$ (i.e. $\#$ in $=\#$ out )
where $\epsilon_{\gamma}=1$ (resp. -1 ) if $\gamma$ is oriented towards (resp. away from) a vertex.


## Oscillating curves

Let $\tau$ be the (enhanced) train tracks on the triangulation $\mathcal{T}$

## Definition

An abstract oscillating curve on $\tau$ is a labelling of each branch $\gamma$ of $\tau$ by an integer $n_{\gamma}$ such that:

- at each switch $v, \sum_{\gamma} \epsilon_{\gamma} n_{\gamma}=0$ (i.e. $\#$ in $=\#$ out )
- at each station, $\epsilon_{\gamma} n_{\gamma}+\epsilon_{\widehat{\gamma}} n_{\widehat{\gamma}}=\epsilon_{\delta} n_{\delta}+\epsilon_{\widehat{\delta}} n_{\widehat{\delta}}$.
where $\epsilon_{\gamma}=1$ (resp. -1 ) if $\gamma$ is oriented towards (resp. away from) a vertex.



## Oscillating curves

## Definition

An oscillating curve on $\tau$

## Oscillating curves

## Definition

An oscillating curve on $\tau$ is a cyclic sequence of oriented (forward/backwards) branches and vertices

$$
v_{0}, \gamma_{0}, v_{1}, \gamma_{1}, \ldots, v_{n}=v_{0}, \gamma_{n}=\gamma_{0}
$$

such that

## Oscillating curves

## Definition

An oscillating curve on $\tau$ is a cyclic sequence of oriented (forward/backwards) branches and vertices

$$
v_{0}, \gamma_{0}, v_{1}, \gamma_{1}, \ldots, v_{n}=v_{0}, \gamma_{n}=\gamma_{0}
$$

such that

- each $\gamma_{j}$ has ends at $v_{j}$ and $v_{j+1}$,


## Oscillating curves

## Definition

An oscillating curve on $\tau$ is a cyclic sequence of oriented (forward/backwards) branches and vertices

$$
v_{0}, \gamma_{0}, v_{1}, \gamma_{1}, \ldots, v_{n}=v_{0}, \gamma_{n}=\gamma_{0}
$$

such that

- each $\gamma_{j}$ has ends at $v_{j}$ and $v_{j+1}$,
- at a switch $v_{j}$, the branches $\gamma_{j-1}, \gamma_{j}$ approach from opposite sides


## Oscillating curves

## Definition

An oscillating curve on $\tau$ is a cyclic sequence of oriented (forward/backwards) branches and vertices

$$
v_{0}, \gamma_{0}, v_{1}, \gamma_{1}, \ldots, v_{n}=v_{0}, \gamma_{n}=\gamma_{0}
$$

## such that

- each $\gamma_{j}$ has ends at $v_{j}$ and $v_{j+1}$,
- at a switch $v_{j}$, the branches $\gamma_{j-1}, \gamma_{j}$ approach from opposite sides
- $\gamma_{j-1}$ and $\gamma_{j}$ have different orientations precisely when they lie at opposite ends of a station.



## Example: figure-8 knot complement



To draw oscillating curves...


## Example: figure-8 knot complement



## Intersection number

Intersection number of oscillating curves is defined locally:

## Intersection number

Intersection number of oscillating curves is defined locally:

- At switches (conventional!)

$$
\begin{gathered}
\gamma_{1} \cdot \gamma_{2}=1, \gamma_{2} \cdot \gamma_{1}=-1 \\
\gamma_{0} \cdot \gamma_{1}=\gamma_{1} \cdot \gamma_{0}=\gamma_{0} \cdot \gamma_{2}=\gamma_{2} \cdot \gamma_{0}=0
\end{gathered}
$$



## Intersection number

Intersection number of oscillating curves is defined locally:

- At switches (conventional!)

$$
\begin{gathered}
\gamma_{1} \cdot \gamma_{2}=1, \gamma_{2} \cdot \gamma_{1}=-1 \\
\gamma_{0} \cdot \gamma_{1}=\gamma_{1} \cdot \gamma_{0}=\gamma_{0} \cdot \gamma_{2}=\gamma_{2} \cdot \gamma_{0}=0
\end{gathered}
$$

- at stations (unconventional!)

