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Abstract

Descartes’ circle theorem relates the curvatures of four mutually externally tangent circles,
three “petal” circles around the exterior of a central circle, forming a “3-flower” configuration.
We generalise this theorem to the case of an “n-flower”, consisting of n tangent circles around
the exterior of a central circle, and give an explicit equation satisfied by their curvatures. The
proof uses a spinorial description of horospheres in hyperbolic geometry.

1 Introduction

Descartes’ theorem is a classical result in 2-dimensional Euclidean geometry, relating the curvatures
of four mutually tangent circles (Figure 1) which form a 3-flower in the following sense.

Figure 1: Left, a 3-flower. Right, a 5-flower.

Definition 1.1. Let n ≥ 3. An n-flower consists of a central circle C∞, and n petal circles Cj,
over integers j mod n, so that the Cj are externally tangent to C∞ in order around C∞, and each
Cj is externally tangent to Cj−1 and Cj+1.

Throughout, we denote the curvature of a circle C• by κ•. Descartes’ theorem gives an equation
satisfied by the curvatures in a 3-flower:

(κ∞ + κ1 + κ2 + κ3)2 = 2(κ2
∞ + κ2

1 + κ2
2 + κ2

3). (1.2)

In this paper we present an explicit equation satisfied by the curvatures of an n-flower.
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Generalised Descartes Theorem. Let the circles C∞ and Cj (j ∈ Z/nZ) in an n-flower have
curvatures κ∞, κj respectively. Define m0 and mj for 1 ≤ j ≤ n− 1 as

m0 =

√
κ0

κ∞
+ 1, mj =

√(
κj
κ∞

+ 1

)(
κj−1

κ∞
+ 1

)
− 1. (1.3)

Then for odd n, the following holds:

m2
0 i

2

n−1∏
j=1

(mj − i)−
n−1∏
j=1

(mj + i)

− n−1
2∏
j=1

(
m2

2j−1 + 1
)

= 0. (1.4)

For even n, the following holds:

i

2

n−1∏
j=1

(mj − i)−
n−1∏
j=1

(mj + i)

− n−2
2∏
j=1

(
m2

2j + 1
)

= 0. (1.5)

In other words, from the curvatures κ• we define auxiliary variables m• via (1.3), and the m•
satisfy polynomial equations. Since all κ• > 0, each m• is the square root of a manifestly positive
number and we take m• to be the positive square root.

In (1.4) and (1.5), i is the usual square root of −1. Although complex numbers are crucial to
the proof, in writing these equations they are merely a convenience. After expanding and cancelling
terms, the resulting polynomials have integer coefficients. Indeed, writing [n] for {1, 2, . . . , n}, then
for any subset K ⊆ [n− 1], the term in the product

∏n−1
j=1 (mj ± i) involving precisely the mk with

k ∈ K is given by (±i)n−1−|K|∏
k∈K mk. Such terms come in pairs, one from

∏n−1
j=1 (mj + i) and

one from
∏n−1
j=1 (mj − i). When n − 1 − |K| is even, the terms in each pair are real, equal and

cancel; when n− 1− |K| is odd, say equal to 2l+ 1, then the terms in each pair are imaginary and
conjugate, so since i

2

(
(−i)n−1−|K| − in−1−|K|) = (−1)l, (1.4) and (1.5) can be written as

m2
0

∑
K⊆[n−1]

|K|=n−2l−2

(−1)l
∏
k∈K

mk =

n−1
2∏
j=1

(
m2

2j−1 + 1
)

(1.6)

and ∑
K⊆[n−1]

|K|=n−2l−2

(−1)l
∏
k∈K

mk =

n−2
2∏
j=1

(
m2

2j + 1
)

(1.7)

respectively.
In any case, making the substitutions of (1.3) in (1.4) or (1.5) (or (1.6) or (1.7)) yields an

equation satisfied by the κ•, providing a generalisation of Descartes’ equation (1.2). This equation
involves square roots, but upon multiplying by various conjugates (replacing various m• with −m•)
one may obtain a polynomial relation among the m2

•; after substituting and clearing denominators
one obtains a polynomial relation among the κ•.

In this way, from equation (1.4) with n = 3 one can recover Descartes’ theorem. Similarly, from
(1.5) with n = 4 we obtain the following equation relating the curvatures in a 4-flower:

16κ4
∞ − 8κ2

∞(κ1κ2 + κ2κ3 + κ3κ4 + κ4κ1 + 2κ1κ3 + 2κ2κ4)

+ (κ2
1 + κ2

3)(κ2
2 + κ2

4)− 16κ∞(κ1κ2κ3 + κ2κ3κ4 + κ3κ4κ1 + κ4κ1κ2)

− 12κ1κ2κ3κ4 − 2(κ1κ2 + κ3κ4)(κ2κ3 + κ4κ1) = 0.
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For larger n the polynomials grow rapidly in size and degree.
Flowers are a building block of circle packing theory [25]. It is known from the general theory

of circle packing that once the curvatures of the petals of an n-flower are known, the curvature of
the central circle is determined. Theorem 1 gives an explicit equation for that central curvature.

