Spinors and horospheres

Daniel V. Mathews

Daniel.Mathews@monash.edu
Monash topology seminar 26 April 2023

Overview

This talk

- attempts to explain the picture on the title slide!,

Overview

This talk

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler from the 1980s on Spinors and Spacetime,

Overview

This talk

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler from the 1980s on Spinors and Spacetime,
- finding some nice hyperbolic geometry.

Overview

This talk

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler from the 1980s on Spinors and Spacetime,
- finding some nice hyperbolic geometry.

Paper on arXiv soon. Soon I tell you!
Daniel.Mathews@monash.edu

Penrose-Rindler

General ideology: don't use vectors, use spinors for everything!

Penrose-Rindler

General ideology: don't use vectors, use spinors for everything!
Cast of characters:

- Spinor or spin vectors: elements of \mathbb{C}^{2}.
- Hermitian matrices: $A=A^{*}$.
- Minkowski space $\mathbb{R}^{3,1}$: coordinates (T, X, Y, Z), metric $d T^{2}-d X^{2}-d Y^{2}-d Z^{2}$.

How to do this?

Spinors $\xrightarrow{\phi_{1}} \begin{gathered}2 \times 2 \text { Hermitian } \\ \text { matrices }\end{gathered} \xrightarrow{\phi_{2}}$ Minkowski space \mathbb{C}^{2} H
 $\mathbb{R}^{3,1}$

How to do this?

$\begin{array}{ccc}\text { Spinors } \xrightarrow{\phi_{1}} & \begin{array}{c}2 \times 2 \text { Hermitian } \\ \text { matrices }\end{array} \\ \mathbb{C}^{2} & \mathcal{H} & \xrightarrow{\phi_{2}}\end{array} \begin{gathered}\text { Minkowski space } \\ \mathbb{R}^{3,1}\end{gathered}$

$$
\phi_{1}\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]=\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]\left[\begin{array}{ll}
\bar{\xi} & \bar{\eta}
\end{array}\right]
$$

How to do this?

$\begin{array}{ccc}\text { Spinors } \\ \mathbb{C}^{2} & \begin{array}{c}\phi_{1} \\ \text { matrices } \\ \mathcal{H}\end{array} & \xrightarrow{2 \times 2 \text { Hermitian }}\end{array} \begin{gathered}\text { Minkowski space } \\ \mathbb{R}^{3,1}\end{gathered}$

$$
\phi_{1}\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]=\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]\left[\begin{array}{cc}
\bar{\xi} & \bar{\eta}
\end{array}\right]=\left[\begin{array}{cc}
|\xi|^{2} & \xi \bar{\eta} \\
\eta \bar{\xi} & |\eta|^{2}
\end{array}\right]
$$

How to do this?

Spinors $\xrightarrow{\phi_{1}} \quad \begin{gathered}2 \times 2 \text { Hermitian } \\ \text { matrices }\end{gathered} \xrightarrow{\phi_{2}}$ Minkowski space \mathbb{C}^{2} \mathcal{H}

$$
\mathbb{R}^{3,1}
$$

$$
\phi_{1}\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]=\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]\left[\begin{array}{cc}
\bar{\xi} & \bar{\eta}
\end{array}\right]=\left[\begin{array}{cc}
|\xi|^{2} & \xi \bar{\eta} \\
\eta \bar{\xi} & |\eta|^{2}
\end{array}\right]
$$

- Image $\phi_{1}=$ Herm. matrices with det $0 \&$ trace ≥ 0

How to do this?

Spinors $\xrightarrow{\phi_{1}} \begin{gathered}2 \times 2 \text { Hermitian } \\ \text { matrices }\end{gathered} \xrightarrow{\phi_{2}}$ Minkowski space \mathbb{C}^{2} \mathcal{H}

$$
\mathbb{R}^{3,1}
$$

$$
\phi_{1}\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]=\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]\left[\begin{array}{cc}
\bar{\xi} & \bar{\eta}
\end{array}\right]=\left[\begin{array}{cc}
|\xi|^{2} & \xi \bar{\eta} \\
\eta \bar{\xi} & |\eta|^{2}
\end{array}\right]
$$

- Image $\phi_{1}=$ Herm. matrices with det $0 \&$ trace ≥ 0
- $\phi_{1}(\kappa)=\phi_{1}\left(\kappa^{\prime}\right) \Leftrightarrow \kappa=e^{i \theta} \kappa^{\prime}$

How to do this?

