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Overview

This talk

• attempts to explain the picture on the title slide!,
• builds on work of Roger Penrose and Wolfgang Rindler on

spinors and relativity theory from the 1980s Spinors and
Spacetime,

• finds some nice hyperbolic geometry,
• extends lambda lengths to 3 dimensions and computes

them in terms of spinors, and
• (time permitting) discusses some applications — knot

theory, circle packing, higher dimensions.

Acknowledgments:
• This talk discusses work also involving Josh Howie,

Dionne Ibarra, Jessica Purcell, Lecheng Su, Varsha, Orion
Zymaris.

• Varsha helped draw many of the pictures.
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Penrose–Rindler

General ideology: don’t use vectors for geometry/relativity, use
spinors for everything!

Cast of characters:
• Spinors / spin vectors: elements κ = (ξ, η) of C2.
• 2 × 2 Hermitian matrices: H = {A ∈ M2×2(C) | A = A∗}.
• Minkowski space R3,1: coordinates (T ,X ,Y ,Z ), metric

dT 2 − dX 2 − dY 2 − dZ 2.
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How to do this?

Spinors
ϕ1−→ 2 × 2 Hermitian

matrices
ϕ2−→ Minkowski space

C2 H R3,1

ϕ1

(
ξ
η

)
=

(
ξ
η

)(
ξ η

)
=

(
|ξ|2 ξη

ηξ |η|2
)

• Image ϕ1 = Herm. matrices with det 0 & trace ≥ 0
• ϕ1(κ) = ϕ1(κ

′) ⇔ κ = eiθκ′

ϕ2

(
T + Z X + iY
X − iY T − Z

)
= 2(T ,X ,Y ,Z )

• Linear isomorphism: “H is R3,1”, “det = norm”, “tr = T ".
• Image ϕ (= ϕ2 ◦ ϕ1) = pos. light cone L+

(T 2 − X2 − Y 2 − Z 2 = 0, T ≥ 0)

• Pauli matrices, Hopf fibration, stereographic proj. are here
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We understand some of the picture now

L+ p
h

H

From κ ∈ C2, get a point ϕ(κ) = p on L+.



Putting the spin in

Pointed null flags
Φ
↗ ↓

Spinors
ϕ=ϕ2◦ϕ1−→ Pos. light cone

C2 L+

Definition (Penrose–Rindler)

A pointed null flag is an oriented flag Rp ⊂ V, where p ∈ L+,
Rp is future oriented, and V is a 2-plane tangent to L+.

Penrose-Rindler:
• Defined Φ and showed it is surjective and 2–1.

Spinoriality:
• Take κ ∈ C2 and consider rotating it: eiθκ.
• ϕ(eiθκ) is constant but Φ(eiθκ) is not: plane V rotates.
• As κ rotates by θ, V rotates by 2θ.
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From κ ∈ C2, get a point on L+ and a pointed null flag there.
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Hyperbolic geometry is the future

In R3,1, consider the set of points 1 in the future from the origin.

T 2 − X 2 − Y 2 − Z 2 = 1, T > 0

This spacelike 3-dimensional hypersurface is the hyperboloid
model H3 of hyperbolic 3-dimensional geometry.

L+ p
h

H

The orientation-preserving linear transformations of R3,1 which
preserve L+ form SO(3,1)+ ∼= PSL(2,C) ∼= Isom+(H3).
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Why you should read papers in alphabetical order

∣∣∣∣∣∣∣∣

Brilliant geometers |

Minkowski space master
Enlightening interpretation of L+

Hyperbolic geometry fan
Name matching Ro?er* Pen*r*



∣∣∣∣∣∣∣∣ > 1
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Why you should read papers in alphabetical order

Robert Penner

• To p ∈ L+ associate the plane ⟨p, x⟩ = 1
• The plane intersects hyperbolic space H3

(T 2 − X2 − Y 2 − Z 2 = 1, T > 0) in a horosphere

L+ p
h

H

κ ∈ C2 Penrose–Rindler−→ Pointed null flags
(= p ∈ L+

and flag)
Penner−→ Horospheres with · · ·
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New developments

Theorem (M., arxiv:2308.09233)

There is a natural (SL(2,C)-equivariant) bijection
C2 \ {0} −→ {Horospheres in H3 with spin directions}.
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Spinor-horosphere correspondence

Theorem (M., arxiv:2308.09233)

There is a natural (SL(2,C)-equivariant) bijection
C2 \ {0} −→ {Horospheres in H3 with spin directions}.

Directions?

• A direction on a horosphere is a parallel unit vector field.
(Only makes sense since a horosphere is isometric to the Euclidean plane!)

Spin direction?
• A horosphere has “2π worth" of possible directions.
• These lift to “4π worth" of possible spin directions.

