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General ideology: don’t use vectors for geometry/relativity, use
spinors for everything!

Cast of characters:
e Spinors / spin vectors: elements x = (&,7) of C2.
e 2 x 2 Hermitian matrices: H = {A € M,o(C) | A= A*}.

* Minkowski space R%': coordinates (T, X, Y, Z), metric
dT? — dX? — dY? — dZ2.
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Spinors RN x 2 Hermitian - ¢,
matrices

C? H R31

()= G)E = (e o)

* Image ¢1 = Herm. matrices with det 0 & trace > 0
) ¢1 (K}) = ¢1 (K}/) = kK= eigfil
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e Linear isomorphism: “H is R®'”, “det = norm”, “tr = T".
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Spinors —

How to do this?

&1 2x2 ngmitian g
matrices
c? H RS

()= G)E = (e o)

Image ¢1 = Herm. matrices with det 0 & trace > 0
$1(r) = 01(r') & r = €'/

Minkowski space

(T+Z X+iY
P2

X —iY T—Z) =al.XY.2)

Linear isomorphism: “H is R3'”, “det = norm”, “tr = T".
Image ¢ = ¢, 0 ) = POS. light cone LT (2 —x2 _v2 _ 22 -0, 70
Pauli matrices, Hopf fibration, stereographic proj. are here
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Pointed null flags
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Definition (Penrose—Rindler)

A pointed null flag is an oriented flag Rp C V, where p € LT,
Rp is future oriented, and V is a 2-plane tangent to L.

Penrose-Rindler:
¢ Defined ¢ and showed it is surjective and 2—1.
Spinoriality:
e Take x € C? and consider rotating it: e/x.
o #(ek) is constant but ®(e’x) is not: plane V rotates.
¢ As x rotates by 6, V rotates by 26.
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Hyperbolic geometry is the future
In R31, consider the set of points 1 in the future from the origin.

T2 _X?_-Y?>_22=1, T>0

This spacelike 3-dimensional hypersurface is the hyperboloid
model H® of hyperbolic 3-dimensional geometry.

The orientation-preserving linear transformations of R3! which
preserve L+ form SO(3,1)* = PSL(2,C) = Isom™ (H?3).
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Why you should read papers in alphabetical order

e To p € Lt associate the plane (p, x) = 1
e The plane intersects hyperbolic space H?®
(TP_x2_y2_722_1 T>qlina horosghere

Robert Penner

s € 2 Penrose—Rindler Pointed null flags Penner

(= p € L+ anaing) Horospheres with - - -
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Spinor-horosphere correspondence

Theorem (M., arxiv:2308.09233)

There is a natural (SL(2, C)-equivariant) bijection
C2?\ {0} — {Horospheres in H® with spin directions}.

Directions?
e A direction on a horosphere is a parallel unit vector field.

(Only makes sense since a horosphere is isometric to the Euclidean plane!)
Spin direction?
¢ A horosphere has “2r worth" of possible directions.

e These lift to “47 worth" of possible spin directions.
(27 rotation is not the identity, but 47 is...)

More rigorously:
e Directions = certain frame fields along horosphere.

e Spin directions = lifts from frame bundle to spin double
cover.
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Spinor-horosphere correspondence

Theorem (M., arxiv:2308.09233)

There is a natural (SL(2, C)-equivariant) bijection
C?\ {0} — {Horospheres in H? with spin directions}.

In the upper half space model, a simple description:
(&n) (

[

(when n = 0, horizontal plane centred at co at height \§|2 and direction i§2)

SN

horosphere centred at ¢/n _
with Euclidean diameter —, and direction n—’z
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Spinor-horosphere correspondence

Theorem (M., arxiv:2308.09233)

There is a natural SL(2, C)-equivariant bijection
C?\ {0} — {Horospheres in H? with spin directions}.

Group actions here:
e SL(2,C) acts on C? by linear transformations
e PSL(2,C) acts on H? (hence horospheres, hence
decorated horospheres) by isometries
e SL(2,C) acts on H® by spin isometries (27 rotation #
identity, 47 rotation = identity), hence spin directions
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Complex 3D lambda lengths

Now consider two spin vectors and two horospheres.
e Spin vectors have a natural antisymmetric bilinear form,

{k,w} = det(k,w),

making C? into a complex symplectic vector space.
e Between two corresponding horospheres
® there is a distance d
¢ there is an angle § between directions (mod 27).
® there is an angle # between spin directions (mod 4).

Theorem (M.)

{Fi,w} _ ed;ie

Generalises Penner’s \-lengths
in H2:

A =ed2
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Ptolemy equation

Ptolemy, Aimagest (~ 160 CE): For a cyclic quadrilateral ABCD
in the Euclidean plane,

AC-BD=AB-CD+ AD - BC.

Numbering (A, B, C, D) ~ (0,1, 2,3) and denoting distance dj,
do20d13 = b1 o3 + dp3ds2.



Ptolemy equation

Penner, 1987: Given four horocycles in the hyperbolic plane
with lambda lengths \;, i,j € {0,1,2,3},

Ao2A13 = Ap1A23 + Aoz Aq2.
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Theorem (M., arxiv:2308.09233)

Given an ideal tetrahedron in H2, with spin-decorated
horospheres hy, k1, hp, k3 at its vertices, the lambda lengths
\j € C betweeen ki and h; satisfy

Ao2A13 = Ap1A23 + Aoz Aq2.




Ptolemy equation

Theorem (M., arxiv:2308.09233)

Given an ideal tetrahedron in H2, with spin-decorated
horospheres hy, k1, hp, k3 at its vertices, the lambda lengths
\j € C betweeen ki and h; satisfy

Ao2A13 = Ap1A23 + Aoz Aq2.