Spinors $\xrightarrow{\phi_{1}} \begin{gathered}2 \times 2 \text { Hermitian } \\ \text { matrices }\end{gathered} \xrightarrow{\phi_{2}}$ Minkowski space \mathbb{C}^{2} H

$$
\mathbb{R}^{3,1}
$$

$$
\phi_{1}\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]=\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]\left[\begin{array}{cc}
\bar{\xi} & \bar{\eta}
\end{array}\right]=\left[\begin{array}{cc}
|\xi|^{2} & \xi \bar{\eta} \\
\eta \bar{\xi} & |\eta|^{2}
\end{array}\right]
$$

- Image $\phi_{1}=$ Herm. matrices with det 0 \& trace ≥ 0
- $\phi_{1}(\kappa)=\phi_{1}\left(\kappa^{\prime}\right) \Leftrightarrow \kappa=e^{i \theta} \kappa^{\prime}$

$$
\phi_{2}\left[\begin{array}{cc}
T+Z & X+i Y \\
X-i Y & T-Z
\end{array}\right]=2(T, X, Y, Z)
$$

How to do this?

Spinors $\xrightarrow{\phi_{1}} \begin{gathered}2 \times 2 \text { Hermitian } \\ \text { matrices }\end{gathered} \xrightarrow{\phi_{2}}$ Minkowski space \mathbb{C}^{2} H

$$
\mathbb{R}^{3,1}
$$

$$
\phi_{1}\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]=\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]\left[\begin{array}{ll}
\bar{\xi} & \bar{\eta}
\end{array}\right]=\left[\begin{array}{cc}
|\xi|^{2} & \xi \bar{\eta} \\
\eta \bar{\xi} & |\eta|^{2}
\end{array}\right]
$$

- Image $\phi_{1}=$ Herm. matrices with det $0 \&$ trace ≥ 0
- $\phi_{1}(\kappa)=\phi_{1}\left(\kappa^{\prime}\right) \Leftrightarrow \kappa=e^{i \theta} \kappa^{\prime}$

$$
\phi_{2}\left[\begin{array}{cc}
T+Z & X+i Y \\
X-i Y & T-Z
\end{array}\right]=2(T, X, Y, Z)
$$

- Linear isomorphism: "H is $\mathbb{R}^{3,1}$ ", "det = norm".

How to do this?

Spinors $\xrightarrow{\phi_{1}} \begin{gathered}2 \times 2 \text { Hermitian } \\ \text { matrices }\end{gathered} \xrightarrow{\phi_{2}}$ Minkowski space \mathbb{C}^{2} H

$$
\mathbb{R}^{3,1}
$$

$$
\phi_{1}\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]=\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]\left[\begin{array}{ll}
\bar{\xi} & \bar{\eta}
\end{array}\right]=\left[\begin{array}{cc}
|\xi|^{2} & \xi \bar{\eta} \\
\eta \bar{\xi} & |\eta|^{2}
\end{array}\right]
$$

- Image $\phi_{1}=$ Herm. matrices with det $0 \&$ trace ≥ 0
- $\phi_{1}(\kappa)=\phi_{1}\left(\kappa^{\prime}\right) \Leftrightarrow \kappa=e^{i \theta} \kappa^{\prime}$

$$
\phi_{2}\left[\begin{array}{cc}
T+Z & X+i Y \\
X-i Y & T-Z
\end{array}\right]=2(T, X, Y, Z)
$$

- Linear isomorphism: "H is $\mathbb{R}^{3,1}$ ", "det $=$ norm".
- Image $\phi\left(=\phi_{2} \circ \phi_{1}\right)=$ pos. light cone $L^{+}\left(T^{2}-x^{2}-y^{2}-z^{2}=0, T \geq 0\right)$

We understand some of the picture now

From $\kappa \in \mathbb{C}^{2}$, get a point $\phi(\kappa)=w$ on L^{+}.

Putting the spin in

Spinors $\xrightarrow{\phi=\phi_{2} \circ \phi_{1}}$
 Pos. light cone \mathbb{C}^{2}
 L^{+}

Putting the spin in

Pointed null flags

Putting the spin in

Pointed null flags

Definition (Penrose-Rindler)

A pointed null flag is a point $p \in L^{+}$together with a 2-plane V tangent to L^{+}containing $\mathbb{R} p$.