Overview of proof. The proof proceeds in two steps. First, we convert the problem to one
in hyperbolic geometry. Inverting each petal Cj of an n-flower in the central circle C∞ yields
a collection of circles C̊j internally tangent to C∞: an “inverted flower”. Viewing C∞ as the
boundary of the disc model of the hyperbolic plane, each C̊j appears as a horosphere. It is useful
for our purposes to convert to the upper half plane model, where C∞ becomes R ∪ {∞}, and each
C̊j becomes a horosphere Cj appearing as a circle tangent to R ∪ {∞}. It is not difficult to relate
the Euclidean curvatures κj , κ̊j , κj of the circles Cj , C̊j , Cj to each other.

Second, we use the spinor-horosphere correspondence recently proved by the first author in [15].
Building on work of Penrose–Rindler [20] and Penner [19], this correspondence provides an explicit,
smooth, bijective, SL(2,C)-equivariant correspondence between nonzero 2-component spinors, and
horospheres in hyperbolic 3-space H3, with a certain spinorial decoration. For us, spinors can
be regarded simply as pairs of complex numbers (ξ, η). When ξ, η are real, the correspondence
essentially reduces to 2 dimensions, yielding a correspondence between nonzero (ξ, η) ∈ R2, and
horocycles in the hyperbolic plane H2, which is particularly simple in the upper half plane model.
Under the correspondence, there is a simple way to calculate the distance between horospheres,
and hence to know when they are tangent, using the bilinear form on spinors given by the 2 × 2
determinant. Moreover, the curvatures κ̊j and κj are both straightforward quadratic functions of
ξ, η: they are each given, up to a constant, by the Euclidean square length ξ2 + η2 of (ξ, η).

Thus, the problem reduces to finding a relation among the Euclidean lengths of real 2-dimensional
vectors (ξ, η), given that they satisfy certain bilinear conditions equivalent to the tangency relations
of a flower. The bilinear conditions are essentially that the vectors successively span parallelograms
of area 1. The desired relation is found by introducing complex variables zj = ξj + iηj .

The expressions for the mj in (1.3) arise naturally in calculations with the spinors (ξj , ηj), as
do the various products arising in the equations (1.4) and (1.5). We thus include some further
calculations in Section 5 which help to motivate and explain these expressions, and explain how
(1.4) and (1.5) were found.

Related work. Descartes’ equation dates back to 1643 and we do not attempt to provide
a summary of the history or developments over subsequent centuries; we simply mention some
notable and recent works, and those most closely related to our approach.

Recent historical accounts of the the correspondence between Descartes and Elisabeth of the
Palatinate, in which equation (1.2) first appeared, include [4], [18, pp. 31–33], and [21, pp. 37–38,
73–81]. Equation (1.2) was stated by Yamaji Nushizumi in 1751 [17], and rediscovered several times,
including by Steiner (1826) [24], Beecroft (1842) [3], and Soddy (1936) [22]; the latter restating (1.2)
in poetry.

Numerous generalisations of Descartes’ theorem are known; we mention a few. For instance, in
1936 Gosset generalised the result to n+ 2 mutually tangent spheres in n dimensions, appending a
verse to Soddy’s poem [1]. In 1962 Mauldon generalised these results to spherical and hyperbolic
space [16]. In 2002 Lagarias–Mallows–Wilks [14] further extended these results, relating not only
the curvatures but also the centres of the spheres involved. In 2007, Kocik [9] extended the result
for n+ 2 Euclidean spheres in n dimensions to the case where circles need not be tangent.

Apollonian circle packings, consisting of nested 3-flowers, are a research field in their own right;
see e.g. Graham–Lagarias–Mallows–Wilks–Yan [6] or Aharonov–Stephenson [2] for general back-
ground. These packings have important number-theoretic properties and have seen recent break-
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throughs, e.g. [7]. A special case closely related to our work, and mentioned by the first author
in [15], is that of Ford circles [5]: these arise from integer spinors.

So far as we know, however, none of these works provide a generalisation of Descartes’ theorem
to n-flowers for n > 3. There are certainly results involving flower-like configurations, such as
Soddy’s hexlet [23], but they do not provide an equation relating curvatures.

Flowers being simple examples of circle packings, the general theory of packing applies to them:
see generally Stephenson [25]. In general, from a simplicial 2-complex K triangulating an oriented
surface, circle packing theory studies the existence and uniqueness of circle packings realising K,
in the sense that vertices of K correspond to circles, edges of K correspond to tangencies, and
triangles of K correspond to oriented tangent circle triples. Flowers arise in the simple case when
K is a disc built from n triangles around a central vertex. Perhaps most relevantly for our purposes,
the “boundary value theorem” of [25, thm. 11.6] provides that when K is topologically a disc, the
curvatures of circles at boundary vertices, and branching structure, may be specified arbitrarily, and
then a unique packing (in Eudlicean or hyperbolic geometry) exists. Our result gives the Euclidean
curvature of the interior circle in the flower case.

To the best of our knowledge, perhaps the existing works most closely related to our approach
are those of Kocik, who in several papers uses spinors to describe Descartes circle configurations and
Apollonian packings [8–13]. However in those works, spinors are complex numbers (defined up to
sign) describing tangencies between pairs of circles. This is significantly different from our approach.
We also mention that the linear algebra and bilinear forms of Lagarias–Mallows–Wilks [14] and
Aharonov–Stephenson [2] are of a somewhat similar flavour.

