Spinors and horospheres

Daniel V. Mathews

Daniel.Mathews@monash.edu

Monash topology seminar 26 April 2023

This talk

• attempts to explain the picture on the title slide!,

This talk

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler from the 1980s on <u>Spinors and Spacetime</u>,

This talk

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler from the 1980s on <u>Spinors and Spacetime</u>,
- finding some nice hyperbolic geometry.

This talk

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler from the 1980s on Spinors and Spacetime,
- finding some nice hyperbolic geometry.

Paper on arXiv soon. Soon I tell you!

Daniel.Mathews@monash.edu

Penrose-Rindler

General ideology: don't use vectors, use spinors for everything!

Penrose–Rindler

General ideology: don't use vectors, use spinors for everything!

Cast of characters:

- Spinor or spin vectors: elements of \mathbb{C}^2 .
- Hermitian matrices: $A = A^*$.
- Minkowski space $\mathbb{R}^{3,1}$: coordinates (T, X, Y, Z), metric $dT^2 dX^2 dY^2 dZ^2$.

$$\phi_1 \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} \overline{\xi} & \overline{\eta} \end{bmatrix}$$

$$\phi_1 \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} \overline{\xi} & \overline{\eta} \end{bmatrix} = \begin{bmatrix} |\xi|^2 & \xi \overline{\eta} \\ \eta \overline{\xi} & |\eta|^2 \end{bmatrix}$$

$$\phi_1 \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} \overline{\xi} & \overline{\eta} \end{bmatrix} = \begin{bmatrix} |\xi|^2 & \xi \overline{\eta} \\ \eta \overline{\xi} & |\eta|^2 \end{bmatrix}$$

• Image ϕ_1 = Herm. matrices with det 0 & trace \geq 0

$$\phi_1 \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} \overline{\xi} & \overline{\eta} \end{bmatrix} = \begin{bmatrix} |\xi|^2 & \xi \overline{\eta} \\ \eta \overline{\xi} & |\eta|^2 \end{bmatrix}$$

- Image ϕ_1 = Herm. matrices with det 0 & trace \geq 0
- $\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = e^{i\theta}\kappa'$

$$\phi_1 \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} \overline{\xi} & \overline{\eta} \end{bmatrix} = \begin{bmatrix} |\xi|^2 & \xi \overline{\eta} \\ \eta \overline{\xi} & |\eta|^2 \end{bmatrix}$$

- Image ϕ_1 = Herm. matrices with det 0 & trace \geq 0
- $\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = e^{i\theta}\kappa'$

$$\phi_2 \begin{bmatrix} T + Z & X + iY \\ X - iY & T - Z \end{bmatrix} = 2(T, X, Y, Z)$$

$$\begin{array}{cccc} \text{Spinors} & \xrightarrow{\phi_1} & \overset{2 \times 2 \text{ Hermitian}}{\text{matrices}} & \xrightarrow{\phi_2} & \text{Minkowski space} \\ \mathbb{C}^2 & & \mathcal{H} & & \mathbb{R}^{3,1} \end{array}$$

$$\phi_1 \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} \overline{\xi} & \overline{\eta} \end{bmatrix} = \begin{bmatrix} |\xi|^2 & \xi \overline{\eta} \\ \eta \overline{\xi} & |\eta|^2 \end{bmatrix}$$

- Image ϕ_1 = Herm. matrices with det 0 & trace \geq 0
- $\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = e^{i\theta}\kappa'$

$$\phi_2 \begin{bmatrix} T + Z & X + iY \\ X - iY & T - Z \end{bmatrix} = 2(T, X, Y, Z)$$

• Linear isomorphism: " \mathcal{H} is $\mathbb{R}^{3,1}$ ", "det = norm".

$$\phi_1 \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} \overline{\xi} & \overline{\eta} \end{bmatrix} = \begin{bmatrix} |\xi|^2 & \xi \overline{\eta} \\ \eta \overline{\xi} & |\eta|^2 \end{bmatrix}$$

- Image ϕ_1 = Herm. matrices with det 0 & trace \geq 0
- $\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = e^{i\theta}\kappa'$

$$\phi_2 \begin{bmatrix} T + Z & X + iY \\ X - iY & T - Z \end{bmatrix} = 2(T, X, Y, Z)$$

- Linear isomorphism: " \mathcal{H} is $\mathbb{R}^{3,1}$ ", "det = norm".
- Image $\phi (= \phi_2 \circ \phi_1) = \text{pos. light cone } L^+ (T^2 X^2 Y^2 Z^2 = 0, T \ge 0)$

We understand some of the picture now

From $\kappa \in \mathbb{C}^2$, get a point $\phi(\kappa) = w$ on L^+ .