We understand half the picture now

From $\kappa \in \mathbb{C}^{2}$, get a point on L^{+}and a pointed null flag there.

Putting the spin in

Pointed null flags

Definition (Penrose-Rindler)

A pointed null flag is a point $p \in L^{+}$together with a 2-plane V tangent to L^{+}containing $\mathbb{R} p$.

Putting the spin in

Pointed null flags

Definition (Penrose-Rindler)

A pointed null flag is a point $p \in L^{+}$together with a 2-plane V tangent to L^{+}containing $\mathbb{R} p$.

Spinoriality:

- Take $\kappa \in \mathbb{C}^{2}$ and consider rotating it: $e^{i \theta} \kappa$.
- $\phi\left(e^{i \theta} \kappa\right)$ is constant but $\Phi\left(e^{i \theta} \kappa\right)$ is not: plane V rotates.
- As κ rotates by θ, V rotates by 2θ.

Why you should read papers in alphabetical order

Robert Penner

Why you should read papers in alphabetical order

- To $w \in L^{+}$associate the plane $\langle w, x\rangle=1$
- The plane intersects hyperbolic space \mathbb{H}^{3} $\left(T^{2}-x^{2}-y^{2}-z^{2}=1, T>0\right)$ in a horosphere
Robert Penner

Why you should read papers in alphabetical order

- To $w \in L^{+}$associate the plane $\langle w, x\rangle=1$
- The plane intersects hyperbolic space \mathbb{H}^{3} $\left(T^{2}-x^{2}-y^{2}-z^{2}=1, T>0\right)$ in a horosphere
Robert Penner

$\kappa \in \mathbb{C}^{2}$ Penrose-Rindler $\begin{aligned} & \text { Pointed null flags } \\ & \left(=p \in L^{+}{ }_{\text {and flag }}\right)\end{aligned}$
$\xrightarrow{\text { Penner }}$ Horospheres with \ldots

New developments

New developments

Theorem (M.)

There is a natural ($S L(2, \mathbb{C})$-equivariant) bijection $\mathbb{C}^{2} \backslash\{0\} \longrightarrow\left\{\right.$ Horospheres in \mathbb{H}^{3} with spin directions $\}$.

New developments

Theorem (M.)

There is a natural ($S L(2, \mathbb{C})$-equivariant) bijection $\mathbb{C}^{2} \backslash\{0\} \longrightarrow\left\{\right.$ Horospheres in \mathbb{H}^{3} with spin directions $\}$.

More! Spin vectors have a natural antisymmetric bilinear form,

$$
\{\kappa, \omega\}=\operatorname{det}(\kappa, \omega),
$$

New developments

Theorem (M.)

There is a natural (SL(2, C)-equivariant) bijection $\mathbb{C}^{2} \backslash\{0\} \longrightarrow\left\{\right.$ Horospheres in \mathbb{H}^{3} with spin directions $\}$.

More! Spin vectors have a natural antisymmetric bilinear form,

$$
\{\kappa, \omega\}=\operatorname{det}(\kappa, \omega),
$$

and between two horospheres there is a standard notion of distance $d \ldots$ and angle $\theta(\bmod 4 \pi)$ between their spin decorations.

New developments

Theorem (M.)

There is a natural (SL(2, C)-equivariant) bijection
$\mathbb{C}^{2} \backslash\{0\} \longrightarrow\left\{\right.$ Horospheres in \mathbb{H}^{3} with spin directions $\}$.
More! Spin vectors have a natural antisymmetric bilinear form,

$$
\{\kappa, \omega\}=\operatorname{det}(\kappa, \omega),
$$

and between two horospheres there is a standard notion of distance $d \ldots$ and angle $\theta(\bmod 4 \pi)$ between their spin decorations.

Theorem (M.)

$$
\{\kappa, \omega\}=e^{\frac{d+i \theta}{2}}
$$

New developments

Consequences:

- Ptolemy theorem for hyperbolic ideal tetrahedra
- New methods to compute hyperbolic structures on 3-manifolds (joint with J. Purcell)
- Equivalence of cluster algebras (Grassmannians /hyp. surfaces)

Consequences:

- Ptolemy theorem for hyperbolic ideal tetrahedra
- New methods to compute hyperbolic structures on 3-manifolds (joint with J. Purcell)
- Equivalence of cluster algebras (Grassmannians/hyp. surfaces)
- ...

 Daniel.Mathews@monash.edu

