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Knots obtained by Dehn filling the Whitehead sister include some of the smallest vol-
ume twisted torus knots. Here, using results on A-polynomials of Dehn fillings, we give
formulas to compute the A-polynomials of these knots. Our methods also apply to more
general Dehn fillings of the Whitehead sister.
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1. Introduction

A-polynomials were introduced in [9]. They encode information on the deformation
space of hyperbolic structures of knots, on incompressible surfaces embedded in the
knot complements, on volumes and cusp shapes. They also play into conjectures in
quantum topology, such as the AJ-conjecture [15–18].

In general, it is a difficult problem to compute explicit formulas for A-
polynomials of families of knots. However, explicit or recursive formulas are known
for some simple families of knots. Recursive formulas for A-polynomials were first
given for twist knots, by Hoste and Shanahan [24], and in closed form by Math-
ews [28, 29]. Formulas for (−2, 3, 2n + 1)-pretzel knots were found by Tamura and
Yokota [36], and by Garoufalidis and Mattman [19]. Petersen found A-polynomials
of certain double twist knots J(k, �) [33], recovering and extending Hoste and Shana-
han’s work. Closed form formulas for knots with Conway’s notation C(2n, 3) were
given by Ham and Lee [23], and Tran found formulas for A-polynomial 2-tuples of
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a family of 2-bridge links he calls twisted Whitehead links [39]. A-polynomials of
cabled knots and iterated torus knots were given by Ni and Zhang [32].

In [25], it was shown that the A-polynomial could be defined by quadratic poly-
nomials obtained from a triangulation of the knot complement, with particularly
simple form for families of knots obtained by Dehn filling a parent link. Of the
known examples above, all the hyperbolic families are obtained by simple Dehn
fillings of a parent link. In each of these cases, the nth knot in the family differs
from the (n − 1)th by adding exactly two crossings to a twist region; in particular
the method of [25] applies. However, the methods of [25] also apply more broadly.
In this paper, we apply them to a family of twisted torus links. This family is unlike
those above in that changing the Dehn filling slope adjusts the diagram by adding
twenty crossings rather than just two in a twist region. Thus techniques to com-
pute A-polynomials using diagrams, or group presentations coming from diagrams,
would be difficult to apply to this family of knots.

The family that we consider are knots obtained by Dehn filling the Whitehead
sister. The Whitehead sister is known to be the complement of the (−2, 3, 8)-pretzel
link, shown on the left of Fig. 1. An equivalent link is shown on the right. It has two
components; one component is an unknot in S3. Hence when we perform 1/n-Dehn
filling of the unknotted link component, we obtain a knot complement in S3. In
fact, as indicated by the form of the link on the right of Fig. 1, the 1/n-Dehn filling
is the twisted torus knot T (5, 1−5n, 2, 2), with notation as in [6]. When n = 1, this
is the (−2, 3, 7)-pretzel knot.

The (−2, 3, 8)-pretzel link complement is constructed by face pairings of a single
regular ideal octahedron. It is known to be one of the two hyperbolic 3-manifolds
of minimal volume with exactly two cusps, by work of Agol [1]. The other minimal
volume 2-cusped hyperbolic 3-manifold is the Whitehead link complement, which
is also constructed by face-pairings of a regular ideal octahedron. For this reason,
the complement of the (−2, 3, 8)-pretzel link is known as the Whitehead sister.
In SnapPy [11], additional names for this 3-manifold are m125, ooct01 0000, and
the link complement with the same framing is L13n5885. Alternatively, it may
be obtained by −3/2-Dehn filling on any one component of the 3-component link
known as the magic manifold. Its exceptional Dehn fillings have been completely
classified by Martelli and Petronio [27]; there are exactly six of them.

Fig. 1. (Color online) Two views of the (−2, 3, 8)-pretzel link. One component (shown in blue)
is an unknot embedded in S3.
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In this paper, we obtain triangulations of all but three, and A-polynomials of
all but seven Dehn fillings of the Whitehead sister. Triangulations use the layered
solid tori of Jaco and Rubinstein [26]; A-polynomial calculations apply the methods
in [25]. Many of these manifolds are recognized to be manifolds in the census of
cusped 3-manifolds obtained by small numbers of tetrahedra [5], including knot
complements [4, 6, 7].

Our main result concerns the A-polynomials of the 1/n-Dehn fillings. Through-
out, when we state that we are performing a Dehn filling of the Whitehead sister,
we mean that we are performing the filling along the unknotted component of
the (−2, 3, 8)-pretzel link. We use the terminology Whitehead sister to refer to the
3-manifold that is the complement of this link.

Theorem 1.1. For n ≥ 3, suppose K(n) is the knot obtained by 1/n-Dehn filling
of the Whitehead sister. Then (a factor of) the PSL(2, C) A-polynomial of K(n) is
obtained from the following set of equations after eliminating all variables except �

and m.
Outside equations:

γ4/1 =
−� + m√
�(−1 + m)

, γ1/0 =
−� + m2

√
m(−� + m)

First inside equations:

γ2/1 = (γ2
1/0 − 1)/γ4/1, γ1/1 = γ2

2/1 − γ2
1/0, γ0/1 = (γ2

1/1 − γ2
1/0)/γ2/1

γ1/2 = (γ2
0/1 − γ2

1/1)/γ1/0,

Recursive inside equations (empty if n = 3):

γ1/(k−1)γ1/(k−3) + γ2
0/1 − γ2

1/(k−2) = 0, for 4 ≤ k ≤ n

and the folding equation: γ0/1 = γ1/(n−1).

