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DANIEL V MATHEWS

In previous work we showed that the contact category algebra of a quadrangulated
surface is isomorphic to the homology of a strand algebra from bordered sutured
Floer theory. Being isomorphic to the homology of a differential graded algebra, this
contact category algebra has an A–infinity structure, allowing us to combine contact
structures not just by gluing, but also by higher-order operations.

We investigate such A–infinity structures and higher-order operations on contact
structures. We give explicit constructions of such A–infinity structures, and establish
some of their properties, including conditions for the vanishing and nonvanishing of
A–infinity operations. Along the way we develop several related notions, including a
detailed consideration of tensor products of strand diagrams.
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1 Introduction

1.1 Overview

In previous work [22] we demonstrated an isomorphism of two unital Z2 –algebras,
the first arising from contact geometry, the second from bordered Floer theory:

(1) CA.†;Q/ŠH.A.Z//:
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1094 Daniel V Mathews

Here .†;Q/ is a quadrangulated surface, a useful object in TQFT-type structures in
contact geometry (see Mathews [19; 20]), and Z is an arc diagram, an equivalent object
used in bordered sutured Floer theory (see Zarev [30]). The left-hand side CA.†;Q/ is
the algebra of a contact category, with objects and morphisms given by certain contact
structures on †� Œ0; 1�. The right-hand side H.A.Z// is the homology of the strand
algebra A.Z/, a differential graded algebra (DGA) generated by strand diagrams on Z ,
which encode Reeb chords arising as asymptotics of certain holomorphic curves. The
isomorphism (1) therefore allows us to interpret (homology classes of) strand diagrams
as contact structures.

Of particular interest, (1) expresses the contact category algebra as the homology of a
DGA. The homology of a DGA is known to have the structure of an A1 algebra. This
A1 structure provides a sequence of higher-order operations Xn on the homology,
extending from multiplication X2 and satisfying relations which provide a homotopy-
theoretic form of associativity; see Stasheff [26; 27].

While A1 structures are well known to arise in Floer theory (see eg [25]), it is perhaps
surprising that an A1 structure should arise directly out of contact structures. The
A1 operations allow us to combine contact structures not just by gluing, but also by
higher-order operations. A natural question arises: what are the higher A1 operations
on contact structures, and what do they mean geometrically?

This paper essentially consists of an investigation of A1 structures on this contact
category algebra. This investigation is carried out through the use of strand diagrams,
which are more general objects, and easier to work with algebraically than contact
structures. Therefore, more accurately, this paper consists of an investigation of A1
structures on H.A.Z//, from a contact-geometric perspective.

Throughout this paper we work with Z2 coefficients; signs are always irrelevant.

1.2 Main results

Our first main result is the explicit construction of A1 structures on H.A.Z//.

Theorem 1.1 A pair ordering of Z can be used to define an explicit A1 structure X
on H.A.Z//, together with a morphism of A1 algebras f WH.A.Z//!A.Z/. These
consist of maps

Xn WH.A.Z//˝n
!H.A.Z//; fn WH.A.Z//˝n

!A.Z/;

where X extends the DGA structure of H.A.Z//, and A.Z/ is regarded as an A1
algebra with trivial n–ary operations for n� 3.
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By (1), Theorem 1.1 provides A1 structures on the contact category algebra CA.†;Q/.

We will discuss pair orderings as we proceed (Section 3.6); they consist of a total order
on the matched pairs of Z , along with an ordering of the two points in each pair. In
fact the full statement (Theorem 4.2) allows for a slightly more general A1 structures,
using certain types of “choice functions” to parametrise the various choices involved
in the construction. A pair ordering allows A1 operations to be computed relatively
straightforwardly, but we know of no direct contact-geometric meaning.

The second main result provides necessary conditions under which these A1 maps
are nontrivial, and under those conditions gives an explicit description of the results.
The idea is that certain “local” conditions at the matched pairs of Z are necessary to
obtain nonzero output from the A1 maps.

Theorem 1.2 Let M DM1˝� � �˝Mn 2H.A.Z//˝n be a tensor product of nonzero
homology classes of strand diagrams. The maps fn and Xn of Theorem 1.1 have the
following properties:

(i) If xfn.M/ ¤ 0, then M has l twisted and m critical matched pairs, where
l Cm � n� 1 and m � n� 2, and all other matched pairs are tight. In this
case xfn.M/ is a sum of strand diagrams, where each diagram D is tight at
all matched pairs where M is critical or tight , and has n� 1�m crossed and
l Cm�nC 1 twisted matched pairs.

(ii) If Xn.M/¤ 0, then M has precisely n� 2 critical matched pairs , and all other
matched pairs tight. In this case , Xn.M/ is the unique homology class of tight
diagram with the appropriate gradings.

All the terminology will be defined in due course. Very roughly, xfn is the projection
of fn into a useful quotient algebra; matched pairs are objects which appear in the arc
diagrams on which strand diagrams are drawn; and the words “tight”, “twisted”, and
“critical” are descriptions of types of configurations of strands in strand diagrams (and
their homology classes and their tensor products).

The other main results involve the notion of operation trees. These will be defined
in due course (Section 7.1). They consist of rooted plane binary trees with vertices
labelled by strand diagrams or contact structures; they encode the way in which contact
structures can be combined by the various A1 operations. Trees have commonly been
used to encode A1 operations; see eg Keller [9], Kontsevich and Soibelman [10] and
Seidel [25].
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Certain trees of this type are required to obtain nonzero output from an A1 operation.

Proposition 1.3 If Xn.M/¤ 0 or xfn.M/¤ 0, there is a valid distributive operation
tree for M.

Our final main result gives sufficient conditions on diagrams and trees which ensure a
nonzero result; this result is again described explicitly.

Theorem 1.4 (i) Suppose M has no on-on doubly occupied matched pairs. If
every valid distributive operation tree for M is strictly f–distributive, and at
least one such tree exists, then xfn.M/ ¤ 0. Moreover, xfn.M/ is given by a
single diagram D, which can be described explicitly.

(ii) Suppose M has no twisted or on-on doubly occupied matched pairs. If every
valid distributive operation tree for M is strictly X–distributive , and at least one
such tree exists , then Xn.M/¤ 0. Moreover , Xn.M/ is given by the homology
class of unique tight diagram with appropriate gradings.

Very roughly, “on-on” and “doubly occupied” refer to particular configurations of strand
diagrams at a matched pair; an operation tree is “valid” if the labels are “nonsingular”
in an appropriate sense; and it is “distributive” if the contact structures labelling the
tree have their “twistedness” spread across its various leaves in an appropriate sense.

As we will explain, these results are quite partial. The necessary conditions of
Theorem 1.2 are far from sufficient, and the sufficient conditions of Theorem 1.4
are far from necessary. Since there are many A1 structures on H.A.Z//, we cannot
expect a complete characterisation of diagrams which yield zero and nonzero results;
still, we hope these results can be improved.

As is already clear, there is a lot of terminology to define. Simply stating these results
requires us to describe precisely many aspects of strand diagrams, and their tensor
products and homology classes. We must name this world in order to understand it.

1.3 Construction of A–infinity structures

In a certain sense, the A1 structures on CA.†;Q/ or H.A.Z// are already under-
stood. In the 1980 paper [8], Kadeishvili showed how to define an A1 structure
on the homology H of any DGA A (provided H is free, which is always true with
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Z2 coefficients). Indeed, in this paper we follow this construction, and Theorem 1.1
can be regarded as fleshing out its details when ADA.Z/. The only thing possibly
new in Theorem 1.1 is the level of explicitness in the construction.

We briefly recall some facts about A1 algebra; we refer to Keller [9] for an introduction
to A1 algebra, or to Seidel [25] for further details. An A1 structure m on a Z–graded
Z2 –module A is a collection of operations mn W A

˝n!A for each n� 1, where each
mn has degree n� 2. We call mn the n–ary or level n operation. The operations mi

satisfy, for each n� 1, X
iCjCkDn

miC1Ck.1
˝i
˝mj ˝ 1

˝k/D 0:

This identity for n D 1 says that m2
1 D 0, so m1 is a differential; then the identity

for n D 2 is the Leibniz rule, with m2 regarded as multiplication. Indeed an A1
algebra with all mnD 0 for n� 3 is precisely a DGA. A morphism f of A1 algebras
A! A0 (where the operations on A and A0 are denoted by mi and m0i , respectively)
is a collection of Z2 –module homomorphisms fn W A

˝n ! A0, where each fn has
degree n� 1. We call fn the level n map. The maps fi satisfy, for each n� 1,X

iCjCkDn

fiC1Ck.1
˝i
˝mj ˝ 1

˝k/D
X

i1C���CisDn

m0s.fi1
˝fi2

˝ � � �˝fis
/:

Kadeishvili’s construction in [8] produces an A1 structure X on H, consisting of
operations Xn WH

˝n!H, and a morphism f of A1 algebras H ! A, consisting
of maps fn WH

˝n ! A. The DGA A is regarded as an A1 algebra with trivial
n–ary operations for n� 3. The A1 structure constructed on H begins with trivial
differential X1D 0, and X2 is the multiplication on H inherited from A. If H is free
then there is a map f1 WH!A (possibly many) which is an isomorphism in homology,
sending each homology class to a cycle representative. The constructed fn can be
taken to begin with any such f1 . Moreover, the fn form a quasi-isomorphism and
this A1 structure is unique up to (nonunique) isomorphism of A1 algebras; see also
[9, Section 3].

The construction proceeds inductively and uses auxiliary maps Un WH
˝n ! A of

degree n�2, starting from U1D 0. Once Ui ; Xi ; fi are defined for i < n, Un is given
by an explicit expression in previous fi and Xi , and Xn is the homology class of Un .
The map fn is constructed as the solution of a particular equation. There is a choice
for fn at each stage, but no choice for Un or Xn . We discuss the construction in detail
in Section 4.1. The choice for fn is roughly a choice of inverse for the differential @.
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�!

Figure 1: The action of a creation operator.

In Section 4.1 we give an explicit way to choose an fn at each stage. This choice is
made by maps which we call creation operators. We regard the differential in A.Z/
as an “annihilation operator”, destroying crossings between strands by resolving them.
Creation operators, on the other hand, insert crossings in a controlled way. The idea is
shown in Figure 1. We introduce creation operators in Section 3. Creation operators
satisfy Heisenberg relations (Proposition 3.16); this amounts to a chain homotopy
from the identity to zero. In a certain sense, creation operators are the only operators
obeying such Heisenberg relations; however they only form a very small subspace of
the space of operators inverting the differential as required in Kadeishvili’s construction
(Section 3.4). Similar “creation operators” have been put to use elsewhere in contexts
related to contact geometry and Floer homology; see eg Mathews [21] and Mathews
and Schoenfeld [23].

However, there is still choice involved in where to apply creation operators, ie where to
insert crossings. There is also a choice for the initial cycle selection homomorphism f1 .
We parametrise such choices through notions of creation choice functions and cycle
choice functions respectively. Our construction in general (Theorem 4.2) produces
an A1 structure on H.A.Z// or CA.†;Q/ from a given cycle choice function and
creation choice function. A pair ordering can be used to obtain such choice functions,
leading to the formulation of Theorem 1.1.

In order to define the A1 structure X on H.A.Z//, it turns out to be sufficient to
work in a particular quotient of A.Z/. This simplifies details considerably. We define
a two-sided ideal F in Section 2.14. The maps xfn appearing in Theorems 1.2 and 1.4
are the images of fn in the quotient by F . Related ideas appeared in Lipshitz, Ozsváth
and Thurston [13].

Algorithmically, the calculation of an A1 map Xn.M1˝� � �˝Mn/, where M1; : : : ;Mn

are homology classes of strand diagrams (or contact structures) by the method described
above requires the computation, for 1� i � j �n, of each fj�iC1.Mi˝� � �˝Mj / and
Xj�iC1.Mi ˝ � � �˝Mj /. The algorithm therefore has complexity O.n2/ (where we
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regard each computation of expressions such as (7) as constant time, and the complexity
of the arc diagram Z , as constant). The contrapositive of Theorem 1.2 provides a set
of conditions which imply Xn.M/D 0, which are easily checked in constant time. On
the other hand, Proposition 1.3 and Theorem 1.4 provide conditions which are much
more difficult to check, as the number of operation trees grows much faster with n. We
regard these results as interesting not because of algorithmic usefulness, but because
they perhaps provide some insight into A1 operations.

1.4 Classifications of diagrams, and the many types of twisted

As already mentioned above, there are many features of strand diagrams which are
relevant for our purposes, but which have not been given names in the existing literature.
A large part of this paper, especially Section 2, is devoted to defining and classifying
these features, and establishing some of their properties. These are all required for our
main theorems.

Therefore, some of the work here is an exercise in taxonomy. We briefly explain what
we need to define and why, and the resulting classifications.

Contact structures naturally come in two types: tight and overtwisted. This dichotomy
goes back to Eliashberg’s work [2] in the 1980s. In the present work, consideration
of the relationship between strand diagrams and contact structures naturally leads
to further distinctions. Roughly speaking, when we look at strand diagrams from a
contact-geometric perspective, there are many types of “twisted”.

According to the isomorphism (1) of [22], tight contact structures correspond to strand
diagrams which are nonzero in homology. Such diagrams are characterised by certain
conditions; roughly speaking, they must have an appropriate grading, no crossings, and
must not have any matched pair that looks like the left of Figure 1. A strand diagram
which fails one or more of these conditions can be regarded as “overtwisted” in some
sense.

The simplest way for a diagram to fail to represent a tight contact structure is by grading:
it may lie in a summand of A.Z/ which has no homology. This leads to the notion of
viability (Section 2.3). Only viable strand diagrams can possibly represent tight contact
structures.

It is essential for our purposes to have precise terminology relating to these gradings and
summands. We introduce a notion of H–data, which combines homological grading
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and idempotents (Section 2.1). We also introduce notions of on/off or 1/0 to describe
idempotents locally, and occupation of various parts of a strand diagram, such as
places and steps, to describe homological grading locally (Section 2.6). Some of this
terminology was used in [22].

A viable diagram can still fail to represent a tight contact structure for multiple reasons.
The mildest case is shown in Figure 2, which shows both strand diagrams and contact
cubes. The strand diagram is the product of strand diagrams corresponding to tight
contact structures, but the full contact structure is overtwisted. (In fact, stacking only
the two relevant cubes yields a tight contact structure; when combined with adjacent
cubes however the structure is overtwisted.) It can also be described in terms of
bypasses. In a future paper we hope to describe the relationship between strands and
bypasses systematically. We define such “minimally overtwisted” diagrams as twisted
in Section 2.9.

Viable strand diagrams can also fail to represent tight contact structures because
they have crossings. Thus, the natural tight/overtwisted classification of contact
structures naturally becomes a 3–fold classification of viable strand diagrams into
tight/twisted/crossed. This classification is, in a precise sense (Lemma 2.24), in ascend-
ing order of degeneracy.

Proceeding to tensor products of diagrams, our notion of viability still applies. Diagrams
can represent contact structures, and their tensor products can be regarded as “stacked”
contact structures on †�Œ0; 1�. Viability then incorporates the natural contact-geometric
condition that such stacked structures agree along their common boundaries.

Tensor products of diagrams again have a natural “tight/twisted” classification (see
Section 2.7), but now there are six types, which we call tight, sublime, twisted, crossed,
critical, and singular, again in an ascending scale of degeneracy.

When we then arrive at tensor products of homology classes of diagrams in Section 2.11,
only four of these types of tightness/twistedness remain.

Throughout, it is necessary to consider strand diagrams locally at matched pairs; this
corresponds to considering contact structures locally at individual cubes of a cubulated
contact structure. Indeed, we show that H.A.Z// decomposes into a tensor product
over matched pairs; and we have local strand algebras, each with their local homology
at each matched pair.

Here again, we encounter phenomena not yet given a name in the literature. The
observed local diagrams, described as “fragments” of strand diagrams in [22], are not
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�!

Figure 2: Top: A twisted diagram at a matched pair, the product of two tight
diagrams. Bottom left: the corresponding contact cubes. Stacking the cubes
yields a contact structure which remains tight, but combined with adjacent
cubes the contact structure is overtwisted. Bottom right: the same contact
structure described in terms of bypasses. A bypass is first attached to the
bottom dividing set along the solid arc, yielding the intermediate dividing set;
then a bypass is added along the dotted attaching arc. The overtwisted disc
can be seen by attaching the latter bypass first.

strand diagrams in the usual sense of bordered Floer theory (eg Lipshitz, Ozsváth and
Thurston [12]) or bordered sutured Floer theory (eg Zarev [30]), since strands may “run
off the top of an arc”. Therefore, before we can even start our investigations, we must
broaden the usual definition of strand diagrams. In Section 2 we therefore introduce a
notion of augmented strand diagram.

Tensor products of strand diagrams (ie elements of A.Z/˝n ), or their homology classes
(ie elements of H.A.Z//˝n ) thus have a tensor decomposition over matched pairs
of Z , into local diagrams, in addition to their obvious decomposition into tensor
factors. We regard these two types of decomposition as “vertical” and “horizontal”,
respectively, and draw pictures accordingly. Contact-geometrically these two types of
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tensor decomposition correspond to two types of geometric decomposition of stacked
contact structures. A tensor product in CA.†;Q/˝nŠH.A.Z//˝n can be regarded as
a stacking of n cubulated contact structures on †� Œ0; 1�: this can be cut “horizontally”
into n slices, each containing a contact structure on † � Œ0; 1�; or it can be cut
“vertically” to obtain stacked contact structures on �� Œ0; 1�, over each square � of
the quadrangulation.

We give a complete classification of viable local strand diagrams in Section 2.6, sum-
marised in Table 1. We also give a complete classification of viable local tensor products
of strand diagrams in Section 2.10, summarised in Table 2. We show (Proposition 2.30)
that any viable tensor product of diagrams, observed locally at a single matched pair,
must appear as one of the tensor products in the table, up to a notion of extension and
contraction, which provide ways, trivial in a contact-geometric sense, to grow or shrink
a tensor product. This also yields (Proposition 2.33) a complete classification of viable
local tensor products of homology classes of strand diagrams.

Having made such definitions and classifications, we also establish several basic proper-
ties of these notions. In order to prove our main theorems, we need to answer questions
such as which types of tightness/twistedness can occur within others, in various ways.

1.5 Contact meaning of A–infinity operations

We now attempt to give some idea of what the A1 operations Xn “mean” in terms of
contact geometry. For details and background on the precise correspondence between
contact structures and strand diagrams, we refer to our previous paper [22]. We also
intend to expand on the contact-geometric meaning of strand diagrams, particularly in
terms of bypasses, in a future paper.

As discussed in [22], a strand diagram D on an arc diagram Z with appropriate
grading (each step of Z covered at most once; no crossings) can be interpreted as a
contact structure on †� Œ0; 1�. Each matched pair of Z corresponds to a square of the
quadrangulation Q , or a cube in the cubulation Q� Œ0; 1� of †� Œ0; 1�.

A strand diagram D containing a single moving strand going from one point (“place”
in our terminology) of Z to the next can be regarded as a bypass: in passing from
one strand to the next, the strand affects two places, and the corresponding contact
structure is a bypass addition, where the bypass is placed along the two cubes. Bypass
addition is a basic operation in 3–dimensional contact geometry [4], and in a certain

Algebraic & Geometric Topology, Volume 21 (2021)



A–infinity algebras, strand algebras, and contact categories 1103

x?

Figure 3: Left: A portion of a strand diagram consisting of a single strand
from one place to the next. Centre: The corresponding cubulated contact
structure. Right: This contact structure is given by a bypass attachment.

sense is the “simplest” modification one can make to a contact manifold [5]. The result
is shown in Figure 3.

A strand diagram consisting of a longer strand can sometimes be regarded as a product
of diagrams with shorter strands, each covering a single step of Z as above. (However,
other restrictions may get in the way; for instance arcs of an arc diagram may prevent
factorising a longer strand into smaller ones. See eg the example of [13, Figure 11].)
The corresponding contact structure is given a sequence of bypass additions very closely
related to the bypass systems of [15; 16]. See Figure 4.

However, when we have a tensor product of strand diagrams corresponding to contact
structures, the various steps of Z may not be covered in the order in which they would
be covered by single strands. If the various diagrams in the tensor product cover the
various steps in a matched pair in a “correct” order, the factors in the tensor product

x?

Figure 4: Left: A portion of a strand diagram consisting of a single strand.
Right: The corresponding contact structure is given by a sequence of bypass
attachments.
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Figure 5: Left: This tensor product (tight in our classification) has a nonzero
product in A.Z/ or H.A.Z// . Right: This tensor product (critical in our
classification) covers the same steps in a different order, and has zero product
in A.Z/ or H.A.Z// , but an A1 operation may reorder the bypasses and
give a nonzero result.

may multiply (using the standard multiplication in A.Z/) to give a diagram which is
nonzero in homology. This corresponds to a contact structure built out of bypasses
as described above. But if the various diagrams cover the various steps in a different
order, then they will not multiply to give something nonzero in homology. Moreover,
the Maslov index at the matched pair will be lower by 1 from the “correct” order.

The simplest example of this phenomenon is shown in Figure 2. The product of two di-
agrams, corresponding to tight contact structures, gives an overtwisted contact structure.
But if they were multiplied in the opposite order, the result would be tight. For a slightly
more complicated example, still “localised” at a single matched pair, see Figure 5.

In general, the A1 operation Xn , when it produces a nonzero result, will effectively
reorder the bypasses at n� 2 matched pairs (since it has grading n� 2) so as to make
their product tight. This is the rough meaning of Theorem 1.2; the statement is simply
an elaboration of this idea, being precise about the various types of tightness/twistedness
at each matched pair.

We can also say a little about how this “reordering” is achieved; it seems to be unique
to strand algebras. As mentioned above, our construction in Section 4.1 of the A1
structure on CA.†;Q/ or H.A.Z//, following Kadeishvili’s method of [8], uses
creation operators, whose operation is described locally by Figure 1. A creation operator
acts on a local diagram which is twisted, ie represents a “minimally overtwisted” contact
structure, and makes it crossed.

We may then observe a phenomenon which is rather curious from a contact-geometric
point of view. Starting from a tensor product which is twisted (or worse), applying a
creation operator yields a tensor product of diagrams including crossings — the most
degenerate type of “twistedness”. Yet multiplying out this tensor product may yield a
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multiply creation multiply

Figure 6: Mechanics of A1 operations, effectively reordering bypasses.
Multiplying the last two factors of a critical tensor product yields a twisted
diagram. A creation operator turns the twisted diagram into a crossed one,
and the tensor product becomes sublime. Multiplication then yields a tight
diagram.

diagram corresponding to a tight contact structure! After multiplication, no crossings
remain, nor any twistedness. The result is as if the original diagrams were reordered
into the “correct” order at that matched pair. See Figure 6 for an example based on the
“badly ordered” tensor product of Figure 5 (right).

In this way, strand diagrams may pass from being crossed to tight without being
twisted along the way. We call this process sublimation because of its “phase-skipping”
behaviour. We call a tensor product in which the diagrams are not all tight, but their
product is tight, sublime.

However, it is not the case that Xn always performs reorderings and sublimations in this
way; it simply may do so. Depending on the various choices involved in the construction,
the result may or may not be nonzero on various tensor products. Theorem 1.2 tells us
what the answer must be, if it is nonzero; and gives necessary conditions for it to be
nonzero. Theorem 1.4 does however provide a guarantee that for any A1 structures
produced by our construction, certain (highly restricted) tensor products always yield a
nonzero result.

For lower-level operations, we can say more. We know X1 D 0 and X2 is just
multiplication, and we can in fact give an explicit description of X3 (Proposition 5.9).
Beyond that, the multiplicity of choices makes specific statements unwieldy, and
Theorem 1.4 is the strongest guarantee of nonzero results that we could find, for now.

For the rest of this paper, we work primarily with strand diagrams. But our approach
is heavily influenced by contact geometry, and we regularly comment on the contact-
geometric significance of our definitions and results. For these comments, we assume
some familiarity with the correspondence between strand algebras and contact structures
in [22], and refer there for further details.
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1.6 Relationship to other work

The strands algebra is a crucial object in bordered Floer theory, appearing in the work
of Lipshitz, Ozsváth and Thurston [14; 11; 12; 13]. The slightly more general arc
diagrams we use here appeared in Zarev’s work [30; 31]. Its homology was explicitly
computed in Section 4 of [13]. This description was reformulated in [22], where
the isomorphism (1) was proved. In [13, Section 4.2], Lipshitz–Ozsváth–Thurston
considered Massey products on the homology of a strands algebra.

The general construction of A1 structures on DGAs by Kadeishvili in [8] is part of a
much larger subject, not one in which the author claims much expertise. There are other
methods, such as those of Kontsevich and Soibelman [10], Nikolov and Zahariev [24]
and Huebschmann [7]. We do not know of examples where Kadeishvili’s construction
has been made as absolutely explicit as by the “creation” operators here. In previous
work we have found several roles for objects like creation and annihilation operators in
contact geometry [15; 16; 17; 18; 19; 20; 21; 23].

The various contact-geometric interpretations appearing here derive not only from our
previous work [22] but also from work on quadrangulated surfaces and their connections
to contact geometry, Heegaard Floer theory and TQFT [19; 20]. Some of these ideas
are also implicit in Zarev’s work cited above. Constructions with bypasses go back to
Honda’s [4].

The contact category was introduced by Honda in unpublished work. It has been studied
by Cooper [1]. Related categorifications have been studied by Tian [28; 29]. The case
of discs was considered in our [15] and in detail by Honda and Tian in [6].

1.7 Structure of this paper

As discussed above, there is some work required before we can even properly state our
main theorems. First we must define the relevant notions and establish the properties
we need.

We begin in Section 2 by considering the algebra and anatomy of strand diagrams. We
recall existing definitions in Section 2.1, and generalise them to augmented diagrams and
tensor products in Section 2.2. We can then define the notion of viability in Section 2.3.
We discuss subtensor-products, and the associated notions of extension and contraction,
in Section 2.4. We consider how augmented diagrams can be cut into local diagrams,
and the associated algebra, in Section 2.5. In Section 2.6 we establish terminology for
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strand diagrams and their tensor products, including occupation of places and pairs
for homological grading, and on/off or 1/0 for idempotents; then (Section 2.7) we
define the six types of tightness/twistedness. In Section 2.8 we consider the various
possibilities “locally” at each matched pair, discussing local strand algebras and their
homology, and the homology of strand algebras in general. In Section 2.9 we study
properties of variously twisted diagrams. We can then give a full enumeration of all
possible viable local tensor products in Section 2.10. We consider the implications
of these results for homology in Section 2.11, and then in Section 2.12 we consider
how tightness of tensor products and subtensor-products are related. In Section 2.13
we calculate the dimensions of various vector spaces related to strand algebras, and in
Section 2.14 we introduce the ideal F and a quotient which simplifies our calculations.

In Section 3 we then consider objects parametrising the choices involved in constructing
A1 structures. We discuss cycle selection homomorphisms in Section 3.1. We discuss
how different cycle selection maps can differ in Section 3.2. We then introduce creation
operators in Section 3.3, and discuss how they can invert the differential in Section 3.4.
We put them together into global creation operators in Section 3.5, and discuss how
they can be obtained from a pair ordering in Section 3.6.

We then have everything we need to construct A1 structures explicitly in Section 4.
The construction itself is given in Section 4.1, proving Theorem 1.1. In Section 4.2 we
establish a shorthand notation for tensor products of strand diagrams. In Section 4.3
we calculate some examples at low levels of the A1 structure.

In Section 5 we then discuss some properties of the A1 structures we have constructed,
and in fact slightly more general A1 structures from Kadeishvili’s construction. In
Section 5.1 we discuss how A1 operations relate to viability. In Section 5.2 we
discuss how the various choices made in Kadeishvili’s construction affect the result.
Then in Section 5.3 we establish some of the elementary properties of the constructed
A1 operations, and in Section 5.4 prove some necessary conditions for nontrivial
A1 operations, including those of Theorem 1.2. In Section 5.5 we establish general
properties of the A1 maps at levels up to 3.

In Section 6 we calculate some further examples, illustrating some of the complexities
which arise.

Finally in Section 7 we consider higher A1 operations and when they are nontrivial.
We introduce the notion of operation trees in Section 7.1, and notions of validity and
distributivity in Section 7.2. In Section 7.3 we discuss some constructions we need on
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trees (joining and grafting). Then in Section 7.4 we show how certain trees are required
for nonzero results, proving Proposition 1.3. In Section 7.5 we discuss the operation
trees local to a matched pair, and classify them in Section 7.6. In Section 7.7 we
introduce a stronger notion of validity necessary for our results, and after discussing the
further operations of transplantation and branch shifts in Section 7.8, and introducing a
stronger notion of distributivity in Section 7.9, we prove Theorem 1.4 in Section 7.10.

Acknowledgements The author thanks Robert Lipshitz for posing the questions that
sparked this work, and for helpful conversations. He also thanks Anita for putting up
with him. He is supported by Australian Research Council grant DP160103085.

2 Algebra of strand diagrams and their tensor products

2.1 Strand diagrams and their tensor products

We recall the definition of strand diagrams, before proceeding in Section 2.2 to augment
them. We follow our previous paper [22], which in turn is based on Zarev [30], as well
as Lipshitz–Ozsváth–Thurston [14; 13]. We refer to these papers for further details.