Structure of this paper. Section 2 provides relevant background forming the basis of this
paper. Section 3 demonstrates how the n-flower can be linked to horocycles in hyperbolic geometry.
Section 4 then equips these horocycles with spinor coordinates in C2 by applying a correspondence
between spinors and horospheres. Section 5 performs calculations on spinors, which are not neces-
sary for but motivate the main result. Finally, Section 6 proves the generalised Descartes theorem.

Acknowledgments. The authors are supported by Australian Research Council grant DP210103136.

2 Background

2.1 Spinors and Horospheres

We state here results of the first author in [15] required in the sequel.
In [20], Penrose and Rindler consider 2-component spinors (ξ, η) ∈ C2 and provide them with

interpretations in Minkowski space, and more generally in relativity theory. They associate to such
a spinor a null flag, consisting of a ray on the future light cone, together with a spinorial tangent
plane to the light cone. There is a natural bilinear form {·, ·} on such spinors, given by the standard
complex symplectic form on C2: given two spinors α = (ξ, η) and α′ = (ξ′, η′),

{α, α′} = det

(
ξ ξ′

η η′

)
= ξη′ − ηξ′.

In [19], Penner associates to each point on the future light cone a horocycle in the hyperboloid model
of hyperbolic space. In [15], the first author combined these associations to prove the following.

Theorem 2.1. There is an explicit, smooth, bijective, SL(2,C)-equivariant correspondence between
nonzero spinors (ξ, η) ∈ C2, and horospheres H in hyperbolic 3-space decorated with spin-directions.
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We briefly explain the notions in this theorem; see [15, sec. 4] for further details.
A decoration on a horosphere is a parallel oriented line field on it, i.e., roughly speaking, a

direction along it. Such fields or directions are well defined because a horosphere is isometric to the
Euclidean plane. A decoration on a horosphere then lifts to two different spin decorations as follows.
A parallel oriented line field on a horosphere H can be equivalently described by a parallel unit
tangent vector field v on H. From v we can form inward and outward right-handed orthonormal
frame fields on H given by f in = (N in, v,N in × v) and fout = (Nout, v,Nout × v), where N in, Nout

are respectively inward and outward normal vector fields on H. Each of these two frame fields has
two continuous lifts to the spin double cover of the frame bundle, which we call inward and outward
spin decorations. We define an inward spin decoration W in and an outward spin decoration W out

to be associated if they are related by a specific rotation around v. A spin decoration on H is then
defined as a pair (W in,W out) of associated inward and outward spin decorations.

The action of SL(2,C) on C2 is by matrix-vector multiplication. The action of SL(2,C) on
horospheres is a lift of the standard action of PSL(2,C) on hyperbolic 3-space by isometries (indeed,
PSL(2,C) ∼= Isom+(H3), the orientation-preserving isometry group of hyperbolic 3-space). Each
isometry in PSL(2,C) has two lifts to SL(2,C), which are negatives of each other. Just as with any
universal cover, a lift of an isometry φ from PSL(2,C) to SL(2,C) may be specified by a path in
PSL(2,C) from the identity to φ; this path of isometries, applied to a spin-decorated horosphere,
yields a path of spin-decorated horospheres; this determines the action of SL(2,C) on spin-decorated
horospheres.

In the upper half space model, given in standard fashion as

U3 = {(x, y, z) | z > 0} = {(x+ yi, z) | z > 0} = C× R+

with Riemannian metric ds2 = (dx2 + dy2 + dz2)/z2, the explicit correspondence of Theorem 2.1 is
particularly simple [15, prop. 3.9]. The horosphere H corresponding to the spinor (ξ, η) has centre
ξ/η, the centre of a horosphere being its point at infinity. If ξ/η ∈ C, then H appears in the model
as a Euclidean sphere of diameter 1/|η|2. A decoration on a horosphere can be given by a tangent
direction to H at a point; at the point of H with maximum z-coordinate, tangent directions are
parallel to C and are conveniently specified by complex numbers (the “north pole specification” of
a direction). The decoration on the horosphere H corresponding to (ξ, η) is north-pole specified by
i/η2. (The spinor (−ξ,−η) yields the same decoration on the same horosphere, but a different spin
decoration.) If ξ/η = ∞ then H appears in the model as a horizontal plane at Euclidean height
|ξ|2. Since such a horosphere appears parallel to C, a direction can again be specified by an element
of C. The decoration on this H, corresponding to (ξ, η), is then specified by iξ2.

We will be considering reducing this situation to 2 dimensions, as discussed in [15, sec. 5]. The
points (x, y, z) of the upper half space model U3 with y = 0 form the upper half plane model of the
hyperbolic plane U2. The boundary at infinity of U2 is then given by ∂U2 = R∪{∞} ⊂ C∪{∞} =
∂U3. Horospheres in U3 centred at points of R ∪ {∞} correspond bijectively to horocycles in U2,
with the bijection given by intersecting with U2. In this way we may regard horocycles H of U2 as
arising from horospheres H̃ of U3 centred at R ∪ {∞}.

Given a horocycle H in U2 ⊂ U3, a planar spin decoration on H is a spin decoration on H̃
whose decoration is (north-pole) specified by the direction i. A spinor (ξ, η) describes a planar spin
decoration on a horocycle if and only if ξ and η are both real [15, lem. 5.6]. Each horocycle H of
U2 has precisely two planar spin decorations. These two spin decorations are related to each other
by a 2π rotation. The corresponding spinors are negatives of each other. Thus, roughly speaking,
reducing to 2 dimensions amounts to considering real spinors.
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2.2 Lambda Lengths

Penner [19] introduced the notion of λ-length between horocycles in the hyperbolic plane. Take the
geodesic γ connecting the centres of two horocycles and consider the segment external to both; if
they overlap, then consider the segment within the overlap and call the distance negative. If the
hyperbolic length of this segment is ρ, the λ-length is defined as eρ/2.