Theorem 1.1 effectively gives A-polynomials explicitly: eliminating all γ vari-
ables involves only substitution. The outside equations express γ1/0 and γ4/1 in
terms of � and m; each inside equation expresses a γ variable in terms of previous γ

variables, hence in terms of � and m; the folding equation equates two expressions
in � and m, which suitably rearranged gives the A-polynomial. Note implicit in
the statement of the theorem, and in the process of elimination of γ variables, is
that the variables γi are nonzero; this holds because they are exponentials of other
variables in [25], so we assume throughout that γ variables are never zero.

After elimination, we obtain the same factor of the A-polynomial as Champan-
erkar [8]. In particular, the factor corresponding to the complete hyperbolic struc-
ture is a factor of the polynomial of Theorem 1.1. However, the A-polynomial may
have additional factors that the gluing variety does not pick up; see Segerman [35].

For convenience, we have only stated the result for 1/n-fillings for n ≥ 3 here.
A corresponding result for negative n (specifically, n ≤ −2) is Theorem 5.10.
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Equations for the remaining n �= 0 are easily found using the methods described in
this paper.

Indeed, Corollary 5.8 gives the A-polynomial of a general Dehn filling similarly
explicitly, for any slope p/q except those in {2, 3, 7/2, 11/3, 4, 5, 1/0}.

The “missed” Dehn filling slopes arise for two reasons. First, our methods are
not guaranteed to apply to non-hyperbolic Dehn fillings, which have slopes p/q ∈
{2, 3, 7/2, 11/3, 4, 1/0} using our framing (which is different from that of Martelli
and Petronio [27], but yields the same exceptions). Second, although the methods
of [25] can deal with all hyperbolic fillings, they involve degenerate layered solid
tori for slopes p/q ∈ {2/1, 7/2, 5/1}; we omit them here.

A triangulation of a hyperbolic 3-manifold M is geometric if the hyperbolic
structure on M is built by putting a positively oriented hyperbolic structure on
each tetrahedron and then gluing. A triangulation is minimal if M cannot be tri-
angulated by fewer tetrahedra. For n ∈ {±1,±2,±3,±4} the 1/n-Dehn filling of
the Whitehead sister appears in the SnapPy census. Thus we know these triangu-
lations are both geometric and minimal. The Whitehead sister also satisfies condi-
tions required by Guéritaud and Schleimer to ensure that its sufficiently high Dehn
fillings are geometric [22]; this means there exists some N such that for n ≥ N ,
the 1/n-Dehn filling described here is geometric. Unfortunately the bound on N

from [22] is not explicit. We conjecture that the triangulations of all the 1/n-Dehn
fillings in this paper are both geometric and minimal.

We note that Thompson has been able to use the formulas of [25], along with
results in cluster algebras, to give more explicit closed forms for the A-polynomials
of the knots in this paper [37].

2. Background on A-Polynomials

Suppose a compact 3-manifold has boundary consisting of a single torus, and its
interior admits a complete hyperbolic structure. Thurston observed that such a
manifold has a 2-(real) dimensional space of incomplete hyperbolic structures [38].
In the concrete setting of Fig. 8 knot complement, Thurston showed that the com-
plete hyperbolic structure is obtained by triangulating the knot complement by two
regular ideal tetrahedra, and that incomplete structures are obtained by deform-
ing the hyperbolic structures on the ideal tetrahedra in a neighborhood of the
complete structure. For a general hyperbolic 3-manifold with a decomposition into
hyperbolic ideal tetrahedra, the space of deformations of the hyperbolic structures
on ideal tetrahedra is now known as the deformation variety or the gluing variety,
because the tetrahedra are required to satisfy gluing equations. The gluing variety
encodes incomplete hyperbolic structures, and also additional information whose
geometric interpretation is not clear. The face pairings of the tetrahedra at a point
in the gluing variety will give a representation of the fundamental group of the
3-manifold into PSL(2, C).
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Culler and Shalen considered representations of the fundamental group of a 3-
manifold into SL(2, C), and put them into an algebro-geometric framework. Such
representations form an SL(2, C) character variety [12]. In the case of a hyperboliz-
able 3-manifold with a single cusp (i.e. the interior of a compact 3-manifold with
a single torus boundary component), the SL(2, C) character variety will be 2-(real)
dimensional, which is implied by Thurston’s work. In [9], Cooper et al. introduce
the A-polynomial. This polynomial gives a description of the 2-dimensional rep-
resentation variety in terms of the variables M and L, which in their setting are
eigenvalues of matrices representing meridian and longitude curves in the funda-
mental group of the torus boundary component of the original compact 3-manifold.
An A-polynomial can also be defined when PSL(2, C) representations are used, and
this was further investigated by Boyer and Zhang [2].