Definition (Penrose-Rindler)

A <u>pointed null flag</u> is a point $p \in L^+$ together with a 2-plane V tangent to L^+ containing $\mathbb{R}p$.

We understand half the picture now

From $\kappa \in \mathbb{C}^2$, get a point on L^+ and a pointed null flag there.

Definition (Penrose-Rindler)

A <u>pointed null flag</u> is a point $p \in L^+$ together with a 2-plane V tangent to L^+ containing $\mathbb{R}p$.

Definition (Penrose-Rindler)

A pointed null flag is a point $p \in L^+$ together with a 2-plane V tangent to L^+ containing $\mathbb{R}p$.

Spinoriality:

- Take $\kappa \in \mathbb{C}^2$ and consider rotating it: $e^{i\theta}\kappa$.
- $\phi(e^{i\theta}\kappa)$ is constant but $\Phi(e^{i\theta}\kappa)$ is not: plane V rotates.
- As κ rotates by θ , V rotates by 2θ .

Why you should read papers in alphabetical order

Robert Penner

Why you should read papers in alphabetical order

Robert Penner

- To $w \in L^+$ associate the plane $\langle w, x \rangle = 1$
- The plane intersects <u>hyperbolic space</u> \mathbb{H}^3 $(\tau^2 - x^2 - y^2 - z^2 = 1, \ \tau > 0)$ in a horosphere

Why you should read papers in alphabetical order

Robert Penner

- To $w \in L^+$ associate the plane $\langle w, x \rangle = 1$
- The plane intersects <u>hyperbolic space</u> \mathbb{H}^3 $(\tau^2 - x^2 - y^2 - z^2 = 1, \ \tau > 0)$ in a <u>horosphere</u>

$$\kappa \in \mathbb{C}^2 \stackrel{\mathrm{Penrose-Rindler}}{\longrightarrow}$$

Pointed null flags $(= p \in L^+_{and flag})$

 $\stackrel{\text{Penner}}{\longrightarrow} \text{Horospheres with } \cdots$

Theorem (M.)

There is a natural ($SL(2,\mathbb{C})$ -equivariant) bijection $\mathbb{C}^2\setminus\{0\}\longrightarrow\{\text{Horospheres in }\mathbb{H}^3\text{ with spin directions}\}.$

Theorem (M.)

There is a natural ($SL(2,\mathbb{C})$ -equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

More! Spin vectors have a natural antisymmetric bilinear form,

$$\{\kappa,\omega\}=\det(\kappa,\omega),$$

Theorem (M.)

There is a natural ($SL(2,\mathbb{C})$ -equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

More! Spin vectors have a natural antisymmetric bilinear form,

$$\{\kappa,\omega\}=\det(\kappa,\omega),$$

and between two horospheres there is a standard notion of distance $d\dots$ and angle θ (mod 4π) between their spin decorations.

Theorem (M.)

There is a natural ($SL(2,\mathbb{C})$ -equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

More! Spin vectors have a natural antisymmetric bilinear form,

$$\{\kappa,\omega\} = \det(\kappa,\omega),$$

and between two horospheres there is a standard notion of distance d . . . and angle θ (mod 4π) between their spin decorations.

Theorem (M.)

$$\{\kappa,\omega\}=oldsymbol{e}^{rac{d+i heta}{2}}$$

Consequences:

- Ptolemy theorem for hyperbolic ideal tetrahedra
- New methods to compute hyperbolic structures on 3-manifolds (joint with J. Purcell)
- Equivalence of cluster algebras (Grassmannians / hyp. surfaces)

•

Consequences:

- Ptolemy theorem for hyperbolic ideal tetrahedra
- New methods to compute hyperbolic structures on 3-manifolds (joint with J. Purcell)
- Equivalence of cluster algebras (Grassmannians / hyp. surfaces)

• . . .

Thanks for listening!

Daniel.Mathews@monash.edu