In [15] the first author generalised λ-lengths to 3 dimensions. Given two spin-decorated horo-
spheres H1, H2 with distinct centres z1, z2, we may measure a complex distance from H1 to H2 as
follows. Let γ be the oriented geodesic from z1 to z2. Let ρ be the signed distance along γ (using the
orientation of γ) from p1 = γ ∩H1 to p2 = γ ∩H2. The spin decoration on H1 contains an inward
spin decoration W in

1 , and the spin decoration H2 contains an outward spin decoration W out
2 . These

spin decorations W in
1 ,W out

2 project to frames f in1 , fout2 at p1, p2 respectively, whose first vectors are
positively tangent to γ. The two frames are then related by a signed translation of length ρ along
γ, followed by a rotation of some angle θ about γ. Lifting to spin decorations, this θ is well defined
modulo 4π. The complex distance from H1 to H2 is then ρ+ iθ, and the complex λ-length from H1

to H2 is

λ12 = exp

(
ρ+ iθ

2

)
It turns out that the complex λ-length is antisymmetric: λ12 = −λ21. See [15, sec. 4] for further
details.

If we have two horocycles H1, H2 in U2 with planar spin decorations, then the frames f in1 , fout2

have their first vectors pointing along γ and their second vectors pointing the direction of the
decoration, i.e. normal to U2 in the direction specified by i, or equivalently using the standard
coordinates (x, y, z), in the positive y-direction. It follows that θ = 0 modulo 2π. Then we observe
that the complex λ-length from H1 to H2 is real, taking a positive value if θ = 0 mod 4π and a
negative value if θ = 2π mod 4π. Penner’s 2-dimensional λ-length is the positive value.

In [15], the first author showed that complex λ-lengths are given by spinors using Penrose and
Rindler’s bilinear form.

Theorem 2.2. Consider two spinors κ1, κ2, corresponding to spin-decorated horospheres H1, H2.
Then the complex λ-length λ12 from H1 to H2 is given by

λ12 = {κ1, κ2}.

Indeed, in the case where κ1, κ2 are real spinors, describing horocycles with planar spin decora-
tions, we observe that {κ1, κ2} is real, as is λ12. The complex λ-length λ12 is positive or negative.
Replacing one of the κj with −κj has the effect of changing the spin decoration on Hj , adding 2π to
θ (mod 4π) and changing the sign of λ12 (by introducing a factor of eiπ = −1). Similarly, replacing
(κ1, κ2) with (κ2, κ1) changes the sign of the complex λ-length.

Complex λ-lengths have several nice properties. For instance, given four horocycles (whose λ-
lengths measure line segments forming an inscribed quadrilateral inside the disk), their λ-lengths
satisfy Ptolemy’s relation

λ12λ34 + λ23λ14 = λ13λ24.

Importantly for our purposes, the λ-length between two horocycles (with planar spin decora-
tions) is ±1 if and only if the horocycles are tangent. This gives a simple condition for checking a
purported n-flower.
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3 From Flowers to Horocycles

Consider an n-flower (n ≥ 3) in the Euclidean plane, as in Definition 1.1. Let each circle C• have
radius r• and curvature κ• = 1/r•.

Dilating the entire configuration by a factor of κ∞ sends the curvature κ∞ 7→ 1 and, for each
petal circle, κj 7→ κj/κ∞. We may thus assume the central circle has unit radius, so that κ∞ = 1,
and for each petal circle Cj write κj for the resulting curvature.

Invert the configuration in the unit circle C∞. Each Cj is mapped to a circle C̊j internally
tangent to C∞. For each j mod n then C̊j is externally tangent to C̊j−1 and C̊j+1. See Figure 2.
We denote by r̊j and κ̊j the (Euclidean) radius and curvature of C̊j respectively. (The superscript
ring notation is intended to indicate “inside the unit disc”.)

Figure 2: An inverted 3-flower.

Lemma 3.1. For each j,
κ̊j = κj + 2.

Proof. Let O denote the centre of C∞. The furthest point A from O on Cj has distance 1 + 2rj
from O. The closest point A′ to O on C̊j has distance 1− 2̊rj from O. See Figure 3.

O
A

A′
r̊ r

Figure 3: Inversion of a petal circle.

Inversion in C∞ sends A 7→ A′, so

(1 + 2rj)(1− 2̊rj) = 1,

which upon substituting rj = 1/κj and r̊j = 1/̊κj yields the desired equation. �

We now consider the unit circle C∞ as the boundary of the disc model D2 of the hyperbolic
plane. Each C̊j then appears as a horocycle.
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Next, we convert from the disc model D2 to the upper half plane model U2 of the hyperbolic
plane. Regarding D2 and U2 as subsets of the complex plane in the standard way, the two models
are related by the Cayley transform S : U2 −→ D2 and its inverse:

S(z) =
z − i
z + i

, S−1(z) =
(z + 1)i

1− z
. (3.2)

Observe that S−1 sends ∂D2 to ∂U2 = R ∪ {∞}, and sends horocycles in D2 to horocycles in U2.
Moreover, the point 1 on ∂D2 corresponds to the point ∞ on ∂U2 = R ∪ {∞}. And as the unit
circle ∂D2 is traversed anticlockwise, its image R ∪ {∞} under S−1 is traversed in the increasing
direction.