An arc diagram consists of a triple Z D .Z ; a;M/, where Z D fZ1; : : : ; Zlg is a
set of oriented line segments (intervals), aD .a1; : : : ; a2k/ is a sequence of distinct
points in the interior of the line segments of Z, ordered along the intervals, and
M W a! f1; 2; : : : ; kg is a 2-to-1 function. As in [22], performing oriented surgery on
Z at all the 0–spheres M�1.i/ is required to yield an oriented 1–manifold consisting
entirely of arcs (no circles). We say Z is connected if the graph obtained from Z by
identifying each pair M�1.i/ is connected.

We call the points of a places. If M.ai /DM.aj / we say ai and aj are twins; then
ai ; aj form a matched pair (or just pair). The function M partitions a into k such
pairs. There is a partial order on a where ai � aj if ai ; aj lie on the same oriented
interval, and are in order along it.

An unconstrained strand diagram over Z is a triple � D .S; T; �/, where S; T �
fa1; : : : ; a2kg with jS j D jT j and � W S ! T is a bijection, which is increasing with
respect to the partial order on a in the sense that �.x/� x for all x 2 S . There is a
standard way to draw an unconstrained strand diagram in the plane (in fact in Œ0; 1��Z ),
with jS j D jT j strands. The strands begin at S (drawn at f0g�S ), end at T (drawn at
f1g�T ), and move to the right (in the positive direction along Œ0; 1�), never going down,
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and meeting efficiently without triple crossings. We say � goes from S to T . The
points of a split Z into intervals called steps, of two types: interior to an interval Zi ,
and exterior, ie at the boundary of a Zi . The product �� of two strand diagrams
�D .S; T; �/ and �D .U; V;  / is given by .S; V;  ı�/, provided that T DU and the
composition  ı� W S! V satisfies inv. ı�/D inv.�/C inv. /; otherwise it is zero.
Here inv.�/ is the number of inversions, or crossings, in �. Equivalently, the product
�� is given by concatenating strand diagrams, provided that there are no “excess
inversions”, ie crossings which can be simplified by a Reidemeister II-type isotopy
of strands relative to endpoints. There is a differential @ which resolves crossings in
strand diagrams; @� is the sum of all strand diagrams obtained from � by resolving a
crossing so that the number of crossings decreases by exactly 1. This structure makes
the free Z2 –module on strand diagrams over Z into a DGA over Z2 , which we denote
by zA.Z/. For each subset S � a there is an idempotent I.S/.

A Z–constrained, or just constrained, strand diagram takes into account also the
matching M of Z . For each s � f1; : : : ; kg we define I.s/D

P
S I.S/, where the

sum is over sections S of s under M. Here a section of s means an S � a such that
M jS is a bijection S ! s . The I.s/ generate a Z2 –subalgebra of zA.Z/. A strand
diagram which begins at a section of s and ends at a section of t , for s; t � f1; : : : ; kg,
is said to be Z–constrained. We say it begins at s and ends at t , or goes from s to t ;
we also say I.s/, or by abuse of notation just s , is the initial idempotent, and I.t/
or t is the final idempotent. Thus a constrained strand diagram begins and ends at
subsets of a which contain at most one place of each matched pair. If I.s/ zA.Z/I.t/
is nonzero then jsj D jt j D i , in which case it is freely generated as a Z2 –module by
Z–constrained strand diagrams of i strands from s to t .

Finally, we symmetrise our strand diagrams with respect to the matched pairs. If
�D .S; T; �/ is an unconstrained strand diagram on Z without horizontal strands (ie �
has no fixed points) then we consider adding horizontal strands to � at some places
U � an.S [T /, ie adding fixed points to � to obtain a function �U W S [U ! T [U ,
which is still a bijection with �.x/ � x . We define a.�/ to be the sum of all strand
diagrams that can be obtained from � by adding horizontal strands,

a.�/D
X
U

.S [U; T [U; �U / 2 zA.Z/;

and then for each s; t � f1; : : : ; kg, I.s/a.�/I.t/ is the sum of all Z–constrained
strand diagrams from s to t obtained from � by adding horizontal strands (possibly
zero). (Left-multiplying by I.s/ filters for diagrams which start at s ; right-multiplying
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by I.t/ filters for diagrams which start at t ; multiplying by both ensures the result is
Z–constrained.) Note that if it is possible to add a horizontal strand to � at a place a
of a matched pair fa; a0g to obtain a strand diagram in I.s/a.�/I.t/, then it is also
possible to add a horizontal strand at the twin place a0. In this case every diagram in
I.s/a.�/I.t/ contains a horizontal strand at precisely one of a or a0 ; further, for every
diagram with a horizontal strand at a appearing in I.s/a.�/I.t/, the corresponding
diagram with a horizontal strand at a0 and otherwise identical will also appear. If there
are j such pairs fa; a0g, then I.s/a.�/I.t/ is a sum of 2j terms, one for each choice
of a or a0 in each pair.

We denote such a sum I.s/a.�/I.t/ as a single diagram D by drawing the 2j hor-
izontal strands dotted, and call it a symmetrised Z–constrained strand diagram. In
such a diagram, the dotted strands are precisely the horizontal ones, and dotted strands
come in pairs. So a symmetrised Z –constrained strand diagram with j pairs of dotted
strands is in fact a sum of 2j Z–constrained strand diagrams.

The strand algebra A.Z/ is the subalgebra of zA.Z/ generated by symmetrised Z–
constrained strand diagrams. It is preserved by @ and hence forms a DGA. This algebra
has several gradings.

The homological grading, also known as the spin-c or Alexander grading, we abbreviate
to H–grading. It is valued in H1.Z ; a/. Given a strand map �D .S; T; �/ on Z , for
each a 2 S , the oriented interval Œa; �.a/� from a to �.a/ gives a homology class in
H1.Z ; a/, and the H–grading of �, denoted by h.�/ or just h, is the sum of such
intervals Œa; �.a/� over all a 2 S . In other words, h counts how often each step of Z

is covered. Since horizontal strands cover no steps, a symmetrised constrained diagram
D has a well-defined H–grading h.D/. The H–grading is additive under multiplication
of strand diagrams, and preserved by @. We denote by A.ZI h/ the Z2 –submodule of
A.Z/ generated by diagrams with H–grading h, so we have a direct-sum decomposition
A.Z/D

L
h A.ZI h/.

Definition 2.1 Let D be a (symmetrised constrained) diagram from s to t (where
s; t � f1; : : : ; kg), with H–grading h 2 H1.Z ; a/. The H–data of D is the triple
.h; s; t/.

In other words, the H–data of D consists of its H–grading together with its initial and
final idempotents. By inspecting h, we can sometimes deduce that certain strands must
begin or end at certain places, and hence deduce properties of s and t ; but h does not
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in general determine s or t . In particular, h gives no information about horizontal
strands. Writing A.ZI h; s; t/D I.s/A.ZI h/I.t/, we have a decomposition of A.Z/
as a direct sum of Z2 –modules over H–data,

A.Z/D
M
h;s;t

A.ZI h; s; t/D
M
h;s;t

I.s/A.ZI h/I.t/:

The Maslov grading of A.Z/ is valued in 1
2
Z. If � is a Z –constrained strand diagram

(not yet symmetrised) from S to T with H–grading h, then its Maslov grading is

�.�/D inv.�/�m.h; S/;

where the function
m WH1.Z ; a/�H0.a/!

1
2
Z

counts local multiplicities of strand diagrams around places. Specifically, for a place a
and h 2H1.Z ; a/, m.h; a/ is the average of the local multiplicities of h on the steps
after and before a . It is not difficult to check that all the constrained diagrams in a
symmetrised constrained diagram D have the same Maslov grading, so the Maslov
grading of D is the grading of any of the constrained diagrams in it.

The differential @ does not affect H–data, but lowers the number of crossings in a
diagram by 1 (if the result is nonzero), hence has Maslov degree �1. The Maslov
index does not respect multiplication in A.Z/; rather, for symmetrised Z –constrained
strand diagrams D and D0 with H–gradings h and h0 we have

(2) �.DD0/D �.D/C �.D0/Cm.h0; @h/:

The homology of A.Z/ was described by Lipshitz–Ozsváth–Thurston [13, Theorem 9].
As @ respects H–data, the decomposition A.Z/ D

L
h;s;t A.ZI h; s; t/ descends to

homology:
H.A.Z//D

M
h;s;t

H.A.ZI h; s; t//:

Lipshitz–Ozsváth–Thurston showed that the summand H.A.ZI h; s; t// is nontrivial if
and only if there exists a symmetrised Z–constrained strand diagram D with H–data
.h; s; t/ without crossings, satisfying two conditions:

(i) the multiplicity of h on every step of Z is 0 or 1; and

(ii) if fa; a0g is a matched pair with a in the interior of the support of h, and a0 not
in the interior of the support of h, then a does not lie in both s and t .
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Such a D, having no crossings, is obviously a cycle and in fact the homology class
of any such D generates H.A.ZI h; s; t//Š Z2 . We use property (i) extensively as a
notion of viability from Section 2.3 onwards. We discuss and reformulate the second
condition in Section 2.8 below; see also [22, Sections 3.5–3.7].

Since we usually work with a single arc diagram Z , we often leave Z implicit and
write

ADA.Z/; A.h; s; t/DA.ZI h; s; t/; HDH.A/; H.h; s; t/DH.A.h; s; t//:

The homology H inherits multiplication from A and becomes a DGA with trivial
differential. The point of this paper is to extend this DGA structure to A1–structures.

Turning to tensor products, we observe that since A is freely generated as a Z2

vector space by symmetrised constrained augmented strand diagrams on Z , its tensor
power A˝n is freely generated by tensor products D1˝ � � �˝Dn of such diagrams.
We have the decomposition

A˝n
D

M
.h1;s1;t1/;:::;.hn;sn;tn/

�
A.h1; s1; t1/˝A.h2; s2; t2/˝ � � �˝A.hn; sn; tn/

�
;

with a similar decomposition for H˝n .

The Maslov and H–gradings naturally carry over to A˝n so that the gradings of
D1˝ � � �˝Dn agree with those of the product D1 � � �Dn in A.

Definition 2.2 (gradings for tensor products) (i) The H–grading of D1˝� � �˝Dn

is h.D1˝ � � �˝Dn/D
Pn

iD1 hi 2H1.Z ; a/.

(ii) The Maslov grading of D1˝ � � � ˝Dn is �.D1˝ � � � ˝Dn/D
Pn

iD1 �.Di /CP
1�j <k�nm.hk; @hj /:

Applying (2) repeatedly shows that �.D1˝ � � � ˝Dn/D �.D1 � � �Dn/; we also have
h.D1˝� � �˝Dn/D h.D1 � � �Dn/. These gradings naturally descend to tensor powers
H˝n of the homology H .

2.2 Augmented strand diagrams

In a symmetrised Z–constrained strand diagram, strands run between places in aD

.a1; : : : ; a2k/. Since places lie in the interior of the intervals Zi of Z, no strand ever
reaches an endpoint of any interval Zi . In other words, strand diagrams only cover
interior steps of Z.
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In the sequel however we need to consider strand diagrams where strands cover exterior
steps of Z and reach endpoints of the intervals Zi . We describe this as flying off
an interval. Augmented strand diagrams, which we define presently, extend strand
diagrams to allow such behaviour.

To define augmented diagrams formally we again use nondecreasing bijections, but
now on sets including the endpoints of each interval. Let the endpoints of the interval
Zi be �1i and C1i , at the start and end respectively. A strand flies off the top end
of an interval Zi if some aj ¤C1i is sent to C1i , and a strand flies off the bottom
if some aj ¤�1i satisfies �1i 7! aj . A strand may fly off both ends of an interval
if �1i 7! C1i . We also allow horizontal strands at ˙1i , but these present a slight
subtlety, discussed below: they simply exist for technical reasons.

Let a˙1 D a[ f�11; : : : ;�1lg
l
iD1 [ fC11; : : : ;C1lg

l
iD1 . The points of a˙1

are naturally partially ordered by the total order along each interval, extending the
partial order on a .

The definition of the augmented strand algebra follows the definition of the strand
algebra, with a replaced by a˙1 — with a few technicalities.

An unconstrained augmented strand diagram over Z is a triple .S; T; �/, where
S; T � a˙1 and � W S! T is a bijection such that �.x/� x for all x 2 S . As in the
nonaugmented case, the product of two such diagrams concatenates diagrams, provided
a concatenation exists and has no excess crossings; the differential resolves crossings,
provided the number of crossings decreases by exactly 1; so we obtain a DGA zAaug.Z/,
which is a DGA over Z2 with an idempotent I.S/ for each S � a˙1 .

A subtlety arises here because if an (unconstrained) augmented strand diagram � has a
strand (say) flying off the end of an interval to C1i , it should still be able to give a
nonzero result when composed with another diagram on the right, which does not have
any strand at C1i . We extend our notion of matching to achieve this effect, but it is
no longer a function; rather it is a partial function (ie partially defined).

To this end, extend the matching M W a! f1; : : : ; kg to the partial function

M aug
W a˙1! f1; : : : ; kg

which is equal to M on a and is not defined on each �1i or C1i . Given s �
f1; : : : ; kg, a section of s under M aug is then any set S �a˙1 such that the restriction
of M aug to S is a (possibly partially defined) function mapping surjectively and
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injectively to s . Thus a section of s under M aug consists of a section of s under M,
together with any subset of f�1i ;C1ig

l
iD1 .

As in the nonaugmented case, for s � f1; : : : ; kg, define I.s/ D
P

S I.S/, the sum
over sections S of s under M aug ; when I.s/ zAaug

.Z/I.t/ ¤ 0, there is at least one
section S of s under M aug , and at least one section T of t under M aug , such that
there exists an (unconstrained) augmented strand diagram from S to T . However, now
s and t need not have the same size, because S and T can also contain points of the
form C1i or �1i .

If �D .S; T; �/ is an unconstrained augmented strand diagram on Z without horizontal
strands, we again consider adding horizontal strands to � at places U � a˙1n.S[T /

(there can be horizontal strands at ˙1i ), extending � by the identity to �U W S[U !

T [U , and defining a.�/D
P

U .S[U; T [U; �U /2 zAaug.Z/. For s; t � f1; : : : ; kg,
then, I.s/a.�/I.t/ is the sum of all Z–constrained augmented strand diagrams ob-
tained from � by adding horizontal strands, possibly at interval endpoints ˙1i . As
in the nonaugmented case, if one such diagram has j horizontal strands at the places
of a , these horizontal strands can be swapped with their twins, resulting in 2j possible
arrangements of horizontal strands at these places. Unlike the nonaugmented case, for
any point of the form �1i or C1i not in S [T , a horizontal strand can be added
at this point. Thus if

ˇ̌Sl
iD1f�1i ;C1ign.S [T /

ˇ̌
D n, then there are 2n possible

arrangements of horizontal strands at these endpoints.

Definition 2.3 With notation as above, I.s/a.�/I.t/ is a sum of 2jCn Z –constrained
augmented strand diagrams. We can draw such a sum as a single diagram D with 2j
dotted horizontal strands (leaving the possible horizontal strands at ˙1i implicit) and
we call it a symmetrised Z–constrained augmented strand diagram or just diagram.

Multiplication of two diagrams D;D0 is described as follows. If no strand in D or
D0 flies off an interval, then their product DD0 as augmented diagrams is given by
concatenating strands, just as for nonaugmented diagrams. Formally the symmetrised
augmented diagram is a sum of 2n diagrams, involving possible horizontal strands
at ˙1i , but the augmented diagram DD0 is drawn identically to the diagram of the
product of nonaugmented diagrams.

If on some interval Zi , both D and D0 fly off the top end, then DD0 D 0. This is
because, for any Z–constrained augmented strand diagram .S; T; �/ in D, and any
such diagram .S 0; T 0; �0/ in D0, � has C1i in its image, but �0 does not have C1i
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q
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q
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D 0

Figure 7: Multiplication of augmented diagrams.

in its domain, so the functions cannot be composed. Similarly, if both D;D0 fly off the
negative end, then DD0D 0. If D flies off the top end of Zi but D0 does not, then the
composition is well defined there: each .S; T; �/ in D has C1i in the image of � ;
and half of the constrained augmented diagrams .S 0; T 0; �0/ in D0 have �0 mapping
C1i 7! C1i (ie a horizontal strand at C1i ), so such �0 compose with � at C1i .
If D0 flies off the top end of Zi but D does not, then again composition is well defined:
each .S 0; T 0; �0/ in D0 has C1i in its image, but not in its domain; half the .S; T; �/
in D do not have C1i in the domain or image; and these � and �0 compose without
any problems at C1i . Thus, if one of D;D0 flies off the top end of Zi and the other
does not, then the product DD0 is well defined there. Similarly, if one of D;D0 flies off
the bottom end of Zi and the other does not, then the product DD0 is well defined there.

Thus, roughly, if we can concatenate strands of D and D0 into another augmented
diagram, with at most one strand flying off any end of any interval, then the product
DD0 is given by concatenating strands, just as for (nonaugmented) strand diagrams.
Some examples are shown in Figure 7.

The rest of the structure follows the nonaugmented case. The augmented strand algebra
Aaug.Z/ is the subalgebra of zAaug.Z/ generated by (symmetrised Z–constrained
augmented strand) diagrams. It is preserved by @ and forms a DGA with homology
Haug.Z/. H–grading h is given by the sum of oriented intervals Œa; �.a/�, regarded
in relative H1 . However now the endpoints of Œa; �.a/� may include the ˙1i , so
h2H1.Z ; a˙1/. Since H1.Z ; a˙1/ naturally contains H1.Z ; a/ as a subgroup, we
regard the H–grading as an extension of H–grading in the nonaugmented case. Diagrams
have H–data .h; s; t/; writing Aaug.ZI h/;Aaug.ZI h; s; t/ for submodules of Aaug.Z/
with specific H–grading or H–data, we have decompositions Aaug.Z/D

L
h Aaug.ZI h/

and Aaug.Z/D
L

h;s;t Aaug.ZI h; s; t/, and similarly for homology.

Maslov grading is given by �.�/D inv.�/�m.h; S/ 2 1
2
Z, where now

m WH1.Z ; a˙1/�H0.a/!
1
2
Z
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counts local multiplicities of augmented diagrams around places ai in S . (We use
H0.a/ rather than H0.a˙1/ so that Maslov grading is additive when we glue arc
diagrams together. The points ˙1i are not places like the ai .) Maslov grading is
well defined, since all the diagrams in a symmetrised diagram have the same Maslov
grading. (When we add a horizontal strand at a ˙1i , the fact that we can add the
strand means that there is no strand at ˙1i for the horizontal strand to cross; moreover
the horizontal strand at ˙1i does not contribute to m.h; S/.)

Again @ respects H–data but has Maslov degree �1. Maslov index behaves under mul-
tiplication as in the nonaugmented case. When we have h 2H1.Z ; a/�H1.Z ; a˙1/

then strands do not fly off intervals and we have an isomorphism of DGAs,

A.ZI h; s; t/ŠAaug.ZI h; s; t/:

The isomorphism takes a symmetrised diagram D 2A.ZI h; s; t/ (formally a sum of
2j constrained diagrams) to the element of Aaug.ZI h; s; t/ represented by the same
diagram (formally a sum of 2jC2l constrained diagrams, where l is the number of
intervals in Z ; all possible horizontal strands at ˙1i are now included). We draw
the same diagrams and treat them the same way in both cases.

Accordingly, throughout this paper we regard augmented diagrams as a generalisation
of nonaugmented diagrams, even though the definition is not formally a generalisation.
Alternatively we can regard nonaugmented diagrams as augmented diagrams with
H–grading zero on exterior steps, in which case augmented diagrams do become a
generalisation in a formal sense.

Thus, we drop the “aug” from our notation and simply write A.Z/ or A for the
augmented strand algebra. The tensor product A˝n is again freely generated by tensor
products of diagrams, and Definition 2.2 defines gradings in A˝n .

To summarise: (symmetrised constrained augmented strand) diagrams are a generalisa-
tion of symmetrised constrained strand diagrams — generalising the full DGA structure
of strand diagrams, as well as all gradings and idempotents.

2.3 Viability

The following notion of viability will be crucial throughout this paper.

Definition 2.4 Let Z D .Z ; a;M/ be an arc diagram.

(i) An element h 2H1.Z ; a/ or H1.Z ; a˙1/ is viable if h has multiplicity 0 or
1 on each step of Z.
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(ii) A sequence of H–data .h1; s1; t1/; : : : ; .hn; sn; tn/ is viable if the following
conditions hold:

(a) for each 1� i � n� 1, ti D siC1 ; and

(b) h1C � � �Chn is viable.

(iii) A summand

A.h1; s1; t1/˝ � � �˝A.hn; sn; tn/ of A˝n

or a summand

H.h1; s1; t1/˝ � � �˝H.hn; sn; tn/ of H˝n

is viable if the sequence of H–data .h1; s1; t1/; : : : ; .hn; sn; tn/ is viable.

(iv) An element of A˝n or H˝n is viable if it lies in a viable summand.

Parts (ii)–(iv) of this definition, when nD 1, reduce to notions of viability for H–data,
summands A.h; s; t/ and H.h; s; t/, and elements of A and H . The H–data .h; s; t/
is viable if and only if h is viable; the summand A.h; s; t/ or H.h; s; t/ is viable if and
only if h is. An element of A or H is viable if and only if it lies in a viable summand;
a diagram is viable if and only if its H–grading is viable.

From (iv), a tensor product D1 ˝ � � � ˝Dn of diagrams is viable if and only if its
sequence of H–data is viable; similarly for a tensor product of homology classes of
diagrams M1˝ � � �˝Mn .

We refer to condition (ii)(a), that all ti D siC1 , as idempotent matching. It is vacuous
when nD 1. When it fails, we say we have an idempotent mismatch. We define the
H–data of a viable tensor product to include the first and last idempotents.

Definition 2.5 (H–data of tensor product) If a tensor product D1 ˝ � � � ˝Dn of
diagrams or M1˝ � � �˝Mn of homology classes of diagrams is viable, its H–data is
the triple .h1C � � �Chn; s1; tn/.

Idempotent matching means that we can draw strand diagrams side by side; the right-
hand side of each Di matches the left-hand side of DiC1 . Figure 8 depicts two viable
tensor products of diagrams.

We now collect some useful properties of viability.
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q
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q
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Figure 8: Top: Sesqui-occupied critical tensor product of six diagrams. Bot-
tom: An extension–contraction (Section 2.4).

Lemma 2.6 Let D1; : : : ;Dn be diagrams and M1; : : : ;Mn homology classes of
diagrams on Z .

(i) If the product D1 � � �Dn is a nonzero viable diagram , then D DD1˝ � � �˝Dn

is viable.

(ii) If the product M1 � � �Mn is a nonzero homology class , then M DM1˝� � �˝Mn

is viable.

Proof If idempotents don’t match then the product D1 � � �Dn or M1 � � �Mn is zero.
The H–gradings of D1 � � �Dn and D1˝� � �˝Dn are equal; similarly for M1; : : : ;Mn .

The converses to Lemma 2.6(i) and (ii) are both false: there exist viable D and M
with D1 � � �Dn D 0 and M1 � � �Mn D 0. In fact, D and M may be viable, yet there
may not exist any diagram with its H–data! See eg Figure 9 (right). We introduce
notions of “critical” and “singular” to describe these phenomena in Section 2.7.

Lemma 2.7 In a viable diagram , every crossing is at a horizontal strand.

Proof A diagram with two nonhorizontal strands crossing covers a step with multi-
plicity � 2.

Thus, when applying @ to a viable diagram, any crossing resolved involves a dotted
horizontal strand at a particular place; so @ acts “locally” on viable diagrams, each
resolution at a specific matched pair. We discuss this idea of “locality” in Section 2.5.
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2.4 Subtensor-products, extension and contraction

Definition 2.8 Let D1; : : : ;Dn be diagrams, and D D D1 ˝ � � � ˝Dn 2 A˝n . A
subtensor-product of D is a tensor product D0 D Di ˝DiC1 ˝ � � � ˝Dj�1 ˝Dj ,
where 1� i � j � n.

Similarly we can define a subtensor-product of a tensor product of homology classes of
diagrams. If D is viable, then any subtensor-product D0 is also viable; and similarly
for homology classes.

A diagram is an idempotent if and only if all its strands are horizontal. Idempotents can
be inserted into a tensor product of strand diagrams to “extend” it, as in the following
straightforward statement, which also gives a method to “contract” it.

Lemma 2.9 (extending and contracting tensor products) Let D DD1˝ � � � ˝Dn

be a viable tensor product of diagrams , where Di has H–data .hi ; si ; ti /. Let D�i be
the unique idempotent diagram consisting of dotted horizontal strands at all places of
ti D siC1 .

(i) The tensor product D0DD1˝� � �˝Di˝D
�
i ˝DiC1˝� � �˝Dn is also viable.

(ii) Suppose that for some 1 � i < j � n, the product DiDiC1 � � �Dj is nonzero.
Then D00 D D1˝ � � � ˝Di�1˝ .DiDiC1 � � �Dj /˝DjC1˝ � � � ˝Dn is also
viable.

Again, a similar statement applies to tensor products of homology classes of diagrams.

Definition 2.10 In Lemma 2.9, we say D0 is obtained from D by extension by D�i ,
and D00 is obtained from D by contraction of Di ˝ � � �˝Dj .

We say a tensor product of diagrams is obtained from another by extension–contraction
if it is obtained by some sequence of extensions and contractions.

Again, this definition also applies to tensor products of homology classes. Observe that
extension and contraction of a tensor product preserve H–data and Maslov grading.

Note that extensions may be reversed by contraction, and contractions of idempotents
may be reversed by extension. But a contraction involving more than one factor with
nonhorizontal strands (ie more than one nonidempotent factor) cannot be reversed by
extension; hence the following definition.
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Definition 2.11 If two or more of Di ;DiC1; : : : ;Dj are not idempotents, then con-
traction of Di ˝ � � �˝Dj in D is nontrivial. Otherwise, the contraction is trivial.

In a trivial contraction, either all of Di ; : : : ;Dj are idempotents, as is their product;
or precisely one diagram Dk among Di ; : : : ;Dj has nonhorizontal strands, in which
case Di � � �Dj DDk . Figure 8 depicts a nontrivial extension–contraction. Since an
idempotent is the unique diagram representing its homology class, this definition also
applies to homology.

2.5 Local diagrams

In the arc diagram ZD .Z ; a;M/, consider cutting the intervals Z1; : : : ; Zl of Z into
subintervals, each containing precisely one place. This cuts Z into disconnected arc
diagrams — one connected arc diagram for each matched pair. We call the connected
arc diagram so obtained, containing the matched pair P , the fragment of Z at P , and
denote it by ZP . Clearly any two such fragments are homeomorphic, regardless of
where we cut Z.

Indeed, a fragment ZP is the unique arc diagram up to homeomorphism with one
matched pair. Under the correspondence between arc diagrams and quadrangulated
surfaces of [22], cutting Z into fragments corresponds to cutting † into squares.

Let now D be a diagram on Z . When we cut Z into fragments, we consider cutting D
into fragments also. Note that the resulting diagrams on fragments may be augmented,
even if D is not augmented.

If D has a crossing involving two nonhorizontal strands, then problems arise. Firstly,
D could be drawn with the crossing appearing in various possible locations, so that
there is no well-defined way to cut D into fragments. Secondly, after cutting, more
than one strand may fly off the same end of a fragment, which is not permitted in
augmented diagrams.

However, if D is viable these problems disappear. By Lemma 2.7 all crossings occur
at horizontal strands, so are localised at specific places. Moreover, each interior step
of Z is covered with multiplicity at most 1, so we obtain a well-defined augmented
diagram on each fragment.

Definition 2.12 Let P be a matched pair of the arc diagram Z , and let D be a viable
diagram on Z . The local diagram DP of D at P is the diagram obtained on ZP after
cutting Z into fragments. It lies in the local strand algebra A.ZP /, whose homology
is called the local homology at P .
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We can also extend the notion of a local diagram to tensor products: given a viable
tensor product of diagrams D DD1˝ � � �˝Dn 2A.Z/˝n , the local tensor product
DP is

DP D .D1˝ � � �˝Dn/P D .D1/P ˝ � � �˝ .Dn/P 2A.ZP /
˝n:

Similarly, a tensor product of homology classes of diagrams M DM1˝ � � �˝Mn 2

H.A.Z//˝n has local tensor product

MP D .M1˝ � � �˝Mn/P D .M1/P ˝ � � �˝ .Mn/P 2H.A.ZP //
˝n:

The H–data of each DP is just a restriction of the H–data of D. Maslov gradings satisfy
�.D/D

P
P �.DP /. If .h; s; t/ denotes the H–data of D, we denote by .hP ; sP ; tP /

the H–data of DP . When the arc diagram Z is understood, we abbreviate notation for
algebras, summands, and homology:

AP DA.ZP /; AP .hP ; sP ; tP /DA.ZP I hP ; sP ; tP /;

HP DH.AP /; HP .hP ; sP ; tP /DH.AP .hP ; sP ; tP //:

Diagrams DP on each ZP , which fit together in the sense that strands flying off
intervals connect, can be glued together into a viable diagram on Z , and in fact for
viable H–data .h; s; t/,

A.h; s; t/Š
O

matched pairs P

AP .hP ; sP ; tP /:

We regard A˝n as a “horizontal” tensor product, and the above decomposition as a
“vertical” tensor product. This is an isomorphism of complexes, or differential Z2 –
modules. Thus, studying viable diagrams locally is equivalent to studying diagrams on
fragments.