$$
\begin{aligned}
& \gamma \cdot \delta=-1, \delta \cdot \gamma=1 \\
& \widehat{\delta} \cdot \widehat{\gamma}=-1, \widehat{\gamma} \cdot \widehat{\delta}=1
\end{aligned}
$$



## Intersection number

Intersection number of oscillating curves is defined locally:

- At switches (conventional!)

$$
\begin{gathered}
\gamma_{1} \cdot \gamma_{2}=1, \gamma_{2} \cdot \gamma_{1}=-1 \\
\gamma_{0} \cdot \gamma_{1}=\gamma_{1} \cdot \gamma_{0}=\gamma_{0} \cdot \gamma_{2}=\gamma_{2} \cdot \gamma_{0}=0
\end{gathered}
$$

- at stations (unconventional!)

$$
\begin{aligned}
& \gamma \cdot \delta=-1, \delta \cdot \gamma=1 \\
& \widehat{\delta} \cdot \widehat{\gamma}=-1, \widehat{\gamma} \cdot \widehat{\delta}=1
\end{aligned}
$$



## Combinatorial holonomy of oscillating curves

## Definition

The combinatorial holonomy $h(\zeta) \in V$ of an (abstract) oscillating curve $\zeta$ is the sum of contributions $\pm a_{j}, b_{j}, c_{j}$ for each arc of $\zeta$ in a triangle.


## Combinatorial holonomy of oscillating curves

## Definition

The combinatorial holonomy $h(\zeta) \in V$ of an (abstract) oscillating curve $\zeta$ is the sum of contributions $\pm a_{j}, b_{j}, c_{j}$ for each arc of $\zeta$ in a triangle.
(And nothing from arcs in rectangles / diving into the manifold / passing through stations!)


## Theorem 1 (M-Purcell)

Let $\zeta, \zeta^{\prime}$ be (abstract) oscillating curves on $\bar{M}$, with combinatorial holonomies $h(\zeta), h\left(\zeta^{\prime}\right)$ respectively. Then

$$
\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)\right)=2 \zeta \cdot \zeta^{\prime}
$$

where $\cdot$ is the intersection form for oscillating curves.

## The NZ symplectic form as a 3D intersection form

## Theorem 1 (M-Purcell)

Let $\zeta, \zeta^{\prime}$ be (abstract) oscillating curves on $\bar{M}$, with combinatorial holonomies $h(\zeta), h\left(\zeta^{\prime}\right)$ respectively. Then

$$
\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)\right)=2 \zeta \cdot \zeta^{\prime}
$$

where $\cdot$ is the intersection form for oscillating curves.
Note:

- $h(\zeta)$ only counts $a, b, c$ contributions along boundary tori, not in interior!



## The NZ symplectic form as a 3D intersection form

## Theorem 1 (M-Purcell)

Let $\zeta, \zeta^{\prime}$ be (abstract) oscillating curves on $\bar{M}$, with combinatorial holonomies $h(\zeta), h\left(\zeta^{\prime}\right)$ respectively. Then

$$
\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)\right)=2 \zeta \cdot \zeta^{\prime}
$$

where $\cdot$ is the intersection form for oscillating curves.
Note:

- $h(\zeta)$ only counts $a, b, c$ contributions along boundary tori, not in interior!
- $\omega$ counts intersections in triangles... but also fake intersections in distinct triangles of a polyhedron!



## Symplectic basis

## Theorem 2 (M-Purcell)

We can construct oscillating curves $\Gamma_{1}, \ldots, \Gamma_{N-\mathfrak{c}}$ such that

$$
\begin{gathered}
h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right) \\
h\left(\Gamma_{k}\right), h\left(C_{k}\right) \quad \text { for } j=1, \ldots, \mathfrak{c}, \text { and }
\end{gathered}
$$

form a symplectic basis* for $V$. (*Up to factors of 2.)

