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Overview

This talk
• attempts to explain the picture on the title slide!,

• builds on work of Roger Penrose and Wolfgang Rindler
from the 1980s on Spinors and Spacetime,
• finding some nice hyperbolic geometry.

Paper on arXiv soon. Email me if you want an advance copy!

Daniel.Mathews@monash.edu
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Penrose–Rindler

General ideology: don’t use vectors, use spinors for everything!

Cast of characters:
• Spinor or spin vectors: elements of C2.
• Hermitian matrices: A = A∗.
• Minkowski space R3,1: coordinates (T ,X ,Y ,Z ), metric

dT 2 − dX 2 − dY 2 − dZ 2.
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How to do this?

Spinors
φ1−→ 2× 2 Hermitian

matrices
φ2−→ Minkowski space

C2 H R3,1

φ1

[
ξ
η

]
=

[
ξ
η

] [
ξ η

]
=

[
|ξ|2 ξη

ηξ |η|2
]

• Image φ1 = Herm. matrices with det 0 & trace ≥ 0
• φ1(κ) = φ1(κ′)⇔ κ = eiθκ′

φ2

[
T + Z X + iY
X − iY T − Z

]
= 2(T ,X ,Y ,Z )

• Linear isomorphism: “H is R3,1”, “det = norm”.
• Image φ (= φ2 ◦ φ1) = pos. light cone L+

(T 2 − X2 − Y 2 − Z 2 = 0, T ≥ 0)
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We understand some of the picture now

From κ ∈ C2, get a point φ(κ) = w on L+.



Putting the spin in

Pointed null flags
Φ
↗ ↓

Spinors
φ=φ2◦φ1−→ Pos. light cone

C2 L+

Definition (Penrose–Rindler)

A pointed null flag is a point p ∈ L+ together with a 2-plane V
tangent to L+ containing Rp.

Spinoriality:
• Take κ ∈ C2 and consider rotating it: eiθκ.
• φ(eiθκ) is constant but Φ(eiθκ) is not: plane V rotates.
• As κ rotates by θ, V rotates by 2θ.
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Why you should read papers in alphabetical order

Robert Penner

• To w ∈ L+ associate the plane 〈w , x〉 = 1
• The plane intersects hyperbolic space H3

(T 2 − X2 − Y 2 − Z 2 = 1, T > 0) in a horosphere

κ ∈ C2 Penrose–Rindler−→ Pointed null flags
(= p ∈ L+

and flag)
Penner−→ Horospheres with · · ·
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New developments

Theorem (M.)

There is a natural (SL(2,C)-equivariant) bijection
C2 \ {0} −→ {Horospheres in H3 with spin directions}.

More! Spin vectors have a natural antisymmetric bilinear form,

{κ, ω} = det(κ, ω),

and between two horospheres there is a standard notion of
distance d . . . and angle θ (mod 4π) between their spin
decorations.

Theorem (M.)

{κ, ω} = e
d+iθ

2
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New developments

Consequences:
• Ptolemy theorem for hyperbolic ideal tetrahedra
• New methods to compute hyperbolic structures on

3-manifolds (joint with J. Purcell)

• Equivalence of cluster algebras (Grassmannians / hyp. surfaces)

• . . .

Thanks for listening!
Daniel.Mathews@monash.edu
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