This isomorphism also respects multiplication: multiplying two diagrams D and D0

on Z , and then cutting into fragments, yields the same result as cutting D and D0 into
fragments, and then multiplying the local diagrams — provided that it makes sense to
cut all the diagrams D, D0 and DD0 into fragments, ie they are all viable. In other
words, if D and D0 are viable diagrams on Z , with local diagrams DP and D0P on
each fragment ZP , then DD0 is nonzero and viable if and only if each DPD

0
P is

viable; and .DD0/P DDPD
0
P . Thus D D

N
P DP and D0 D

N
P D

0
P multiply to

DD0 D
N

P DPD
0
P .

Now for any chain complexes A and B over Z2 we have H.A˝B/ŠH.A/˝H.B/ —
see eg [21, Section 3.7] or [3, Theorem V.2.1] — giving the following isomorphism,
which we often use implicitly in the sequel.
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Lemma 2.13 For viable .h; s; t/, there is an isomorphism of graded Z2 –algebras

H.h; s; t/Š
O

matched pairs P

HP .hP ; sP ; tP /;

respecting H–data and Maslov grading, which is induced by cutting diagrams into
fragments.

Since all local strand algebras are isomorphic, we may speak of the local arc diagram
or strand algebra, without reference to any specific matched pair. We abusively write
ZP and AP accordingly.

2.6 Terminology for local strand diagrams and their tensor products

We now develop terminology to describe local diagrams. Throughout this section,
P D fp; qg is a matched pair of an arc diagram Z D .Z ; a;M/, h 2H1.Z ; a˙1/,
D is a diagram, D1˝ � � �˝Dn is a tensor product of diagrams, M is the homology
class of a diagram, and M1˝ � � � ˝Mn is a tensor product of homology classes of
diagrams. Each diagram or homology class or tensor product has H–data .h; s; t/.

Definition 2.14 (occupation of places) If h has multiplicity

(i) 0 on the steps before and after p , then p is unoccupied by h;

(ii) 1 on the step before p , and 0 on the step after p , then p is pre-half-occupied
by h;

(iii) 0 on the step before p , and 1 on the step after p , then p is post-half-occupied
by h;

(iv) 1 on both steps before and after p , then p is fully occupied by h.

If h is pre-half-occupied or post-half-occupied, then p is half-occupied by h.

We equally apply this terminology to diagrams and their homology classes and ten-
sor products via their H–data, saying p is unoccupied (half-occupied, etc) by D or
D1˝ � � �˝Dn .

Definition 2.15 (occupation of pairs) (i) If both p and q are unoccupied by h,
then P is unoccupied by h.
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(ii) If p is half-occupied, and q is unoccupied by h, then P is one-half-occupied
at p by h. Accordingly as p is pre- or post-half-occupied, P is pre-one-half-
occupied or post-one-half-occupied.

(iii) If both p; q are half-occupied by h, then P is alternately occupied by h.

(iv) If p is fully occupied, and q is unoccupied by h, then P is once occupied at p .

(v) If p is fully occupied and q is half-occupied by h, then P is sesqui-occupied
at p . Accordingly as p is pre- or post-half-occupied, P is pre-sesqui-occupied
or post-sesqui-occupied.

(vi) If p; q are both fully occupied by h, then P is doubly occupied by h.

Again, we can extend this definition to diagrams and their homology classes and tensor
products: P is unoccupied by D or D1˝ � � �˝Dn or M1˝ � � �˝Mn , etc.

Definition 2.16 (idempotent terminology) For H–data .h; s; t/ and a matched pair P :

(i) If P … s and P … t , we say P is off-off or all-off or 00.

(ii) If P … s and P 2 t , we say P is off-on or 01.

(iii) If P 2 s and P … t , we say P is on-off or 10.

(iv) If P 2 s and P 2 t , we say P is on-on or all-on or 11.

(We find this terminology awkward, hence offer several equally awkward alternatives.)
We can say, for instance, that a pair P is all-on doubly occupied by .h; s; t/, or
equivalently that .h; s; t/ is 11 doubly occupied at P. Again, this definition extends
to diagrams and their homology classes and tensor products. Figure 8 depicts tensor
products of diagrams at a sesqui-occupied pair.

H–data .h; s; t/ can be described completely by the terminology of occupation (which
describes h) and on/off (which describes s; t ). As such, we can often deduce properties
of a diagram simply from its occupation of places, or its on/off/etc properties.

2.7 Tightness of diagrams and their tensor products

Definition 2.17 (tightness of diagrams and tensor products) Suppose that D D
D1˝ � � �˝Dn is a viable tensor product of diagrams, with H–data .h; s; t/.

(i) If D1 � � �Dn is nonzero in homology, and all Di are nonzero in homology, then
D is tight.
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(ii) If D1 � � �Dn is nonzero in homology, but not all Di are nonzero in homology,
then D is sublime.

(iii) If D1 � � �Dn is zero in homology, but is a nonzero diagram with no crossings,
then D is twisted.

(iv) If D1 � � �Dn is a nonzero diagram with crossings, then D is crossed.

(v) If D1 � � �Dn D 0, but A.h; s; t/¤ 0, then D is critical.

(vi) If D1 � � �Dn D 0 and A.h; s; t/D 0, then D is singular.

Here when we say an element of A is “nonzero in homology”, we mean that it represents
a nonzero homology class. Since a diagram with crossings does not have a homology
class, these cases are disjoint and cover all possibilities.

Examples of each type are shown in Table 2. Figure 9 (right) shows a singular example.

This definition presents tightness as a list of things that go increasingly wrong. First
a diagram fails to be nonzero in homology; then the product fails to be nonzero in
homology; then it has a crossing (hence does not represent a homology class); then it
is zero; and then its existence is nonsensical. Any viable D falls into precisely one of
these types. We say that D is more tight or more singular accordingly as it appears
earlier or later in this list, giving the increasing order of singularity

tight< sublime< twisted< crossed< critical< singular:

We say that D is tight (sublime, twisted, etc) at P if DP is tight (sublime, twisted, etc)
on ZP .

The condition that A.h; s; t/ ¤ 0 is equivalent to the existence of a diagram with
H–data .h; s; t/. Thus when D is singular, no diagram exists with its H–data.

When nD 1 we obtain notions of tightness for a single viable diagram D. Examples
of each type are shown in Table 1. The sublime, critical and singular cases do not arise,
and we obtain that D is

(i) tight if it is nonzero in homology,

(ii) twisted if it is zero in homology, but has no crossings,

(iii) crossed if it has crossings.
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2.8 Local strand diagrams, local algebras and homology

There are not many possible local diagrams; they are listed in Table 1, by their H–data.
Given H–data .h; s; t/ at P D fp; qg, there are at most two diagrams, up to relabelling
p and q . There are two diagrams precisely when P is all-on once or doubly occupied,
and in this case the two diagrams are distinguished by Maslov grading. Such diagrams
are important in the sequel, and so we name them.

Definition 2.18 (i) If P D fp; qg is all-on doubly occupied by .h; s; t/,

(a) bP D bfp;qg is the unique crossed diagram;

(b) gp (resp. gq ) is the unique crossingless diagram with strands beginning and
ending at p (resp. q ).

(ii) If P D fp; qg is all-on once occupied at p by .h; s; t/,

(a) cp is the unique crossed diagram;

(b) wp is the unique crossingless diagram.

(iii) For any other H–data, denote the unique diagram by uP .

(Our choice of symbols may seem arbitrary, but there is method in the madness:
c for “Crossed”, b for “douBly crossed”, g for “tiGht”, w for “tWisted”, and u for
“Unique”.)

Define chain complexes C 00P , C 0P and CP by

C 00P W 0! Z2hbP i ! Z2hgp; gqi ! 0; where @bP D gpCgq and @gp D @gq D 0,

C 0P W 0! Z2hcpi ! Z2hwpi ! 0; where @cp D wp and @wp D 0,

CP W 0! Z2huP i ! 0:

Up to a shift in Maslov grading, each nonzero summand AP .h; s; t/ of AP is iso-
morphic to C 00P , C 0P or CP , accordingly as .h; s; t/ is 11 doubly occupied, 11 once
occupied, or anything else. These chain complexes have homology given by

� H.C 00P / Š Z2 , generated by the homology class of gp or gq (equal since
@bP D gpCgq ),

� H.C 0P /D 0,

� H.CP /Š Z2 , generated by the homology class of uP .
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From Section 2.5 we then have isomorphisms of chain complexes

A.h; s; t/Š
O
P

AP .hP ; sP ; tP /

Š

O
P 11 doubly occupied

C 00P ˝
O

P 11 once occupied

C 0P ˝
O

other P

CP ;

and on homology we obtain

H.h; s; t/Š
O
P

HP .hP ; sP ; tP /Š

�
0 if there is an all-on once occupied pair,
Z2 otherwise.

Moreover, when there are no all-on once occupied pairs, H.h; s; t/Š Z2 is generated
by the homology class of any crossingless diagram. So a diagram D is tight if and
only if it has no crossings or all-on once occupied pairs; and D is twisted if and only
if it is crossingless with an all-on occupied pair. We then have the following.

Proposition 2.19 (classification of local diagrams) Let D be a diagram on ZP . Then
the H–data and tightness of D determine D up to relabelling twins , and D is as shown
in Table 1.

This recovers the homology calculation of Lipshitz–Ozsváth–Thurston [13], for viable
H–data, extended to augmented diagrams. They calculate that H.h; s; t/ is nontrivial
if and only if there exists a crossingless diagram D satisfying two conditions (stated in
Section 2.1), which we can now translate into our terminology. Condition (i) is that
D be viable. Condition (ii) is that if P is once occupied or sesqui-occupied, then P
is not all-on. Sesqui-occupied local diagrams are never all-on (eg from Table 1), so
condition (ii) simply rules out all-on once occupied pairs.

Because of the above, the following definition makes sense.

Definition 2.20 Let .h; s; t/ be viable H–data.

(i) The homology class of .h; s; t/, denoted by Mh;s;t , is the unique nonzero
homology class in H.h; s; t/, if it exists; otherwise Mh;s;t D 0.

(ii) The local homology class of .h; s; t/ at P, denoted by MP
h;s;t

, is the unique
nonzero local homology class in HP .h; s; t/, if it exists; otherwise MP

h;s;t
D 0.

The next proposition encapsulates the above discussion.
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H–data tight twisted crossed

unoccupied

all-off 0

all-on 0

one-half-occupied

pre- 0

post- �
1
2

alternately occupied all-on �
1
2

once occupied

all-off 0

all-on
q

p wp

�1 q

p cp

0

sesqui-occupied

pre- 0

post- �
1
2

doubly occupied

all-off 0

all-on
q

p gp

�1

or
gq

�1 q

p bP

0

Table 1: Local diagrams classified by H–data and tightness. Maslov indices
are shown.
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Proposition 2.21 Let .h; s; t/ be viable H–data. Then precisely one of the following
is true:

(i) There is a tight diagram with H–data .h; s; t/; .h; s; t/ is the H–data of a diagram
with no all-on once occupied pairs; H.h; s; t/ŠZ2 , generated by the homology
class Mh;s;t of any crossingless diagram with H–data .h; s; t/.

(ii) There is a twisted diagram with H–data .h; s; t/; .h; s; t/ is the H–data of a
diagram with an all-on once occupied pair; H.h; s; t/D 0 but A.h; s; t/¤ 0.

(iii) There is no diagram with H–data .h; s; t/; A.h; s; t/D 0.

Definition 2.22 (tightness of H–data) We say the viable H–data .h; s; t/ on Z is
tight, twisted or singular according as (i), (ii) or (iii) of Proposition 2.21 applies. The
set of all viable tight H–data is denoted by g.Z/, and the set of all viable twisted
H–data is denoted by w.Z/.

When the arc diagram is understood we simply write g or w rather than g.Z/ or w.Z/.
Definitions 2.22 and 2.17 are consistent: a tight (resp. twisted, singular) tensor product
of diagrams has tight (resp. twisted, singular) H–data. (As we will see in Section 2.10,
Table 2 shows that a sublime or critical local tensor product has tight H–data, and a
crossed local tensor product has tight or twisted H–data.)

When .h; s; t/ is tight, there exists a tight diagram with H–data .h; s; t/; we can ask
precisely how many such diagrams exist. Any such diagram has homology class Mh;s;t

and is determined at all pairs except those which are all-on doubly occupied, where the
local diagrams gp and gq (Definition 2.18, or see Table 1) are both tight. We call the
operation of replacing gp$ gq strand switching; see Figure 9 (left). With two choices
at each all-on doubly occupied pair, we obtain the following statement.

Lemma 2.23 Let .h; s; t/ be tight viable H–data on the arc diagram Z . Let L be
the number of pairs all-on doubly occupied by .h; s; t/. Then there are precisely 2L

tight diagrams with H–data .h; s; t/; they are precisely the diagrams representing the
homology class Mh;s;t . Any two such diagrams are related by a sequence of strand
switchings.

Tightness obeys a “local-to-global” principle, which we now state. Recall that the
six tightness types of Definition 2.17 (hence the three types of Definition 2.22) are
arranged in order from tight to singular.
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 ! D

Figure 9: Left: strand switching. Centre: sublimation. Right: a singular
tensor product.

Lemma 2.24 (local-to-global principle for tightness)

(i) Let .h; s; t/ be viable. Then the tightness type of .h; s; t/ is the most singular
tightness type among its local H–data .hP ; sP ; tP / over matched pairs P.

(ii) Let D D D1˝ � � � ˝Dn be viable. Then the tightness type of D is the most
singular tightness type among its local tensor products DP D .D1˝� � �˝Dn/P

over matched pairs P.

Proof We deal first with H–data: .h; s; t/ is nonsingular if and only if it is the H–data
of a diagram, if and only if each .hP ; sP ; tP / is the H–data of a diagram, if and only if
all .hP ; sP ; tP / are nonsingular. So .h; s; t/ is singular if and only if some .hP ; sP ; tP /

is singular. We may then assume .h; s; t/ and all .hP ; sP ; tP / are tight or twisted.
Then .h; s; t/ is twisted if and only if there is an all-on once-occupied pair P, in which
case this .hP ; sP ; tP / is twisted. Otherwise, .h; s; t/ and all .hP ; sP ; tP / are tight.
This proves (i).

Now consider D ; let its H–data be .h; s; t/. This D is singular if and only if
A.h; s; t/ D 0, if and only if .h; s; t/ is singular, if and only if some .hP ; sP ; tP /

is singular (by (i)), if and only if some AP .hP ; sP ; tP /D 0, if and only if some DP

is singular. We now assume D and all DP are nonsingular, hence diagrams exist with
H–data .h; s; t/.

Since we have D1 � � �Dn D
N

P .D1 � � �Dn/P , we have that D D 0 if and only if
some .D1 � � �Dn/P D 0; that is, D is critical if and only if some DP is critical. We
now assume D1 � � �Dn and all .D1 � � �Dn/P are nonzero, ie the tightness type of D
and each DP is crossed or tighter.

If D is crossed then D1 � � �Dn has a crossing. By viability (Lemma 2.7), each crossing
occurs at some matched pair P, hence some .D1 � � �Dn/P has a crossing, so DP is
crossed. Conversely, if some DP is crossed then so is D. So D is crossed if and only
if some Dp is crossed. We now assume D1 � � �Dn and each .D1 � � �Dn/P have no
crossings, ie D and each DP are twisted or tighter.
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Since H.h; s; t/ Š
N

P HP .hP ; sP ; tP /, D1 � � �Dn is zero in homology if and only
if some .D1 � � �Dn/P is zero in homology; that is, D is twisted if and only if some
DP is twisted. We now assume D1 � � �Dn and each .D1 � � �Dn/P are nonzero in
homology, ie D and each DP are sublime or tight.

It remains to show that under these assumptions, D is tight if and only if all DP are
tight. Use H.h; s; t/Š

N
P HP .hP ; sP ; tP /: D is tight if and only if D1 � � �Dn and

all Di are nonzero in homology, if and only if all .D1 � � �Dn/P and all .Di /P are
nonzero in homology, if and only if all DP are tight.

2.9 Properties of nontight diagrams and tensor products

We now demonstrate various useful properties of various types of nontight diagrams.

Crossed diagrams We note that crossed diagrams cannot arise from crossingless
diagrams.

Lemma 2.25 (crossingless subalgebra) If diagrams D1 and D2 are crossingless,
then D1D2 is zero or crossingless. Hence the submodule of A generated by crossing-
less diagrams forms a subalgebra.

Proof If D1D2 has a crossing, then one strand starts below and ends above another.
The two strands must change their order either in D1 or D2 , so D1 or D2 has a
crossing.

Note that this lemma applies to crossingless diagrams in general, not just viable ones.
The converse is false: multiplying a crossed diagram by another may yield a crossingless
diagram. The result may even be tight, as occurs in sublimation. This occurs repeatedly
in A1 operations.

Twisted diagrams and tensor products A viable diagram D is twisted if and only if
each local diagram DP is tight or twisted, and at least one DP is twisted (Lemma 2.24).
The only twisted local diagram is wp (of Definition 2.18; see Table 1), so twisted
diagrams are characterised by specific presence of wp at an all-on once occupied pair
P D fp; qg, where one place p is fully occupied and its twin q is unoccupied.

More generally, a tensor product DDD1˝� � �˝Dn is twisted if and only if D1 � � �Dn

is twisted, and so twistedness is characterised by a local diagram wp in D1 � � �Dn .
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Definition 2.26 (diagram twisted at a place) We say the diagram, or tensor product
of diagrams, D is twisted at the pair P D fp; qg, or twisted at the place p .

The contact structure corresponding to wp is “minimally overtwisted”, and can arise
from two bypasses passing around a particular corner of a square, as in Figure 2.

If D and D0 are viable crossingless diagrams, at least one of which is twisted, then their
product DD0 (if nonzero and viable) is twisted: DD0 is crossingless by Lemma 2.25,
and a product with zero in homology is zero. This corresponds to the contact-geometric
phenomenon that a contact manifold containing an overtwisted submanifold is over-
twisted.

Sublime tensor products Sublime tensor products also contain a specific local dia-
gram cp at an all-on once occupied pair, as we now show. Thus, sublimation arises by
multiplying a crossed diagram by another diagram to undo the crossing and arrive at a
tight diagram, as in Figure 9 (centre).

Lemma 2.27 (sublime contains crossed) If the viable tensor product D D D1 ˝

� � �˝Dn is sublime , then some Di is given by cp at some matched pair fp; qg.

Proof If all Di are crossingless, then they have homology classes. Their product is
nonzero since (by definition of sublime) D1 � � �Dn is tight, so all Di are nonzero in
homology, ie tight. This contradicts D being sublime; thus some Di is crossed at some
pair P, hence given by bP or cp . But bP is impossible, since it occupies all four steps
at P, and by viability then any other Dj is idempotent at P, so that .D1 � � �Dn/P ,
hence D1 � � �Dn , is not tight.

Singular tensor products A singular D D D1 ˝ � � � ˝Dn is rather pathological:
although viable, its H–data is not the H–data of any single diagram. Lemma 2.24 says
D is singular if and only if some DP is singular. Figure 9 (right) provides an example:
there is no diagram with its H–data; there is no such thing as a 00 alternately occupied
local strand diagram. We now show that this is essentially the only example.

Lemma 2.28 Let P Dfp; qg be a matched pair , and let DDD1˝� � �˝Dn be a singu-
lar tensor product of local diagrams on ZP . Then DP is an extension (Definition 2.10)
of Figure 9 (right).
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Proof Let D have H–data .h; s; t/. We observe (from Table 1 or otherwise) that if
a diagram covers an even number of the 4 steps of ZP , then P is 00 or 11; and if
it covers an odd number of steps, then P is 01 or 10. Applying this observation to
each Di , we see that if h covers an even number of steps of ZP , then P is 00 or 11;
and if h covers an odd number of steps, then P is 01 or 10.

Moreover, all steps covered by h cannot be covered by a single Di . For then all
other Dj are idempotents, so Di has the H–data .h; s; t/ of D, contradicting D being
singular. In particular, h must cover at least two steps of P.

If h covers 2 steps, all possible H–data .h; s; t/ satisfying the conditions above appear
in Table 1 (hence are nonsingular) except if P is 00 alternately occupied. In this case,
P must be 01 one-half-occupied by some Di , and 10 one-half-occupied by Dj , where
i < j, giving the structure claimed.

If h covers 3 steps, then the only possible H–data not appearing in Table 1 are where
P is 10 pre-sesqui-occupied or 01 post-sesqui-occupied. We consider the first case;
the second is similar. Without loss of generality suppose p is pre-half-occupied and
q is fully occupied. If the 3 steps are covered by two diagrams Di and Dj , where
Di covers one step and Dj covers two steps, then P is one-half-occupied by Di .
Moreover, by our initial observation, Dj is 00 or 11, so by viability Di must be 10,
hence P is post-one-half-occupied by Di . Thus both p and q are pre-half-occupied
by Dj , but there is no diagram which does so. If the three steps are covered by three
diagrams, then P is pre-one-half-occupied by two diagrams (which must be 01) and
post-one-half-occupied by one diagram (which must be 10), and all other diagrams are
idempotents. But there is no way to combine the idempotent data 01, 01, 10 of these
three diagrams viably so that P is 10 in the tensor product. Hence no such D exists.

If h covers all 4 steps, all possible H–data already appear in Table 1 so D cannot be
singular.

2.10 Enumeration of local tensor products

We now enumerate all viable local tensor products of diagrams. Let DDD1˝� � �˝Dn

be a viable tensor product of diagrams on ZP , where P D fp; qg. Viability implies
that each of the 4 steps of ZP is covered at most once. So at most 4 of D1; : : : ;Dn

contain nonhorizontal strands; the rest are idempotents. The following lemma describes
the tightness of the Di .
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Lemma 2.29 Let D be a viable tensor product of local diagrams on ZP .

(i) If D is tight , then each Di is tight.

(ii) If D is sublime , then one Di is crossed 11 once occupied , and for the remaining
factors Dj :

(a) one Dj is twisted , and all other Dj are idempotents; or

(b) one or two Dj are tight with nonhorizontal strands, and all other Dj are
idempotents.

(iii) If D is twisted , then either:

(a) precisely two Di are tight nonidempotents, and all other Dj are idempo-
tents; or

(b) precisely one Di is twisted , and all other Dj are idempotents.

(iv) If D is crossed , then precisely one or two Di are crossed , and all other factors
Dj are idempotents.

(v) If D is critical , then of the Di , none are crossed , W are twisted , G are tight
nonidempotents, and the rest are idempotents, where .W;G/ D .2; 0/, .1; 1/,
.1; 2/, .0; 2/, .0; 3/ or .0; 4/.

(vi) If D is singular , then precisely two Di are tight , and all other Dj are idempo-
tents.

(In fact in (v) the case .W;G/D .0; 2/ never arises; such tensor products turn out to
be singular.)

Proof Part (i) is true by definition.

If D is sublime then by Lemma 2.27 some Di is given by cp . There are at most two
crossed Di ; if there exactly two, then by viability all other factors are idempotents
and D1 � � �Dn is crossed, contradicting D being sublime. So there is precisely one
crossed diagram Di , given by cp . There are then at most 2 other factors Dj with
nonhorizontal strands, which are tight or twisted. A twisted Dj would cover both the
remaining steps, so (a) and (b) claimed are the only possibilities.

If D is twisted then (Definition 2.17) D1 � � �Dn is twisted, hence (Table 1) only two
steps of ZP are covered. Thus at most 2 of the Di are not idempotents. If one Di

is nonidempotent, then Di is twisted. If two Di are nonidempotent, then each must
cover one step, hence both are tight.
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If D is crossed, then D1 � � �Dn has a crossing, hence so does at least one Di

(Lemma 2.25). By viability, there are at most two crossed Di . If there are two
crossed factors, then they cover all steps, so all other factors are idempotents. If only
one Di is crossed, we observe that any viable multiplication of Di with any tight or
twisted diagram results in a tight diagram, so all other factors must be idempotents.

Now suppose D is critical. We claim no Di are crossed. At most two Di are crossed;
if exactly two, then all other factors are idempotents, so that D1 � � �Dn is nonzero
crossed; if one Di is crossed, then any viable product of Di with a tight or twisted
diagram is nonzero; either way D is not critical. Hence no Di is crossed, so each
nonidempotent Di is twisted or tight. Each twisted factor covers exactly 2 steps; each
tight factor covers at least 1 step. These factors altogether cover 2W CG � 4 steps.
On the other hand W CG � 2 since there must be at least 2 nonidempotent factors;
otherwise the single nonidempotent Di D D1 � � �Dn ¤ 0, contradicting criticality.
Thus .W;G/ lies in the claimed set.

Lemma 2.28 gives the final part.

Using the structure provided by Lemma 2.29 (or otherwise) we can enumerate viable
tensor products of diagrams on ZP and obtain the following.

Proposition 2.30 (classification of local tensor products) Any viable tensor product
of local diagrams is an extension–contraction of one shown in Table 2, with H–data and
tightness as shown.

Note that this tensor product may be an extension–contraction of more than one of the
possibilities. For instance, a sublime tensor product and a tight tensor product may
have a common contraction.

Table 2 also shows Maslov gradings with each local tensor product. As mentioned in
Section 2.4, Maslov grading is preserved under extension and contraction. Observe
that, for any given viable H–data, if there is a critical tensor product, then there is also
a tight tensor product, and the Maslov grading of the latter is 1 greater than the former.

2.11 Tensor products of homology classes of diagrams

We now turn to H˝n. Homology classes of diagrams are illustrated by diagrams of
representatives.
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H–data tight sublime twisted crossed critical singular

unoccupied
00

0

unoccupied
11

0

pre-one-half-
occupied 01

0

post-one-half-
occupied 10

�
1
2

alternately
occupied 00

�
1
2

alternately
occupied 11

�
1
2

once
occupied 00 0

once
occupied 11

�1 0

pre-sesqui-
occupied 01

0 0 �1

post-sesqui-
occupied 10

�
1
2

�
1
2

�
3
2

doubly
occupied 00

0 0 �1

doubly
occupied 11

�1

�1

0 �2

Table 2: Possible local tensor products, by H–data and tightness. Maslov
gradings also shown.
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Throughout this section, M DM1˝ � � �˝Mn is a viable tensor product of nonzero
homology classes of diagrams, where Mi has H–data .hi ; si ; ti /. Then each Mi D

Mhi ;si ;ti
is represented by a tight diagram Di , and D D D1 ˝ � � � ˝Dn is viable.

There may be multiple choices for the Di , but they are related by strand switching
(Lemma 2.23). We show the tightness of D is independent of these choices.

Lemma 2.31 For 1 � i � n, let Di and D0i be diagrams representing Mi , and let
DDD1˝� � �˝Dn and D0DD01˝� � �˝D

0
n . Then D and D0 have the same tightness.

Proof If Di and D0i differ by strand switching at P, then all four steps of ZP are
covered by Di , and by D0i ; so every Dj and D0j with j ¤ i is idempotent at P, and
hence D and D0 are tight at P. Thus D and D0 have the same tightness at each
matched pair, and by Lemma 2.24 the result follows.

Definition 2.32 The tightness of M is defined as the tightness of any representative D.

Just as for D, we can also speak of M being tight, twisted, critical or singular at a
matched pair P, or twisted at a place p .

From Proposition 2.30 and Table 2 we observe that if a local tensor product of diagrams
has all diagrams tight, then it is tight, twisted, critical or singular. Thus only four of
the six tightness types exist for tensor products of homology classes, and we have the
following.

Proposition 2.33 (classification of local tensor products of homology classes) Any
viable tensor product of nonzero homology classes of local diagrams is an extension–
contraction of one shown in the tight , twisted , critical or singular columns of Table 2,
with H–data and tightness as shown.

Inspecting Table 2 allows us to make deductions about the tightness of M, merely from
H–data.

Lemma 2.34 Let M DM1˝ � � �˝Mn be viable on ZP , with H–data .h; s; t/.

(i) M is tight or critical at P if and only if .h; s; t/ is tight at P.

(ii) M is twisted at P if and only if .h; s; t/ is twisted at P.

(iii) M is singular at P if and only if .h; s; t/ is singular at P.

Algebraic & Geometric Topology, Volume 21 (2021)



A–infinity algebras, strand algebras, and contact categories 1137

We can distinguish tightness in H˝n by the following result.

Lemma 2.35 Suppose M DM1˝ � � � ˝Mn is a viable tensor product of nonzero
homology classes of diagrams on Z , with H–data .h; s; t/, and let Di be a diagram
representing Mi .

(i) M is tight if and only if M1 � � �Mn ¤ 0.

(ii) M is twisted if and only if M1 � � �Mn D 0 but D1 � � �Dn ¤ 0.

(iii) M is critical if and only if D1 � � �Dn D 0, but A.h; s; t/¤ 0.

(iv) M is singular if and only if A.h; s; t/D 0.

Like Definition 2.17, Lemma 2.35 presents tightness as a list of things that go increas-
ingly wrong.

Recalling the isomorphism between H and the contact category, M DM1˝� � �˝Mn

describes the stacking of tight cubulated contact structures on a thickened surface
†� Œ0; 1�. Cases (ii) through (iv) describe overtwisted structures, in increasing order of
degeneracy. In case (ii) the stacked contact cubes above each individual square remain
tight, but the overall contact structure is overtwisted (as in Figure 2); in case (iii) the
contact cube above some square becomes overtwisted; in case (iv) the contact cube
above some square is overtwisted, even when restricted to the boundary of the cube.

Proof Let D DD1˝ � � �˝Dn , so by Lemma 2.31 and Definition 2.32, M and D
have the same tightness.

If D is tight then D1 � � �Dn is tight, so M1 � � �Mn¤ 0. Conversely, if M1 � � �Mn¤ 0

then all Mi ¤ 0, and, being represented by the tight diagrams D1 � � �Dn and Di , D is
tight.

