The geometry of spinors in Minkowski space

Daniel V. Mathews

Monash University Daniel.Mathews@monash.edu

ANZAMP 7 February 2023

• attempts to explain the picture on the title slide!,

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler from the 1980s on <u>Spinors and Spacetime</u>,

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler from the 1980s on <u>Spinors and Spacetime</u>,
- finding some nice hyperbolic geometry.

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler from the 1980s on <u>Spinors and Spacetime</u>,
- finding some nice hyperbolic geometry.

Paper on arXiv soon. Email me if you want an advance copy!

Daniel.Mathews@monash.edu

Penrose-Rindler

General ideology: don't use vectors, use spinors for everything!

Penrose-Rindler

General ideology: don't use vectors, use spinors for everything!

Cast of characters:

- Spinor or spin vectors: elements of C².
- <u>Hermitian matrices</u>: $A = A^*$.
- Minkowski space $\mathbb{R}^{3,1}$: coordinates (T, X, Y, Z), metric $dT^2 dX^2 dY^2 dZ^2$.

$$\begin{array}{cccc} \text{Spinors} & \stackrel{\phi_1}{\longrightarrow} & \stackrel{2 \times 2 \text{ Hermitian}}{\text{matrices}} & \stackrel{\phi_2}{\longrightarrow} & \text{Minkowski space} \\ \mathbb{C}^2 & & \mathcal{H} & & \mathbb{R}^{3,1} \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\$$

$$\begin{array}{cccc} \text{Spinors} & \stackrel{\phi_1}{\longrightarrow} & \stackrel{2 \times 2 \text{ Hermitian}}{\text{matrices}} & \stackrel{\phi_2}{\longrightarrow} & \text{Minkowski space} \\ \mathbb{C}^2 & \mathcal{H} & & \mathbb{R}^{3,1} \end{array}$$

$$\phi_1 \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} \overline{\xi} & \overline{\eta} \end{bmatrix} = \begin{bmatrix} |\xi|^2 & \xi \overline{\eta} \\ \eta \overline{\xi} & |\eta|^2 \end{bmatrix}$$

$$\begin{array}{cccc} \text{Spinors} & \stackrel{\phi_1}{\longrightarrow} & \begin{array}{c} 2 \times 2 \text{ Hermitian} & \stackrel{\phi_2}{\longrightarrow} & \text{Minkowski space} \\ & & & \\ \mathbb{C}^2 & & \mathcal{H} & & \\ &$$

$$\phi_{1} \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} \overline{\xi} & \overline{\eta} \end{bmatrix} = \begin{bmatrix} |\xi|^{2} & \xi\overline{\eta} \\ \eta\overline{\xi} & |\eta|^{2} \end{bmatrix}$$

•
$$\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = \boldsymbol{e}^{i\theta}\kappa'$$

$$\begin{array}{cccc} \text{Spinors} & \stackrel{\phi_1}{\longrightarrow} & \begin{array}{c} 2 \times 2 \text{ Hermitian} & \stackrel{\phi_2}{\longrightarrow} & \text{Minkowski space} \\ & & \\ \mathbb{C}^2 & & \\ \mathcal{H} & & \\ \end{array} \end{array} \xrightarrow{\mathcal{P}_2} & \begin{array}{c} \text{Minkowski space} & \\ \mathbb{R}^{3,1} & \\ \end{array}$$

$$\phi_1 \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} \overline{\xi} & \overline{\eta} \end{bmatrix} = \begin{bmatrix} |\xi|^2 & \xi\overline{\eta} \\ \eta\overline{\xi} & |\eta|^2 \end{bmatrix}$$

•
$$\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = \mathbf{e}^{i\theta}\kappa$$

$$\phi_2 \begin{bmatrix} T+Z & X+iY\\ X-iY & T-Z \end{bmatrix} = 2(T,X,Y,Z)$$

$$\begin{array}{cccc} \text{Spinors} & \stackrel{\phi_1}{\longrightarrow} & \begin{array}{c} 2 \times 2 \text{ Hermitian} & \stackrel{\phi_2}{\longrightarrow} & \text{Minkowski space} \\ & & \\ \mathbb{C}^2 & & \\ \mathcal{H} & & \\ \end{array} \end{array} \xrightarrow{\mathcal{P}^3,1} \end{array}$$

$$\phi_1 \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} \overline{\xi} & \overline{\eta} \end{bmatrix} = \begin{bmatrix} |\xi|^2 & \xi\overline{\eta} \\ \eta\overline{\xi} & |\eta|^2 \end{bmatrix}$$

• Image ϕ_1 = Herm. matrices with det 0 & trace \geq 0

•
$$\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = \mathbf{e}^{i\theta}\kappa$$

$$\phi_2 \begin{bmatrix} T+Z & X+iY\\ X-iY & T-Z \end{bmatrix} = 2(T,X,Y,Z)$$

• Linear isomorphism: " $\mathcal{H} \underline{is} \mathbb{R}^{3,1}$ ", "det = norm".