Returning to triangulations, certain products of parameters that encode merid-
ian and longitude, known as the cusp equations, will be trivial in the complete
setting. Champanerkar observed that by writing the cusp equations in variables
m and �, one could obtain a polynomial describing the gluing variety [8]. Cham-
panerkar proved that the polynomial obtained by this method will always divide
the PSL(2, C) A-polynomial. However, the gluing and cusp equations required for
Champanerkar’s method are often very high degree in a number of variables zi

corresponding to the number of ideal tetrahedra, and obtaining this A-polynomial
requires simultaneously eliminating variables zi to reduce to a single polynomial in
m and �. This is not always possible even with computer assistance.

In [25], Howie et al. use ideas of Dimofte [13] and results of Neumann and
Zagier [31] to change the variables of Champanerkar’s equations. This produces
Ptolemy-like equations. Instead of using variables associated to ideal tetrahedra,
the variables are associated to edges of the triangulations, with one equation per
tetrahedron. The new variables γi are exponentials of variables Γi arising from
the linear algebra of a symplectic extension of the Neumann–Zagier matrix, so are
never zero. In [25], it was shown that these equations can lead to a simpler system
of equations for 3-manifolds obtained by Dehn filling; this was further explored by
Thompson [37]. These are the results that we make use of in this paper.

2.1. Notes on the variables m and �

In this paper, m and � have a geometric meaning: they come from identifications of
tetrahedra whose ideal vertices form a meridian or longitude of the cusp boundary.
This is the same meaning as in work of Champanerkar [8]. However, note that
in Theorem 1.1 there are square roots of m and � involved in the defining equations,
where Champanerkar only includes integer powers of m and �. This is a consequence
of the construction of [25]. To move from the traditional description of the gluing
variety to the Ptolemy-like description, we change variables by inverting a matrix
that is an expanded symplectic version of the Neumann–Zagier matrix. Neumann
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and Zagier showed that equations in tetrahedra parameters defining m and �, as
well as gluing equations, have a symplectic-like structure [31] given by a symplectic
pairing ω(·, ·). Under the pairing, vectors obtained from gluing equations give zero.
Vectors obtained from curves on the cusp give twice the intersection number. It is
this factor of two — twice the intersection number — that introduces the square
roots into our equations. The square roots can be cleared by rationalization, but
the resulting equations are more complicated, and so we leave them as they are.

The variables M and L in the traditional A-polynomial correspond to eigen-
values of matrices, and do not have the same geometric meaning as m and � here.
However, they are related by M2 = m and L2 = �; see [25, Corollary 1.4].

2.2. Comparison with other Ptolemy equations

Garoufalidis et al. define a Ptolemy variety [20], inspired by work of Fock and
Goncharov [14]. This assigns a Ptolemy relation to tetrahedra in a triangulation of a
3-manifold and leads to a representation of the fundamental group into SL(2, C). In
this setting, a divisor of the SL(2, C) A-polynomial is also obtained; see Zickert [40,
Corollary 1.7], and Goerner and Zickert [21]. We conjecture that there is a geometric
connection between the methods of [20] and the methods here. However, this is not
clear a priori. In [20], Ptolemy equations are obtained combinatorially from oriented
tetrahedra. In this paper, orientation is not required.

3. Triangulation of the Whitehead Sister

The default SnapPy triangulation of the Whitehead sister m125 has four tetrahe-
dra, with an ideal edge added to subdivide the ideal octahedron. There are three
choices for adding such an ideal edge, and in the SnapPy census, it is chosen so
that it meets both cusps. We wish instead to choose an edge that does not meet
the cusp corresponding to the unknotted component, as this will make it simpler
to triangulate Dehn fillings. Figure 2 gives our triangulation. The notation, as in
Regina, is as follows. The four tetrahedra are labeled 0, 1, 2, 3; each has ideal ver-
tices labeled 0, 1, 2, 3. The top-left entry 2(312) says that the face of tetrahedron
0 with vertices 012 is glued to the face of tetrahedron 2 with vertices 312, with
the ideal vertices glued in order. Up to relabeling, this is obtained from the default
SnapPy triangulation of m125 by performing a 4-4 move.

An embedded horospherical torus about a cusp intersects the ideal tetrahedra in
triangles, inducing a cusp triangulation. The cusp to be filled meets only tetrahedra

Tetrahedron Face 012 Face 013 Face 023 Face 123
0 2(312) 1(023) 1(312) 1(031)
1 3(123) 0(132) 0(013) 0(230)
2 3(021) 3(031) 3(032) 0(120)
3 2(021) 2(031) 2(032) 1(012)

Fig. 2. Four-tetrahedron triangulation of the Whitehead sister.
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Fig. 3. (Color online) Triangulation of the unfilled cusp of the Whitehead sister. Generators of
homology are shown: l in red and m in blue.

Fig. 4. (Color online) The preferred longitude l′ = lm−8 is shown in green.

2 and 3, each in the vertex labeled 0, giving a cusp triangulation with two triangles.
The cusp triangulation for other cusp is shown in Fig. 3. Tetrahedra 2 and 3 form a
hexagon within this cusp triangulation. We choose generators l, m of the homology
of this cusp that avoid the hexagon and meet as few cusp triangles as possible.

The triangulation has exactly four edge classes. One edge, which we will call e,
runs from one cusp to the other. It has one end in the center of the shaded hexagon.
The other three edges have both of their ideal endpoints on the unfilled cusp. All
three lie on the boundary of tetrahedra 2 and 3. They are labeled 3/1, 4/1, and ∞
in the figure, for reasons we will explain below.