If D is twisted then D1 � � �Dn¤ 0 but M1 � � �MnD 0. Conversely, if M1 � � �MnD 0

but D1 � � �Dn ¤ 0, then D1 � � �Dn is not tight; it is also not crossed, by Lemma 2.25,
hence it, and D, are twisted.

The characterisations of critical and singular follow directly from Definition 2.17.

Just as for tensor products of diagrams, tensor products of homology classes obey a
“local-to-global” principle for tightness. Lemmas 2.24 and 2.31 and Definition 2.32
immediately give the following.
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Lemma 2.36 (local–global tightness in H˝n ) For viable M DM1˝ � � �˝Mn , the
tightness type of M is the most singular tightness type among the local tensor products
MP D .M1˝ � � �˝Mn/P .

We also consider contractions and extensions: as we now show, contractions are always
possible when M is tight, and otherwise nontrivial contractions (Definition 2.11) are
impossible.

Lemma 2.37 Suppose M DM1˝ � � �˝Mn is viable on ZP .

(i) If M is tight , then for all 1� i � j � n, the product Mi � � �Mj is nonzero , so
M1˝ � � �˝Mi�1˝ .Mi � � �Mj /˝MjC1˝ � � �˝Mn is a contraction of M.

(ii) If M is twisted , critical or singular , then any contraction of M is trivial (in the
sense of Definition 2.11). Moreover, M is an extension of a tensor product of
homology classes shown in the twisted , critical or singular columns of Table 2.

Proof If M is tight, then (Lemma 2.35) M1 � � �Mn ¤ 0; so any Mi � � �Mj ¤ 0.

If M is twisted, critical or singular, then by Proposition 2.33, M is an extension–
contraction of a tensor product shown in the appropriate column of Table 2. We observe
that multiplying any two consecutive diagrams in any of these tensor products yields a
twisted or zero diagram, which is zero in homology. Thus no nontrivial contraction
exists.

The following fact about critical tensor products will be useful in the sequel.

Lemma 2.38 (“it takes 3 to be critical”) If M1˝ � � �˝Mn is viable and critical on
an arc diagram Z , then n� 3.

Proof By Lemma 2.36, some local tensor product MP is critical. By Lemma 2.37,
MP is an extension of a critical diagram in Table 2, and all such diagrams have at least
3 factors.

2.12 Tightness of subtensor products, extensions and contractions

In the sequel we need to understand tightness of subtensor-products, extensions and
contractions. “Local-to-global” principles (Lemmas 2.24 and 2.36) show that when
we decompose locally (“vertically”), tightness is well behaved. However, “horizontal”
decomposition is more complicated.
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By Propositions 2.30 and 2.33, a viable local tensor product of diagrams, or their
homology classes, is an extension–contraction of one shown in Table 2. We can then
enumerate the tightness of subtensor-products in each case, and obtain the following
result.

Lemma 2.39 (tightness of local subtensor-products) Let D (resp. M ) be a viable
tensor product of diagrams (resp. homology classes of diagrams) on ZP , and let D0

(resp. M 0 ) be a subtensor-product.

(i) The possible tightness types of D and D0 are as shown in Table 3.

(ii) The possible tightness types of M and M 0 are as shown in the shaded part of
Table 3.

D0;M 0

tight sublime twisted crossed critical singular

tight X
sublime X X X X

D;M
twisted X X
crossed X X
critical X X X X
singular X X

Table 3: Possible tightness types of a viable local tensor product D (or ho-
mology class M ) and a subtensor-product D0 (or M 0 in homology). Shaded
rows and columns refer to homology.

Thus, for instance, if D is tight then D0 is also tight; if D0 is sublime then D is also
sublime; and if D0 is critical then D is also critical. Similarly, if M is tight, then M 0

is tight; in this case M corresponds to a tight contact manifold and M 0 to a contact
submanifold.

We also have a similar “global” result about the possible tightness types of tensor
products of diagrams or their homology classes, on a general arc diagram Z .

Lemma 2.40 (tightness of subtensor-products) Let D (resp. M ) be a viable tensor
product of diagrams (resp. homology classes of diagrams) on Z , and let D0 (resp. M 0 )
be a subtensor-product.

(i) If D (resp. M ) is tight , then D0 (resp. M 0 ) is tight.
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(ii) If D0 (resp. M 0 ) is critical or singular , then D (resp. M ) is critical or singular.

Every combination of tightness types not ruled out by these implications is possible.

Proof If D is tight, then D1 � � �Dn is nonzero in homology (Definition 2.17), hence
any Di � � �Dj is nonzero in homology, hence tight, hence D0 is tight. If D0 is critical
or singular then Di � � �Dj D 0 (Definition 2.17), so D1 � � �Dn D 0, so D is critical or
singular.

We show some examples of the remaining possibilities in Figure 10. The small number
remaining are omitted. The statements about homology classes then follow straightfor-
wardly.

Figure 10: Left: a twisted tensor product D1˝D2˝D3 containing tight
(D2 ), sublime (D1 ˝D2 ), twisted (eg D3 ) and crossed (D1 ) subtensor-
products. Centre: a crossed tensor product D1˝D2˝D3˝D4 containing
tight (D2;D3 ), sublime (eg D1 ˝D2 ), twisted (D2 ˝D3 ) and crossed
(eg D1 ) subtensor-products. Right: a critical tensor product D1 ˝D2 ˝

D3˝D4 containing tight (eg D1 ), sublime (D3˝D4 ), twisted (eg D1˝D2 ),
crossed (D4 ), critical (D1˝D2˝D3˝D4 ) and singular (D2˝D3˝D4 )
subtensor-products.

Note the contrapositive of (ii) in homology: if M is tight or twisted, then M 0 is tight
or twisted.

We now show that extension–contraction preserves tightness, with one exception:
sublimation.

Lemma 2.41 Suppose D0 is obtained from D D D1 ˝ � � � ˝ Dn by extension–
contraction. Then D and D0 have the same tightness, or D is sublime and D0 is
tight.
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Proof Under extension or contraction, the product D1 � � �Dn remains invariant, as
does H–data. Singularity of a tensor product is defined by reference only to H–data;
hence D is singular if and only if D0 is singular. We thus assume D and D0 are not
singular.

The tightness properties “tight or sublime”, “twisted”, “crossed” and “critical” of D
are defined by the properties of the product D1 � � �Dn (ie whether D1 � � �Dn is tight,
twisted, crossed or zero, respectively); hence these tightness properties are preserved
under extension–contraction.

It remains to prove that if D is tight then D0 is tight. In this case, any subtensor-product
of D is tight (Lemma 2.40), and hence for any 1� i � j � n the product Di � � �Dj

is tight. Thus in any extension–contraction D0 of D, the product of any subtensor
product is tight; so D0 is tight.

It is useful to generalise the notion of contraction. Let M D M1 ˝ � � � ˝Mn be a
viable tensor product of nonzero homology classes of diagrams. A contraction of M
replaces a subtensor-product M 0 DMi ˝ � � �˝Mj with Mi � � �Mj provided that this
product is nonzero. Recalling (Proposition 2.21) that any tight H–data .h; s; t/ has a
unique nonzero homology class, we observe Mi � � �Mj is the unique homology class
of diagram with the H–data of M 0. This leads to the following generalisation.

Definition 2.42 Let M D M1 ˝ � � � ˝Mn be a viable tensor product of nonzero
homology classes of diagrams. Suppose a subtensor-product Mi ˝ � � �˝Mj has tight
H–data, and let M � be the unique nonzero homology class of a diagram with this
H–data.

Then we say M1˝ � � � ˝Mi�1˝M
�˝MjC1˝ � � � ˝Mn is obtained from M by

H–contraction.

If M 0 is obtained from M by H–contraction, then M 0 is viable, and has the same
H–data as M.

Tightness locally behaves rather nicely under H–contraction.

Lemma 2.43 Let M be a viable tensor product of nonzero homology classes of
diagrams on ZP . Suppose M 0 is obtained from M by H–contraction.

(i) M is (tight or critical ), twisted , or singular, if and only if the same is true
for M 0.
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(ii) If M is tight , then M 0 is tight.

(iii) If M 0 is critical , then M is critical.

Proof The H–data of M is tight, twisted or singular accordingly as M is respectively
(tight or critical), twisted or singular (Lemma 2.34). Since H–contraction preserves
H–data, (i) follows.

If M is tight, then we replace Mi ˝ � � �˝Mj with Mi � � �Mj (Lemma 2.37), so we
have a bona fide contraction, and M 0 is tight: the product of the factors in both M
and M 0 is M1 � � �Mn (Lemma 2.35).

If M 0 is critical, then, by Proposition 2.33 and Lemma 2.37, M 0 is an extension of one
of the tensor products shown in the critical column of Table 2. Thus each tensor factor
of M 0 covers at most one step of ZP . Since M is obtained from M 0 by replacing
a tensor factor of M 0 with Mi ˝ � � �˝Mj , in a way that preserves H–data, M is an
extension of M 0. So M is critical.

2.13 Dimensions of strand algebras

We now consider the dimension of A.h; s; t/, and some related subspaces. Throughout
this section let Z be an arc diagram and .h; s; t/ be viable nonsingular H–data on Z ,
with L all-on doubly occupied pairs, and N all-on once occupied pairs. Dimension
always refers to the dimension of a Z2 vector space.

From Table 1, we observe that given .h; s; t/, there are 3 choices of local diagram at a
pair P which is all-on once occupied; 2 choices if P is all-on doubly occupied; and
otherwise a unique choice. Thus

(3) dimA.h; s; t/D 3L2N :

Now we refine A.h; s; t/ by Maslov grading. With H–data fixed, the Maslov grading
of a diagram D is given, up to a constant, by the number of matched pairs at which
D is crossed. Denote by An.h; s; t/ the Z2 vector subspace of A.h; s; t/ spanned by
diagrams with crossings at precisely n matched pairs.

Once each all-on once or doubly occupied pair is selected to contain a crossed or
noncrossed diagram, all local diagrams are uniquely determined, except that at each
noncrossed all-on doubly occupied pair, there are 2 possible diagrams. Thus there are
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2L�i
�
L
i

��
N

n�i

�
diagrams with crossings at n matched pairs, and i crossed all-on doubly

occupied pairs, and we have the first equality in

(4) dimAn.h; s; t/D
X

i

2L�i
�L
i

�� N

n�i

�
D

X
k

�L
k

��NCk
n

�
:

For the second equality, fix a reference diagram D0 with H–data .h; s; t/ and no
crossings. (Such a diagram always exists locally, by Table 1, and the local diagrams
glue together.) Consider a diagram D in An.h; s; t/ and let k be the number of all-on
doubly occupied pairs at which D and D0 differ. There are

�
L
k

�
ways in which we

can choose these k pairs. Now the n pairs with crossings must come from the k
all-on doubly occupied pairs just chosen, together with the N all-on once occupied
pairs. There are

�
NCk

n

�
ways to choose which of these N C k pairs will be crossed.

The equality now follows from the observation that once such choices are made, the
diagram D is uniquely determined.

We remark that it is also possible to prove directly that the two summations are equal.

Next, we consider the dimension of the spaces of boundaries and cycles in An.h; s; t/.
Let Bn.h; s; t/ and Zn.h; s; t/ (or just Bn and Zn ) respectively denote the Z2 vector
subspaces of An.h; s; t/ generated by boundaries and cycles. In other words, for any
n � 0, the map @ WAnC1 ! An has image Bn and kernel ZnC1 . When .h; s; t/ is
twisted, A.h; s; t/ has trivial homology, so Bn DZn for all n. When .h; s; t/ is tight,
since homology is 1–dimensional and supported in nD 0, we have Bn DZn for all
n� 1, and dimZ0 D dimB0C 1.

Lemma 2.44 dimBn.h; s; t/D
X

i

2L�i
�L
i

��N�1
n�i

�
D

X
k

�L
k

��NCk�1
n

�
:

Proof For all n � 0 we have ZnC1 D BnC1 , so dimBn D dimAnC1 � dimBnC1 ,
so that

dimBn D dimAnC1� dimAnC2C dimAnC3� � � � D

1X
kD1

.�1/kC1 dimAnCk :

From (4) and the identity
P1

kD1.�1/
kC1

�
a

bCk

�
D
�
a�1

b

�
, the above is equal to

1X
kD1

X
i

.�1/kC12L�i
�L
i

�� N

nCk�i

�
D

X
i

2L�i
�L
i

��N�1
n�i

�
;

giving the first claimed equality; the second follows from the identity of equation (4).
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2.14 An ideal in the strand algebra

We now introduce an ideal F in ADA.Z/, which will be useful for computations, as we
will see especially in Sections 3.2 and 5.2. A related notion appears in [13, Section 4.3].

Definition 2.45 The Z2 –submodule of A generated by diagrams which are not viable,
or have at least one doubly occupied crossed pair bP , is denoted by F .

Lemma 2.46 F is a two-sided ideal of A.

Proof First we observe that if D and D0 are diagrams where D is not viable, then
DD0 and D0D are zero or nonviable. For D then has some step covered by two or
more strands, so DD0 is either zero, or has a step covered by two or more strands,
hence is not viable; similarly for D0D .

Now suppose D is viable and has a bP . After multiplication on either side by D0 the
result may become nonviable, in which case it lies in F . If the result is viable, then it
still has a bP .

The quotient A=F is freely generated as a Z2 –module by viable diagrams without
crossed doubly occupied pairs. Products can then be taken as in A, unless the result is
nonviable or has a crossed doubly occupied pair, in which case the result is zero.

The decomposition A Š
L

h;s;t A.h; s; t/ descends to the quotient A=F . However,
the differential @ does not, as it does not preserve F ; so A=F is not naturally a DGA.
We make the following definitions.

Definition 2.47 (i) The Z2 –algebra A is the quotient algebra A=F .

(ii) The Z2 vector space A.h; s; t/ is the .h; s; t/ graded summand of A.

(iii) For x 2A, we denote by xx its image in A under the quotient map A!A.

(iv) For a homomorphism f with image in A, we denote by xf the homomorphism
obtained by composing f with the quotient map A!A.

(v) The standard form x 2 A of an xx 2 A is the sum of viable diagrams without
crossed doubly occupied pairs whose image under the quotient map A! A
is xx .
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The quotient A is useful for our needs. Nonviable diagrams cannot contribute to
homology, and although some crossed diagrams can be “salvaged” into tight diagrams
(thus contributing to homology) via sublimation, sublimation does not apply to crossed
doubly occupied pairs. Thus A is generated by diagrams which are “salvageable” in
this sense.

3 Cycle selection and creation operators

3.1 Cycle selection homomorphisms

Throughout this section we fix an arc diagram Z .

The construction of A1 operations on H begins from the map f1 WH!A (Section 1.3)
as follows.

Definition 3.1 A cycle selection map is a Z2 –module homomorphism f WH! A
which preserves Maslov and H–gradings, and sends each homology class x 2H to a
cycle in A which represents x .

Constructing such a map finds diagrams (as in Lemma 2.23) representing each homology
class.

The following constraint is a natural one to make, avoiding a proliferation of diagrams.

Definition 3.2 (diagrammatically simple homomorphisms) A Z2 –module homomor-
phism f WA!A (resp. H!A) is diagrammatically simple if for each diagram D

(resp. each M 2H that can be represented by a single diagram), f .D/ (resp. f .M/)
is zero, or a single diagram.

Recall from Section 2.8 that a summand H.h; s; t/ of H is nonzero precisely when
.h; s; t/ is tight, in which case H.h; s; t/ Š Z2 , generated by Mh;s;t . To define a
diagrammatically simple f WH! A, we select, for each tight H–data .h; s; t/ 2 g

(Definition 2.22), a tight diagram with that H–data. There are precisely 2L diagrams
representing Mh;s;t , where L is the number of 11 doubly occupied pairs in .h; s; t/
(Lemma 2.23). Selecting one of these 2L choices for each .h; s; t/ 2 g yields a
diagrammatically simple cycle selection map; and all diagrammatically simple cycle
selection maps are of this form.
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To formally describe all diagrammatically simple cycle selection homomorphisms,
recall (as is standard in set theory) that a set choice function for a set S (whose
elements are sets) assigns to each x 2 S an element of x . The set of set choice
functions for S is naturally in bijection with the direct product of S (ie the direct
product of the elements of S ), denoted by

Q
S . We regard an element of

Q
S as a

choice function for S . If S is empty, S has a unique choice function, which is the
null function.

Definition 3.3 (pair choice function) For .h; s; t/ 2 g , let Ph;s;t be the set of all-on
doubly occupied pairs of .h; s; t/. A pair choice function for .h; s; t/ is a set choice
function for Ph;s;t .

Since Ph;s;t is a set of sets, each with two elements,
ˇ̌Q

Ph;s;t

ˇ̌
D 2jPh;s;t j D 2L . If

LD 0, then .h; s; t/ has a unique (null) pair choice function.

Given a pair choice function C.h; s; t/ for .h; s; t/ 2 g , we draw a tight diagram
DC.h;s;t/ with H–data .h; s; t/ as follows. At a matched pair P D fp; qg 2 Ph;s;t

(ie all-on doubly occupied), C.h; s; t/.P / is one of the places p or q . There are
two tight local diagrams gp; gq (Definition 2.18) with H–data .hP ; sP ; tP / at P ; we
draw gC.h;s;t/.P / , the diagram with strands beginning and ending at C.h; s; t/.P /.
At a matched pair P … Ph;s;t , we draw the unique tight local diagram with H–data
.hP ; sP ; tP /. Putting these local diagrams together gives DC.h;s;t/ .

Definition 3.4 (cycle choice function) A cycle choice function for Z is a function
which assigns to each .h; s; t/ 2 g.Z/ a pair choice function for .h; s; t/.

A cycle choice function can be regarded as an element of the set
Q

.h;s;t/2g

Q
Ph;s;t .

If C is a cycle choice function, we write C.h; s; t/ for the pair choice function assigned
to .h; s; t/ 2 g ; then C.h; s; t/ determines a tight diagram DC.h;s;t/ with H–data
.h; s; t/ as described above.

A cycle choice function C determines a map f C WH!A as follows. For .h; s; t/ 2 g ,
H.h; s; t/Š Z2 generated by Mh;s;t , and we set f C.Mh;s;t /DDC.h;s;t/ . Combining
such maps over .h; s; t/ 2 g yields a diagrammatically simple cycle selection map
f C WH!A. Indeed, all diagrammatically simple cycle selection maps are of this form,
and distinct C yield distinct f C, giving the following.
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Lemma 3.5 Let f WH!A be a cycle selection homomorphism. Then f is diagram-
matically simple if and only if f D f C for a unique cycle choice function C .

In other words, there is a bijective correspondence between diagrammatically simple
cycle selection maps, and cycle choice functions.

A general cycle selection map f (not necessarily diagrammatically simple), for each
.h; s; t/ 2 g , assigns to Mh;s;t not necessarily one, but a sum of diagrams representing
Mh;s;t , all of the same H–grading and Maslov grading, hence tight diagrams represent-
ing Mh;s;t . As f .Mh;s;t / represents Mh;s;t , f .Mh;s;t / must be the sum of an odd
number of distinct diagrams. Conversely, if for each .h; s; t/ 2 g we define f .Mh;s;t /

to be the sum of an odd number of distinct tight diagrams representing Mh;s;t , we
obtain a cycle selection homomorphism.

3.2 Differences in cycle selection

The different choices available in cycle selection are related to the ideal F introduced
in Definition 2.45.

Lemma 3.6 Let D1; : : : ;D2n 2A be an even number of distinct tight diagrams, all
representing the homology class M 2H . Then we have the following:

(i) D1C � � �CD2n 2 @F .

(ii) If g2A is homogeneous in Maslov grading and H–data, and @gDD1C� � �CD2n ,
then g 2 F .

Proof We first prove (i) when nD 1, so take diagrams D and D0 which differ by
switching strands at some all-on doubly occupied pairs P1; : : : ; Pk (Lemma 2.23). We
proceed by induction on k . When kD 1, let F1 be the diagram all-on doubly occupied
crossed at P1 , and equal to D and D0 elsewhere:

D D

v

w

; D0 D

v

w

; F1 D

v

w

:

Then F1 is viable, crossed at P1 , hence lies in F , and is tight elsewhere; so @F1 D

DCD0, as desired.
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Now consider D;D0 differing at k pairs. Switch strands of D at P1 to obtain D00. By
induction

DCD00 D @F1 and D00CD0 D @.F2C � � �CFk/

for some viable diagrams F1; : : : ; Fk , with each Fi crossed at Pi (hence in F ) and
tight elsewhere. Thus D CD0 D @.F1 C � � � C Fk/, proving (i) when n D 1. For
general n, simply split the diagrams D1; : : : ;D2n into pairs and apply the nD 1 case.

If g is homogeneous in Maslov grading and H–data and @g DD1C � � �CD2n , then
every diagram G in g is viable and has precisely one pair with a crossed local diagram.
From Table 1 we see that crossings can only occur in viable diagrams at pairs which
are all-on once occupied or all-on doubly occupied. But having tight H–data, G has no
all-on once occupied pairs (Proposition 2.21). So G has a crossing at an all-on doubly
occupied pair, and G 2 F . Hence g 2 F .

3.3 Creation operators

Let .h; s; t/ be viable H–data which is all-on once occupied at a pair P Dfp; qg, occu-
pied at p . As in Section 2.8, AP .hP ; sP ; tP /ŠC

0
P as a chain complex (Definition 2.18),

which has trivial homology:

0! Z2hcpi
@
�! Z2hwpi ! 0; where @cp D wp:

Here cp is the unique local crossed diagram, wp is the unique local twisted diagram.

There is a unique chain homotopy A� W C 0P ! C 0P from the identity to 0, given as
follows.

Definition 3.7 (local creation operator) The creation operator A� W C 0P ! C 0P is the
Z2 –module homomorphism given by A�.wp/D cp and A�.cp/D 0.

In other words, A� inserts a crossing, as in Figure 1. The name A� references creation
operators in physics. We have A�@C @A� D 1, a “Heisenberg relation” or a chain
homotopy from the identity to 0.

Consider A.h; s; t/Š
N

P 0 AP 0.hP 0 ; sP 0 ; tP 0/ (Section 2.5). We can rewrite this as

(5) A.h; s; t/ŠAP .hP ; sP ; tP /˝
O

P 0¤P

AP 0.hP 0 ; sP 0 ; tP 0/:

A diagram D 2 A.h; s; t/ is then x ˝ y , where x 2 AP .hP ; sP ; tP / Š C 0P and
y 2

N
P 0¤P AP 0.hP 0 ; sP 0 ; tP 0/.

Algebraic & Geometric Topology, Volume 21 (2021)



A–infinity algebras, strand algebras, and contact categories 1149

Definition 3.8 (creation operator) Let P be a 11 once occupied pair of viable .h; s; t/.
The creation operator A�P WA.h; s; t/! A.h; s; t/ is given by A�P D A

�˝ 1, in the
tensor decomposition (5) above.

In other words, A�P inserts a crossing at P. Clearly A�P is diagrammatically simple
(Definition 3.2). Note that if D 2 F (ie D has a crossed doubly occupied pair: see
Definition 2.45), then A�PD 2 F also. So A�P descends to a map xA�P WA.h; s; t/!
A.h; s; t/.

Lemma 3.9 With P and .h; s; t/ as above , A�P @C @A
�
P D 1 on A.h; s; t/.

Proof Take a diagram in A.h; s; t/ and write it as x˝y according to the decomposition
(5) above, so x D cp or wp . Recalling that @cp D wp , @wp D 0, A�wp D cp and
A�cp D 0, we have

.A�P @C @A
�
P /.wp˝y/D A

�
P .wp˝ @y/C @.cp˝y/D wp˝y;

.A�P @C @A
�
P /.cp˝y/D cp˝y:

This chain homotopy shows directly that H.h; s; t/D 0 when there is an all-on once
occupied pair (Proposition 2.21). In fact, creation operators are the only way to obtain a
diagrammatically simple (Definition 3.2) chain homotopy to the identity on a summand
A.h; s; t/.

Lemma 3.10 Suppose that .h; s; t/ is viable and nonsingular , and that
R
WA.h; s; t/!

A.h; s; t/ is a diagrammatically simple Z2 –module homomorphism which has pure
Maslov degree , satisfying Z

@C @

Z
D 1:

Then
R
D A�P for some all-on once occupied matched pair P of .h; s; t/.

Proof The existence of
R

implies H.h; s; t/D 0; being nonsingular then .h; s; t/ is
twisted, so there is an all-on once occupied pair. With .h; s; t/ fixed, Maslov degree is
given, up to a constant, by the number of pairs at which a diagram is crossed. SinceR
@C @

R
D 1 and @ has Maslov degree �1,

R
has Maslov degree 1.

We use the decomposition A.h; s; t/ Š
N

P AP .hP ; sP ; tP /, noting (Section 2.8)
that each AP .hP ; sP ; tP / is isomorphic (as a chain complex) to CP and C 0P or C 00P
(Definition 2.18).
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Take an arbitrary crossingless diagram D0 with H–data .h; s; t/. Then D0 is twisted at
each 11 once occupied pair and @D0 D 0. From

R
@C @

R
D 1 we have @

R
D0 DD0 .

As
R

is diagrammatically simple,
R
D0 is a diagram whose differential is D0 . The

only such diagrams are those obtained from D0 by inserting a crossing at an all-on
once occupied pair P D fp; p0g (say occupied at p ), ie

R
D0 D A

�
PD0 .

We claim that for any diagram D with H–data .h; s; t/,
R
D DA�PD . The proof is by

induction on the number k of pairs at which D is crossed (ie up to a constant, Maslov
grading).

Suppose D;D0 are distinct crossingless diagrams with H–data .h; s; t/ which differ by
switching strands at a single all-on doubly occupied pair QD fq; q0g. The argument
above shows that

R
DDA�RD for some all-on once occupied pair RDfr; r 0g (occupied

at r ), and similarly that
R
D0DA�VD

0 for some all-on once occupied pair V D fv; v0g
(occupied at v ). We claim RD V . To see why, suppose R¤ V and consider A.h; s; t/
as a tensor product. We may write

D D gq˝wr ˝wv˝ z; D0 D gq0 ˝wr ˝wv˝ z;Z
D D gq˝ cr ˝wv˝ z;

Z
D0 D gq0 ˝wr ˝ cv˝ z;

where the four tensor factors are given by C 00Q , C 0R , C 0V , and all other matched pairs.
Consider the diagram E D cQ˝wr ˝wv˝ z obtained from D or D0 by inserting
crossings at Q . We computeZ

@E D

Z
.DCD0/D gq˝ cr ˝wv˝ zCgq0 ˝wr ˝ cv˝ z;

and hence
R
E is a single diagram (by diagrammatic simplicity) whose differential is

@

Z
E D

�Z
@C1

�
E D gq˝cr˝wv˝zCgq0˝wr˝cv˝zCcQ˝wr˝wv˝z:

The three diagrams on the right respectively have crossings at R , V and Q . HenceR
E must have crossings at R , V and Q , contradicting the fact that

R
has Maslov

degree 1. We conclude that RD V .

Thus, if D and D0 are crossingless and differ by strand switching at a single matched
pair, then

R
D and

R
D0 are both given by applying a creation operator A�P at the same

matched pair P. Since all crossingless diagrams with H–data .h; s; t/ are related by
strand switching, repeatedly applying this fact gives

R
D D A�PD for any crossingless

D with H–data .h; s; t/. This proves the result when k D 0.
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Now take a k � 0 and suppose that for all diagrams D with H–data .h; s; t/ and
crossings at � k pairs,

R
D D A�PD . Consider a diagram D with H–data .h; s; t/,

crossed at kC 1 pairs. Then D D wp ˝ x or cp ˝ x , where the two tensor factors
refer to C 0P , and everywhere else.

If D D wp˝ x then @D D wp˝ @x , which contains diagrams crossed at k pairs. By
induction then Z

@D D A�P @D D A
�
P .wp˝ @x/D cp˝ @x:

It follows that
R
D is a single diagram (by diagrammatic simplicity) whose differential is

@

Z
D D

�Z
@C 1

�
D D cp˝ @xCwp˝ x:

There is only one such diagram, namely cp˝x . Thus
R
DD cp˝xDA

�
P .wp˝x/D

A�PD .

If D D cp˝ x then @D D wp˝ xC cp˝ @x and so by induction
R
@D D A�P @D D

cp˝xDD . We then have @
R
DD

R
@DCDD 0, so

R
D is a single diagram crossed

at kC 1� 1 pairs, or zero, whose differential is zero. Thus
R
D D 0D A�PD .

Thus, in any case,
R
D D A�PD . By induction then

R
D A�P .

If we drop the requirement that
R

be diagrammatically simple, the result no longer
holds: there are many Z2 –module homomorphisms A.h; s; t/! A.h; s; t/ of pure
Maslov degree satisfying @

R
C
R
@D 1 which are not creation operators. (For instance,

take a sum of an odd number of creation operators.)

3.4 Inverting the differential

The following straightforward lemma shows how a creation operator A�P finds partial
inverses of the differential (hence the notation

R
). This is required in constructing an

A1 structure.

Lemma 3.11 Suppose the viable H–data .h; s; t/ contains an all-on once occupied
pair P. If x 2A.h; s; t/ is a cycle , then x D @A�Px .

Proof As x is a cycle, @x D 0. Hence x D .A�P @C @A
�
P /x D @A

�
Px .
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Recall from Section 2.13 the decomposition A.h; s; t/D
L

n An.h; s; t/ over Maslov
grading, where An.h; s; t/ contains diagrams with crossings at n pairs, and the sub-
spaces Zn.h; s; t/ of cycles and Bn.h; s; t/ of boundaries. We are interested in maps
obeying the following property.