(2π rotation is not the identity, but 4π is...)
More rigorously:

• Directions = certain frame fields along horosphere.
• Spin directions = lifts from frame bundle to spin double

cover.
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Spinor-horosphere correspondence

Theorem (M., arxiv:2308.09233)

There is a natural (SL(2,C)-equivariant) bijection
C2 \ {0} −→ {Horospheres in H3 with spin directions}.

In the upper half space model, a simple description:

(ξ, η) 7→

(
horosphere centred at ξ/η

with Euclidean diameter 1
|η|2 and direction i

η2

)
(when η = 0, horizontal plane centred at ∞ at height |ξ|2 and direction iξ2)

iη−2

ξ/η

|η|−2

iξ2

|ξ|2
U

C



Spinor-horosphere correspondence

Theorem (M., arxiv:2308.09233)

There is a natural (SL(2,C)-equivariant) bijection
C2 \ {0} −→ {Horospheres in H3 with spin directions}.

In the upper half space model, a simple description:

(ξ, η) 7→

(
horosphere centred at ξ/η

with Euclidean diameter 1
|η|2 and direction i

η2

)
(when η = 0, horizontal plane centred at ∞ at height |ξ|2 and direction iξ2)

iη−2

ξ/η

|η|−2

iξ2

|ξ|2
U

C



Spinor-horosphere correspondence

Theorem (M., arxiv:2308.09233)

There is a natural (SL(2,C)-equivariant) bijection
C2 \ {0} −→ {Horospheres in H3 with spin directions}.

In the upper half space model, a simple description:

(ξ, η) 7→

(
horosphere centred at ξ/η

with Euclidean diameter 1
|η|2 and direction i

η2

)
(when η = 0, horizontal plane centred at ∞ at height |ξ|2 and direction iξ2)

iη−2

ξ/η

|η|−2

iξ2

|ξ|2
U

C



Spinor-horosphere correspondence

Theorem (M., arxiv:2308.09233)

There is a natural SL(2,C)-equivariant bijection
C2 \ {0} −→ {Horospheres in H3 with spin directions}.

Group actions here:
• SL(2,C) acts on C2 by linear transformations
• PSL(2,C) acts on H3 (hence horospheres, hence

decorated horospheres) by isometries
• SL(2,C) acts on H3 by spin isometries (2π rotation ̸=

identity, 4π rotation = identity), hence spin directions
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Complex 3D lambda lengths

Now consider two spin vectors and two horospheres.

• Spin vectors have a natural antisymmetric bilinear form,

{κ, ω} = det(κ, ω),

making C2 into a complex symplectic vector space.
• Between two corresponding horospheres

• there is a distance d
• there is an angle θ between directions (mod 2π).
• there is an angle θ between spin directions (mod 4π).

h2

h1

ρ

θ

γ

Theorem (M.)

{κ, ω} = e
d+iθ

2

Generalises Penner’s λ-lengths
in H2:

λ = ed/2.
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Ptolemy equation

Ptolemy, Almagest (∼ 160 CE): For a cyclic quadrilateral ABCD
in the Euclidean plane,

AC · BD = AB · CD + AD · BC.

Numbering (A,B,C,D) ∼ (0,1,2,3) and denoting distance dij ,

d02d13 = d01d23 + d03d12.
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Ptolemy equation

Penner, 1987: Given four horocycles in the hyperbolic plane
with lambda lengths λij , i , j ∈ {0,1,2,3},

λ02λ13 = λ01λ23 + λ03λ12.



Ptolemy equation

Theorem (M., arxiv:2308.09233)

Given an ideal tetrahedron in H3, with spin-decorated
horospheres h0, h1, h2, h3 at its vertices, the lambda lengths
λij ∈ C betweeen hi and hj satisfy

λ02λ13 = λ01λ23 + λ03λ12.

1 2

3

0

λ12

λ01 λ02

λ23

λ03

Proof: Plücker
relation between
2 × 2 determinants
in a 2 × 4 matrix.
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Lower & higher dimensions

When spinors (ξ, η) ∈ R2 have real coordinates, they
correspond to horocycles in H2.

Well-known progression

(& less well known... Ahlfors,
Lounesto, Cao, Gongopadhyay, Kellerhals, ...):

Dimension n 2 3

4 many

Isometries of Hn

= PSL(2, ?)
R C

“H" “Γn"

Spinors in? R2 C2

H2? ?

(Very) recent work with Varsha: all of
the above works in 4D hyperbolic
space with quaternions.

Ongoing work with Zymaris: some
(all?) of the above works in aribtrary
dimension with Clifford algebras.
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4 dimensions

Theorem (M.–Varsha, forthcoming)

There are smooth SL(2, $Γ)-equivariant bijections between
1 quaternionic spinors
2 spin multiflags
3 spin-deocrated horospheres in H4.