Before applying S−1, if necessary we reflect the configuration in an arbitrary hyperbolic line
through the origin, so that the centres of C̊0, C̊1, . . . , C̊n−1 are in anticlockwise order around ∂D2.
This is a reflection in both hyperbolic and Euclidean geometry, so preserves all r̊j and κ̊j . Then, if
necessary, we rotate D2 about 0 so that, proceeding anticlockwise from 1 around ∂D2, we encounter
the centre of C̊0 first, then C̊1, . . . , C̊n−1, in order. Again, this is a rotation in both hyperbolic and
Euclidean geometry, so preserves all r̊j and κ̊j .

Now apply S−1 to the entire configuration. Since no C̊j is tangent to ∂D2 at 1, then no Cj is
tangent to ∂U2 = R∪ {∞} at ∞. Thus each horocycle Cj has centre in R ⊂ ∂U2, and appears as a
circle in U2, with a finite radius rj and curvature κj . Moreover, since the centres of C̊j are in order
around ∂D2 proceeding anticlockwise from 1, the centres of the Cj are in increasing order along
R ⊂ ∂U2.

We thus obtain a “flat n-flower” where the original central circle has become R∪{∞}, and each
petal circle has become a horocycle in U2, with each Cj externally tangent to Cj−1 and Cj+1 (with
indices taken mod n), and the horocycles increasing in index from left to right. See Figure 4. (The
overline notation is intended to indicate “in a flat flower along the real line”.)

ξ0
η0

ξ1
η1

ξ2
η2

Figure 4: A flat 3-flower

Finally, observe that the circles Cj can be translated horizontally without affecting the tangen-
cies of circles or their or curvatures. We apply such a translation so that C0 is tangent to the real
line at 0. Since the horocycles Cj are tangent to the real line in increasing order, for j ≥ 1 each Cj
is tangent to the real line at a positive number.

4 From Horospheres to Spinors

We now introduce spinors for the horocycles Cj .
As discussed in Section 2.1, each horocycle in the hyperbolic plane has two planar spin decora-

tions, corresponding to two real spinors which are negatives of each other.
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Thus each horocycle Cj corresponds to a real spinor αj = (ξj , ηj), well defined up to sign. The
centre of Cj is at ξj/ηj , which lies in R, so each ηj is nonzero. The Euclidean radius rj and curvature
κj of Cj are given by

rj =
1

2η2
j

and κj = 2η2
j . (4.1)

(In general the Euclidean diameter of the horosphere corresponding to (ξ, η) is 1
|η|2 . Here η is real.)

We now choose each αj so that ηj is positive.
Recall C0 is constructed to be tangent to the real line at 0, and the centres of the Cj are in

increasing order along the real line. Thus we have

0 =
ξ0

η0
<
ξ1

η1
< · · · < ξn−1

ηn−1
.

Thus ξ0 = 0 and, since all ηj are chosen positive, for j ≥ 1 we have ξj > 0.
Calculating bilinear forms, for all 0 ≤ j < k ≤ n− 1 we have

{αj , αk} = ξjηk − ξkηj = ηjηk

(
ξj
ηj
− ξk
ηk

)
< 0.

(This is the opposite of the totally positive notion of [15, sec. 6]; the αj here are “totally negative”.)
Now for each j mod n we know that Cj and Cj+1 are tangent. Thus the complex lambda length

between planar spin decorations of Cj and Cj+1 is ±1. Combining these observations we have the
following.

Lemma 4.2. Choosing the spinors αj = (ξj , ηj) for planar spin decorations on each Cj so that all
ηj > 0, then for all 0 ≤ j ≤ n− 2 we have

{αj , αj+1} = ξjηj+1 − ξj+1ηj = −1,

and {α0, αn−1} = −1. �

The following proposition gives a useful relationship between each spinor (ξj , ηj), and the Eu-
clidean curvature κ̊j of the corresponding horocycle in the disc model.

Proposition 4.3. Let (ξ, η) be a real spinor and H the corresponding horocycle in D2 with a planar
spin decoration. Let the Euclidean curvature of H as it appears in the disc model D2 be κ̊. Then

κ̊ = ξ2 + η2 + 1. (4.4)

Combining Proposition 4.3 with Lemma 3.1, we observe that κ = κ̊ − 2 = ξ2 + η2 − 1, so the
curvatures of the original circles are also usefully expressed in terms of spinor coordinates.

In order to prove Proposition 4.3 we use some lemmas.

Lemma 4.5. Let H be a horocycle in U2 with a planar spin decoration, corresponding to the spinor
(ξ, η). Then the planar spin-decorated horocycle H ′ obtained by rotating H by π about i ∈ U2

corresponds to the spinor (−η, ξ).