Definition 3.12 (inverting differential) A Z2 –module homomorphismZ
W Zn.h; s; t/!AnC1.h; s; t/

inverts the differential if, for all x 2Zn.h; s; t/, the equation x D @
R
x holds.

If we have maps inverting the differential on Zn.h; s; t/ for all n, of course these can
be combined into a map Z.h; s; t/!A.h; s; t/ of Maslov degree 1 such that @

R
D 1.

Lemma 3.11 says that A�P — more precisely, its restriction to Zn.h; s; t/ — inverts the
differential.

When we have viable H–data .h; s; t/ with several all-on once occupied matched pairs
P1; P2; : : :, there are several creation operators A�P1

; A�P2
; : : : on A.h; s; t/, and hence

many ways to invert the differential. However, not every operator which inverts the
differential is a creation operator.

For one thing, we can simply choose a different creation operator on each Maslov
summand. For another, we can also replace a creation operator with a sum of an odd
number of creation operators.

More fundamentally, however, not every operator
R
WZn.h; s; t/!AnC1.h; s; t/ in-

verting the differential is a sum of creation operators. If .h; s; t/ is twisted H–data
with L � 0 all-on doubly occupied pairs, and N � 1 all-on once occupied pairs,
then the span of creation operators Zn.h; s; t/!AnC1.h; s; t/ is a Z2 vector space
of dimension N. But the set S of maps Zn.h; s; t/ ! AnC1.h; s; t/ inverting the
differential is an affine vector space affine isomorphic to the set T of Z2 –module
homomorphisms Zn.h; s; t/!ZnC1.h; s; t/. Indeed, we observe that T 2 T if and
only if A�P CT 2 S , where P is any all-on once occupied pair. Thus, by Lemma 2.44,

(6) dimS D dimZn.h; s; t/ dimZnC1.h; s; t/

D

�X
k

�L
k

��NCk�1
n

���X
k

�L
k

��NCk�1
nC1

��
:

The expression (6) is in general much larger than N. For instance, taking N D 1,
LD 1 and nD 0 we have

�P
k

�
L
k

��
NCk�1

n

���P
k

�
L
k

��
NCk�1

nC1

��
D 2> 1DN ; taking
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N D 4, LD 0 and nD 1, the dimensions are 9 > 4. So there exist many more maps
inverting the differential than linear combinations of creation operators, as mentioned
in Section 1.3.

The above deals with inverting the differential when .h; s; t/ is twisted, ie there is at
least one all-on once occupied pair. When there are no all-on once occupied pairs,
ie .h; s; t/ is tight, the H–data only permits crossings in places which immediately land
us in F .

Lemma 3.13 Suppose .h; s; t/ is tight. If 0¤ x 2A.h; s; t/ has pure Maslov grading ,
and x D @f for some f 2A.h; s; t/ also of pure Maslov grading , then f 2 F .

Proof Since f has pure Maslov grading and @f D x , f is a nonzero sum of viable
diagrams, each crossed at one more matched pair than x . From Table 1, crossings can
only occur at all-on once or doubly occupied pairs. But tight .h; s; t/ have none of the
former (Proposition 2.21), so f 2 F .

3.5 Global creation operators

For any twisted H–data .h; s; t/ (ie .h; s; t/ 2w.Z/, see Definition 2.22), there is an
all-on once occupied pair P (Proposition 2.21), and hence a creation operator A�P on
A.h; s; t/. We now introduce formalism to piece together such operators into a “global”
operator on all twisted summands.

Definition 3.14 A creation choice function C for Z assigns to each .h; s; t/ 2w.Z/
one of its all-on once occupied matched pairs C.h; s; t/.

Hence for each .h; s; t/ 2w.Z/, C selects a creation operator A�C.h;s;t/
WA.h; s; t/!

A.h; s; t/:

Definition 3.15 Let C be a creation choice function for Z . The creation operator
of C is the Z2 –module homomorphism

A�C W
M

.h;s;t/2w

A.h; s; t/!
M

.h;s;t/2w

A.h; s; t/ given by A�C D
M

.h;s;t/2w

A�C.h;s;t/:

Putting together what we know on each summand, in particular the Heisenberg relation
(Lemma 3.9), classification of chain homotopies (Lemma 3.10) and differential inversion
(Lemma 3.11), we immediately obtain the following.
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Proposition 3.16 The creation operator A�C of a creation choice function C preserves
H–grading , has Maslov degree 1, and satisfies the following:

A�C@C @A
�
C D 1 and @A�Cx D x for any cycle x 2

M
.h;s;t/2w

A.h; s; t/.

Conversely, suppose
R
W
L

.h;s;t/2w A.h; s; t/!
L

.h;s;t/2w A.h; s; t/ is a diagram-
matically simple Z2 –module homomorphism which preserves H–data , has pure Maslov
degree , and satisfies Z

@C @

Z
D 1:

Then
R

is the creation operator A�C of a creation choice function C .

3.6 Cycle selection and creation operators via ordering

In Section 3.1 we defined a diagrammatically simple cycle selection homomorphism
f C WH!A for any cycle choice function C . Then in Section 3.5 we defined a creation
operator A�C for any creation choice function C . We now discuss a useful method to
obtain such “choice functions”, of both types.

Definition 3.17 Let the pairs of Z be P1 D fp1; p
0
1g; : : : ; Pk D fpk; p

0
k
g. A pair

ordering on Z consists of a total order on each of the sets

fP1; : : : ; Pkg; P1; P2; : : : ; Pk :

Thus a pair ordering puts the pairs of Z in some order; and also puts the two places of
each pair in some order. We denote a pair ordering by �, and use this symbol for each
of the total orders involved.

We note that Z comes with several naturally ordered sets that can be used to give
a pair ordering. Recall that Z consists of l intervals Z1; : : : ; Zl . Each interval is
naturally totally ordered. Listing them as Z1; : : : ; Zl orders them. Then Z is totally
ordered, and as places lie on Z, they inherit a total order. The ordering on places
can also be used to obtain an ordering on the set fP1; : : : ; Pkg, in various reasonable
ways: for instance if Pi Dfpi ; p

0
ig and Pj Dfpj ; p

0
j g, we could define Pi �Pj when

min�fpi ; p
0
ig �min�fpj ; p

0
j g. Thus we obtain a pair ordering. But there is nothing

natural about this way to order pairs, just as there is nothing natural about the ordering
Z1; : : : ; Zl of intervals; reordering the Zi yields a homeomorphic arc diagram, but an
entirely different pair ordering.

Nonetheless, from a pair ordering, we naturally obtain cycle choice and creation choice
functions.
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Definition 3.18 Let � be a pair ordering on Z .

(i) The cycle choice function of �, denoted by CY� , assigns to each tight .h; s; t/2
g.Z/ the pair choice function on Ph;s;t which chooses from each all-on doubly
occupied pair its �–minimal place.

(ii) The creation choice function of �, denoted by CR� , assigns to each twisted set
of H–data .h; s; t/ 2w.Z/ its �–minimal all-on once occupied matched pair.

Note that the definition of CY� uses the ordering on the Pi , while the definition of
CR� uses the ordering on fP1; : : : ; Pkg.

Thus, if Pi D fpi ; p
0
ig is a 11 doubly occupied pair for tight H–data .h; s; t/, with

pi � p
0
i , then f CY� always chooses a diagram with strands beginning and ending at

pi rather than p0i . And if the pairs of Z are ordered as P1 � P2 � � � � � Pk , then for
twisted H–data, the creation operator A�CR� inserts a crossing at P1 , if it is 11 once
occupied; otherwise at P2 , if it is 11 once occupied; and so on.

Clearly not every cycle choice function arises from a pair ordering, nor does every
creation choice function. Nonetheless pair orderings provide a useful method to
construct cycle choice functions and creation choice functions, and thus to construct
A1 structures on H .

4 Constructing A–infinity structures

4.1 The construction

We now describe Kadeishvili’s construction of [8] (introduced in Section 1.3) in detail,
and then adapt it for our purposes.

Let A be a DGA, regarded as an A1 algebra with trivial n–ary operations for n� 3.
Given a cycle selection map f1 WH ,!A, the construction produces an A1 structure
X on H with X1 D 0 and X2 being multiplication, together with a morphism of A1
algebras f WH!A, consisting of maps fn WH˝n!A. The construction builds maps
Xn and fn and auxiliary maps Un inductively over n. The maps Xn and Un have
grading n� 2 and fn has grading n� 1. At each stage, Un and Xn are determined;
there is only choice in constructing fn .
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First, U1 D 0, X1 D 0, and f1 WH ! A are given. Once Ui ; Xi ; fi are defined for
i < n, we define Un by

(7) Un.a1˝ � � �˝ an/

D

n�1X
jD1

m2.fj .a1˝ � � �˝ aj /˝fn�j .ajC1˝ � � �˝ an//

C

n�2X
kD0

n�1X
jD2

fn�jC1.a1˝ � � �˝ ak˝Xj .akC1˝ � � �˝ akCj /˝ � � �˝ an/;

and Xn is then simply the homology class of Un ,

(8) Xn D ŒUn�:

Since f1 selects cycles, f1Xn and Un differ by a boundary; fn is then defined by

(9) f1Xn�Un D @fn:

From equation (9), we see that the choice for fn at each stage amounts to a choice
of inverse for the differential @. It is shown in [8] that any such fn and Xn have the
desired properties.

Applying this construction to strand algebras, we construct all Un; Xn; fn to preserve
H–data, and we invert @ using creation operators.

As it turns out, we only need to construct maps xfn; Un WH˝n!A (Definition 2.47)
into the quotient ADA=F .

To construct the cycle selection homomorphism f1 , we use a cycle choice function
CY (Section 3.1). A cycle choice function can be constructed from a pair ordering
on Z (Section 3.6). To construct fn for n � 2, we need to solve equation (9):
f1Xn � Un D @fn . This can be done separately on each H–summand. On twisted
summands, it amounts to inverting the differential (Section 3.4). We apply creation
operators on each summand using a creation choice function (Section 3.5). On other
summands, it turns out that no choice is necessary, once we project to A, and we can
take xfn D 0.

The fn in our construction satisfy the following condition. The idea is that if f1Xn�

Un D 0, then it reasonable to say that fn should also be zero. (The constant of
integration is most naturally zero!)

Definition 4.1 Suppose that for all M, if .f1Xn�Un/.M/D 0 then fn.M/D 0. In
this case we say fn is balanced.
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Theorem 4.2 Let Z be an arc diagram and let Mi be nonzero homology classes of
diagrams on Z . Let CY and CR, respectively, be cycle choice and creation choice
functions for Z . Then there is an A1 structure X on H.Z/ with X1 D 0 and X2

multiplication, and a morphism of A1 algebras f WH.Z/! A.Z/ with f1 D f
CY ,

such that the following conditions hold :

(i) If M DM1˝� � �˝Mn is not viable , then xfn.M/D 0 and Xn.M/D 0; and if
M has an idempotent mismatch then fn.M/D 0.

(ii) The maps Xn WH.Z/˝n ! H.Z/ of X and the maps fn WH.Z/˝n ! A.Z/
of f all preserve H–data; moreover Xn has Maslov grading n� 2 and fn has
Maslov grading n� 1.

(iii) Each map fn is balanced.

(iv) For n� 2, on each twisted H–summand , fn D A
�
CR ı .f1Xn�Un/, where Un

is defined by equation (7) and Xn is defined by equation (8) from Section 1.3.

The maps Xn satisfying these conditions are unique. The maps fn are uniquely defined
modulo F .

When M is singular, there are no diagrams with its H–data .h; s; t/, and A.h; s; t/D 0
(Lemma 2.35). So fn and Xn preserving H–data implies that fn.M/ D 0 and
Xn.M/D 0 for singular M.

The uniqueness statement means that, although the fn are not uniquely determined,
after composing with the quotient A!A to obtain xfn WH˝n!A, the maps xfn are
uniquely determined.

Since (Section 3.6) a pair ordering � determines cycle choice and creation choice
functions CY� and CR� , we immediately obtain the following corollary.

Corollary 4.3 Let � be a pair ordering on an arc diagram Z . Then there is an
A1 structure X on H , and a morphism of A1 algebras f WH! A satisfying the
conditions of Theorem 4.2, such that f1 D f

CY�, and on twisted summands for n� 2,
fn D A

�

CR� ı .f1Xn�Un/.

Corollary 4.3 is a precise form of Theorem 1.1.
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Proof of Theorem 4.2 We follow the method described above. At level 1, equations
(7), (8) and (9) require U1 D 0, X1 D 0 and @f1 D 0. The last equation is satisfied by
f1 D f

CY. Since diagrams with nonviable H–data are zero in homology, f1 D 0 for
such diagrams.

Now suppose we have constructed all operations at level < n as required; we construct
Un , Xn and fn .

We define Un by equation (7). Then Un has Maslov grading n� 2. As the fj are
not uniquely defined, neither is Un . However, all the xfj are uniquely defined, hence
by equation (7), Un is also uniquely defined. Since the fj (and multiplication in A)
preserve H–data, Un does also.

We define Xn by (8); then Xn respects gradings as required. As in Kadeishvili [8],
Un is a cycle and Xn is its homology class, so Xn is well defined. Now all diagrams in
F are nonviable or have crossings, and such diagrams do not contribute to homology.
Thus Xn.M/ is determined completely by Un.M/, which is uniquely defined; hence
Xn.M/ is uniquely defined.

To define fn , we solve equation (9) for each viable M DM1˝ � � �˝Mn :

@fn.M/D .f1Xn�Un/.M/:

We consider various cases.

First, suppose M DM1˝ � � �˝Mn is nonviable because of an idempotent mismatch.
Then each term in Un.M/ from (7) is zero: by induction, fi and Xi for i < n are zero
on tensor products with mismatches, and the product of two mismatched diagrams is
zero. Thus Un.M/D 0, and by (8) then Xn.M/D 0. We set fn.M/D 0 as required
by the balanced condition; equation (9) is then satisfied.

Next, suppose M is nonviable but has no idempotent mismatch, hence has some step
covered more than once. As Un preserves H–data then Un.M/ is a sum of nonviable
diagrams, so Un.M/ 2 F and Un.M/D 0. Then Xn.M/D 0, and equation (9) then
requires @fn.M/ D Un.M/. If Un.M/ D 0 then we set fn.M/ D 0, satisfying the
balanced condition; otherwise we choose fn.M/ arbitrarily to be any solution to this
equation with the same H–data as M, and of pure Maslov grading (necessarily 1 greater
than M ). Then fn.M/ 2 F , being a sum of nonviable diagrams. Thus fn.M/ is not
uniquely determined, but xfn.M/ is uniquely determined, indeed xfn.M/D 0.

If M is singular, then as there are no diagrams with the H–data of M, it follows that
Un.M/, Xn.M/ and fn.M/ are all zero, and all required conditions are satisfied.
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So we may now assume that M is viable and nonsingular; hence its H–data .h; s; t/ is
tight or twisted.

If .h; s; t/ is twisted, then as required we take fn D A
�
CR ı .f1Xn�Un/. Then fn is

balanced. Since .f1Xn�Un/.M/ is a boundary, hence a cycle, by Proposition 3.16,

@fn.M/D @A�CR.f1Xn.M/�Un.M//D .f1Xn�Un/.M/:

If .h; s; t/ is tight, by Lemma 3.13, any fn.M/ of the required Maslov grading and
satisfying @fn.M/D f1Xn.M/�Un.M/ lies in F . We choose fn.M/ to be zero if
f1Xn�Un D 0 (satisfying the balanced condition), and otherwise to be any solution
to this equation with the same H–data as M, and pure Maslov grading. Then fn.M/

is not uniquely determined, but xfn.M/D 0.

This defines fn and Xn satisfying the required conditions, with the uniqueness claimed.
Having followed Kadeishvili’s construction, the Xn form an A1 structure on H , and
the fn form a morphism of A1 algebras H!A.

It follows from this proof that whenever M has tight H–data, xfn.M/D 0.

4.2 Shorthand notation

For convenience, we use some shorthand for viable nonzero tensor products in A˝n,
xA˝n and H˝n. The shorthand is essentially a stylised version of our previous diagrams.

Let M D M1 ˝ � � � ˝Mn 2 H˝n be a viable tensor product of nonzero homology
classes of diagrams on an arc diagram Z . A shorthand diagram represents M by an
array of data. Each row refers to a matched pair P of Z . The n columns refer to
M1; : : : ;Mn . In the row for P Dfp; p0g and the column of Mi , we write which of the
four steps of ZP are covered by Mi . Along the row for P, between the columns we
draw a hollow or solid circle indicating whether P is contained in the corresponding
idempotent (“on or off”). This is well defined since M is viable.

Such notation specifies M completely, since it specifies the H–data of each Mi .

The step before and after a place p are denoted by p� and pC , respectively; p˙ indi-
cates that both pC and p� are covered. Figure 11 shows an example.

Occasionally, when the idempotents can be inferred from the H–grading of each Mi ,
we omit the circles in the notation.
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� � p˙; p
0
˙
� � �

ı q0� � qC ı q� � q
0
C ı

D

p

p0

q

q0

Figure 11: Shorthand notation for viable nonzero tensor products of homol-
ogy classes of diagrams.

We use a similar notation to write elements of A˝n and A˝n. For a viable tensor
product of diagrams, we write a similar array, however a diagram is not always specified
by its H–data, so we use some of the notation of Definition 2.18. When there is a
unique tight local diagram with the H–data, we simply write which steps are covered.
Otherwise, we use the notation bP , gp , cp and wp .

When A1 operations are defined by a pair ordering, as in Corollary 4.3, we may order
the pairs upwards in our array (just as they are ordered along the intervals of Z ). A
creation operator then always applies at the all-on once occupied pair which is lowest
in our shorthand notation.

We adopt notation where each matched pair is denoted by a capital letter, and its two
places by the corresponding lowercase letter, the latter under � being primed. Thus we
always write pairs as P D fp; p0g, QD fq; q0g, etc, where p � p0, q � q0, etc. Then
a cycle choice function always selects a cycle with strands at a place with an unprimed
label.

When a tensor product M DM1˝� � �˝Mn is twisted at a place p of a pair P Dfp; p0g,
it is 11 once occupied at P, with p fully occupied (Table 2), and the two steps pC; p�
are covered by some Mi and Mj , with i < j . Thus, in shorthand, across the row for
P we see pC in one column, then p� in another column, in that order.

Similarly, if P is critical, then it is sesqui-occupied or doubly occupied, and looking
across the row corresponding to P we see one of the following sequences, appearing
in order, in distinct columns (possibly after relabelling p and p0 ):

pre-sesqui-occupied p0�; pC; p�; 00 doubly occupied p�; p
0
C; p

0
�; pC;

post-sesqui-occupied pC; p�; p
0
C; 11 doubly occupied p0C; p

0
�; pC; p�:
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4.3 Low-level maps

We now consider low-level maps in our construction explicitly. We assume A1
structures are constructed from a cycle choice function CY and a creation choice
function CR, as in Theorem 4.2.

Level 1 maps are straightforward (X1 D 0 and f1 D f
CY ), as is multiplication X2 .

We consider xf2 .

Let M DM1˝M2 be a tensor product of nonzero homology classes of diagrams,
with H–data .h; s; t/. By Theorem 4.2 (and subsequent discussion), if M is nonviable
or singular, then xfn.M/ and Xn.M/ are both zero; so we assume M is viable and
nonsingular. Then .h; s; t/ is tight or twisted.

When .h; s; t/ is tight, xf2.M/D 0. So suppose .h; s; t/ is twisted, hence has at least
one all-on once occupied pair. Clearly M is then not tight; in fact, M cannot be critical
either, since it takes 3 to be critical (Lemma 2.38). So M is twisted, hence is tight or
twisted at each matched pair (Lemma 2.36). In particular, M is twisted at each all-on
once occupied pair, and tight at each other pair.

Since U2.M1˝M2/D f1.M1/f1.M2/, we have

(10) f2.M1˝M2/D A
�
CR.f1.M1M2/Cf1.M1/f1.M2//:

Since M is twisted, we get M1M2 D 0 and f1.M1/f1.M2/¤ 0 (Lemma 2.35). As
f1.M1/f1.M2/ is clearly not tight, and it is also not crossed (being the product of
two crossingless diagrams — Lemma 2.25), it is twisted, hence tight or twisted at each
pair (Lemma 2.24). At each 11 once occupied pair f1.M1/f1.M2/ cannot be tight, so
must be twisted; and at each other pair, it must be tight. We then have

(11) f2.M1˝M2/D A
�
CR.f1.M1/f1.M2//;

where A�CR adds a crossing at the pair selected by the creation choice function CR.

Thus, f2.M1˝M2/ is given by a single diagram, which is crossed at the all-on once
occupied pair of M1˝M2 selected by CR, and is elsewhere given by f1.M1/f1.M2/.
The idea is shown in Figure 12. In this way, f2 turns one pair from twisted to crossed.

When CR D CR� is the creation choice function of a pair ordering, A�CR adds a
crossing at the �–minimal all-on once occupied pair of f1.M1/f1.M2/.
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f2. � p
0
C ı p

0
� � /D f2

�
p

p0 �
D

p

p0

D � cp0 �

Figure 12: The effect of f2 .

5 Properties of A–infinity structures

We now consider A1 structures on H constructed by Kadeishvili’s method in general —
not just those defined by the construction in Theorem 4.2 involving cycle and creation
choice functions.

Throughout this section, we consider an A1 structure X on H with operations
Xn WH˝n!H , and a morphism of A1 algebras f WH!A with maps fn WH˝n!A,
constructed by Kadeishvili’s method. So there are also auxiliary maps Un WH˝n!A,
satisfying equations (7), (8) and (9). We assume all Un , Xn and fn preserve H–data
and have Maslov degree n�2, n�2 and n�1, respectively. Thus, each fn inverts the
differential in @fnDf1Xn�Un , but not necessarily by a creation operator. Throughout,
M DM1˝ � � �˝Mn is a tensor product of nonzero homology classes of diagrams.

5.1 Nonviable input

We have seen that if a tensor product of homology classes of diagrams M1˝� � �˝Mn is
not viable, then their product is zero (Lemma 2.6). We now show that other operations
are zero as well.

Lemma 5.1 Suppose that M DM1˝ � � �˝Mn is not viable.

(i) If M has some step covered more than once , then xfn.M/D 0 and Xn.M/D 0.

(ii) If all fn are balanced and M has an idempotent mismatch , then fn.M/ D 0

and Xn.M/D 0.

In particular , if all fn are balanced , then xfn.M/D 0 and Xn.M/D 0.

Proof First suppose M has some step covered twice. As Xn preserves H–grading,
and there are no tight diagrams with such H–grading, Xn.M/D 0. As fn preserves
H–grading, fn.M/ is a sum of nonviable diagrams, hence lies in F , so xfn.M/D 0.
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We show (ii) by induction on n. When nD 1 there is nothing to prove. Suppose the
result is true for all fi with i < n; now assume that M is mismatched, and consider
Un.M/. In a term of the form fj .M1˝ � � � ˝Mj /fn�j .MjC1˝ � � � ˝Mn/, if the
mismatch occurs within M1˝� � �˝Mj or MjC1˝� � �˝Mn , then by induction the term
is zero; otherwise it occurs between Mj and MjC1 , in which case the product is zero.
In a term of the form fn�jC1.M1˝� � �˝Mk˝Xj .MkC1˝� � �˝MkCj /˝� � �˝Mn/,
if the mismatch occurs within MkC1˝ � � �˝MkCj then the Xj term is zero, hence
the whole term is zero; otherwise it occurs within the fn�jC1 term and again we have
zero. Thus Un.M/D 0, so Xn.M/D 0. Then @fn.M/D .f1Xn�Un/.M/D 0, and
since fn is balanced then fn.M/D 0 also.

5.2 Equivalent choices of maps

In the proof of Theorem 4.2, we saw that although there might be many choices available
for the fn on tight summands, such choices had no effect on the resulting Xn .

In a similar vein, we now show that, in applying Kadeishvili’s construction in general
(ie without creation operators), the choices available for the maps xfn do not depend on
any previous choices.

Lemma 5.2 Suppose that fi are defined for all i < n, Ui and Xi are defined for all
i � n, and the two functions a; b WH˝n! A satisfy

xaD xb and @aD @b D f1Xn�Un;

and are balanced , ie if .f1Xn�Un/.M/D 0 then a.M/D b.M/D 0. Whether we
choose fn D a or b , for all N > n the choices for each xfN are identical.

Let us be more explicit. Taking fnD a we define U and X maps at level nC1, which
we denote by U a

nC1; X
a
nC1 . Then we have a set of choices

Sa
nC1 D f

xf j @f Df1X
a
nC1�U

a
nC1g

for xfnC1 . On the other hand, taking fn D b we define U b
nC1; X

b
nC1 and have another

set of choices
Sb

nC1 D f
xf j @f Df1X

b
nC1�U

b
nC1g

for xfnC1 . Lemma 5.2 says that Sa
nC1 D Sb

nC1 . Moreover, after taking fn D a and
making arbitrary choices f a

nC1; : : : ; f
a

N�1 using Kadeishvili’s construction, obtaining
maps U a

nC1; X
a
nC1; : : : ; U

a
N ; X

a
N , we obtain a set of choices

Sa
N D f

xf j @f Df1X
a
N �U

a
N g
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for xfN ; after taking fn D b and making arbitrary choices f b
nC1 : : : ; f

b
N�1 and obtain-

ing maps U b
nC1; X

b
nC1; : : : ; U

b
N ; X

b
N , we have choices Sb

N D f
xf j @f Df1XN �UN g

for xfN. Lemma 5.2 says, more generally, that Sa
N D Sb

N .

Proof Let M have H–data .h; s; t/. When .h; s; t/ is not viable, there is only one
choice for xfn.M/, namely 0, by Lemma 5.1. And when .h; s; t/ is singular, xfn.M/D0

as there are no available diagrams. Hence we need only consider xfn.M/ when .h; s; t/
is viable and nonsingular, hence tight or twisted.

Since xa D xb , a� b takes values in F . As F is an ideal, U a
nC1.M/ and U b

nC1.M/

differ by values in F . Diagrams in F do not contribute to homology, as they have
crossings, so ŒU a

nC1.M/�D ŒU b
nC1.M/�. It follows that Xa

nC1.M/DXb
nC1.M/; we

simply write XnC1.M/ in either case. Moreover, U a
nC1.M/�U b

nC1.M/ is a boundary;
let U a

nC1.M/�U b
nC1.M/D @gnC1 . As U a

nC1.M/�U b
nC1.M/ 2 F , there is such a

gnC1 in F : if .h; s; t/ is twisted we can use a creation operator; if .h; s; t/ is tight then
any crossing occurs at an all-on doubly occupied pair, so any diagram with crossings
lies in F . Then to define fnC1.M/ we must solve

f1XnC1.M/�U a
nC1.M/D@f a

nC1.M/ or f1XnC1.M/�U b
nC1.M/D@f b

nC1.M/:

Observe that f a
nC1.M/ is a solution of the first equation if and only if f a

nC1.M/CgnC1

is a solution of the second equation. Since gnC1 2 F , the possible xf a
nC1.M/ and

xf b
nC1.M/ are identical.

Thus, the possible choices for fnC1 differ by values in F . The possible choices for
UnC2 then differ by values in F , and the argument proceeds by induction, giving the
desired result.

Thus in the construction of the maps fn and Xn , it is sufficient to consider xf rather
than f at each level. So we may effectively compute in A=F DA.

5.3 Preliminary properties of A–infinity operations

Lemma 5.3 For any n� 2 and any M, fn.M/ is a (possibly empty) sum of crossed
diagrams.

Proof For fixed H–data, Maslov grading is (up to a constant) given by the number of
pairs with crossings (Section 2.8). As fn has Maslov grading n� 1� 1, all diagrams
in fn.M/ have crossings.
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Lemma 5.4 The homology class of Xn.M/ is represented by the sum of all crossing-
less diagrams in the following sum , writing elements of A in standard form:

n�1X
jD1

xfj .M1˝ � � �˝Mj / xfn�j .MjC1˝ � � �˝Mn/:

Recall (Definition 2.47(v)) that the standard form of an element of A is a sum of
viable diagrams without crossed doubly occupied pairs. For nD 1 the result reduces
to X1 D 0.

Proof By construction, Xn.M/ D ŒUn.M/�. Consider the terms of (7) defining
Un.M/. Diagrams in f�.M1˝ � � � ˝X�.� � � /˝ � � � ˝Mn/ are crossed (Lemma 5.3)
hence do not contribute to homology. Thus, Xn.M/ is represented by the sum of tight
diagrams of the form fj .M1˝ � � �˝Mj /fn�j .MjC1˝ � � �˝Mn/, and diagrams in
F do not contribute to homology. So Xn is represented by the sum claimed.

Lemma 5.4 allows us to calculate Xn.M/ directly from xfj and xfn�j . Diagrams in
xfj or xfn�j usually contain crossings (Lemma 5.3), but the crossings may disappear

in a sublimation to give a tight result. Sublimation is therefore ubiquitous in the
operations Xn , arising in any nonzero Xn.M/.

5.4 Conditions for nontrivial A–infinity operations

Theorem 5.5 Suppose all fk are balanced. Let n � 2, let M1; : : : ;Mn be nonzero
homology classes of tight diagrams , and let M DM1˝� � �˝Mn . If xfn.M/¤ 0, then
the following statements hold.

(i) In M there are l matched pairs which are twisted , and m matched pairs which
are critical , where l Cm � n� 1 and m � n� 2. All other matched pairs are
tight.

(ii) xfn.M/ is represented by a sum of diagrams, where each diagram D satisfies
the following conditions:

(a) All m of the critical matched pairs in M become tight in D.