$$\begin{array}{cccc} \text{Spinors} & \stackrel{\phi_1}{\longrightarrow} & \begin{array}{c} 2 \times 2 \text{ Hermitian} & \stackrel{\phi_2}{\longrightarrow} & \text{Minkowski space} \\ & & \\ \mathbb{C}^2 & & \\ \mathcal{H} & & \\ \end{array} \end{array} \xrightarrow{\mathcal{P}^3,1} \end{array}$$

$$\phi_1 \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} \overline{\xi} & \overline{\eta} \end{bmatrix} = \begin{bmatrix} |\xi|^2 & \xi\overline{\eta} \\ \eta\overline{\xi} & |\eta|^2 \end{bmatrix}$$

•
$$\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = \mathbf{e}^{i\theta}\kappa'$$

$$\phi_2 \begin{bmatrix} T+Z & X+iY\\ X-iY & T-Z \end{bmatrix} = 2(T,X,Y,Z)$$

- Linear isomorphism: " $\mathcal{H} \text{ is } \mathbb{R}^{3,1}$ ", "det = norm".
- Image $\phi (= \phi_2 \circ \phi_1) = \text{pos. light cone } L^+ (\tau^2 x^2 y^2 z^2 = 0, \tau \ge 0)$

We understand some of the picture now

From $\kappa \in \mathbb{C}^2$, get a point $\phi(\kappa) = w$ on L^+ .

Definition (Penrose-Rindler)

A <u>pointed null flag</u> is a point $p \in L^+$ together with a 2-plane V tangent to L^+ containing $\mathbb{R}p$.

We understand half the picture now

From $\kappa \in \mathbb{C}^2$, get a point on L^+ and a pointed null flag there.

Definition (Penrose-Rindler)

A <u>pointed null flag</u> is a point $p \in L^+$ together with a 2-plane V tangent to L^+ containing $\mathbb{R}p$.

Definition (Penrose-Rindler)

A <u>pointed null flag</u> is a point $p \in L^+$ together with a 2-plane V tangent to L^+ containing $\mathbb{R}p$.

Spinoriality:

- Take $\kappa \in \mathbb{C}^2$ and consider rotating it: $e^{i\theta}\kappa$.
- $\phi(e^{i\theta}\kappa)$ is constant but $\Phi(e^{i\theta}\kappa)$ is not: plane V rotates.
- As κ rotates by θ , V rotates by 2θ .

Why you should read papers in alphabetical order

Robert Penner

Why you should read papers in alphabetical order

• To $w \in L^+$ associate the plane $\langle w, x \rangle = 1$

• The plane intersects <u>hyperbolic space</u> \mathbb{H}^3 $(\tau^2 - x^2 - y^2 - z^2 = 1, \tau > 0)$ in a <u>horosphere</u>

Robert Penner

Why you should read papers in alphabetical order

• To $w \in L^+$ associate the plane $\langle w, x \rangle = 1$

• The plane intersects <u>hyperbolic space</u> \mathbb{H}^3 $(\tau^2 - x^2 - y^2 - z^2 = 1, \tau > 0)$ in a <u>horosphere</u>

Pointed null flags $\kappa \in \mathbb{C}^2$ Penrose–Rindler Horospheres with ... $(= p \in L^+$ and flag)

Robert Penner

New developments

New developments

Theorem (M.)

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

Theorem (M.)

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

More! Spin vectors have a natural antisymmetric bilinear form,

$$\{\kappa,\omega\} = \det(\kappa,\omega),$$

Theorem (M.)

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

More! Spin vectors have a natural antisymmetric bilinear form,

 $\{\kappa,\omega\} = \det(\kappa,\omega),$

and between two horospheres there is a standard notion of distance d... and angle θ (mod 4π) between their spin decorations.

Theorem (M.)

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

More! Spin vectors have a natural antisymmetric bilinear form,

 $\{\kappa,\omega\} = \det(\kappa,\omega),$

and between two horospheres there is a standard notion of distance d... and angle θ (mod 4π) between their spin decorations.

Theorem (M.)

$$\{\kappa,\omega\} = e^{\frac{d+i\theta}{2}}$$

New developments

Consequences:

- Ptolemy theorem for hyperbolic ideal tetrahedra
- New methods to compute hyperbolic structures on 3-manifolds (joint with J. Purcell)
- Equivalence of cluster algebras (Grassmannians / hyp. surfaces)
- . . .

New developments

Consequences:

• . . .

- Ptolemy theorem for hyperbolic ideal tetrahedra
- New methods to compute hyperbolic structures on 3-manifolds (joint with J. Purcell)
- Equivalence of cluster algebras (Grassmannians / hyp. surfaces)

Thanks for listening!

Daniel.Mathews@monash.edu