Let us briefly explain what is meant by rotating H in the above proposition. As H has a
planar spin decoration, it corresponds to a spin-decorated horosphere H̃ in U3. This H̃ has a spin
decoration W consisting of associated inward and outward spin decorations, which are lifts of frame
fields f along H̃. An orientation-preserving isometry φ ∈ Isom+(U3) ∼= PSL(2,C) may be applied
to the horosphere H̃ and (via its derivative) the frame fields f , yielding a decoration on a horosphere
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H̃ ′. If we specify a lift of φ to the spin double cover SL(2,C), then there is a well-defined map of

the spin decorations W from H̃ to H̃ ′. A lift of φ to SL(2,C) can be specified by a path from the
identity to φ in PSL(2,C). Here, we have a rotation of π about i ∈ U2, which naturally extends to
a rotation in the 3-dimensional model U3 about the geodesic normal to U2 through i. This rotation
is naturally lifted to the spin double cover of Isom+(U3) by taking the path of isometries φt over
t ∈ [0, 1], where φt is a rotation of angle πt about the same axis as φ. The isometries φt then take

the spin decoration on H̃ to a spin decoration on H̃ ′, corresponding to the planar spin-decorated
H ′ of the lemma.

Proof. Consider the matrices M(θ) for θ ∈ R given by

M(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
∈ SL(2,R) ⊂ SL(2,C).

Each M(θ) describes an orientation-preserving isometry of U2 or U3 as a Möbius transformation:
a rotation of 2θ about i in U2, or a rotation of 2θ about the geodesic normal to U2 through i in
U3. Then M( tπ2 ), over t ∈ [0, 1], describes a path of isometries from the identity to the rotation
described in the lemma. As in fact all M(θ) lie in SL(2,C), the double cover of the isometry group
PSL(2,C), then M(π2 ) is the desired spin lift of the isometry described in the lemma: it is a rotation
of π (not −π) about i.

We now use the equivariance of Theorem 2.1. Since (ξ, η) corresponds to H, and H ′ is obtained
from H by applying M(π/2), then H ′ corresponds to the spinor

M
(π

2

)(ξ
η

)
=

(
0 −1
1 0

)(
ξ
η

)
=

(
−η
ξ

)
.

�

Translating Lemma 4.5 into the disc model D2 via the Cayley transform (3.2), we immediately
obtain the following.

Lemma 4.6. Let H be a horocycle in D2 with a planar spin decoration, corresponding to the spinor
(ξ, η). Then the planar spin-decorated horocycle H ′ obtained by rotating H by π about 0 ∈ D2

corresponds to the spinor (−η, ξ). �

Proof of Proposition 4.3. Let H ′ be the planar spin-decorated horocycle obtained by rotating H by
π about 0 ∈ D2. This is a Euclidean rotation as well as a hyperbolic rotation, so H ′ has the same
radius and curvature as H. By Lemma 4.6, H ′ corresponds to the spinor (−η, ξ).

Let X be the hyperbolic distance from 0 ∈ D2 to H. By symmetry, the hyperbolic distance from
0 to H ′ is also X, so the hyperbolic distance from H to H ′ is 2X. The metric in D2 is given by

ds2 =
4 dr2

(1− r2)2
,

where r is a Euclidean radial coordinate. Since H and H ′ have Euclidean radius r̊, the line from 0
to H is a Euclidean line from r = 0 to r = 1− 2̊r. Thus

X =

∫ 1−2̊r

0

2dr

1− r2
= ln

(
1− r̊
r̊

)
.

Let us now consider the complex lambda length from H to H ′. We thus consider the 3-
dimensional spin-decorated horospheres H̃, H̃ ′ corresponding to H,H ′. The distance between H̃

10



r̊

X

0

H

H ′

Figure 5: Computing the radius of H

and H̃ ′ is ρ = 2X. Consider the angle θ between the inward spin frame Win of H̃ and the outward
spin frame W ′out of H̃ ′ along the common perpendicular from H to H ′. Since both spin decorations
are planar, we have θ = 0 or 2π mod 4π. Following [15, defn. 4.3], the outward spin frame associated
to Win is obtained from Win by a rotation of angle −π about the decoration direction normal to D2.
The outward spin decoration of W ′out is obtained from this associated frame by a rotation of angle

π about the same normal direction to D2 (i.e. the rotation which takes H̃ to H̃ ′). We conclude that
θ = 0. Thus the complex lambda length λ from H to H ′ is

λ = exp

(
ρ+ iθ

2

)
= eX =

1− r̊
r̊

. (4.7)

On the other hand, applying Theorem 2.2 to the two spinors involved yields

λ = {(ξ, η), (−η, ξ)} = ξ2 + η2. (4.8)

Equating (4.7) and (4.8) and using κ̊ = 1/̊r then gives the desired result. �

5 Spinor Calculations

We now present some calculations that are not strictly necessary for the main result, but may be of
interest, and may motivate some expressions arising in the main result. The reader interested only
in the proof of the main result may skip this section.

5.1 Equation Relating ηj

It follows from Lemma 4.2 that, for 0 ≤ j ≤ n− 2,

ξj+1

ηj+1
− ξj
ηj

=
1

ηjηj+1
, (5.1)

which is the distance along the real line between the centres of the horospheres Cj and Cj+1.
Summing these distances over all j from 0 to n− 2, we obtain

ξn−1

ηn−1
− ξ0

η0
=

n−2∑
j=0

1

ηjηj+1
. (5.2)

Since {α0, αn−1} = ξ0ηn−1 − ξn−1η0 = −1, we also have

n−2∑
j=0

1

ηjηj+1
=

1

η0ηn−1
. (5.3)
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5.2 Equation Relating κj

Substituting ηj for κj in (5.3) using (4.1) yields an equation relating the curvatures κj :

n−2∑
j=0

1√
κjκj+1

=
1√

κ0κn−1
. (5.4)

We can obtain a polynomial relation between the κj by clearing denominators and squaring out
roots.