(b) Precisely n�m� 1 of the l twisted matched pairs in M become crossed
in D ; the other l �nCmC 1 twisted matched pairs in M remain twisted
in D.

(c) All tight matched pairs in M remain tight in D.
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Note in particular that the conditions in (i) imply that l > 0, so the H–data of M is
twisted. Hence if M has tight H–data then xfn.M/D 0.

Proof First, by Lemma 5.1, M is viable.

Write xfn.M/ in standard form (Definition 2.47(v), as a sum of distinct diagrams
without crossed doubly occupied pairs. Let D be one of these diagrams. As xfn

respects H–grading and has Maslov grading n� 1, D is viable, with h.D/D h.M/,
and �.D/ D �.M/C n� 1. From Tables 1 and 2, at each matched pair the Maslov
grading can increase by at most 1; hence there are precisely n� 1 matched pairs at
which D has a higher Maslov index than M.

At each matched pair P and D must give a viable local diagram which respects local
H–data. There are no such diagrams for singular pairs; hence all matched pairs of M
are tight, twisted, or critical.

Consider a matched pair P where M is critical. From Table 2, P is sesqui-occupied
or doubly occupied by M. Every all-on doubly occupied pair must remain uncrossed
in D (by assumption of standard form). From Table 1, any viable local diagram at a
sesqui-occupied or doubly occupied matched pair, which is not crossed all-on doubly
occupied, must be tight. So DP is tight at P, and (again by reference to the table)
�.DP /D �.MP /C 1.

Now consider a matched pair P where M is tight. Then the local H–data of M at
P is tight. We observe from Table 1 that, with crossed all-on doubly occupied local
diagrams ruled out, any viable local diagram with tight H–data must be tight. Thus
DP is tight, and hence �.DP /D �.MP /.

Now �.D/D �.M/Cn�1, and m of this increase is accounted for at critical matched
pairs. The remaining increase of n�1�m must arise at the l pairs where M is twisted.
From Table 2, we observe that these are precisely the pairs where M is all-on once
occupied. At such pairs, two viable local diagrams are possible: a tight and a crossed
diagram. Crossings can thus be inserted at such pairs to increase the Maslov index;
they must be inserted at n� 1�m such pairs for D to have the correct Maslov index;
so n� 1�m� l . The remaining l Cm�nC 1 pairs must remain twisted in D.

The diagram D thus has precisely n�m� 1 crossings. But by Lemma 5.3, D must
have at least one crossing. Thus n�m� 1� 1.
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Theorem 5.6 Suppose that all fk are balanced. If Xn.M/¤ 0, then the following
statements hold :

(i) M has precisely n� 2 critical matched pairs, and all other matched pairs are
tight.

(ii) Xn.M/ is the unique homology class of tight diagram with the H–data of M.

In particular, if Xn.M/¤ 0, then M has tight H–data.

For nD 1 this result says X1D 0; the nD 2 case follows from Lemmas 2.35 and 2.36.

Proof By Lemma 5.1, M is viable. Since Xn respects H–data, let M and Xn.M/

have H–data .h; s; t/. Since there is at most one nonzero homology class with fixed
H–data, (ii) follows immediately.

As Xn.M/¤ 0, .h; s; t/ is tight, hence tight at each matched pair. In particular, M
has no 11 once occupied or 00 alternately occupied pairs. From Table 2, M is tight or
critical at each pair.

When M is tight at a pair P, by Lemma 2.35 M1 � � �Mn is tight at P. As Xn.M/

is given at P by the unique tight diagram with the H–data of M , then Xn.M/P D

.M1 � � �Mn/P . In this case Xn.M/ has the same Maslov index as M at P.

On the other hand, when M is critical at P, Xn.M/ must still be given at P by
the unique tight diagram with the same H–data. Inspecting Table 2 (and recalling
that multiplication in H has zero Maslov grading), we observe that �.Xn.M/P / D

�.MP /C 1. Since Maslov index is additive over matched pairs (Section 2.5), and Xn

has Maslov index n� 2, M has precisely n� 2 critical pairs.

Theorems 5.5 and 5.6 respectively yield parts (i) and (ii) of Theorem 1.2.

Now we show that it’s not possible to have xfn nonzero simultaneously with Xn , and
more.

Lemma 5.7 Suppose that fk is balanced for all k � 1. Let n� 2. If Xn.M/¤ 0 or
M1 � � �Mn ¤ 0, then xfn.M/D 0.

Contrapositively, if xfn.M/¤ 0 then Xn.M/D 0 and M1 � � �Mn D 0.
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Proof Let M have H–data .h; s; t/. By the comment right after Theorem 5.6, if
Xn.M/¤ 0, then .h; s; t/ is tight. And if M1 � � �Mn ¤ 0, then M is tight, so again
.h; s; t/ is tight. But by the comment after the statement of Theorem 5.5, if .h; s; t/ is
tight then xfn.M/D 0.

Theorem 5.6 places stringent necessary conditions on a tensor product M1˝ � � �˝Mn

to yield a nonzero result under Xn . However, we will see in Section 6.2 that these
conditions are not sufficient.

5.5 Levels 1, 2 and 3 in general

We now describe some properties of the maps fn and Xn at levels 1, 2 and 3, still
working in general, assuming that Kadeishvili’s construction is used, and the maps
Un , Xn and fn preserve H–data and have appropriate Maslov gradings, but not that
creation operators are used (unlike Section 4.3). We additionally now assume that the
fn are balanced.

Level 1 is again straightforward. By construction X1 D 0, and f1 is a cycle selection
homomorphism. If f1 is diagrammatically simple then it arises from a cycle choice
function (Lemma 3.5). In general, for each tight .h; s; t/, f1 maps Mh;s;t to the sum
of an odd number of tight diagrams representing Mh;s;t .

For level 2, by construction X2 is multiplication. As for f2 , we have the following.

Lemma 5.8 Suppose that f1 and f2 are balanced. Then xf2.M/¤ 0 if and only if
M is viable and has at least one twisted matched pair. Then xf2.M/ in standard form is
the sum of an odd number of diagrams, each with a single crossing at a matched pair
where M is twisted , and elsewhere tight or twisted in agreement with M.

Proof If xf2.M/¤ 0, then M is viable (Lemma 5.1). By Theorem 5.5, M has no
critical matched pairs and at least one twisted (ie all-on once occupied) matched pair.
Moreover, xf2.M/ is represented by a sum of diagrams, each of which has precisely
one crossing at a twisted matched pair.

Conversely, suppose M DM1˝M2 is viable and has at least one twisted matched
pair. Then X2.M/D 0, and U2.M/D f1.M1/f1.M2/ is the sum of an odd number
of diagrams, each tight and twisted at the same matched pairs as M, differing by
strand switching at all-on doubly occupied pairs (Lemma 2.23). Since @f2.M/ D
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f1.M1/f1.M2/ and f2 respects H–data and has Maslov grading 1, f2.M/ is a sum
of diagrams, each of which has a crossing at one matched pair, and each other pair
is tight or twisted in agreement with M. In standard form xf2.M/ is then given by
omitting diagrams with crossings at doubly occupied pairs, so that each crossing is at
a matched pair where M is twisted. The differential of each remaining diagram is a
single diagram, but the differential of each omitted diagram is a sum of two diagrams,
so xf2.M/ in standard form is the sum of an odd number of diagrams.

When the A1 structure is defined by creation operators, as in Section 4 and Theorem 4.2,
then any nonzero f2.M/ is a single diagram, as described in Section 4.3.

We now consider X3 ; the case is illustrative, showing the role of critical and sublime
tensor products. Let M DM1˝M2˝M3 and suppose X3.M/ ¤ 0. Then M is
viable (Lemma 5.1, requiring the balanced assumption) and by Theorem 5.6, M has
precisely one critical matched pair; all other matched pairs are tight. By Lemma 5.4,
X3.M/ is represented by the sum of all crossingless diagrams in

xf1.M1/ xf2.M2˝M3/C xf2.M1˝M2/ xf1.M3/:

Each diagram in an xf2.Mi ˝MiC1/ term has a crossing at precisely one matched
pair P, where Mi˝MiC1 is twisted; since such P cannot be tight in M (Lemma 2.39,
Table 3), P is the critical matched pair of M. Multiplying this diagram by the third
Mj must then produce a tight diagram. There are two cases for the tightness of the
various tensor products:

� M1˝M2 twisted; each diagram D in xf2.M1˝M2/ crossed; M3 and each
diagram D0 in xf1.M3/ tight; each D ˝D0 sublime; and M1 ˝M2 ˝M3

critical.

� M2˝M3 twisted; each diagram D0 in xf2.M2˝M3/ crossed; M1 and each
diagram D in xf1.M1/ tight; each D˝D0 sublime; and M1˝M2˝M3 critical.
Figure 13 shows the situation at P.

These two cases are mutually exclusive: only one of

f2.M1˝M2/f1.M3/ or f1.M1/f2.M2˝M3/

can be nonzero. In the first case M2˝M3 is singular, and in the second case M1˝M2

is singular.

Thus, to obtain a nonzero result for X3 , we start with a critical tensor product M1˝

M2˝M3 ; then a twisted subtensor-product (ie M2˝M3 in Figure 13) combines via f2
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X3

�
ı p� � p

0
C ı p

0
� �

�
DX3

�
p

p0 �
D

p

p0

Figure 13: An example of X3.M1˝M2˝M3/ , where M1˝M2˝M3 is crit-
ical, M1˝M2 is singular, and M2˝M3 is twisted. Moreover, xf2.M2˝M3/

is crossed, and xf1.M1/˝ xf2.M2˝M3/ is sublime.

into a crossed diagram, yielding a sublime tensor product (ie f1.M1/˝f2.M2˝M3/

in Figure 13); and then these are multiplied to give a tight result. This process is the
process depicted in Figure 6; it occurs generally in Kadeishvili’s construction, without
any need for creation operators.

We can prove a converse, and give necessary and sufficient conditions for X3 ¤ 0.

Proposition 5.9 Suppose f1 and f2 are balanced. Then X3.M/ is nonzero if and
only if M is viable, critical at precisely one matched pair P, and tight at all other
matched pairs.

Proof We only need prove that if the conditions on M hold, then X3.M/¤ 0. By
Lemma 2.37, MP is an extension of a tensor product shown in the critical column of
Table 2; but MP has 3 factors, so MP is exactly the critical 01 pre-sesqui-occupied or
10 post-sesqui-occupied tensor product shown there. We consider the first case; the
second case is similar. So suppose MP is critical 01 pre-sesqui-occupied.

First, xf1.M1/ is the sum of an odd number of tight diagrams, all representing M1 ,
and differing by strand switching at all-on doubly occupied pairs (Lemma 2.23).

By Lemma 5.8, xf2.M2˝M3/ is the sum of an odd number of diagrams, each with a
single crossing at a pair where M2˝M3 is twisted. Let D be one of these diagrams;
let its crossing be at the pair P 0. By Lemma 2.39 and Table 3 then P 0 cannot be tight
in M, so P 0D P . Thus xf2.M2˝M3/ is represented by the sum of an odd number of
diagrams, each of which has a crossing at P and is tight elsewhere, and which differ
by strand switching at all-on doubly occupied pairs.

Then xf1.M1/˝ xf2.M2˝M3/ is the sum of an odd number of sublime tensor products
of diagrams, and xf1.M1/ xf2.M2˝M3/ is the sum of an odd number of tight diagrams.
Moreover, in this case M1˝M2 is singular so xf2.M1˝M2/D 0.
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Thus xf1.M1/ xf2.M2˝M3/C xf2.M1˝M2/ xf1.M3/ is the sum of an odd number of
tight diagrams, related by strand switching. By Lemma 5.4, X3.M/ is the homology
class of any one of these diagrams, so X3.M/¤ 0.

Thus, if there are sufficiently few critical matched pairs in M, we may be able to
guarantee that Xn.M/¤ 0. In Section 7 we give some results in this direction.

6 Further examples and computations

We now calculate some further examples and prove some further results, for low-level
A1 maps.

In this section we consider A1 operations defined by a pair ordering �, as in
Corollary 4.3, and consider maps at level 3 and 4, using the shorthand notation of
Section 4.2. This builds upon Section 4.3, where we discussed fn and Xn for n� 2,
when A1 operations are defined by cycle choice and creation choice functions; and
Section 5.5 where we again discussed low-level maps, especially xf2 and X3 , for A1
operations obtained more generally using Kadeishvili’s method.

As always, let M DM1˝� � �˝Mn denote a tensor product of nonzero homology classes
of diagrams. We assume M is viable, necessary for nonzero results (Lemma 5.1);
let M have H–data .h; s; t/. We work with xfn and Un ; this loses no generality for
calculating Xn (Lemma 5.2).

6.1 Level 3

Consider the operation U3 , given by

U3.M/D

xf1.M1/ xf2.M2˝M3/C xf2.M1˝M2/ xf1.M3/C xf2.M1M2˝M3/C xf2.M1˝M2M3/:

The last two terms cannot contribute to X3 , as they yield crossed diagrams (Lemma 5.3).
But in general all four terms can be nonzero; indeed, some terms may be equal and
cancel. An example is shown in Figure 14, with shorthand calculations alongside the
standard notation; xf2 is calculated using Section 4.3 and equation (11).

Continuing to xf3 , we know that when xf3.M/ ¤ 0 then M is viable (Lemma 5.1),
X3.M/D 0 and M1M2M3 D 0 (Lemma 5.7). Moreover, M has no singular matched

Algebraic & Geometric Topology, Volume 21 (2021)



1172 Daniel V Mathews

U3

�
� p0
C
ı ı p0� �

�
D xf2

�
� p0
C
ı

�
C xf2

�
� p0
C
ı

�
D 0

U3

�
p

p0 �
D xf2

�
p

p0 �
C xf2

�
p

p0 �
D 0

Figure 14: An example of U3.M1˝M2˝M3/ . In this case both f2.M1˝M2/

and f2.M2˝M3/ are zero. The two terms f2.M1M2˝M3/ and f2.M1˝M2M3/

are both nonzero, but cancel out.

pairs, l twisted matched pairs, and m critical matched pairs, where m�1 and lCm�2
(Theorem 5.5). It follows that l � 1, so .h; s; t/ is twisted, so by Theorem 4.2(iv) then
xf3.M/D xA�CR� ıU3.M/, where A�CR� is the creation operator of the creation choice

function CR� (Definition 3.15) of the pair ordering � (Definition 3.18):

(12) xf3.M/D xA�CR�
�
xf1.M1/ xf2.M2˝M3/C xf2.M1˝M2/ xf1.M3/

C xf2.M1M2˝M3/C xf2.M1˝M2M3/
�
:

Each of the four terms in equation (12) consists of at most one diagram in standard
form. Since diagrams in U3.M/ may have a crossing, a diagram in xf3.M/ may have
up to two crossings.

Now M has m� 1 critical matched pairs. If mD 0 then all pairs are tight or twisted,
and any diagram in xf3.M/ above has precisely two crossings. If m D 1, then the
critical pair P must eventually have a tight local diagram to yield a nonzero result, so
the diagram at P becomes crossed by an xf2 and then sublimates; hence any diagram
in xf3.M/ has one crossing.

We find that, in order to obtain a nonzero result for xf3.M/, the local diagrams at
twisted or critical matched pairs must be “distributed” across M1 , M2 and M3 . For
twisted pairs we make this precise in the following statement.

Lemma 6.1 Consider an A1 structure defined by a pair ordering �.

Suppose M D M1 ˝M2 ˝M3 is viable, twisted at precisely two places p; q of
matched pairs P D fp; p0g and Q D fq; q0g, with all other pairs tight. Moreover,
suppose that pC; qC are both covered by the same Mi , and p�; q� are both covered
by the same Mj .

Then X3.M/, U3.M/ and xf3.M/ are all zero.
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We can denote this result for xf3 by

xf3

�
� qC ı q� � �

� pC ı p� � �

�
D xf3

�
� qC ı ı q� �

� pC ı ı p� �

�
D xf3

�
� � qC ı q� �

� � pC ı p� �

�
D 0:

Proof There are three possibilities for i and j : .i; j / D .1; 2/; .1; 3/ or .2; 3/. In
all cases X3.M/D 0 as there are no critical matched pairs (Theorem 5.6). Suppose
without loss of generality that P �Q , so creation operators introduce crossings at P
in preference to Q .

First suppose .i; j /D .1; 2/. Then M1M2D 0 (being twisted) and M2M3¤ 0 (being
tight), so xf2.M2˝M3/D 0 (Lemma 5.7). Thus

U3.M/D xf2.M1˝M2/ xf1.M3/C xf2.M1˝M2M3/:

Now xf2.M1 ˝M2/ D xACR�.
xf1.M1/ xf1.M2// is (in standard form) the diagram

obtained from xf1.M1/ xf1.M2/ by inserting a crossing at P. Similarly xf2.M1˝M2M3/

(in standard form) is obtained from xf1.M1/ xf1.M2M3/ by inserting a crossing at P.
Since the diagrams xf2.M1˝M2M3/ and xf2.M1˝M2/ xf1.M3/ have the same H–data,
are crossed at P, twisted at Q , elsewhere tight, and have the same strands at all-on
doubly occupied pairs (chosen by the same cycle selection function of �), they are
equal. Thus U3.M/D 0 and xf3.M/D xACR� ıU3.M/D 0.

The case .i; j /D .2; 3/ is similar.

Finally suppose .i; j /D .1; 3/. Then M1M2 and M2M3 are nonzero, so

xf2.M1˝M2/D xf2.M2˝M3/D 0

(Lemma 5.7). The remaining two terms of U3.M/ are

xf2.M1M2˝M3/ and xf2.M1˝M2M3/;

both of which are crossed at p , twisted at q , and equal elsewhere, so again U3 and xf3

are zero.

The following lemma, together with Lemma 6.1 and the general result of Theorem 5.5,
completely calculates xf3.M/ when M has two nontight matched pairs.

Lemma 6.2 Consider an A1 structure defined by a pair ordering �.

Suppose M DM1˝M2˝M3 is viable , has two matched pairs

P D fp; p0g �QD fq; q0g
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which are twisted or critical , and all other matched pairs tight , in one of the arrange-
ments depicted below.

Then xf3.M/ is zero or nonzero as shown. If nonzero , it is given by a single diagram
in A, with the H–data of M, which is crossed at each twisted matched pair of M, and
elsewhere tight.

Nonzero:�
q0� qC q�
pC p�

� �
qC q�

pC p� p0C

� �
qC q�
p0� pC p�

� �
qC q� q0C
pC p�

� �
qC q�

pC p�

�
�
qC q�
p0� pC p�

� �
qC q� q0C

pC p�

� �
q0� qC q�
pC p�

� �
qC q�
pC p� p0C

� �
qC q�

pC p�

�
�
qC q�
pC p� p0C

� �
qC q�
pC p�

� �
qC q�

pC p�

� �
qC q�

p0� pC p�

�
Zero: �

qC q� q0C
pC p�

� �
qC q�
pC p�

� �
qC q�

pC p�

� �
q0� qC q�

pC p�

�
(Circles denoting idempotents are omitted; they can be inferred since each nontrivial
local diagram covers at most one step.)

The conclusion that, if xf3.M/ is nonzero, then it is as claimed, follows purely from
grading considerations: xf3 has Maslov grading 2, but the Maslov index can only be
increased at nontight pairs. There are only two nontight matched pairs, so the Maslov
index must be increased by 1 at each. A twisted pair must become crossed, and a
critical pair must become tight.

Proof In the cases depicted in the first four diagrams in the first two rows above, we
have a critical and a twisted pair, and M1M2DM2M3D 0. In each of these cases one
of M1˝M2 or M2˝M3 is singular, and the other is twisted. Then precisely one of
xf2.M1˝M2/ or xf2.M2˝M3/ is nonzero, and xf2 introduces a crossing at the twisted

matched pair. Then the multiplication xf2.M1˝M2/ xf1.M3/ or xf1.M1/ xf2.M2˝M3/

is tight at one pair and twisted at the other; and in fact this diagram is U3.M/. Applying
a creation operator, we obtain xf3.M/ as a single diagram with a single crossing.

In the cases depicted at the end of the first and second rows, again M1M2DM2M3D0,
and both xf2.M1˝M2/ and xf2.M2˝M3/ are nonzero, each with a single crossed pair.
So xf2.M1˝M2/ xf1.M3/ and xf1.M1/ xf2.M2˝M3/ are both nonzero, one crossed
at p and twisted at q , the other crossed at q and twisted at p . The creation operator
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xACR� sends the former to zero, and introduces a crossing at p into the latter. Thus
xf3.M/ is given by a single diagram, crossed at both p and q , as desired.

The other cases can be calculated by similar reasoning.

6.2 Level 4

We now compute two examples at level 4, illustrating some interesting phenomena. As
usual, let M DM1˝ � � �˝Mn denote a tensor product of nonzero homology classes
of diagrams, with H–data .h; s; t/.

Our first example shows that the necessary conditions for Xn to be nonzero in
Theorem 5.6 are not sufficient. It is an M with precisely 2 critical matched pairs, and
all other matched pairs tight — and in fact one can find a tight diagram with the same
H–data — but with X4.M/D 0.

Letting P D fp; p0g and QD fq; q0g be matched pairs with P �Q as usual, we can
compute

X4

�
� qC ı q� � q

0
C
ı ı

� pC ı p� � p
0
C
ı ı

�
D 0;

since in this case xf3.M1˝M2˝M3/D 0 (Theorem 5.5; there are two critical pairs),
xf3.M2˝M3˝M4/D 0 (since M2˝M3˝M4 is singular), and xf2.M3˝M4/D 0

(Lemma 5.7; as M3M4 ¤ 0).

One can also compute that the following are zero:

X4

�
ı q0� � qC ı q� � q

0
C
ı

� � pC ı p� � p
0
C
ı

�
; X4

�
� qC ı q� � q

0
C
ı ı

� pC ı p� � � p0
C
ı

�
;

X4

�
� qC ı ı q� � q

0
C
ı

� pC ı p� � � p0
C
ı

�
; X4

�
� qC ı q� � q

0
C
ı ı

� pC ı p� � p
0
C
ı p0� �

�
:

Our second example shows that xfn is not diagrammatically simple (as might appear
from small cases). We have four matched pairs P �Q �R � S , with P D fp; p0g,
QD fq; q0g, RD fr; r 0g, S D fs; s0g, and we claim that

xf4

0BB@
� sC ı s� � � �

� rC ı ı r� � �

� � � qC ı q� �

� � pC ı ı p� �

1CCAD
0BB@
cs

wr

cq

cp

1CCAC
0BB@
cs

cr

wq

cp

1CCA:
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Observe that, as there are no critical pairs, any Xk term with k>2 is zero (Theorem 5.6).
Moreover, M1M2 DM3M4 D 0. Thus xf4.M/D xA�P ıU4.M/, and

U4.M/D xf1.M1/ xf3.M2˝M3˝M4/C xf2.M1˝M2/ xf2.M3˝M4/

C xf3.M1˝M2˝M3/ xf1.M4/C xf3.M1˝M2M3˝M4/:

Now M2˝M3˝M4 is twisted at P and Q , and tight at R and S ; xf3.M2˝M3˝M4/

is then given by Lemma 6.2 and (in standard form) is a nonzero diagram. The same
applies to xf3.M1˝M2˝M3/. As M1˝M2 and M3˝M4 are twisted at a single
matched pair, and tight elsewhere, xf2.M1˝M2/ and xf2.M3˝M4/ are also both
given by single nonzero diagrams, each with a single crossing.

For the remaining term xf3.M1˝M2M3˝M4/, note that M1M2M3DM2M3M4D 0,
so U3.M1˝M2M3˝M4/D xf1.M1/ xf2.M2M3˝M4/C xf2.M1˝M2M3/ xf1.M4/.
Since M2M3˝M4 is twisted at P and Q , the creation operator inserts a crossing
at P ; and since M1˝M2M3 is twisted at R and S, the creation operator inserts a
crossing at R . Hence
xf3.M1˝M2M3˝M4/D xA

�
P

�
xf1.M1/ xf2.M2M3˝M4/C xf2.M1˝M2M3/ xf1.M4/

�
D xA�P

2664
0BB@
� sC ı

� rC ı

� �

� �

1CCA
0BB@
ı s� �

ı r� �

� wq �

� cp �

1CCAC
0BB@
� ws �

� cr �

� qC ı

� pC ı

1CCA
0BB@
� �

� �

ı q� �

ı p� �

1CCA
3775

D xA�P

2664
0BB@
� ws �

� wr �

� wq �

� cp �

1CCA C
0BB@
� ws �

� cr �

� wq �

� wp �

1CCA
3775D

0BB@
� ws �

� cr �

� wq �

� cp �

1CCA;

U4.M/D

0BBB@
ws

wr

cq

cp

1CCCAC
0BBB@
cs

wr

cq

wp

1CCCAC
0BBB@
cs

cr

wq

wp

1CCCAC
0BBB@
ws

cr

wq

cp

1CCCA;
so that, applying xA�P , xf4.M/ has the claimed form.

7 Nontrivial higher operations

In this section we only consider A1 structures arising from a pair ordering �.

Although we have various necessary conditions for Xn or xfn to be nonzero (viability,
Theorems 5.5 and 5.6, Lemmas 5.7 and 6.1), we do not yet have conditions which are
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sufficient to ensure Xn or xfn are nonzero — whether the operations are defined via a
pair ordering, or by Kadeishvili’s construction more generally.

We have some results at low levels. For instance, X2.M1˝M2/ is nonzero if and only
if M1˝M2 is tight, essentially by definition. Proposition 5.9 shows that the necessary
conditions of Theorem 5.6 for X3 to be nonzero are also sufficient. However, the X4

example of Section 6.2 shows that these conditions are not sufficient for X4 to be zero.

Indeed, the xf3 examples of Section 6.1 (particularly Lemma 6.2) show that even the
question of whether xf3 is zero or nonzero can be rather subtle. The xf4 example of
Section 6.2 there shows that matters do not get simpler at higher levels.

In this section we prove some sufficient conditions for xfn and Xn to be nonzero. They
are, however, far from being necessary conditions.

As usual, throughout this section M DM1˝� � �˝Mn always denotes a tensor product
of nonzero homology classes of diagrams.

7.1 Operation trees

Lemma 6.1 and some of the level 3 and 4 examples show that, even though a tensor
product M1˝ � � �˝Mn might have the right number of critical and twisted matched
pairs, the steps of these pairs must be covered by the Mi in a way that is appropriately
“horizontally distributed”.

To this end, we study rooted trees describing the order in which operations are per-
formed.

Definition 7.1 (operation tree) An operation tree for H˝n is a rooted plane binary
tree with n leaves, ordered from left to right, and with each vertex v labelled by a
viable tensor product of nonzero homology classes of diagrams Mv , such that the
following conditions are satisfied:

(i) Each leaf is labelled with a nonzero homology class of diagram in H .

(ii) Each vertex is labelled with the tensor product of the labels on its ordered
children.

If the root vertex is labelled M, we say T is an operation tree for M.
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Thus, if the leaves are labelled M1; : : : ;Mn in order, then the root vertex is labelled
M1˝ � � �˝Mn . See Figure 15 for some examples.

It will also be useful to consider a certain type of subtree, as in the following definition.

Definition 7.2 (subtree below v ) Let T be an operation tree, and v a vertex of T . The
operation subtree of T below v is the subtree Tv of T , with root vertex v , consisting
of all edges and vertices below v , and with all vertex labels inherited from T .

Clearly Tv is also an operation tree.

7.2 Validity and distributivity

If T is an operation tree for M, each vertex of T is labelled by a subtensor-product
Mv of M. The various labels Mv may have different types of tightness, depending on
how the various steps around each matched pair are covered.

Singular tensor products should be avoided, and so we make the following definition.

Definition 7.3 Let T be an operation tree for H˝n. A vertex of T is valid if its label
is nonsingular. The operation tree T is valid if it is valid at all of its vertices.

Thus, in a valid operation tree for M, each vertex label is tight, twisted or critical. (Note
that M may have singular subtensor-products, but they do not appear as vertex labels.)
Equivalently, each label is tight, twisted or critical at all matched pairs (Lemma 2.36).

Lemma 7.4 Let T be a valid operation tree for M, and v a vertex of T . Then the
operation subtree Tv of T below v is valid.

Proof Each label is nonsingular in T , hence also nonsingular in Tv .

Nonzero A1 operations require carefully regulated numbers of twisted and critical
matched pairs, as required by Theorems 5.5 and 5.6. Hence we make the following
definition.

Definition 7.5 Let T be a valid operation tree. A vertex of T with k leaves, la-
belled M, is distributive if there are at least k�2 matched pairs at which M is twisted
or critical. The tree T is distributive if every vertex of T is distributive.
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7.3 Joining and grafting trees

We now consider some methods to combine operation trees into larger trees.

The first operation, joining, places two existing operation trees below a new root vertex.

Definition 7.6 Let T 0 and T 00 be operation trees for M 0 and M 00, where M 0˝M 00

is viable. Let v0 and v00 be the root vertices of T 0 and T 00, respectively. The join of
T 0 and T 00 is the tree T obtained by placing T 0 and T 00 below v0 , so that v0 and v00

are the left and right children of T . The root vertex v0 is labelled M 0˝M 00, and each
other vertex inherits its label from T 0 or T 00.

Clearly, the join of two operation trees is again an operation tree; note that this requires
the assumption that M 0˝M 00 be viable. Figure 15 shows an example.