Proof: Plicker

relation between

2 x 2 determinants
3 in a2 x 4 matrix.
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Lower & higher dimensions

When spinors (¢,7) € R? have real coordinates, they

correspond to horocycles in H?.

Well-known progression (& less well known... Ahlfors,

Lounesto, Cao, Gongopadhyay, Kellerhals, ...):

Dimension n 2 3 4 many
Isometries of H" wrrn | ar- n

_psLz,y | R CHE T

Spinors in? R? | C? | H?? ?

(Very) recent work with Varsha: all of

the above works in 4D hyperbolic
space with quaternions.

Ongoing work with Zymaris: some
(all?) of the above works in aribtrary
dimension with Clifford algebras.




4 dimensions

Theorem (M.—Varsha, forthcoming)

There are smooth SL(2, $T")-equivariant bijections between
© quaternionic spinors
® spin multiflags
® spin-deocrated horospheres in H*.

Theorem (M.—Varsha, forthcoming)

Given two quaternionic spinors k1 = (£1,m1), k2 = (&2, 12),
there is a well defined quaternionic lambda length \1> between
the corresponding spin-decorated horospheres, and

“ " 51 €2> * *
Ao = “det = - .
12 (771 - §1m2 — ni&2



4 dimensions

Theorem (M.—Varsha, forthcoming)
Given an ideal tetrahedron with spin-deocrated horospheres at
the vertices and lambda lengths \j;,

Aoz Mot Ag7 Az2 + Agp AozAig A2 = 1.

Proofs use work of Ahlfors, Lounesto, Maass, Vahlen on
higher-dimensional Mébius transformations and Clifford
algebras...

And work of Gel'fand—Retakh on non-commutative
determinants...



Taking (&, 7) to be
relatively prime
integers yields
Ford circles and
Farey fractions.

Taking (&, 7) to be
relatively prime
Gaussian integers
yields Ford

spheres.

Fun



Spinors in knot complements

Let M = S® — K where K is the figure-8 knot.

M has a well-known ideal triangulation and
complete hyperbolic structure studied by Riley,
W. Thurston, many others.

The developing map M —s H3 can be chosen to have ideal
vertices precisely at points of Q(v/3).

Uz u




Spinors in knot complements

Theorem (Howie—Ibarra—M.—Su, arxiv:2411.06368)

The spinors (£,n) consisting of relatively prime Eisenstein
integers precisely give the horospheres bounding maximal
cusp neighbourhoods in M.

Eisenstein integers = alg. integers in Q(v/3)
= Z[w] where w? + w + 1 = 0.



Spinors in knot complements

Theorem (Howie—lbarra—M.—Su, arxiv:2411.06368)

The X lengths between spin-decorated horospheres in M are
precisely the Eisenstein integers.

Theorem (Howie—lbarra—M.—Su, arxiv:2411.06368)

The set of hyperbolic distances between maximal cusps in M is

precisely
\ {0} }

{Iogn | 1P ko even forpz2mod3}.
p

1+/\f

{2Iog\a\ | a€Z

or



Spinors and hyperbolic structures

Garoufalidis—D. Thurston—Zickert (2015) described Ptolemy
varieties Py for ideally triangulated 3-manifolds M.

Co2C13 = Cp1Co3 + Cp3Ci2-

They showed Py describes all boundary-unipotent
representations (M) — SL(N, C) up to conjugacy.
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Spinors and hyperbolic structures

Garoufalidis—D. Thurston—Zickert (2015) described Ptolemy
varieties Py for ideally triangulated 3-manifolds M.

Co2C13 = Cp1C23 + Cp3Ci2-
They showed Py describes all boundary-unipotent
representations (M) — SL(N, C) up to conjugacy.

Zickert (2016) introduced an enhanced Ptolemy variety and
showed it describes all boundary-Borel representations
w1 (M) — SL(N, C).

£*m®CoaCi3 = £°*m°®CoqCoz + £°M°®Cy3Cy2.

Theorem (M.—Purcell, in progress)

\-lengths of spin-decorated hyperbolic 0
structures on M satisfy the equations of the Y
SL(2,C) enhanced Ptolemy variety.




Spinors and circle packings

Euclidean plane geometry!
Definition

An n-flower consists of a central circle C..,, and n petal circles
C; (j mod n), externally tangent to each other as shown.

Let ke = :—2 be the curvature of C,.

General theory of circle packings (Koebe, Andreev, W.
Thurston, Beardon, Bowers, Stephenson, ...): if petal
curvatures are given, k. is determined.
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Question: For an n-flower, do ko, k1, - . . , kn Satisfy an
equation?



Spinors and circle packings

Question: For an n-flower, do ko, k1, - . . , kn Satisfy an
equation?

Theorem (Descartes Circle Theorem, Descartes 1643)

Yes, for n = 3!

(noo+/£1+m2+ﬁ3)2:2(n§o+n$+ﬂg+n§>.

The sum of the squares of all four bends
Is half the square of their sum
— Frederick Soddy, The Kiss Precise (1936)




Spinors and circle packings

Theorem (M.—Zymaris, arxiv:2310.11701)

Yes, for all n!

Define mg and mj for1 <j<n-—1as

04y, m,=\/<'€f+1> (“f‘1+1>—1.
Koo Koo Koo

m2i n—1 n—1 "%1
== | TItm =y = TT(my+ ) H(m2/1+1)_0 for odd n,

=1

—.

n—1 n—1 o2
é( j— i) H(mj+i)>ﬁ<m§j+1>0 for even n.






Thanks for listening!
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