3.1. Meridian and longitude basis

We also need to identify the actual meridian and preferred longitude for the cusp.
We can use SnapPy to determine these, either using the PLink editor to enter the
pretzel link P (−2, 3, 8) into SnapPy or using L13n5885; this input ensures treatment
as a link complement in S3. We find that one of the generators we chose, namely
m, was indeed the meridian. The preferred longitude l′ is shown in Fig. 4. We have
l′ = lm−8.

4. Dehn Filling Triangulations

To perform Dehn filling, pull out tetrahedra Δ2 and Δ3. The union of these two
tetrahedra is homeomorphic to T 2 × [0,∞) with a single point removed from its
boundary T 2 × {0}. Its complement is built by gluing tetrahedra Δ0 and Δ1, but

2350085-7



October 13, 2023 16:41 WSPC/S0129-167X 133-IJM 2350085

J. A. Howie et al.

with two faces unglued, namely face 012 of tetrahedron Δ0 and face 012 of tetra-
hedron Δ1. Its boundary is a punctured torus triangulated by these two faces.

The Dehn filling is obtained by attaching a triangulated solid torus to these two
faces. That is, we build a solid torus whose boundary is triangulated by the ideal
triangles corresponding to the unglued faces of Δ0 and Δ1. The meridian of the
solid torus gives the slope of the Dehn filling.

To describe the slope of the Dehn filling, let μ, λ denote the standard meridian,
longitude pair for an unknotted component. Dehn filling along any slope of the form
μ + nλ for n ∈ Z will result in the complement of a knot in S3. More generally,
write any slope pμ + qλ for p, q ∈ Z by p/q ∈ Q ∪ {1/0}.

4.1. Layered solid tori

We use the layered solid torus construction of [22, 26] to fill a specified slope
r = p/q. The boundary of a layered solid torus is a 1-punctured torus, triangulated
by two fixed ideal triangles. Edges of the boundary triangles form slopes on the
1-punctured torus, each of which can be written as some a/b ∈ Q ∪ {1/0}. A
triangulation of a 1-punctured torus consists of a triple of slopes for which the
geometric intersection number of any pair is 1. These are encoded by the Farey
triangulation.

In our case, initial triangles corresponding to faces of Δ0 and Δ1 give a
starting triangle in the Farey triangulation. There is a geodesic from this trian-
gle to the rational number r = p/q, which alternatively can be considered as a
length-minimizing path through the dual 1-skeleton of the Farey triangulation. The
sequence of triangles meeting the geodesic gives a sequence of triangulations of a
1-punctured torus, each obtained from the previous by a diagonal exchange. The
diagonal exchange can be realized by layering a tetrahedron onto the punctured
torus; see Fig. 5, taken from [25].

Layering tetrahedra in this manner builds a space homotopy equivalent to a
thickened punctured torus. At each step, the space has two boundary components.

Fig. 5. Tetrahedra obtained from moving across triangles in the Farey triangulation.
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One is marked with the initial triangulation. The other is marked with the trian-
gulation in the Farey graph corresponding to the most recently added tetrahedron.

To obtain a solid torus with the appropriate meridian, we stop layering tetra-
hedra after reaching the triangle previous to the one containing r. Being separated
from r by a single edge of a Farey triangle, a diagonal exchange at this point would
give a triangulation with slope r; but instead of a diagonal exchange, we fold the
two triangles across the corresponding diagonal. This gives a manifold homotopy
equivalent to a solid torus, and makes the slope r homotopically trivial. See Fig. 6,
taken from [25].

Applying this procedure to the Whitehead sister, we first find the initial slopes.
After removing tetrahedra Δ2 and Δ3, the resulting punctured torus boundary is
triangulated by three slopes, which (using SnapPy [11] and Regina [3]) we find to
be 4/1, 3/1, and 1/0. Different manifolds obtained by Dehn filling are shown in the
Farey graph in Fig. 7. Observe that aside from the first step, each step in the Farey
triangulation can be labeled with an L, for turning left, or R, for turning right.

We may now compute triangulations of Dehn fillings. To obtain two infinite
families of knots, perform 1/n-Dehn fillings for positive and negative integers n.
When n is positive, these include hyperbolic knot complements K31, K54, K64,

rr′
s s

t

t

r

r′
t

s

s

Fig. 6. Folding makes the diagonal slope r homotopically trivial.
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Fig. 7. Paths in the Farey triangulation that produce knots obtained by Dehn filling the White-
head sister.
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Fig. 8. Cusp triangulations of manifolds obtained by 1/2 and −1/1 Dehn fillings. The shaded
triangles come from the layered solid torus.

K74, and K84. When n is negative, these include hyperbolic knot complements K51,
K63, K73, and K83. These fillings correspond to paths in the Farey triangulation
that start at 3/1, 4/1, 1/0, move towards 2/1, then step L, L; in the positive case
this is followed by an R and a sequence of L’s; in the negative case this is followed
by an L and a sequence of R’s. See Fig. 7.

For example, K31 is obtained by removing Δ2 and Δ3 from the Whitehead sister
manifold, and attaching a single tetrahedron and then folding. Figure 8 shows cusp
triangulations of Dehn fillings producing K54 and K51.