M1˝M2˝M3

M2˝M3

M1 M2 M3

M4˝M5

M4 M5

M1˝M2˝M3˝M4˝M5

M1˝M2˝M3

M2˝M3

M1 M2 M3

M4˝M5

M4 M5

Figure 15: Operation trees T 0, T 00 and T (left to right), where T is the join
of T 0 and T 00.

Under certain circumstances, joining trees preserves validity and distributivity.

Lemma 7.7 Let T 0; T 00 be operation trees for

M 0 DM1˝ � � �˝Mj and M 00 DMjC1˝ � � �˝Mn;

and let T be their join. Suppose that T 0 and T 00 are valid and distributive, and that
one of the following conditions holds:

(i) Xn.M
0˝M 00/¤ 0;

(ii) xfn.M
0˝M 00/¤ 0; or

(iii) xfj .M
0/ xfn�j .M

00/¤ 0, and M contains no 11 doubly occupied pairs.

Then T is also valid and distributive.

Note that if Xn.M
0˝M 00/ or xfn.M

0˝M 00/ is nonzero, then M 0˝M 00 is certainly
viable, so that T is a well-defined operation tree.
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Proof Each nonroot vertex of T retains its label from T 0 or T 00. So if T 0 and T 00 are
valid (resp. distributive), then T is valid (resp. distributive) at these vertices. So we
only need consider the root vertex v0 of T , which is labelled with M DM 0˝M 00.

If Xn.M/¤ 0, then by Theorem 5.6, M has precisely n� 2 matched pairs which are
critical, and all other matched pairs are tight. If xfn.M/ ¤ 0, then by Theorem 5.5,
M has at least n�1 matched pairs which are twisted or critical, and all other matched
pairs are tight.

If xfj .M
0/ xfn�j .M

00/ ¤ 0 then there are at least j � 1 matched pairs at which M 0

is twisted or critical, and at least n� j � 1 pairs at which M 00 is twisted or critical
(Theorem 5.5). If any of these pairs coincide, then M has a 11 doubly occupied pair;
if these are ruled out, then M has at least .i � 1/C .n� i � 1/D n� 2 pairs at which
it is twisted or critical.

In each case, M is not singular, and the number of critical or twisted matched pairs is
� n� 2. Thus v0 is valid and distributive, and hence so also is T .

The second operation, grafting, implants a tree at a leaf of an existing tree.

Definition 7.8 Let T 0 and T 00 be operation trees for M 0 D M1 ˝ � � � ˝Mn and
N 0 DN1˝ � � �˝Nj , and suppose N 0 and Mk have the same H–data.

The grafting of T 00 onto T 0 at position k is the tree T obtained by identifying the kth

leaf of T 0 with the root vertex of T 00. The vertices of T 0 are relabelled by replacing
every instance of Mk with the tensor product N1˝� � �˝Nj ; other labels are inherited
from T 00.

Figure 16 shows an example. Thus T is an operation tree for the tensor product

M DM1˝ � � �˝Mk�1˝N1˝ � � �˝Nj ˝MkC1˝ � � �˝Mn:

The assumption that N 0 and Mk share the same H–data ensures M is viable.

As with joining, under certain circumstances grafting preserves validity and distribu-
tivity.

Lemma 7.9 Let T 0 and T 00 be operation trees for M 0 DM1 DM1˝ � � �˝Mn and
N 0 D N1 ˝ � � � ˝Nj , respectively. Suppose that Xj .N

0/ D Mk , and let T be the
grafting of T 00 onto T 0 at position k .

If T 0 and T 00 are valid and distributive , then T is also valid and distributive.
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M1˝M2˝M3

M2˝M3

M1 M2 M3

N1˝N2

N1 N2

M1˝N1˝N2˝M3

N1˝N2˝M3

M1 N1˝N2 M3

N1 N2

Figure 16: Operation trees T 0; T 00; T , where T is the grafting of T 00 onto T 0

at position 2.

Note that Xj .N
0/DMk implies N 0 and Mk have equal H–data, so T is a well-defined

operation tree.

Proof Each vertex of T 00 retains its label, hence validity and distributivity are satisfied.
At vertices of T 0 which retain their label, the same applies. Thus we only need consider
vertices of T 0 whose labels are changed in T , ie those whose label involves Mk .

Let v be a vertex of T 0 with l leaves, labelled M 0v DMu˝� � �˝Mk˝� � �˝MuCl�1 ;
the label in T is thus Mv DMu˝� � �˝ .N1˝� � �˝Nj /˝� � �˝MuCl�1 . Since T 0 is
valid, M 0v is nonsingular. Since Mv and M 0v have the same H–data, L is nonsingular;
so v is valid.

It remains to show that v is distributive. Since T 0 is distributive, M 0v has at least
l �2 matched pairs which are twisted or critical. Now Mk DXj .N

0/ implies that Mk

is the unique nonzero homology class of diagram with the H–data of N 0, so N 0 has
tight H–data and M 0v is obtained from Mv by an H–contraction (Definition 2.42). By
Lemma 2.43, if M 0v is critical at a matched pair P, then Mv is critical at P ; and if
M 0v is twisted at P, then Mv is twisted at P. Hence Mv has at least as many twisted
and critical matched pairs as M 0v .

7.4 Nonzero operations require trees

As we now show, a valid distributive operation tree for M is a necessary condition for
Xn.M/ or xfn.M/ to be nontrivial.

Proposition 7.10 Consider an A1 structure on H arising from a pair ordering. If
Xn.M/¤ 0 or xfn.M/¤ 0, then there is a valid distributive operation tree for M.

Proposition 7.10 is a precise version of Proposition 1.3.
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Proof First note that as Xn.M/ or xfn.M/¤ 0, M is viable (Lemma 5.1).

When nD 1, the valid and distributive conditions are trivial.

Now suppose that the statement holds for all Xk and xfk for k < n, and consider Xn

and xfn .

Suppose Xn.M/¤0. By Lemma 5.4, Xn.M/ is represented by the sum of crossingless
diagrams in xfj .M1˝� � �˝Mj / xfn�j .MjC1˝� � �˝Mn/, so some xfj .M1˝� � �˝Mj /

and xfn�j .MjC1˝ � � � ˝Mn/ are nonzero. By induction there are valid distributive
operation trees T 0 for M1˝ � � �˝Mi and T 00 for MiC1˝ � � �˝Mn . Now let T be
the join of T 0 and T 00 ; this is well-defined as M is viable. Since T 0 and T 00 are valid
and distributive, by Lemma 7.7 so is T .

Now suppose xfn.M/¤ 0. Then Xn.M/D 0 (Lemma 5.7), and M has all matched
pairs tight, twisted or critical, with at least one matched pair twisted (Theorem 5.5).
Thus xfn.M/D A�CR�Un.M/, and hence Un.M/¤ 0. From equation (7) then some
term of the form

xfj .M1˝ � � �˝Mj / xfn�j .MjC1˝ � � �˝ aM /

or
xfn�jC1.M1˝ � � �˝Mk˝Xj .MkC1˝ � � �˝MkCj /˝ � � �˝Mn/

is nonzero. We consider the two cases separately.

In the first case, by induction, there are operation trees T 0 for M1˝ � � � ˝Mj , and
T 00 for MjC1˝ � � � ˝Mn , which are valid and distributive. Let T be the join of T 0

and T 00 ; as M is viable, T is well-defined. By Lemma 7.7 again, T is valid and
distributive.

In the second case induction gives operation trees

T 0 for M1˝ � � �˝Mk˝Xj .MkC1˝ � � �˝MkCj /˝ � � �˝Mn;

T 00 for MkC1˝ � � �˝MkCj ;

which are valid and distributive. Let T be the grafting of T 00 onto T 0 at position
kC 1. This is clearly a well-defined operation tree, and by Lemma 7.9, T is valid and
distributive.

7.5 Local trees

Let T be an operation tree for M. We now consider M at a single matched pair
P, and use this to construct “localised” versions of T . We will define a local oper-
ation tree, which has the same underlying tree, and a reduced local operation tree,
whose underlying tree is obtained by contracting “extraneous” vertices.
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Recall from Section 2.5 that the local tensor product of M DM1˝ � � �˝Mn at P is
given by MP D .M1/P ˝ � � �˝ .Mn/P .

Definition 7.11 The local operation tree �TP of T at P is obtained from T by
replacing each Mi with .Mi /P in each vertex label.

It is straightforward to verify that �TP is indeed an operation tree for MP .

By Proposition 2.33, MP is an extension–contraction of one of the tensor products
shown in the tight, twisted, critical or singular columns of Table 2. So there are at most
4 tensor factors of M which have nonhorizontal strands at P, ie which cover one or
more of the 4 steps around P.

Definition 7.12 A tensor factor Mi of M which has a nonhorizontal strand at a
matched pair P is called P–active. The corresponding leaves of T are called P–active
leaves.

For each P, T has at most 4 P–active leaves. These are precisely the leaves of �TP

labelled by nonidempotent diagrams.

Now we reduce �TP to remove nonactive leaves and factors. Consider a non-P–active
factor Mv of M, and the corresponding leaf v in �TP . Then .Mv/P is idempotent, so
deleting it as a factor from MP leaves a tensor product which is still viable. (Indeed,
such a deletion is a trivial contraction: Definition 2.11.) We delete .Mv/P from all
labels on �TP, and we delete the leaf v and its incident edge. This leaves a degree-2
vertex, which we smooth (ie we delete the degree-2 vertex and combine the two adjacent
edges into a single edge). We then have a binary planar tree. (If the root vertex is
smoothed, precisely one of its children remains; that child becomes the root.) It is
an operation tree for .M1/P ˝ � � �˝ 1.Mv/P ˝ � � �˝ .Mn/P , where the hat denotes a
deleted factor.

Repeating the process for all nonactive factors, we obtain an operation tree TP for
.Mi1

/P ˝ � � � ˝ .Mik
/P , where the Mij are the P–active factors of M. Note that

0� k � 4; if k D 0, TP is the empty tree.

Definition 7.13 The operation tree TP is called the reduced local operation tree of T
at P.
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The operation tree TP does not depend on the order in which the nonactive factors are
deleted; in fact it can also be constructed “at once”, as follows. The P–active leaves of�TP have a lowest common ancestor v0 in T . Take the edges and vertices along shortest
paths in T from each P–active leaf to v0 . The union of these edges and vertices is a
planar subtree of �TP with root v0 and leaves labelled by the Mij . Smoothing degree-2
vertices in this subtree and labelling vertices appropriately yields TP .

Note that the vertices of TP can be regarded as a subset of the vertices of T or �TP:
namely, those vertices which are not deleted or smoothed as we remove non-P–active
factors.

Local operation trees are useful because of the following fact, a “local-to-global” law
for validity.

Lemma 7.14 Let T be an operation tree. The following are equivalent :

(i) T is valid.

(ii) For all matched pairs P, the local operation tree �TP is valid.

(iii) For all matched pairs P, the reduced local operation tree TP is valid.

Proof By Lemma 2.36, a tensor product of homology classes of diagrams is nonsingu-
lar if and only if it is nonsingular at all its matched pairs. Since the labels on the operation
trees �TP are precisely the labels on T , localised to P, (i) and (ii) are equivalent.

As mentioned above, deleting a non-P–active leaf from �TP, corresponding to a non-
P–active factor Mi , produces a trivial contraction on vertex labels. Thus if all vertex
labels were nonsingular in �TP, then they remain nonsingular. Conversely, if all the
“new” vertex labels are nonsingular after deletion, their “old” labels (being obtained by
extension from the “new” ones — even at the smoothed vertices) were also nonsingular.
The deleted vertex was labelled by a single idempotent diagram, which is nonsingular.
After deleting all non-P–active leaves, �TP is valid if and only if TP is valid.

7.6 Climbing a tree

Let T be a reduced local operation tree. Then T has no more than 4 leaves, so there
are not many possible trees. Indeed, the number of rooted planar binary trees with
1; 2; 3; 4; n leaves is 1; 1; 2; 5; 1

nC1

�
2n
n

�
.
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The tensor products arising in reduced local operation trees are also small in number. If
M is the tensor product labelling the root of M, then M is a viable tensor product of
homology classes of diagrams on the arc diagram ZP consisting of a single matched
pair. As T is a reduced local operation tree, M has no idempotents, ie every tensor
factor of M has nonhorizontal strands. Thus (Proposition 2.33) M is one of the tensor
products shown in the tight, twisted, critical or singular columns of Table 2, or (in the
tight case) a contraction thereof.

We ask: for each such tensor product M, which of the possible operation trees on M
is valid?

If M is tight or twisted, then any subtensor product is tight or twisted (Lemma 2.40
and comment afterward), and in particular nonsingular, so any operation tree for M is
valid. And of course if M is singular, then any operation tree for M is invalid, since
its root vertex has singular label M.

When M is critical, some but not all operation trees are valid. By examining the
possible cases in the critical column of Table 2, we observe the following, illustrated in
Tables 4 and 5.

� When M is critical and P is sesqui-occupied, precisely 1 of the 2 operation
trees are valid.

� When M is critical and P is 00 doubly occupied, precisely 2 of the 5 operation
trees are valid.

� When M is critical and P is 11 doubly occupied, precisely 3 of the 5 operation
trees are valid.

Starting from the leaves of T , which are all tight, we can climb T , observing how
tightness behaves as the (homology classes of) diagrams labelling the vertices are
joined into tensor products.

We observe that whenever there is a singular or twisted vertex label, it occurs when two
adjacent diagrams are joined into a singular tensor product. Also, we never see both a
twisted vertex label and a singular vertex label. This leads to the following statement.

Lemma 7.15 Let T be an operation tree for a viable tensor product of diagrams M.
Then T is valid if and only if for every nontight matched pair P of M, TP has a
twisted vertex label.
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M valid operation trees invalid operation trees

Table 4: Validity of operation trees on sesqui-occupied local critical tensor
products. Red, green, blue and black vertices respectively indicate singular,
critical, twisted and tight labels.

Proof By Lemma 7.14, the validity of T is equivalent to the validity of all the TP .
Since M is viable, at each matched pair M is tight, twisted, critical or singular. As
discussed above, if MP is tight or twisted at P then TP is valid; and clearly if MP is
twisted then TP has a twisted vertex label. So it remains to check that when MP is
critical or singular, TP is valid if and only if TP has a twisted vertex label.

If MP is critical then, from Tables 4 and 5, TP is valid if and only if there is a twisted
vertex label. And if M is singular, then TP is invalid, and moreover MP must be an
extension of the singular example in Table 2 (Lemma 2.37), so TP must be the unique
rooted binary planar tree with two leaves; the two leaf labels are tight, and the root
label is singular, so there is no twisted vertex label. Thus in each case TP is valid if
and only if it has a twisted vertex label.

M valid operation trees invalid operation trees

Table 5: Validity of operation trees on doubly occupied local critical tensor
products. Red, green, blue and black vertices respectively indicate singular,
critical, twisted and tight labels.
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7.7 Strong validity

We saw above that when M is valid, then at every nontight P D fp; p0g, the reduced
local operation tree TP has a twisted vertex label. But in fact, in almost every case,
there is precisely one twisted vertex label. The only exception is when MP is 11
doubly occupied and critical (ie the second row of Table 5), and TP is the unique
rooted planar binary tree of depth 2 (ie the second valid operation tree shown). This
particular operation tree can lead to the multiplication of a diagram crossed at p , with
a diagram crossed at p0, producing a diagram in F . To avoid it, we introduce a “strong”
form of validity.

Lemma 7.16 Let T be an operation tree for M. The following are equivalent :

(i) For every nontight matched pair P of M, there is a unique lowest vertex of T
among those whose label is twisted at P.

(ii) The operation tree T is valid , and for each nontight matched pair P of M, there
is a unique lowest vertex of T among those whose label is not tight at P.

(iii) For each nontight matched pair P of M, there is a unique lowest vertex of �TP

among those whose label is twisted.

(iv) For every nontight matched pair P of M, TP has a unique twisted vertex label.

Definition 7.17 The operation tree T is strongly valid if the conditions of Lemma 7.16
hold.

Comparing Lemmas 7.15 and 7.16(iv), it is clear that strong validity implies validity.

Proof of Lemma 7.16 First we show equivalence of (i) and (ii). If T is not valid,
then (i) fails by Lemma 7.15, and (ii) obviously fails. So assume T is valid. We show
that a vertex v of T , with label Mv , is lowest among those with labels twisted at P if
and only if it is lowest among those with labels nontight at P.

If v is lowest among vertices with label twisted at P, then the children of v have labels
which are subtensor-products of Mv nontwisted at P. Hence by Lemma 2.39 and
Table 3, the labels on these children are tight at P. All descendants of these children
have tight labels at P also, again by Lemma 2.39 and Table 3. So v is lowest among
vertices of T with labels nontight at P.
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Conversely, if v is lowest among those with labels nontight at P, then all descendants
of v have tight labels at P. Then .Mv/P is the tensor product of the tight labels of its
children: it cannot be critical, by Lemma 2.38, and cannot be singular, since T is valid.
So .Mv/P is twisted, and v is lowest among vertices with label twisted at P. Thus (i)
and (ii) are equivalent.

Condition (iii) is just a reformulation of (i).

To see equivalence of (iii) and (iv), recall how TP is obtained from �TP. If the label Mv

on a leaf v of �TP is idempotent, then we delete v and its incident edge, delete Mv from
all labels, and smooth the resulting degree-2 vertex w . Since Mv has only horizontal
strands, deleting Mv from a label yields a trivial contraction (Definition 2.11), which
does not change the tightness of the label.

Now w has two children v and x in �TP. Since Mv is tight (being an idempotent), and
Mw is an extension of Mx (by the horizontal strands of Mv ), it follows Mw and Mx

have the same tightness. In particular, neither v nor w can be lowest among those with
twisted label. After deleting v and all instances of Mv in labels, the label on w is the
same as the label on x . After smoothing w , every remaining vertex has children and
descendants with twisted labels if and only if it had them in �TP. Thus any vertex which
was lowest among those with twisted labels was not v or w , so remains as a vertex,
and remains lowest among those with twisted labels. So the set of lowest vertices with
twisted labels is preserved.

Repeating this process we eventually arrive at TP . So �TP has a unique lowest vertex
among those with twisted labels, if and only if the same is true for TP. From the
examination of reduced local operation trees in Section 7.6, we observe that a reduced
local operation tree has a unique lowest vertex with twisted label if and only if it has a
unique vertex with a twisted label. Thus (iii) and (iv) are equivalent.

The above discussion also immediately implies the following.

Lemma 7.18 Suppose T is an operation tree for M which is valid but not strongly
valid. Then M has a matched pair which is 11 doubly occupied and critical.

By Lemma 7.16(i), the following map is well-defined.

Definition 7.19 Let T be a strongly valid operation tree for M. The function

VT W fnontight matched pairs of M g ! fnonleaf vertices of T g

sends a matched pair P to the lowest vertex of T whose label is twisted at P.
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By the argument in the proof of Lemma 7.16 (that (i) and (ii) are equivalent), VT .P /
is also the lowest vertex of T whose label is not tight at P.

Lemma 7.20 Let T be a strongly valid operation tree for M, and let P be a nontight
matched pair of M. Then the vertices of T whose labels are nontight at P are precisely
VT .P / and its ancestors.

Proof Let the label on VT .P / be M 0. If v is an ancestor of VT .P /, labelled Mv ,
then M 0 is a subtensor-product of Mv . As M 0 is not tight at P, by Lemma 2.39 Mv

is not tight at P.

Conversely, suppose a vertex v0 of T has label nontight at P. Either v0 is a lowest
such vertex, or v0 has a child v1 whose label is also not tight at P. If the latter, then v1

is either a lowest such vertex, or has a child whose label is nontight at P. In this way,
we eventually arrive at a descendant v� of v0 which is lowest amongst those whose
labels are not tight at P. By the comment after Definition 7.19 then v� D VT .P /, so
v0 is VT .P / or one of its ancestors.

Strong validity shares many of the properties of validity. The following lemmas
generalise Lemmas 7.14 and 7.4.

Lemma 7.21 Let T be an operation tree. The following are equivalent :

(i) T is strongly valid.

(ii) For all matched pairs P, the local operation tree �TP is strongly valid.

(iii) For all matched pairs P, the reduced local operation tree TP is strongly valid.

Proof Characterisation (iii) of Lemma 7.16 only depends on local operation trees �TP,
and (iv) only on reduced local operation trees TP .

Lemma 7.22 Let T be a strongly valid operation tree for M, and let v be a vertex
of T labelled by Mv . Let Tv be the operation subtree of T below v . Then the
following hold :

(i) Tv is a strongly valid operation tree for Mv .

(ii) The function VTv
is a restriction of the function VT .
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Note that Mv is a subtensor-product of M, so by Lemma 2.40, a matched pair which
is nontight in Mv is also nontight in M. Hence the domain of VTv

is a subset of the
domain of VT , so the assertion of (ii) makes sense.

Proof Let P be a matched pair, and consider the local operation trees �TP for MP ,
and e.Tv/P for .Mv/P . To prove (i), we show that if .Mv/P is not tight, then e.Tv/P

has a unique lowest vertex with twisted label (Lemma 7.16(iii)); and to prove (ii), we
show that this vertex is also the unique lowest vertex with twisted label in �TP.

So suppose .Mv/P is not tight. It is also not singular: as T is strongly valid, T is valid,
so by Lemma 7.4 Tv is valid; hence Mv is nonsingular, so .Mv/P is also nonsingular
(Lemma 2.36). Thus .Mv/P is twisted or critical. By Lemma 7.14(ii), e.Tv/P is valid;
being an operation tree for the nontight .Mv/P , by Lemma 7.15, e.Tv/P has a vertex
with a twisted label.

Now e.Tv/P is the operation subtree of �TP below v , with the same vertex labels,
consisting of everything in �TP from v down. Thus, any lowest vertex with twisted
label in e.Tv/P is also a lowest vertex in �TP with twisted label. As .Mv/P is twisted
or critical, and is a subtensor-product of MP , then MP is also twisted or critical
(Lemma 2.39). By strong validity of T and Lemma 7.16(iii), there is a unique lowest
vertex in �TP with twisted label. As e.Tv/P has a vertex with twisted label, the unique
lowest vertex in �TP with twisted label lies in e.Tv/P , and it is also the unique lowest
vertex in e.Tv/P with twisted label.

Finally, strong validity implies the following nice separation property of nontight
matched pairs.

Lemma 7.23 Let T be a strongly valid operation tree. Let v and w be vertices of T ,
with labels Mv and Mw respectively, such that the operation subtrees Tv and Tw

below v and w are disjoint.

For any matched pair P, at least one of Mv and Mw is tight at P.

The disjointness of Tv and Tw is equivalent to neither of v and w being a descendant
of the other.

Proof Suppose to the contrary that both .Mv/P and .Mw/P are not tight. By
Lemma 7.22, Tv and Tw are strongly valid, so there is a unique lowest vertex xv

in e.Tv/P with twisted label, and a unique lowest vertex xw in e.Tw/P with twisted
label. But then xv and xw are two distinct vertices of �TP which are lowest vertices
with twisted labels, contradicting strong validity of T .
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7.8 Transplantation and branch shifts

We now define two further methods to modify operation trees.

The first method, transplantation, replaces an operation subtree (Definition 7.2) with
another tree.

Definition 7.24 Let T be an operation tree, and let Tv be the operation subtree below
a nonroot vertex v , labelled M 0. Let T 0 be another operation tree for M 0. Then
removing Tv from T and replacing it with T 0 gives an operation tree U . We say U is
obtained from T by transplanting T 0 for Tv .

It is easily verified that U is in fact an operation tree; viability of labels in T and T 0

implies viability of labels in U . If T is an operation tree for M, then U is also an
operation tree for M. So T and U describe operations on the same inputs, but the
operations under v are rearranged.

Note that transplantation is quite different from grafting (Section 7.3). Grafting adds to
an operation tree below a leaf, while transplantation replaces part of an operation tree.
Grafting adds new leaves with new labels, requiring relabelling throughout the tree,
while leaf labels are unchanged under transplantation.

Lemma 7.25 Suppose that U is obtained from T by transplanting T 0 for Tv .

(i) If T and T 0 are valid , then U is also valid.

(ii) If T and T 0 are strongly valid , then U is also strongly valid.

Proof All labels on vertices of U are inherited from T or T 00. If both T and T 0 are
valid, then all labels are nonsingular, so U is valid.

Now suppose T and T 0 are strongly valid. Let M and M 0 be the labels on the root
vertex of T and the vertex v , respectively, and let P be a matched pair at which M
is not tight. By strong validity of T , there is a unique vertex w of T which is lowest
among those with labels nontight at P (Lemma 7.16(ii)). Moreover, the vertices of T
with labels nontight at P are precisely the ancestors of w (Lemma 7.20).

If w is not a vertex of Tv , then v is not an ancestor of w , so the label M 0 of v
is tight at P. Every vertex label in T 0 is a subtensor-product of M 0, hence tight
at P (Lemma 2.39). So the vertices of U with labels nontight at P are precisely the
vertices of T with labels nontight at P, and hence there is a unique lowest such vertex,
namely w .
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If w is a vertex of Tv , then v is an ancestor of w , so the label M 0 of v is nontight
at P. Since T 0 is strongly valid, there is a unique lowest vertex w0 of T 0 with label
nontight at P (Lemma 7.16(ii) again), and the set of vertices of T 0 whose labels are
nontight at P are precisely the ancestors of w0 (Lemma 7.20 again). Thus in U , the
set of vertices whose labels are nontight at P are the ancestors of w0 in T 0, together
with the ancestors of v in T — in other words, the ancestors of w0 in U .

In any case, there is a unique vertex in U which is lowest among those with labels
nontight at P, so by Lemma 7.16(ii) once more, U is strongly valid.

The second method, a branch shift, rearranges an operation tree in a way corresponding
to a modification ..AB/C /$ .A.BC//.

Given an operation tree T , denote the left and right children of the root vertex v by
vL and vR , the left and right children of vL by vLL and vLR , and generally for any
word w in L and R , let vw denote the descendant of v obtained by successively
taking left or right children according to w (if it exists).

Definition 7.26 The operation tree T 0 is defined by

T 0L D TLL; T 0RL D TLR; T 0RR D TR:

We say that the operation trees T and T 0 are related by a branch shift.

The vertex labels on T 0 are either inherited from T , or determined by the fact that each
vertex is labelled with the tensor product of its children’s labels.

Let T1 , T2 and T3 respectively denote TLL , TLR and TR ; let N1 , N2 and N3 be
the vertex labels on vLL , vLR and vR , respectively; let the root vertex of T 0 be v0,
and denote its vertices by v0w for words w in L and R . Then, in T , vL is labelled
N1˝N2 ; and in T 0, v0R is labelled N2˝N3 . The viability of labels in T ensures the
viability of labels in T 0, so both T and T 0 are operation trees for N DN1˝N2˝N3 .
Observe that upon reversing left and right, T is obtained from T 0 in the same way.
See Figure 17.

All labels in T 0 appear in T , with one exception. Thus if T is valid, then we only have
one label to check for validity of T 0, giving the following.

Lemma 7.27 (i) Suppose T is valid. Then T 0 is valid if and only if N2˝N3 is
nonsingular.

(ii) Suppose T 0 is valid. Then T is valid if and only if N1˝N2 is nonsingular.
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Figure 17: A branch shift.

7.9 Strict distributivity

We now strengthen our notion of distributivity (Definition 7.5).

Definition 7.28 Let T be a valid operation tree for M DM1˝ � � �˝Mn .

(i) Let v be a vertex of T with k leaves, labelled Mv . Then v is strictly distributive
if there are exactly k� 1 matched pairs at which Mv is twisted or critical.

(ii) The tree T is strictly f–distributive if it is strictly distributive at each vertex.

(iii) The tree T is strictly X–distributive if it is strictly distributive at each nonroot
vertex, and there are precisely n� 2 matched pairs at which M is twisted or
critical.

Recall that distributivity (Definition 7.5) at v requires at least k� 2 twisted or critical
matched pairs at v ; the strict requirement is that there are precisely k� 1 such pairs.
Note that Definition 7.28 requires T to be valid, so no labels are singular.

Lemma 7.29 Let T be a valid strictly f– or X–distributive operation tree, and
let v be a nonroot vertex. Then the operation subtree Tv of T below v is strictly
f–distributive.

Proof By Lemma 7.4 Tv is valid, and every vertex of Tv , being a nonroot vertex of T ,
is strictly distributive.

Strict distributivity imposes strong conditions on the function VT (Definition 7.19).
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Lemma 7.30 Let T be an operation tree for M DM1˝ � � �˝Mn .

(i) If T is strongly valid and strictly f–distributive , then VT is a bijection between
nontight matched pairs of M and nonleaf vertices of T .

(ii) If T is strongly valid and strictly X–distributive , then VT is a bijection between
nontight matched pairs of M and nonleaf nonroot vertices of T .

Since M has n tensor factors, T has n leaves, hence n�1 nonleaf vertices and n�2
nonleaf nonroot vertices. Strict f–distributivity (resp. X–distributivity) requires that
M has precisely n�1 (resp. n�2) nontight matched pairs. So in each case the claimed
bijective sets have the same size.

Proof When nD 1, if T is strictly f–distributive, then M has no twisted or critical
matched pairs (ie is tight), and T has no nonleaf vertices. When nD 2, if T is strictly
X–distributive, again M is tight, and T has no nonleaf nonroot vertices. In both cases
VT is a bijection between empty sets.

We now proceed by induction on n. So suppose the result is true for operation
trees for M DM1˝ � � � ˝Mk , where k < n, and consider an operation tree T for
M D M1 ˝ � � � ˝Mn which is strongly valid and strictly f–distributive or strictly
X–distributive.