## Symplectic basis

## Theorem 2 (M-Purcell)

We can construct oscillating curves $\Gamma_{1}, \ldots, \Gamma_{N-c}$ such that

$$
\begin{gathered}
h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{r}_{j}\right) \\
h\left(\Gamma_{k}\right), h\left(C_{k}\right) \quad \text { for } k=1, \ldots, \mathfrak{c}, \text { and } \\
k=1, \ldots-\mathfrak{c}
\end{gathered}
$$

form a symplectic basis* for $V$. (*Up to factors of 2. )
After theorem 1, need to find oscillating curves $\Gamma_{j}$ such that

$$
\Gamma_{j} \cdot \mathfrak{m}_{k}=\Gamma_{j} \cdot \mathfrak{l}_{k}=0, \quad \Gamma_{j} \cdot C_{k}=\delta_{j k} .
$$

## Symplectic basis

## Theorem 2 (M-Purcell)

We can construct oscillating curves $\Gamma_{1}, \ldots, \Gamma_{N-\mathfrak{c}}$ such that

$$
\begin{gathered}
h\left(\mathfrak{m}_{j}\right), h\left(\mathfrak{l}_{j}\right) \text { for } j=1, \ldots, \mathfrak{c}, \text { and } \\
h\left(\Gamma_{k}\right), h\left(C_{k}\right) \text { for } k=1, \ldots, N-\mathfrak{c}
\end{gathered}
$$

form a symplectic basis* for $V$. (*Up to factors of 2.)
After theorem 1, need to find oscillating curves $\Gamma_{j}$ such that

$$
\Gamma_{j} \cdot \mathfrak{m}_{k}=\Gamma_{j} \cdot \mathfrak{l}_{k}=0, \quad \Gamma_{j} \cdot C_{k}=\delta_{j k} .
$$



## Symplectic basis example: Whitehead link

The Whitehead link complement has a decomposition into 5 ideal tetrahedra.

## Symplectic basis example: Whitehead link

The Whitehead link complement has a decomposition into 5 ideal tetrahedra.
One cusp is triangulated as shown.


## Applications to hyperbolic geometry

Link complements often have hyperbolic structures (Thurston).

## Applications to hyperbolic geometry

Link complements often have hyperbolic structures (Thurston).

- A unique complete hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.


## Applications to hyperbolic geometry

Link complements often have hyperbolic structures (Thurston).

- A unique complete hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

Thurston approach (1980s):

## Applications to hyperbolic geometry

Link complements often have hyperbolic structures (Thurston).

- A unique complete hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

Thurston approach (1980s):

- Each ideal tetrahedron $\Delta_{i}$ has a shape parameter $z_{i}$ (cross ratio of 4 ideal vertices).


## Applications to hyperbolic geometry

Link complements often have hyperbolic structures (Thurston).

- A unique complete hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

Thurston approach (1980s):

- Each ideal tetrahedron $\Delta_{i}$ has a shape parameter $z_{i}$ (cross ratio of 4 ideal vertices).
- There are natural shape parameters $z_{i}, z_{i}^{\prime}, z_{i}^{\prime \prime}$ for $a, b, c$ edges (all related).


## Applications to hyperbolic geometry

Link complements often have hyperbolic structures (Thurston).

- A unique complete hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

Thurston approach (1980s):

- Each ideal tetrahedron $\Delta_{i}$ has a shape parameter $z_{i}$ (cross ratio of 4 ideal vertices).
- There are natural shape parameters $z_{i}, z_{i}^{\prime}, z_{i}^{\prime \prime}$ for $a, b, c$ edges (all related).
- In particular $z_{i} z_{i}^{\prime} z_{i}^{\prime \prime}=-1$ so we can use $z, z^{\prime}$ only.


## Applications to hyperbolic geometry

Link complements often have hyperbolic structures (Thurston).

- A unique complete hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

Thurston approach (1980s):

- Each ideal tetrahedron $\Delta_{i}$ has a shape parameter $z_{i}$ (cross ratio of 4 ideal vertices).
- There are natural shape parameters $z_{i}, z_{i}^{\prime}, z_{i}^{\prime \prime}$ for $a, b, c$ edges (all related).
- In particular $z_{i} z_{i}^{\prime} z_{i}^{\prime \prime}=-1$ so we can use $z, z^{\prime}$ only.
- Hyperbolic structures can be found by solving gluing equations, one for each edge $E$ :

$$
\prod \quad z=1
$$

$z$ parameters around $E$

## Applications to hyperbolic geometry

Link complements often have hyperbolic structures (Thurston).

- A unique complete hyperbolic structure.
- A 1-complex-parameter family of incomplete deformations.