4.2. Exceptional manifolds

As mentioned in the introduction, the methods of [25] only apply to hyperbolic
fillings, which exclude the initial slopes 3/1, 4/1, 1/0, along with 2/1, 7/2 and
11/3. We also ignore what we call the degenerate Dehn fillings. These are the Dehn
fillings for which we do not add any new tetrahedra to perform Dehn filling, but
merely remove the two tetrahedra corresponding to the cusp and then fold as in
Fig. 6. There are three such Dehn fillings, corresponding to the three slopes in the
Farey triangulation that lie in triangles sharing an edge with our initial triangle in
Fig. 7. These are the slopes 2/1, 7/2, and 5/1; see Fig. 7. Of these, 2/1 and 7/2 are
not hyperbolic, so not relevant. The slope 5/1 is the manifold m003, or Fig. 8 sister,
built of two regular ideal tetrahedra. Its PSL(2, C) A-polynomial can be computed
by hand, or by noting that m003 is also homeomorphic to the Dehn filling along
slope 10/3.

5. A-Polynomial Equations

Suppose a knot complement is triangulated by n ideal tetrahedra. Label the ideal
vertices of each tetrahedron 0, 1, 2, 3 so that, when viewed from ideal vertex 0, ideal
vertices 1, 2, 3 appear in anticlockwise order. We refer to the edges between 0, 1
and 2, 3 as a-edges, between 0, 2 and 1, 3 as b-edges, and between 0, 3 and 1, 2 as
c-edges. The a, b, c-edges of the ith tetrahedron are called ai, bi, ci-edges.

We use the deformation variety as in [8] to compute the PSL(2, C) A-polynomial.
This variety is cut out by gluing and completeness equations, which can be read off
of the Neumann–Zagier matrix.

2350085-10
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In order to determine the Neumann–Zagier matrix for a triangulation, we first
define the incidence matrix I . This matrix has a row for each edge class of the
triangulation, and a row for each generator of cusp homology; it has three columns
for each tetrahedron of the triangulation, labelled ai, bi, ci. Thus for the Whitehead
sister, I has 4 edge rows, 4 cusp rows, and 4 triples of columns. Entries in edge
rows count the number of ai-, bi- and ci-edges incident with that edge. For each
cusp we choose oriented representatives m, l of generators that intersect edges in the
cusp triangulation transversely, and so that the algebraic intersection number of m

and l is 1. The entries in the cusp rows count the number of ai-, bi- and ci-edges
cut off by m and l, with edges to the left counted with +1 and edges to the right
counted with −1. In our case, the two have curves m0, l0 shown in Fig. 3 and m1, l1
shown in Fig. 9.

The Neumann–Zagier matrix NZ is obtained from I by replacing the ai, bi, ci

columns with two columns, subtracting the ci from the ai and bi columns so as to
obtain ai−ci and bi−ci entries. Additionally, form a vector C with the same number
of rows as I , which is obtained by subtracting all the coordinates in c-columns from
the vector consisting of 2s for edge rows and 0s for cusp rows.

For the Whitehead sister, we obtain I , NZ and C as in Fig. 10.

2

m1 l1

1
2(0)

3

3(0)
3 1

2

2

1
2(0)

3

3(0)
3 1

2

Fig. 9. Choices for m1 and l1.

Fig. 10. Incidence and Neumann–Zagier matrices for the Whitehead sister.
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By [25, Lemma 3.5], using work of Neumann [30], there exists an integer vector
B such that NZ · B = C, and such that the last entries of B, corresponding to the
two tetrahedra meeting the second cusp, are all zeros. For our case, we can take

B = (1, 0, 0, 1, 0, 0, 0, 0)T .

After Dehn filling with a layered solid torus, the Neumann–Zagier matrix of
the result can be obtained explicitly from that of the unfilled manifold and the
path in the Farey graph [25, Proposition 3.11]. The portion of NZ in the top left
corner corresponding to edges and tetrahedra outside of the layered solid torus does
not change, nor do the entries of the final two cusp rows, corresponding to curves
avoiding the layered solid torus.

5.1. Ptolemy equations

When a manifold has one cusp, the n edge rows of NZ have rank n − 1, so we
can remove a row, and the edge rows in the resulting matrix NZ� are linearly
independent [31]. Denote the vector obtained from C by removing the corresponding
row by C�. This can be done so that one of the first n−1 entries of C� is nonzero [25,
Lemma 2.51], and we assume our choice has been made so this holds.

The equations defining the A-polynomial involve variables γ1, . . . , γn associated
to the edge classes E1, . . . , En of the triangulation. Index the edges of each tetra-
hedron Δj by the ideal vertices at their ends. For αβ ∈ {01, 02, 03, 12, 13, 23}, let
j(αβ) be the index k of the edge Ek to which the edge αβ of Δj is identified.

Theorem 5.1 ([25, Theorem 1.1]). Let X be a one-cusped manifold with
a hyperbolic triangulation T , with tetrahedra Δ1, . . . , Δn, NZ�, C� and B =
(B1, B

′
1, . . . , Bn, B′

n)T as above. Denote the entries of the m and l 1rows of NZ�

in the Δj columns by μj , μ
′
j and λj , λ′

j , respectively.
For each tetrahedron Δj of T , the Ptolemy equation of Δj is

(−1)B′
j �−μj/2mλj/2γj(01)γj(23) + (−1)Bj �−μ′

j/2mλ′
j/2γj(02)γj(13) − γj(03)γj(12) = 0.