Let v0 be the root vertex of T , and let vL and vR be its left and right children; let
their labels be ML DM1˝ � � �˝Mi and MR DMiC1˝ � � �˝Mn respectively. Let
TL and TR be the operation subtrees of T below vL and vR (Definition 7.2). Now
TL and TR are strongly valid (Lemma 7.22) and strictly f–distributive (Lemma 7.29),
so by induction we have bijections

VL W fnontight matched pairs of MLg ! fnonleaf vertices of TLg;

VR W fnontight matched pairs of MRg ! fnonleaf vertices of TRg;

which by Lemma 7.22(ii) are restrictions of VT . Moreover, since TL and TR are
disjoint, and T is strongly valid, Lemma 7.23 says that the domains of VL and VR are
disjoint. It’s also clear that the ranges of VL and VR are disjoint; their union consists
of all nonleaf nonroot vertices of T . The domains (and ranges) of VL and VR have
cardinalities i � 1 and n� i � 1 respectively.

Since nontight matched pairs in ML or MR are nontight in M (Lemma 2.40), the
nontight matched pairs in ML and MR form precisely .i � 1/C .n� i � 1/D n� 2
nontight matched pairs of M.
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If M is strictly X–distributive, then these are all the matched pairs in M, and VT is
the disjoint union of VL and VR , hence a bijection as claimed.

If M is strictly f–distributive, then M has precisely n�1 nontight matched pairs. So
there is precisely one nontight matched pair P0 in M which is tight in ML and MR .
Since P0 is tight in both ML and MR , but nontight in M, v0 is the lowest vertex
of T whose label is nontight at P0 , so VT .P0/D v0 . This, together with VL and VR ,
defines VT ; we conclude V is a bijection.

7.10 Guaranteed nonzero results

We now show that, in certain cases, Xn and xfn must be nonzero, and compute their
values.

Theorem 7.31 Consider an A1 structure on H arising from a pair ordering �.
Suppose M is viable and satisfies the following conditions:

(i) Every valid and distributive operation tree for M is strictly f–distributive , and
such a tree exists.

(ii) No matched pair of M is on-on doubly occupied.

Then xfn.M/¤ 0. Moreover xfn.M/ is given by a single diagram D, which is tight at
all matched pairs where M is tight or critical , and crossed at all matched pairs where
M is twisted.

Theorem 7.31 is a precise version of Theorem 1.4(i). It explicitly describes xfn.M/DD ,
which is determined by its H–data, and tightness at each matched pair. There is in
fact no choice in constructing D, since choices only exist at 11 doubly occupied pairs,
which are explicitly ruled out.

The description of D follows entirely from Maslov index considerations. The existence
of a valid and strictly f–distributive tree for M implies that M is twisted or critical
at precisely n� 1 matched pairs, and tight at all other matched pairs. The Maslov
index can only increase by 1 at each nontight matched pair. Since xfn has Maslov
grading n� 1, Maslov grading must increase at every nontight matched pair: from
twisted to crossed, and from critical to tight.

When n D 1, condition (i) says that M D M1 is tight (there is only one possible
operation tree), and the conclusion is that xf1.M/ is a tight diagram representing M1 .

Algebraic & Geometric Topology, Volume 21 (2021)



1196 Daniel V Mathews

X5

0B@pC p� p0C p0�
q0� qC q�

rC r� r 0�

1CAD 0

Figure 18: This tensor product M DM1˝� � �˝M5 (shown in shorthand) has
a 11 doubly occupied matched pair P D fp; p0g , and two valid distributive
operation trees as shown, both of which are strongly valid and strictly X–
distributive. However xf1

xf4 D
xf4
xf1 ¤ 0 and xf2

xf3 D
xf3
xf2 D 0 , so X5 D 0 .

When n D 2, condition (i) says that M D M1 ˝M2 has precisely one nontight
matched pair P (again there is only one possible operation tree), which must be twisted
(Lemma 2.38), and all other matched pairs tight. The conclusion is that xf2.M/ is a
single diagram D twisted at P and elsewhere tight, in agreement with the discussion
of Section 4.3.

Theorem 7.32 Consider an A1 structure on H arising from a pair ordering �.
Suppose M is viable and satisfies the following conditions.

(i) Every valid and distributive operation tree for M is strictly X–distributive , and
such a tree exists.

(ii) No matched pair of M is twisted or on-on doubly occupied.

Then Xn.M/ is nonzero , and is the homology class of the unique tight diagram with
the H–data of M.

Theorem 7.32 is a precise version of Theorem 1.4(ii). The description of Xn.M/

follows entirely from the fact that Xn preserves H–data. The uniqueness claim in the
theorem makes sense: since M has no 11 doubly occupied pairs, there is only one
tight diagram with the same H–data as M.

The exclusion of twisted matched pairs is necessary, since they preclude the existence
of a tight diagram (or by Theorem 5.6). The exclusion of 11 doubly occupied pairs is a
more heavy-handed assumption, but is necessary for our proof; moreover it cannot be
removed because of the example of Figure 18. In this example, M DM1˝ � � �˝M5

is viable, has no twisted matched pairs, and has two valid distributive operation trees,
both of which are strongly valid and strictly X–distributive. However it also has a 11
doubly occupied matched pair P D fp; p0g, and X5.M/D 0.
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While the conditions of Theorems 7.31 and 7.32 may seem rather restrictive, they do
show that xfn and Xn are nonzero in many cases. For instance, in the xf3 examples of
Lemma 6.2, the first two lines (ie 10 out of 14 examples) can be shown to be nonzero
directly from Theorem 7.31. It follows from Theorem 7.32 that X4 of all the following
tensor products are nonzero:�
pC p� p0C
qC q� q0C

� �
pC p� p0C

qC q� q0C

� �
pC p� p0C

qC q� q0C

� �
pC p� p0C
qC q� q0C

�
�
p0� pC p� p0C
qC q� q0C

� �
p0� pC p� p0C
qC q� q0C

� �
p0� pC p� p0C
q0� qC q�

� �
p0� pC p� p0C
q0� qC q�

�
The hypotheses of Theorems 7.31 and 7.32 essentially mandate that in each operation
described by an operation tree, only one matched pair can be affected.

We first need a preliminary lemma.

Lemma 7.33 (plenty of trees) Consider an A1 structure on H defined by a pair
ordering. Suppose M DM1˝ � � � ˝Mn is viable. Further suppose that every valid
and distributive operation tree for M is strongly valid and strictly f–distributive , and
at least one such tree exists.

Let P0 D fp0; p
0
0g be a matched pair at which M is twisted. Then there exists a

strongly valid , strictly f–distributive operation tree T for M such that VT .P0/ is the
root vertex v0 of T .

Let us say something about what Lemma 7.33 means. At P0 , M is twisted and hence
an extension of the twisted tensor product of Table 2 (Lemma 2.37). So two steps of
P0 are covered, say p0C and p0� , by some Mi and Mj respectively for some i < j .
Now a subtensor-product M 0 of M labelling a nonroot vertex of T is twisted or tight
accordingly as M 0 contains both Mi and Mj , or does not. Lemma 7.33 guarantees the
existence of a tree such that all labels on nonroot vertices are tight at P0 . In other words,
Mi and Mj never appear together in any label in T except at the root vertex v0 ; as we
work our way up the tree, combining tensor factors, Mi and Mj are only combined at
the final step, at v0 . Since P0 only becomes twisted at v0 , v0 is the lowest vertex of
T whose label is twisted at P, and VT .P0/D v0 .

Since we can find such a tree for each all-on once occupied pair P, this gives us “plenty
of trees”, which we need for the proof of Theorem 7.31.
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Note that the hypotheses of Lemma 7.33 are weaker than those of Theorem 7.31. If M
satisfies the hypotheses of Theorem 7.31, then every valid distributive operation tree
for M is strictly f–distributive; but as there are no 11 doubly occupied pairs, any such
tree is strongly valid (Lemma 7.18), so M satisfies the hypotheses of Lemma 7.33.

The following lemma captures an argument we will use repeatedly. The terms in square
brackets may be included or not.

Lemma 7.34 Let M be a viable tensor product of nonzero homology classes of
diagrams , which has one of the following two properties:

(i) Every valid and distributive operation tree for M is [strongly valid and] strictly
f–distributive , and such a tree exists.

(ii) Every valid and distributive operation tree for M is [strongly valid and] strictly
X–distributive , and such a tree exists.

Let T be an operation tree for M of the type guaranteed by the condition, and let v
be a nonroot vertex of T , with label Mv . Then Mv satisfies condition (i).

Proof Let T 0 be a valid distributive operation tree for Mv . Then we can transplant T 0

for the operation subtree Tv of T below v to obtain an operation tree U for M, which
is valid (Lemma 7.25) and distributive (since distributive at each vertex: Definition 7.5).
By assumption then U is [strongly valid and] strictly f– or X–distributive, so its subtree
T 0 is also [strongly valid (Lemma 7.22) and] strictly f–distributive (Lemma 7.29).
Finally, Tv demonstrates that such a tree exists.

Proof of Lemma 7.33 When nD 1 the statement is vacuous: M DM1 is tight, the
unique operation tree is strongly valid and strictly f–distributive, and VT is a bijection
between empty sets. Proceeding by induction on n, consider a general n, and suppose
the result holds for all smaller values of n.

Let T be a strongly valid and strictly f–distributive operation tree for M, which exists
by assumption. By strict f–distributivity at v0 , there are precisely n� 1 matched
pairs at which M is nontight (ie twisted or critical). Let the two children of v0 be vL

and vR , with labels MLDM1˝� � �˝Mm and MRDMmC1˝� � �˝Mn respectively.
Let TL and TR be the operation subtrees of T below vL and vR , respectively. Then
TL and TR are strongly valid (Lemma 7.22) and strictly f–distributive (Lemma 7.29)
operation trees for ML and MR , respectively.
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By Lemma 7.30, VT , VTL
and VTR

are all bijections, between sets of size n � 1,
m � 1 and n �m � 1, respectively; moreover VTL

and VTR
are restrictions of VT

(Lemma 7.22) with disjoint domains (Lemma 7.23). Hence there is a unique matched
pair P1 such that VT .P1/D v0 . Then P1 is twisted in M (Definition 7.19), but tight
in every other tensor product labelling a vertex.

If P1DP0 then we are done; so suppose that P1 and P0 are distinct. Then VT .P0/¤

VT .P1/D v0 , so VT .P0/ is a vertex of TL or TR . Suppose VT .P0/ lies in TL ; the
TR case is similar.

By Lemma 7.34(i), ML satisfies the hypotheses of this lemma. By induction there
then exists a strongly valid, strictly f–distributive operation tree T 0L for ML such that
VT 0L

.P0/D vL . Transplanting this T 0L for TL yields a strongly valid (by Lemma 7.25)
and strictly f–distributive (since strictly distributive at each vertex: Definition 7.28)
operation tree T 0 for M. Moreover, VT 0L is a restriction of VT 0 (Lemma 7.22), so
VT 0.P0/D vL , and since P1 is tight in ML and MR , VT 0.P1/D v0 .

Let the children of vL be vLL and vLR , and their labels in T 0 be M 0LLDM1˝� � �˝Mk

and M 0LR DMkC1˝ � � �˝Mm . Denote the operation subtrees of T 0 (or T 0L ) below
vLL and vLR respectively by T 0LL and T 0LR . These are again strongly valid and strictly
f–distributive (Lemmas 7.22 and 7.29).

By strict f–distributivity, M 0LL , M 0LR , MR and M have precisely k� 1, m� k� 1,
n � m � 1 and n � 1 nontight matched pairs, respectively. But since T 0LL , T 0LR

and TR are disjoint subtrees (below vLL , vLR and vR ) of the strongly valid T 0, the
sets of matched pairs at which M 0LL , M 0LR and MR are nontight are also disjoint
(Lemma 7.23). Their union consists of .k � 1/C .m� k � 1/C .n�m� 1/D n� 3
matched pairs, which remain nontight in M (Lemma 2.40). The two remaining nontight
matched pairs of M are P0 and P1 ; these two pairs are tight in each of M 0LL , M 0LR

and MR since VT 0.P0/D vL and VT 0.P1/D v0 .

Now perform a branch shift on T 0 (Definition 7.26) to obtain an operation tree T 00

for M. Its root has children v00LD vLL and v00R , and the children of v00R are v00RLD vLR

and v00RRDvR . Below v00L , v00RL and v00RR respectively we have T 00L DT 0LL , T 00RLDT 0LR

and T 00RR D TR . The labels on T 00 are inherited from T 0LL , T 0LR and T 0R , except that
v000 is labelled M and v00R is labelled with M 00R DMkC1˝� � �˝MnDM

0
LR˝MR . In

particular, v00L , v00RL and v00RR are respectively labelled with M 00LDM
0
LL , M 00RLDM

0
LR

and M 00RR DMR .

Algebraic & Geometric Topology, Volume 21 (2021)



1200 Daniel V Mathews

We claim T 00 is valid. If P is a matched pair nontight in M, other than P0 or P1 ,
then P is twisted in the label of VT 0.P / (Definition 7.19), which is a vertex of one of
T 0LL D T 00L , T 0LR D T 00RL or TR D T 00RR . And P0 and P1 are twisted in M, which is
the label of the root. Thus for every matched pair P, there is a vertex of T 00 whose
label is twisted at P. By Lemma 7.15 then T 00 is valid.

We also claim T 00 is distributive. Each vertex of T 00 which shares a label with a vertex
of distributive tree T 0 is distributive. The only remaining vertex is v00R , which has label
M 00RDMkC1˝� � �˝MnDM

0
LR˝MR . Each of the .m�k�1/C.n�m�1/Dn�k�2

matched pairs P such that VT 0.P / is a vertex of T 0LR or TR is nontight in M 0LR or MR ,
hence also in M 00RDM

0
LR˝MR (Lemma 2.40). Since there are n�k leaves below v00R ,

and there are at least n�k�2 matched pairs at which M 00R is twisted or critical, v00R is
distributive, and the claim follows.

Since T 00 is valid and distributive, by assumption then T 00 is strongly valid and strictly
f–distributive. Now P0 is twisted in M and satisfies VT 0.P0/DvL , so P0 is twisted in
MLDM1˝� � �˝Mm , but tight in M 0LLDM1˝� � �˝Mk and M 0LRDMkC1˝� � �˝Mm .
Supposing without loss of generality that P0 is twisted at p0 in M, then the step p0C

must be covered by one of M1; : : : ;Mk , and the step p0� must be covered by one
of MkC1; : : : ;Mm , with no steps of P covered by any of MmC1; : : : ;Mn . Thus P0

is tight in M 00R DMkC1˝ � � �˝Mn , and in M 00L DM1˝ � � �˝Mk , the labels of v00L
and v00R ; but P0 is twisted in M, the label of v0 . So VT 00.P0/ D v0 , and T 00 is the
desired tree. By induction, the proof is complete.

Proof of Theorem 7.31 We have verified the theorem in small cases, so suppose it is
true for all xfk with k < n, and consider xfn .

By Lemma 7.18, since there are no 11 doubly occupied pairs in M, validity and strong
validity are equivalent; we use this fact repeatedly. Note that if any subtensor-product
M 0 of M contains a 11 doubly occupied pair, then M would contain one too; so
validity and strong validity are also equivalent for operation trees of subtensor-products
of M.

Our strategy is to compute Un.M/ explicitly, and then compute xfn , using the con-
struction of Corollary 4.3. Recall that Un.M/ is a sum of terms of the form

xfi .M1˝ � � �˝Mi / xfn�i .MiC1˝ � � �˝Mn/

and
xfn�jC1.M1˝ � � �˝Mk˝Xj .MkC1˝ � � �˝MkCj /˝ � � �˝Mn/:
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The latter type of term is easiest to deal with: we claim they are all zero. Suppose to the
contrary that xfn�jC1.M1˝ � � � ˝Mk/˝Xj .MkC1˝ � � � ˝MkCj ˝ � � � ˝Mn/¤ 0.
Then by Proposition 7.10 there are valid distributive operation trees TX for MkC1˝

� � �˝MkCj and Tf for M1˝� � �˝Mk˝Xj .MkC1˝� � �˝MkCj /˝� � �˝Xn . Grafting
TX onto Tf at position kC1 yields (Lemma 7.9) a valid distributive operation tree TfX

for M. By assumption then TfX is strictly f–distributive. Applying strict distributivity
to the vertex of TfX corresponding to the root of TX , then MkC1 ˝ � � � ˝MkCj

is twisted or critical at precisely j � 1 matched pairs. But by Theorem 5.6, since
Xj .MkC1˝� � �˝MkCj /¤ 0 it follows that there are precisely j �2 such pairs. This
gives a contradiction, so all such terms are zero.

We now consider terms of the form xfi .M1˝� � �˝Mi / xfn�i .MiC1˝� � �˝Mn/ which
are nonzero. We will associate to them matched pairs at which M is twisted and
eventually obtain a bijection F W A! B , where

AD fi j xfi .M1˝ � � �˝Mi / xfn�i .MiC1˝ � � �˝Mn/¤ 0g;

B D fP jM is twisted at P g:

So let M 0 D M1 ˝ � � � ˝ Mi and M 00 D MiC1 ˝ � � � ˝ Mn , and suppose that
xfi .M

0/ xfn�i .M
00/ ¤ 0. By Proposition 7.10 there are valid (hence strongly valid:

M 0 and M 00 are subtensor-products of M, so their validity and strong validity are
equivalent) distributive trees T 0 for M 0 and T 00 for M 00. Joining these trees yields
an operation tree T for M (Definition 7.6), which is valid (hence strongly valid) and
distributive (Lemma 7.7(iii)), hence by hypothesis strictly f–distributive. We then
have a bijection VT between nontight matched pairs of M and nonleaf vertices of T
(Lemma 7.30). Moreover, since T 0 and T 00 are subtrees of T , they are also strictly
f–distributive (Lemma 7.29). Thus M, M 0 and M 00 are twisted or critical at n� 1,
i � 1 and n� i � 1 matched pairs, respectively, and tight elsewhere.

By Lemma 7.34, any valid distributive tree for M 0 is strongly valid and strictly f–
distributive; and similarly for M 00. And since M has no 11 doubly occupied matched
pairs, neither do the subtensor-products M 0 or M 00. So the hypotheses of the theorem
apply to M 0 and M 00. By induction then xfi .M

0/ and xfn�i .M
00/ are given by single

diagrams as described in the statement. Moreover, as T 0 and T 00 are disjoint subtrees of
the strongly valid T , the matched pairs at which M 0 and M 00 are nontight are disjoint
(Lemma 7.23). This yields .i �1/C .n� i �1/D n�2 matched pairs at which M 0 or
M 00 is nontight; such pairs are also nontight in M (Lemma 2.40). So there is precisely
one matched pair Pi at which M is nontight but M 0 and M 00 are tight. Then VT .Pi /
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is the root vertex v0 , and Pi is twisted in M (by Definition 7.19, or Lemma 2.38).
Indeed, VT .Pi / is the root vertex for any T arising as the join of valid distributive
operation trees for M 0 and M 00. Define the function F W A! B by F.i/D Pi .

By induction xfi .M
0/ (resp. xfn�i .M

00/) is given by a single diagram which is tight at
all matched pairs where M 0 (resp. M 00 ) is tight or critical, and crossed at all matched
pairs where M 0 (resp. M 00 ) is twisted. We now describe the diagram representing
xfi .M

0/ xfn�i .M
00/ at each matched pair P.

First, suppose P is critical in M. Then P ¤ Pi , so P is nontight in precisely one
of M 0 or M 00. Considering the known description of xfi .M

0/ and xfn�i .M
00/, we

examine the various cases in the critical column of Table 2, of which M is an extension
(Lemma 2.37), and how the P–active factors can be distributed across M 0 and M 00.
We observe that in every case xfi .M

0/ xfn�i .M
00/ is tight at P.

Second, suppose P is a matched pair at which M is twisted, other than Pi . Then P
is nontight in precisely one of M 0 or M 00. Indeed, there are two P–active factors and
they are both in M 0, or both in M 00. So xfi .M

0/ xfn�i .M
00/ at P is the product of an

all-on once occupied crossed diagram, and an idempotent, hence is crossed.

Third, suppose P is tight in M. Then P is also tight in M 0 and M 00 (Lemma 2.39),
hence also in xfi .M

0/ and xfn�i .M
00/ (by inductive assumption). So xfi .M

0/ xfn�i .M
00/

at P is given by multiplying factors in a tight tensor product, hence is tight.

Finally, at Pi , M 0 and M 00 are both tight, but M is twisted. Hence Pi is 11 once
occupied by M, with one step covered by M 0, and the other by M 00 ; by inductive
assumption then xfi .M

0/ and xfn�i .M
00/ are both tight at Pi , so xfi .M

0/ xfn�i .M
00/ is

twisted at Pi .

To summarise: when xfi .M
0/ xfn�i .M

00/ is nonzero, there is a unique matched pair
Pi which is nontight (in fact twisted) in M but tight in M 0 and M 00 ; VT .Pi / is the
root vertex of T ; and xfi .M

0/ xfn�i .M
00/ is given by a single diagram which is twisted

at Pi , crossed at all other matched pairs which are twisted in M, and tight at all other
matched pairs. We set F.i/D Pi .

Now we claim that F is injective. Consider another nonzero term

xfj .M1˝ � � �˝Mj / xfn�j .MjC1˝ � � �˝Mn/; where i ¤ j:

We consider the case i < j ; the case i > j is similar. Applying the same argument as
above, we obtain strongly valid and strictly f–distributive trees Tj , T 0j and T 00j for M,
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M 0j DM1˝ � � �˝Mj and M 00j DMjC1˝ � � �˝Mn respectively. We also obtain the
bijection VTj

between nontight matched pairs of M and nonleaf vertices of Tj . The
matched pair Pj has VTj

.Pj / as the root of Tj , and F.j /D Pj . We will show that
Pi ¤ Pj .

Now in the valid distributive tree T constructed above for xfi .M
0/ xfn�i .M

00/, let v
be the lowest common ancestor of the leaves labelled Mj and MjC1 . Let P be the
matched pair such that VT .P /D v (well-defined since VT is bijective). Since i < j ,
v is a vertex of T 00, hence not the root, so P ¤ Pi . The label Mv of v is then twisted
at P (Definition 7.19), say at the place p . So some Ma with a� j covers the step pC ,
and some Mb with j C1� b covers p� . As M contains no 11 doubly occupied pairs,
any subtensor-product of M which is twisted at P must contain Ma and Mb .

Now consider VTj
.P /, a vertex of Tj ; call its label M# . Then M# is twisted at P

(Definition 7.19), so M# contains Ma and Mb as tensor factors. But since a � j
and b � j C 1, M# cannot be a subtensor-product of M 0j or M 00j ; thus M# DM and
VTj

.P / is the root vertex. Thus P D Pj . As P ¤ Pi then Pi ¤ Pj . Thus F is
injective.

We now show F is surjective. Take a matched pair P at which M is twisted; we will
show P D Pi for some i . By Lemma 7.33 (which, as discussed above, has weaker
hypotheses than the present theorem) there is a strongly valid, strictly f–distributive
operation tree T � for M such that VT �.P / is the root vertex v�0 of T �. Let the children
of v�0 be v�L and v�R , with labels M �L DM1˝� � �˝Mi and M �R DMiC1˝� � �˝Mn

respectively. Then by definition of VT � , P is tight in M �L and M �R . By Lemma 7.34,
M �L and M �R satisfy condition (i) of the present theorem; and as M �L and M �R are
subtensor-products of M, which has no 11 doubly occupied pairs, they satisfy condition
(ii) also. So by induction xfi .M

�
L/ and xfn�i .M

�
R/ are both nonzero, given by single

diagrams as described in the statement. By Lemma 7.23 they are nontight at disjoint
matched pairs. Examining the various possible cases at each matched pair (just as we did
for xfi .M

0/ xfn�i .M
00/ a few paragraphs ago), we conclude that xfi .M

�
L/
xfn�i .M

�
R/¤ 0.

Since P is nontight in M but tight in M �L and M �R , we have P D Pi . So F is
surjective, hence a bijection.

Returning to Un.M/, we now see that each nonzero term of Un.M/ is of the form
xfi .M

0/ xfn�i .M
00/, and these terms correspond bijectively to the matched pairs Pi at

which M is twisted. In fact xfi .M
0/ xfn�i .M

00/ is twisted at Pi , and crossed at all other
matched pairs where M is twisted.
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We also observe that Xn.M/D 0, since M has precisely n�1 nontight matched pairs,
by Theorem 5.6. Thus, following the construction of Corollary 4.3 and the discussion
of Section 3.3,

xfn.M/D xA�CR�Un.M/:

By Definition 3.18, A�CR� applies a creation operator at Pmin , where Pmin is the
�–minimal matched pair among pairs where M is twisted.

We observe that there is precisely one diagram in Un.M/ which is twisted at Pmin ,
namely xfi

xfn�i where i D F�1.Pmin/, ie where Pi D Pmin . Applying xA�CR� D
xA�Pmin

inserts a crossing at Pmin to this diagram. All the other diagrams in Un.M/ are crossed
at Pmin , and applying the creation operator gives zero.

We conclude that xfn.M/ is given by a single diagram, crossed at all matched pairs
where M is twisted, and tight elsewhere, as desired.

Proof of Theorem 7.32 As there are no 11 occupied matched pairs, by Lemma 7.18,
validity and strong validity are equivalent.

By Lemma 5.4 (since all the maps fk in the pair ordering construction are balanced),
Xn.M/ is represented by the sum of all terms of the form

xfi .M1˝ � � �˝Mi / xfn�i .MiC1˝ � � �˝Mn/:

Let T be a valid and strictly X–distributive operation tree for M, which exists by
hypothesis. Let its root vertex be v0 , with children vL and vR respectively labelled
ML DM1˝ � � �˝Mi and MR DMiC1˝ � � �˝Mn . Let TL and TR be the subtrees
below vL and vR respectively.

By Lemma 7.34, ML and MR satisfy condition (i) of Theorem 7.31; and being
subtensor-products of M, which has no 11 doubly occupied pairs, ML and MR also
satisfy condition (ii). So by Theorem 7.31, xfi .ML/ and xfn�i .MR/ are both nonzero,
given by single diagrams. Since T is strictly X–distributive, ML and MR respectively
have i � 1 and n� i � 1 nontight matched pairs. These sets of nontight matched pairs
are distinct by Lemma 7.23, and also nontight in M (Lemma 2.40); hence they provide
n� 2 distinct nontight matched pairs in M. By strict X–distributivity of T , M has
precisely n�2 nontight matched pairs, so each nontight matched pair of M is nontight
in precisely one of ML or MR .

By Theorem 7.31, xfi .ML/ (resp. xfn�i .MR/) is crossed at every matched pair where
ML (resp. MR ) is twisted, and elsewhere tight. Thus at every nontight (hence critical;
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twisted pairs are ruled out by hypothesis) matched pair of M, precisely one of ML

and MR is nontight (twisted or critical), and the other is tight. If one of ML and
MR is critical and the other is tight, then xfi .ML/ and xfn�i .MR/ are tight, and by
reference to Table 2 or otherwise, xfi .Ml/˝ xfn�i .MR/ is tight. If one of ML and MR

is twisted and the other is tight, then one of xfi .ML/ and xfn�i .MR/ is crossed, and
the other is tight, so again by reference to Table 2 or otherwise, xfi .ML/˝ xfn�i .MR/

is sublime. Either way, xfi .ML/ xfn�i .MR/ is tight at each nontight matched pair of M.
At tight matched pairs of M, xfi .ML/ and xfi .MR/ are both tight, with tight product.
So xfi .ML/ xfn�i .MR/ is the unique tight diagram with the same H–data as M.

Now let P be a nontight matched pair of M. By assumption, P is critical, but not 11
doubly occupied. Thus, by reference to Table 2, P is sesqui-occupied or 00 doubly
occupied and MP is an extension of one of the corresponding critical diagrams shown
there (Lemma 2.37). In particular, there is precisely one place p of P such that the
steps pC and p� are covered by some Ma and Mb respectively, where a < b . We
call these the principal factors of P. Now if a � i < i C 1� b , then considering the
various cases of Table 2, P is singular in ML or MR , contradicting validity of T .
Thus a and b are both � i , or both � i C 1. In other words, for any nontight matched
pair of M, its principal factors have positions which are both � i , or both � i C 1;
they do not cross the i th position.

On the other hand, we claim that for any for any 1� j � n� 1 with j ¤ i , there is a
nontight matched pair of P whose principal factors have positions � j and � j C 1;
they do cross the j th position. To see this, let w be the least common ancestor of the
leaves labelled Mj and MjC1 . Then w lies in TL or TR , accordingly as i > j or
i < j . We suppose i < j , so w 2 TR ; the TL case is similar. Clearly w is neither a leaf
nor root, so by Lemma 7.30, there is a unique matched pair P such that VT .P /D w .
Let the principal factors of P be Ma and Mb , where a < b . Letting Mw denote the
label of w , then Mw is twisted at P. Letting wL and wR denote the children of v ,
their labels are tight at P. The label on wL contains Ma , so by construction a � j .
Similarly the label of wR contains Mb , and j C 1� b . So the two principal factors
have positions with are � j and � j C 1 respectively.

Hence, for any j ¤ i , we must have xfj .M1˝� � �˝Mj / xfn�j .MjC1˝� � �˝Mn/D 0.
For if this product were nonzero, then we could repeat the argument above and find
that no nontight matched pair of M has principal factors whose positions cross the j th

position, contradicting the previous paragraph.
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We conclude that Xn.M/ is the homology class of the single diagram

xfi .ML/ xfn�i .MR/;

which has the desired properties.
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