Theorem (M.–Varsha, forthcoming)

Given two quaternionic spinors κ1 = (ξ1, η1), κ2 = (ξ2, η2),
there is a well defined quaternionic lambda length λ12 between
the corresponding spin-decorated horospheres, and

λ12 = “det ”

(
ξ1 ξ2
η1 η2

)
= ξ∗1η2 − η∗1ξ2.



4 dimensions

Theorem (M.–Varsha, forthcoming)

Given an ideal tetrahedron with spin-deocrated horospheres at
the vertices and lambda lengths λij ,

λ−1
02 λ01λ

−1
31 λ32 + λ−1

02 λ03λ
−1
13 λ12 = 1.

Proofs use work of Ahlfors, Lounesto, Maass, Vahlen on
higher-dimensional Möbius transformations and Clifford
algebras...

And work of Gel’fand–Retakh on non-commutative
determinants...



Fun

Taking (ξ, η) to be
relatively prime
integers yields
Ford circles and
Farey fractions.

Taking (ξ, η) to be
relatively prime
Gaussian integers
yields Ford
spheres.



Spinors in knot complements

Let M = S3 − K where K is the figure-8 knot.

M has a well-known ideal triangulation and
complete hyperbolic structure studied by Riley,
W. Thurston, many others.

The developing map M̃ −→ H3 can be chosen to have ideal
vertices precisely at points of Q(

√
3).



Spinors in knot complements

Theorem (Howie–Ibarra–M.–Su, arxiv:2411.06368)

The spinors (ξ, η) consisting of relatively prime Eisenstein
integers precisely give the horospheres bounding maximal
cusp neighbourhoods in M.

Eisenstein integers = alg. integers in Q(
√

3)
= Z[ω] where ω2 + ω + 1 = 0.



Spinors in knot complements

Theorem (Howie–Ibarra–M.–Su, arxiv:2411.06368)

The λ lengths between spin-decorated horospheres in M are
precisely the Eisenstein integers.

Theorem (Howie–Ibarra–M.–Su, arxiv:2411.06368)

The set of hyperbolic distances between maximal cusps in M is
precisely {

2 log |α| | α ∈ Z

[
1 + i

√
3

2

]
\ {0}

}
or {

log n |
∏

p

pkp , kp even for p ≡ 2 mod 3

}
.



Spinors and hyperbolic structures

Garoufalidis–D. Thurston–Zickert (2015) described Ptolemy
varieties PN for ideally triangulated 3-manifolds M.

c02c13 = c01c23 + c03c12.

They showed PN describes all boundary-unipotent
representations π1(M) → SL(N,C) up to conjugacy.

Zickert (2016) introduced an enhanced Ptolemy variety and
showed it describes all boundary-Borel representations
π1(M) −→ SL(N,C).

ℓ•m•c02c13 = ℓ•m•c01c23 + ℓ•m•c03c12.

Theorem (M.–Purcell, in progress)

λ-lengths of spin-decorated hyperbolic
structures on M satisfy the equations of the
SL(2,C) enhanced Ptolemy variety.
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Spinors and circle packings

Euclidean plane geometry!

Definition
An n-flower consists of a central circle C∞, and n petal circles
Cj (j mod n), externally tangent to each other as shown.

Let κ• = 1
r2
•

be the curvature of C•.

General theory of circle packings (Koebe, Andreev, W.
Thurston, Beardon, Bowers, Stephenson, ...): if petal
curvatures are given, κ∞ is determined.



Spinors and circle packings

Question: For an n-flower, do κ∞, κ1, . . . , κn satisfy an
equation?

Theorem (Descartes Circle Theorem, Descartes 1643)

Yes, for n = 3!

(κ∞ + κ1 + κ2 + κ3)
2 = 2

(
κ2
∞ + κ2

1 + κ2
2 + κ2

3

)
.

The sum of the squares of all four bends
Is half the square of their sum
– Frederick Soddy, The Kiss Precise (1936)
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Spinors and circle packings

Theorem (M.–Zymaris, arxiv:2310.11701)

Yes, for all n!

Define m0 and mj for 1 ≤ j ≤ n − 1 as

m0 =

√
κ0

κ∞
+ 1, mj =

√(
κj

κ∞
+ 1
)(

κj−1

κ∞
+ 1
)
− 1.

Then

m2
0 i
2

n−1∏
j=1

(mj − i)−
n−1∏
j=1

(mj + i)

−

n−1
2∏

j=1

(
m2

2j−1 + 1
)
= 0 for odd n,

i
2

n−1∏
j=1

(mj − i)−
n−1∏
j=1

(mj + i)

−

n−2
2∏

j=1

(
m2

2j + 1
)
= 0 for even n.
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