(5.2)

Setting the γ variable corresponding to the row removed from NZ equal to 1,

and eliminating the other γ variables, solving the Ptolemy equations for m and �,

we obtain a factor of the PSL(2, C) A-polynomial; this is the same factor obtained
in [8].

For 1-cusped manifolds obtained by Dehn filling the Whitehead sister, the edge
classes include E3/1, E4/1, E1/0 (recall the labels from Sec. 3), as well as additional
edge classes that lie within the layered solid torus. Following [25], we label these by
their corresponding slope in the Farey graph.

By switching variables, we may obtain (a factor of) the SL(2, C) A-polynomial.

Corollary 5.3 ([25, Corollary 1.4]). After setting M = m1/2 and L = �1/2,

eliminating the γ variables from the polynomial Ptolemy equations as above yields
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a polynomial in M and L which contains, as a factor, the factor of the SL(2, C)
A-polynomial describing hyperbolic structures.

For a family of manifolds obtained by Dehn filling a fixed parent manifold, some
Ptolemy equations are fixed.

Theorem 5.4 ([25, Theorem 1.5(i)]). Suppose X has two cusps c0, c1, and is
triangulated such that only two tetrahedra meet c1, and generating curves m0, l0 on
c0 avoid these tetrahedra. Then for any Dehn filling on c1 obtained by attaching a
layered solid torus, the Ptolemy equations corresponding to tetrahedra lying outside
the layered solid torus are fixed, the same as for the unfilled manifold X.

We now apply these results to Dehn fillings of the Whitehead sister. Recall that
we are performing Dehn fillings along the boundary component that corresponds
to the unknotted component of the (−2, 3, 8)-pretzel link.

Lemma 5.5. Let X be obtained by a nondegenerate, hyperbolic Dehn filling of the
Whitehead sister. Then the Ptolemy equations corresponding to tetrahedra 0 and 1
are as follows:

�−1/2m1/2γ1/0γ4/1 − �−1/2mγ4/1γ3/1 − γ2
3/1 = 0,

−�−1/2mγ2
3/1 + m1/2γ1/0γ4/1 − γ3/1γ4/1 = 0.

Substituting � = L2 and m = M2 in Lemma 5.5 yields the SL(2, C) equations.

Proof of Lemma 5.5. Tetrahedra 0 and 1 lie outside the layered solid torus
in any Dehn filling, and the triangulation of the Whitehead sister satisfies the
requirements of Theorem 5.4. Thus the Ptolemy equations of tetrahedra 0 and 1
satisfy the conclusions of that theorem, and we may read the equations off of (5.2)
using the Neumann–Zagier matrix and B-vector computed above for the Whitehead
sister.

For tetrahedron 0, we have (μ0, μ
′
0) = (1, 1) and (λ0, λ

′
0) = (1, 2) from the NZ

matrix, so the corresponding Ptolemy equation is

(−1)0�−1/2m1/2γ0(01)γ0(23) + (−1)1�−1/2m2/2γ0(02)γ0(13) − γ0(03)γ0(12) = 0.

The following edges are identified to edge classes E3/1, E4/1 and E1/0, respec-
tively:

0(13), 0(12), 0(03) ∼ E3/1, 0(02), 0(23) ∼ E4/1, and 0(01) ∼ E1/0.

Hence we obtain the Ptolemy equation for tetrahedron 0 as

�−1/2m1/2γ1/0γ4/1 − �−1/2mγ4/1γ3/1 − γ2
3/1 = 0.

For tetrahedron 1, we similarly obtain the second Ptolemy equation.
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Lemma 5.6. Set γ3/1 = 1. Then variables γ1/0 and γ4/1 satisfy:

γ4/1 =
−� + m√
�(−1 + m)

, γ1/0 =
−� + m2

√
m(−� + m)

.

Again, SL(2, C) versions can be obtained by substituting � = L2 and m = M2.

Proof. Set γ3/1 = 1 and use the equations of the previous lemma. Solving for γ0/1

and γ4/1 in terms of �, m, or L, M gives the result.

5.2. A-polynomials for Dehn fillings

We now establish some notation for the slopes in a layered solid torus with reference
to the corresponding walk in the Farey triangulation. In the initial step, moving
from one triangle to another across an edge, there are four slopes involved. One
slope lies on the initial triangle but not the new one; label this o0 (for old). One
slope belongs to the new triangle, but not the old; label this h0 (for heading). Two
slopes lie on the edge shared by both triangles: label the one to the left f0 and the
one to the right p0. For the kth step (k > 0), again label the old slope ok and the
new/heading slope hk. Label the slope around which the kth step pivots pk (for
pivot), and the slope that fans out around the pivot fk (for fan). See Fig. 11.

Each edge class in the layered solid torus has a slope p/q and we label the
corresponding variable γp/q. [25, Theorem 3.17(ii)] can then be stated as follows,
where the length of the walk in the Farey triangulation is denoted N .

Theorem 5.7 ([25, Theorem 3.17(ii)]). With notation as above, the Ptolemy
equations for tetrahedra in a layered solid torus are

γok
γhk

+ γ2
pk

− γ2
fk

= 0, for 0 ≤ k ≤ N − 1.

When k = N we have the folding equation γpN = γfN .

Fig. 11. Slope labels for the kth step. Left: k = 0. Right: k > 0.

