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Paper on arXiv soon. Soon | tell you!
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General ideology: don’t use vectors, use spinors for everything!

Cast of characters:
e Spinor or spin vectors: elements of C2.
e Hermitian matrices: A = A*.

e Minkowski space R%': coordinates (T, X, Y, Z), metric
dT? — dX? — dY? — dZ2.
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How to do this?

&1 2 x 2 Hermitian g
matrices
C? H RS

& _[€] = - _ [P &7}
” [77] - [n] € 7 = [n& In|?
Image ¢1 = Herm. matrices with det 0 & trace > 0
H1(k) = p1(K) & Kk = 9%/

Minkowski space

TLZ X+iy
P2\x iy T_Zz

] =2(T,X,Y,2)

Linear isomorphism: “H is R3"”, “det = norm”.
Image ¢ = ¢, 04 = pos. light cone LT (2 —x2 —v2 _ 22 _0,7>0)



We understand some of the picture now

From x € C2, get a point ¢(k) = w on L+.
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Pointed null flags

(0]
S !
Spinors  “=%%%"  Pos. light cone
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Definition (Penrose—Rindler)

A pointed null flag is a point p € L+ together with a 2-plane V
tangent to L™ containing Rp.

Spinoriality:
e Take s € C? and consider rotating it: €"x.
e $(€"k) is constant but ®(e?x) is not: plane V rotates.
* As k rotates by 6, V rotates by 26.
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keC (= p € L+ anatoo) —" Horospheres with - - -
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Theorem (M.)
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More! Spin vectors have a natural antisymmetric bilinear form,
{r,w} = det(k,w),

and between two horospheres there is a standard notion of
distance d... and angle 6 (mod 4r) between their spin
decorations.

Theorem (M.)

{kR,w} = ed+2i9
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Thanks for listening!
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