This is a relation between the curvatures in a flat n-flower, i.e. when κ∞ = 0.
For example in the case n = 3, the equation

1√
κ0κ1

+
1√
κ1κ2

=
1√
κ0κ2

leads to the polynomial

κ2
0 + κ2

1 + κ2
2 − 2κ0κ1 − 2κ1κ2 − 2κ2κ0 = 0,

which is equivalent to Descartes’ equation (1.2) with κ∞ = 0.

5.3 Recursive Computation of Spinor Coordinates

We show that, starting from (ξ0, η0), the remaining (ξj , ηj) can be calculated recursively using
previous (ξj , ηj) and the Euclidean curvatures κ̊j in the disc model. (Using Lemma 3.1, one could
use the κj instead of the κ̊j .)

Lemma 5.5. The spinors (ξj , ηj) satisfy the following:

ξ0 = 0, η0 =
√
κ̊0 − 1,

and for 0 ≤ j ≤ n− 2,

ξj+1 =

(
−ξj + ηj

√
(̊κj+1 − 1)(̊κj − 1)− 1

ηj (̊κj − 1)

)
ξj +

1

ηj
, (5.6)

ηj+1 =
−ξj + ηj

√
(̊κj+1 − 1)(̊κj − 1)− 1

κ̊j − 1
. (5.7)

By Lemma 3.1 each κ̊j > 2, so each quantity under a square root sign is positive, and we take
the positive square root in each case.

Proof. Since C0 is tangent to the real line at ξ0/η0 = 0, we have ξ0 = 0. From Proposition 4.3 then
κ̊0 = η2

0 + 1, so η2
0 = κ̊0 − 1. Since all ηj are taken to be positive then η0 is as claimed.

From (5.1) we have

ξj+1 =
ηj+1

ηj
ξj +

1

ηj
, (5.8)

which shows that (5.6) follows from (5.7).
Squaring (5.8) and substituting the resulting expression for ξ2

j+1 into (4.4) for κ̊j+1 yields

κ̊j+1 = η2
j+1 +

η2
j+1

η2
j

ξ2
j + 2

ηj+1

η2
j

ξj +
1

η2
j

+ 1.
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This is a quadratic equation for ηj+1; solving in the standard way and using (4.4) for κ̊j , we obtain

ηj+1 =
−ξj ± ηj

√
(̊κj+1 − 1)(̊κj − 1)− 1

κ̊j − 1
.

As all ξj , ηj , and κ̊j − 1 are non-negative, we must take the + in the ± in order for ηj+1 to be
positive, yielding (5.7) as desired. �

5.4 Variables mj

The square root expressions in the recursive equations (5.6) and (5.7) for ξ and η involve square root
expressions which arise throughout; they are in fact the mj of our main theorem. By Lemma 3.1
we have κ̊j − 1 = κj + 1, so the two expressions given in the definition below are equal.

Definition 5.9. We define
m0 =

√
κ̊0 − 1 =

√
κ0 + 1

and for 1 ≤ j ≤ n− 1,

mj =
√

(̊κj − 1) (̊κj−1 − 1)− 1 =
√

(κj + 1) (κj−1 + 1)− 1.

From this definition, a straightforward induction allows us to express each κ̊j or κj in terms of
the mj ; we state this in the following lemma and omit the proof. We observe that products arising
here also appear in the main theorem. As usual, the empty product is taken to be 1.

Lemma 5.10. For j > 0 we have

κj + 1 = κ̊j − 1 =


m2

0

∏ j
2
k=1(m2

2k+1)∏ j
2
k=1(m2

2k−1+1)

, if j is even and j > 0

∏ j−1
2

k=0 (m2
2k+1+1)

m2
0

∏ j−1
2

k=1 (m2
2k+1)

, if j is odd and j > 0.

(5.11)

�

For convenience, we express the above expansion of κj + 1 in terms of the mk as gj .

5.5 Closed Form for Spinor Coordinates

Between them, (5.6) and (5.7) allow us to iteratively find (ξj , ηj) in terms of the κ̊j , or, using
Definition 5.9, in terms of the mj . In this section we describe closed forms for ξj and ηj in terms of
the mj .

Since C0 is tangent to the real line at 0, so that ξ0 = 0, then forming a telescoping sum from
(5.1), as in (5.2), we have

ξj =
1

ηj−1
+ ηj

j−1∑
k=1

1

ηk−1ηk
, (5.12)

so it suffices to find a closed form for η.

Lemma 5.13 (A Closed Form for ηj).

ηj =


m0(

∏j
n=1(mn−i)+

∏j
n=1(mn+i))

2
∏ j

2
n=1(m2

2n−1+1)
, if j is even

(
∏j

n=1(mn−i)+
∏j

n=1(mn+i))

2m0
∏ j−1

2
n=1 (m2

2n+1)
, if j is odd.
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Proof. Substituting mj into (5.7) yields

ηj+1 =
−ξj + ηjmj+1

κ̊j − 1
.