Thurston approach (1980s):

- Each ideal tetrahedron $\Delta_{i}$ has a shape parameter $z_{i}$ (cross ratio of 4 ideal vertices).
- There are natural shape parameters $z_{i}, z_{i}^{\prime}, z_{i}^{\prime \prime}$ for $a, b, c$ edges (all related).
- In particular $z_{i} z_{i}^{\prime} z_{i}^{\prime \prime}=-1$ so we can use $z, z^{\prime}$ only.
- Hyperbolic structures can be found by solving gluing equations, one for each edge $E$ :

$$
\prod \quad z=1
$$

$z$ parameters around $E$

- Longitude and meridian have holonomy $L, M$ which can be expressed as products of $z_{i}, z_{i}^{\prime}$ variables.


## Applications to hyperbolic geometry

Cooper-Culler-Gilet-Long-Shalen (1994), Champanerkar (2003):

- $L, M$ satisfy a polynomial relation, the A-polynomial $A(L, M)=0$.


## Applications to hyperbolic geometry

Cooper-Culler-Gilet-Long-Shalen (1994), Champanerkar (2003):

- $L, M$ satisfy a polynomial relation, the A-polynomial $A(L, M)=0$.
Neumann-Zagier (1985):
- Combinatorial holonomy $h(C)$ of a closed curve $C$ on a boundary torus is closely related to its geometric holonomy in a hyperbolic structure.
- Roughly, $a_{i}, b_{i}, c_{i}$ components of combinatorial holonomy of $h(C) \in V$ are exponents of $z_{i}, z_{i}^{\prime}, z_{i}^{\prime \prime}$ in holonomy of $C$.


## Applications to hyperbolic geometry

Cooper-Culler-Gilet-Long-Shalen (1994), Champanerkar (2003):

- L,M satisfy a polynomial relation, the A-polynomial $A(L, M)=0$.
Neumann-Zagier (1985):
- Combinatorial holonomy $h(C)$ of a closed curve $C$ on a boundary torus is closely related to its geometric holonomy in a hyperbolic structure.
- Roughly, $a_{i}, b_{i}, c_{i}$ components of combinatorial holonomy of $h(C) \in V$ are exponents of $z_{i}, z_{i}^{\prime}, z_{i}^{\prime \prime}$ in holonomy of $C$.
Dimofte (2013):
- With a symplectic basis, we can change variables from $z_{i}, z_{i}^{\prime}, z_{i}^{\prime \prime} \ldots$


## Applications to hyperbolic geometry

Cooper-Culler-Gilet-Long-Shalen (1994), Champanerkar (2003):

- L,M satisfy a polynomial relation, the A-polynomial $A(L, M)=0$.
Neumann-Zagier (1985):
- Combinatorial holonomy $h(C)$ of a closed curve $C$ on a boundary torus is closely related to its geometric holonomy in a hyperbolic structure.
- Roughly, $a_{i}, b_{i}, c_{i}$ components of combinatorial holonomy of $h(C) \in V$ are exponents of $z_{i}, z_{i}^{\prime}, z_{i}^{\prime \prime}$ in holonomy of $C$.
Dimofte (2013):
- With a symplectic basis, we can change variables from $z_{i}, z_{i}^{\prime}, z_{i}^{\prime \prime} \ldots$
- Write equations for hyperbolic structure in terms of new variables...


## Applications to hyperbolic geometry

Cooper-Culler-Gilet-Long-Shalen (1994), Champanerkar (2003):

- L,M satisfy a polynomial relation, the A-polynomial $A(L, M)=0$.
Neumann-Zagier (1985):
- Combinatorial holonomy $h(C)$ of a closed curve $C$ on a boundary torus is closely related to its geometric holonomy in a hyperbolic structure.
- Roughly, $a_{i}, b_{i}, c_{i}$ components of combinatorial holonomy of $h(C) \in V$ are exponents of $z_{i}, z_{i}^{\prime}, z_{i}^{\prime \prime}$ in holonomy of $C$.
Dimofte (2013):
- With a symplectic basis, we can change variables from $z_{i}, z_{i}^{\prime}, z_{i}^{\prime \prime} \ldots$
- Write equations for hyperbolic structure in terms of new variables...
- $\gamma_{E}$ (for edges $E$ ), L, M (longitude/meridian holonomy).


## Applications to hyperbolic geometry

Howie-M-Purcell:

- Resulting equations are Ptolemy equations, one for each tetrahedron:

$$
\gamma_{03} \gamma_{12}= \pm L^{\bullet} M^{\bullet} \gamma_{01} \gamma_{23} \pm L^{\bullet} M^{\bullet} \gamma_{02} \gamma_{13}
$$

(Very similar to enhanced Ptolemy variety of Zickert 2016.)