2350085-14



October 13, 2023 16:41 WSPC/S0129-167X 133-IJM 2350085

A-polynomials of fillings of the Whitehead sister

Lemma 5.6 and Theorem 5.7 then immediately yield the following corol-
lary, which gives A-polynomials of Dehn fillings explicitly, as described in the
introduction.

Corollary 5.8. Let X denote the p/q Dehn filling of the Whitehead sister; p/q /∈
{2, 3, 7/2, 11/3, 4, 5, 1/0}. Let the corresponding walk in the Farey triangulation,

from the triangle 3, 4, 1/0 to p/q, have length N . Then with notation as above (a
factor of) the PSL(2, C) A-polynomial of X is given by the following equations.

Outside equations:

γ4/1 =
−� + m√
�(−1 + m)

, γ1/0 =
−� + m2

√
m(−� + m)

, γ3/1 = 1.

Recursive equations:

γhk
=

γ2
fk

− γ2
pk

γok

, for k = 0, . . . , N − 1.

Folding equation: γpN = γfN .

Note that the γ variables in Corollary 5.8 arise as exponentials of other variables
in [25] (that arise from symplectic linear algebra). As exponentials, they will never
be zero, allowing us to write the recursive equations with γok

in the denominator.
We are particularly interested in 1/n-Dehn fillings. As seen in Fig. 7, the first

three tetrahedra in the layered solid torus are the same for all n, and Theorem 5.7
immediately yields the following.

Lemma 5.9. Let K(n) be the knot obtained by the 1/n-Dehn filling of the White-
head sister. The Ptolemy equations for the first three tetrahedra in the layered solid
torus are as follows.

γ2/1 = (γ2
1/0 − γ2

3/1)/γ4/1, γ1/1 = (γ2
2/1 − γ2

1/0)/γ3/1, γ0/1 = (γ2
1/1 − γ2

1/0)/γ2/1.

We can now prove the main result, giving equations for 1/n fillings with n ≥ 3.

Proof of Theorem 1.1. Lemma 5.6 gives the Ptolemy equations for the tetrahedra
outside the layered solid torus, and Lemma 5.9 applies similarly to the first three
tetrahedra in the layered solid torus. These tetrahedra correspond to the path in the
Farey graph corresponding to 1/n-Dehn filling, up to the triangle (1/0, 1/1, 0/1).
Moving then to the triangle (1/2, 1/1, 0/1) yields the equation γ1/0γ1/2 + γ2

1/1 −
γ2
0/1 = 0. Moving to the triangle (0/1, 1/n, 1/(n − 1)) via triangles (0/1, 1/(k −

1), 1/(k− 2)) with pivot slope always 0/1, slope hn corresponding to 1/k, old slope
1/(k − 2), and fan slope 1/(k − 1), as in Fig. 7, then gives the recursive inside
equations as per Theorem 5.7.

Now consider 1/n-Dehn filling for a negative integer n. The first three steps in
the Farey graph are still the same as the positive case, but at that point the walk
in the Farey graph diverges. We obtain the following.

2350085-15



October 13, 2023 16:41 WSPC/S0129-167X 133-IJM 2350085

J. A. Howie et al.

Theorem 5.10. Let K(n) denote the knot obtained by the 1/n-Dehn filling of the
Whitehead sister. For n ≥ 2, the equations defining the A-polynomial of K(−n)
consist of the equations of Lemma 5.6, of Lemma 5.9, the equation

γ1/1γ−1/1 + γ2
1/0 − γ2

0/1 = 0,

the folding equation γ0/1 = γ−1/(n−1), and for n ≥ 3, recursive formulae

γ−1/(k−1)γ−1/(k−3) + γ2
0/1 − γ2

−1/(k−2) = 0, for 3 ≤ k ≤ n.

As each γp/q can be written in terms of � and m, or L and M, substitution gives (a
factor of) the PSL(2, C) or SL(2, C) A-polynomial.

Proof. Similarly to Theorem 1.1, after initial steps to (1/0, 1/1, 0/1), the Farey
path moves to (1/0,−1/1, 0/1), picking up γ1/1γ−1/1 + γ2

1/0 − γ2
0/1 = 0. It then

moves to (0/1,−1/n,−1/(n− 1)) by way of triangles (0/1,−1/(k− 1),−1/(k− 2))
with pivot slope 0/1, heading slope −1/k, old slope −1/(k − 2), and fan slope
−1/(k − 1).

5.3. Changing basis

For our A-polynomial to agree with other computations, we adjust the generators
for cusp homology, which were chosen to have a small number of nonzero entries in
the Neumann–Zagier matrix and avoid the hexagon corresponding to the layered
solid torus. We now convert to the usual meridian and preferred longitude.

Proposition 5.11. Let l and m be generators of the cusp homology. A change
of basis described by (l, m) 
→ (lamb, lcmd) corresponds to a change of basis in the
variables �, m described by (�, m) 
→ (�dm−b, �−cma). Moreover, after making the
substitutions � = L2 and m = M2, the change of basis corresponds to (L, M) 
→
(LdM−b, L−cMa).

Proof. Suppose the rows of the NZ matrix corresponding to l and m are
[
λ0 λ′

0 . . . λn−1 λ′
n−1

]
and

[
μ0 μ′

0 . . . μn−1 μ′
n−1

]
.