Replacing ξj using (5.12), and using the definition of gj after Lemma 5.10 gives

ηj =
−1 + ηj−1ηj−2

(
mj −

∑j−2
n=1

1
ηn−1ηn

)
ηj−2gj−1

. (5.14)

Rearrange to solve for the sum:

j−2∑
n=1

1

ηn−1ηn
= mj −

ηjηj−2gj−1 + 1

ηj−1ηj−2
.

Then, taking one term out of the sum, we have

j−2∑
n=1

1

ηn−1ηn
=

j−3∑
n=1

1

ηn−1ηn
+

1

ηj−3ηj−2
= mj−1 −

ηj−1gj−2

ηj−2
.

Substituting this expression for the sum back into (5.14), we obtain a recursive relation on ηj :

ηj =
−1 + η2

j−1gj−2 + ηj−1ηj−2(mj −mj−1)

ηj−2gj−1
.

The closed form is then obtained by induction, taking η0 = m0, η1 = m1/m0 for the base cases. �

5.6 Polynomial Relations Between mj

Multiplying (5.3) by η0η1...ηn−1 to clear denominators yieldsn−2∑
j=0

η0η1 · · · η̂j η̂j+1 · · · ηn−1

− η1η2...ηn−2 = 0,

where the hats indicate excluding those terms from the product. Substitution using Lemma 5.13
yields polynomial relations among the mj , and these polynomials contain as factors the equations
of our main result.

For example, when n = 3 and n = 4 we obtain, respectively,

m1

(
m1m

2
0 +m2m

2
0 −m2

1 − 1
)

m0

(
m2

1 + 1
) = 0,

m1 (m1m2 − 1)
(
−m2

2 +m1m2 +m3m2 +m1m3 − 2
)(

m2
1 + 1

) (
m2

2 + 1
) = 0,

and we expect that only the factor containing all the curvatures can be zero in general. Indeed, in
the n = 3 case this factor is an instance of (1.4) (or (1.6)) from the main theorem; and in the n = 4
case an instance of (1.5) (or (1.7)). This is how the equations of the main theorem were found.
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Figure 6: Parallelograms formed by the zj .

6 Proof of the Generalised Descartes Theorem

After the constructions of Section 3 and Section 4, we have real spinors (ξj , ηj) for 0 ≤ j ≤ n − 1,
describing horocycles with planar spin decorations arising from an n-flower.

For each j, we define a complex number

zj = ξj + iηj

(here i2 = −1 as usual).
From Lemma 4.2 we have, for 1 ≤ j ≤ n− 1,

ξj−1ηj − ξjηj−1 = −1, or equivalently, Im (zj−1 zj) = 1.

which, being the nonzero component of the cross product (ξj−1, ηj−1, 0)× (ξj , ηj , 0), means that the
zj occur in clockwise order around 0 in the complex plane and each successive pair zj−1, zj spans
a parallelogram of area 1. Since we chose ξ0 = 0 and all other ξj , ηj > 0 in Section 4, we have z0

on the positive imaginary axis, and all the other zj lying in the top right quadrant of the complex
plane as in Figure 6. The sequence arg zj for 0 ≤ j ≤ n− 1 is thus strictly decreasing in (0, π/2].

Moreover, Lemma 4.2 says that ξ0ηn−1 − ξn−1η0 = Im (z0 zn−1) = −1, so the first and last of
the zj also span a parallelogram of area 1.

From Proposition 4.3 (and the remark afterward applying Lemma 3.1) we have

κj = ξ2
j + η2

j − 1 = |zj |2 − 1

so the problem of finding a relation among the κj (i.e. generalising Descartes’ theorem) is reduced to
a plane Euclidean geometry problem: given vectors spanning parallelograms of area 1 in clockwise
order around the origin as described above, find a relation among the lengths of those vectors.

We now write the mj (Definition 5.9) for 1 ≤ j ≤ n− 1 in terms of the zj :

mj =
√

(κj + 1) (κj−1 + 1)− 1 =
√
|zj |2|zj−1|2 − 1 (6.1)

Since Im (zj−1zj) = 1, it follows that Re (zj−1zj) = ±mj . But we saw above that the arg zj
form a decreasing sequence in (0, π/2], so 0 < arg(zj−1zj) < π/2. Hence each zj−1zj has positive
real part, and we obtain

zj−1zj = mj + i.
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We now observe that the desired equations (1.4) and (1.5) contain the products

n−1∏
j=1

(mj − i) =
n−1∏
j=1

zj−1zj = z0 |z1 · · · zn−2|2 zn−1,

n−1∏
j=1

(mj + i) =

n−1∏
j=1

zj−1zj = z0 |z1 · · · zn−2|2 zn−1.

In the case of even n then we find

i

2

n−1∏
j=1

(mj − i)−
n−1∏
j=1

(mj + i)

 =
i

2
|z1 · · · zn−2|2 (z0zn−1 − z0zn−1)

= |z1 · · · zn−2|2 Im (z0zn−1)

=

n−2
2∏
j=1

(
m2

2j + 1
)
,

where in the second line we used the fact that (α− α) = 2i Im(α) for any α ∈ C, and in the third
line we used Im (z0zn−1) = −1 and m2

2j + 1 = |z2j−1|2 |z2j |2 from (6.1).

The odd case is similar, with an extra factor of m2
0 = κ0 + 1 = |z0|2 appearing. This proves

the result with κ∞ set to 1. Upon reversing the original dilation, we replace each κj with
κj
κ∞

,
completing the proof.
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