## Applications to hyperbolic geometry

Howie-M-Purcell:

- Resulting equations are Ptolemy equations, one for each tetrahedron:

$$
\gamma_{03} \gamma_{12}= \pm L^{\bullet} M^{\bullet} \gamma_{01} \gamma_{23} \pm L^{\bullet} M^{\bullet} \gamma_{02} \gamma_{13}
$$

(Very similar to enhanced Ptolemy variety of Zickert 2016.)


Howie-M-Purcell-Thompson, Thompson:

- These equations are often tractable! Like cluster algebras!
- Can sometimes obtain explicit formulas for A-polynomial.


## Applications to hyperbolic geometry

Howie-M-Purcell:

- Resulting equations are Ptolemy equations, one for each tetrahedron:

$$
\gamma_{03} \gamma_{12}= \pm L^{\bullet} M^{\bullet} \gamma_{01} \gamma_{23} \pm L^{\bullet} M^{\bullet} \gamma_{02} \gamma_{13}
$$

(Very similar to enhanced Ptolemy variety of Zickert 2016.)


Howie-M-Purcell-Thompson, Thompson:

- These equations are often tractable! Like cluster algebras!
- Can sometimes obtain explicit formulas for A-polynomial. M-Purcell (in progress):
- The $\gamma$ variables have an interpretation as complex lambda lengths in spin hyperbolic geometry.


## Oscillating curves and double covers

An oscillating curve $\gamma$ lives on the Heegaard surface $\Sigma$. It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.

## Oscillating curves and double covers

An oscillating curve $\gamma$ lives on the Heegaard surface $\Sigma$. It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.
"Bipartite" double cover:

- analogous to bipartite double cover of a graph


## Oscillating curves and double covers

An oscillating curve $\gamma$ lives on the Heegaard surface $\Sigma$. It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.
"Bipartite" double cover:

- analogous to bipartite double cover of a graph
- two copies $(+,-)$ of each cusp
- tubes around edges of $\mathcal{T}$ connect + to - copies of cusp


## Oscillating curves and double covers

An oscillating curve $\gamma$ lives on the Heegaard surface $\Sigma$. It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.
"Bipartite" double cover:

- analogous to bipartite double cover of a graph
- two copies $(+,-)$ of each cusp
- tubes around edges of $\mathcal{T}$ connect + to - copies of cusp
- $\widetilde{\gamma}$ is oriented as $\pm \gamma$ on $\pm$ cusps


## Oscillating curves and double covers

An oscillating curve $\gamma$ lives on the Heegaard surface $\Sigma$. It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.
"Bipartite" double cover:

- analogous to bipartite double cover of a graph
- two copies (+, -) of each cusp
- tubes around edges of $\mathcal{T}$ connect + to - copies of cusp
- $\tilde{\gamma}$ is oriented as $\pm \gamma$ on $\pm$ cusps

Joint in progress with Huang \& Purcell:

- $\tilde{\gamma} \in H_{1}^{-}(\widetilde{\Sigma})$, the $(-1)$-eigenspace for involution on $\widetilde{\Sigma}$


## Oscillating curves and double covers

An oscillating curve $\gamma$ lives on the Heegaard surface $\Sigma$. It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.
"Bipartite" double cover:

- analogous to bipartite double cover of a graph
- two copies (+, -) of each cusp
- tubes around edges of $\mathcal{T}$ connect + to - copies of cusp
- $\tilde{\gamma}$ is oriented as $\pm \gamma$ on $\pm$ cusps

Joint in progress with Huang \& Purcell:

- $\widetilde{\gamma} \in H_{1}^{-}(\widetilde{\Sigma})$, the $(-1)$-eigenspace for involution on $\widetilde{\Sigma}$
- $\omega$ agrees with intersection form on $H_{1}^{-}(\widetilde{\Sigma})$


## Oscillating curves and double covers

An oscillating curve $\gamma$ lives on the Heegaard surface $\Sigma$. It can be lifted to an oriented curve $\widetilde{\gamma}$ on a double cover $\widetilde{\Sigma}$.
"Bipartite" double cover:

- analogous to bipartite double cover of a graph
- two copies (+, -) of each cusp
- tubes around edges of $\mathcal{T}$ connect + to - copies of cusp
- $\tilde{\gamma}$ is oriented as $\pm \gamma$ on $\pm$ cusps

Joint in progress with Huang \& Purcell:

- $\widetilde{\gamma} \in H_{1}^{-}(\widetilde{\Sigma})$, the ( -1 )-eigenspace for involution on $\widetilde{\Sigma}$
- $\omega$ agrees with intersection form on $H_{1}^{-}(\widetilde{\Sigma})$
- Agrees with work of Dimofte-van der Veen: $H_{1}^{-}(\widetilde{\Sigma}) \cong V$.