Then after the change of basis the rows of the NZ matrix becomes

[a · λ0 + b · μ0 a · λ′
0 + b · μ′

0 · · · a · λn−1 + b · μn−1 a · λ′
n−1 + b · μ′

n−1]

and

[c · λ0 + d · μ0 c · λ′
0 + d · μ′

0 · · · c · λn−1 + d · μn−1 c · λ′
n−1 + d · μ′

n−1].

The C vector also changes accordingly, and the same B vector satisfies the new
equation NZ · B = C. As such, the coefficient of γi(01)γi(23) becomes

(−1)B′
i�−(cλi+dμi)/2m(aλi+bμi)/2γ = (−1)B′

i(�dm−b)−μi/2(�−cma)λi/2.
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Similar reasoning shows that the coefficient of γi(02)γi(13) becomes

(−1)Bi(�dm−b)−μ′
i/2(�−cma)λ′

i/2.

Thus, the change of basis (l, m) 
→ (lamb, lcmd) corresponds to (�, m) 
→
(�dm−b, �−cma) in the A-polynomial variables. A similar argument holds for L, M .

Proposition 5.12. Let K be a link in S3 with components K1, K2, where K2 is
unknotted. Let l and m be generators of the cusp homology corresponding to K1 and
let l′ = lamb and m′ = lcmd be the actual meridian and preferred longitude. Let x

be the linking number of K1 and K2. The change of basis required for a 1/n-Dehn
filling is

(l, m) 
→ (lamb+nx2
, lcmd).

Proof. See Rolfsen’s textbook [34, Sec. 9H]; in particular p. 267.

Corollary 5.13. Let K(n) denote the 1/n-Dehn filling of the Whitehead sister.
Then for K(n), the required change of basis from the basis of Fig. 3 to the standard
meridian and longitude in Fig. 4 is given by

(l, m) 
→ (lm−8+25n, m).

Consequently, the change of basis in the A-polynomial variables is:

(�, m) 
→ (�m8−25n, m) and (L, M) 
→ (LM8−25n, M).

Proof. The linking number of the two components is 5, so applying Proposi-
tion 5.12, the required change of basis is as claimed. By Proposition 5.11, the
required change of basis in the A-polynomial variables is also as claimed.

Appendix A. A-Polynomial Calculations

In this section, we include calculations of some of the simplest A-polynomials arising
from our Dehn fillings.

A.1. The knot K31

Recall that the knot K31 is obtained by 1/1-Dehn filling the Whitehead sister. Set
γ3/1 = 1 and use the equations of Lemma 5.6 to obtain equations for γ4/1, γ1/0 in
terms of (�, m) or (L, M).

The 1/1-Dehn filling is obtained by attaching only one tetrahedron in the layered
solid torus, and then folding; see Fig. 7. This gives two equations: one Ptolemy
equation γ4/1γ2/1 + γ2

3/1 − γ2
1/0 = 0 and the folding equation γ2/1 = γ1/0.

In terms of L and M , plugging the folding equation into the Ptolemy equation,
as well as equations of γ4/1, γ1/0, γ3/1 = 1, gives

− (L2 − M4)2

M2(L2 − M2)2
+

L2 − M4

M(L − LM2)
+ 1.
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After applying the change of basis of Corollary 5.13, the largest factor is

L6 − L5M20 + 2L5M18 − L5M16 − L4M38 − 2L4M36 + 2L2M74 + L2M72

+ LM94 − 2LM92 + LM90 − M110.

This is identical to Culler’s A-polynomial for K31 [10].
We may instead use the expressions for γ4/1 and γ1/0 in terms of � and m, to

obtain the PSL(2, C) A-polynomial:

�3 − �5/2m10 + 2�5/2m9 − �5/2m8 − �2m19 − 2�2m18 + 2�m37 + �m36

+
√

�m47 − 2
√

�m46 +
√

�m45 − m55.

A.2. The knot K54

The knot K54 is obtained by 1/2-Dehn filling the Whitehead sister. This requires
attaching two ideal tetrahedra in the layered solid torus, and then folding; see
Fig. 7. To compute the A-polynomial for K54, we use all the equations we used
for K31 except for the folding equation, along with two new Ptolemy equations
corresponding to Steps 1 and 2. The new equations are

γ3/1γ1/1 + γ2
1/0 − γ2

2/1 = 0 and γ2/1γ0/1 + γ2
1/0 − γ2

1/1 = 0.

The folding equation for K54 is γ0/1 = γ1/1.
Using the expressions for γ4/1 and γ1/0 in terms of L and M (with γ3/1 set to 1),

we find a precursor to the A-polynomial of the K54 knot of the form

− 1
M8(L2 − M2)12

− M6(L2 − M4)2(L2 − M2)10

+ ((L2 − M2)4(M5 − L2M)2 − (M2 − 1)4(L5 − LM6)2)2

+ L(M − M3)2(L4 − M6)(L2 − M2)3((L2 − M2)4(M5 − L2M)2

− (M2 − 1)4(L5 − LM6)2).

After applying the change of basis of Corollary 5.13 and clearing negative expo-
nents, the largest factor is a polynomial identical to Culler’s A-polynomial for
K54 [10]. We omit the polynomial here; it has 106 terms, maximum degree 820
in M , 19 in L.
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