## More Applications

Garoufalidis-Le, Dimofte, Gukov...

- Quantising the A-polynomial should produce a non-commutative polynomial annihilating coloured Jones polynomials (AJ conjecture).
Also:
- Space of hyperbolic structures (Neumann-Zagier, Choi)
- Hyperbolic volumes of Dehn fillings (Neumann-Zagier)
- Normal surfaces
(Luo, Garoufalidis-Hodgson-Hoffman-Rubinsten)
- Representation theory (Goerner, Zickert, Garoufalidis, ...)
- Chern-Simons theory
(Neumann, Dimofte, Garoufalidis, Gukov, ...)


## Idea of proof of Theorem 1

To show $\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)=2 \zeta \cdot \zeta^{\prime} \ldots\right.$
Express both $\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)\right)$ and $\zeta \cdot \zeta^{\prime}$ as sums over faces.

## Idea of proof of Theorem 1

To show $\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)=2 \zeta \cdot \zeta^{\prime} \ldots\right.$
Express both $\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)\right)$ and $\zeta \cdot \zeta^{\prime}$ as sums over faces.


## Idea of proof of Theorem 1

To show $\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)=2 \zeta \cdot \zeta^{\prime} \ldots\right.$
Express both $\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)\right)$ and $\zeta \cdot \zeta^{\prime}$ as sums over faces.


## Idea of proof of Theorem 1

$$
\begin{aligned}
& 2 \zeta \cdot \zeta^{\prime}=\sum_{\Delta} n_{\Delta(a b)} n_{\Delta(b c)}^{\prime}-n_{\Delta(b c)} n_{\Delta(a b)}^{\prime} \\
& +\sum_{0, \widehat{O}(k, l, m)} n_{k}\left(n_{k l}^{\prime}-n_{k m}^{\prime}+\hat{n}_{k l}^{\prime}-\widehat{n}_{k m}^{\prime}\right) \\
& +n_{k}^{\prime}\left(-n_{k l}+n_{k m}-\hat{n}_{k l}+\hat{n}_{k m}\right) \\
& +\sum_{0, \widehat{O}} \sum_{(k, l, m)}-n_{k l} n_{k m}^{\prime}+n_{k m} n_{k l}^{\prime}-\hat{n}_{k m} \hat{n}_{k l}^{\prime}+\hat{n}_{k l} \hat{n}_{k m}^{\prime} \\
& +\sum_{0, \widehat{O}(k, l, m)} n_{k \mid} n_{\mid k}^{\prime}-n_{l k} n_{k \mid}^{\prime}-\widehat{n}_{k k} \hat{n}_{\mid k}^{\prime}+\widehat{n}_{l k} \hat{n}_{k l}^{\prime} .
\end{aligned}
$$

$$
\begin{aligned}
\omega\left(h(\zeta), h\left(\zeta^{\prime}\right)\right) & =\sum_{\Delta} n_{\Delta(a b)} n_{\Delta(b c)}^{\prime}-n_{\Delta(b c)} n_{\Delta(a b)}^{\prime} \\
& +\sum_{0} \sum_{(k, l, m)} n_{k}\left(n_{l k}^{\prime}-n_{m k}^{\prime}\right)-n_{k}^{\prime}\left(n_{l k}-n_{m k}\right) \\
+ & \sum_{0} \sum_{(k, l, m)}\left(n_{k l}+n_{k m}\right)\left(n_{l k}^{\prime}+n_{l m}^{\prime}\right) \\
& \quad-\left(n_{k l}^{\prime}+n_{k m}^{\prime}\right)\left(n_{l k}+n_{l m}\right)
\end{aligned}
$$

Show these are equal!

## Why the weird intersection form for oscillating curves?



## Thanks for listening!

