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Abstract. Kauffman’s clock theorem provides a distributive lattice structure on the set of states

of a four-valent graph in the plane. We prove two distinct generalisations of this theorem, for four-
valent graphs embedded in more general compact oriented surfaces. The proofs use results of Propp

providing distributive lattice structures on matchings on bipartite plane graphs, and orientations on
graph with fixed circulation.
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1. Introduction

1.1. Overview. This article considers the Clock Theorem of Kauffman, proved in his 1983 book
Formal Knot Theory [20], and some generalisations.

Consider a 4-valent plane graph, such as the graph obtained from a knot diagram by flattening
crossings. Such a graph has two more faces than vertices; choosing two adjacent faces as starred
defines a Kauffman universe. As Kauffman noted in [20, p. 1], “I have taken a perhaps startling. but
certainly memorable, set of terms”.

A state on a Kauffman universe places a marker in one of the 4 corners at each vertex of the graph,
so that no face of the graph contains more than one marker, and starred faces are forbidden to have
markers. Kauffman’s Clock Theorem asserts that the set of states has a nice combinatorial structure,
in particular the structure of a distributive lattice (in the sense of a partially ordered set with joins and
meets). There are natural transposition operations moving from one state to another, which provide
the covering relation for the lattice.

In this article we present two generalisations of the Clock Theorem. Both of them apply to more
general classes of surfaces than the plane. We define multiverses generalising Kauffman universes.
Roughly, a multiverse is a 4-valent graph embedded on a compact connected oriented surface, with
certain starred faces prohibited from containing state markers: a precise definition is given in Defi-
nition 3.7. A multiverse is like a Kauffman universe but may have more endpoints, more boundary
components, higher genus, more “strings” and “more stars”. See Figure 1 for some examples.

Theorem 1.1 (Planar Clock Theorem). Let U be a framed planar multiverse. Then the set of states
of U forms a distributive lattice, where plane transpositions provide the covering relation.

Theorem 1.2 (Arbitrary Genus Clock Theorem). Let U be a framed multiverse. Then the set of states
of U with a fixed viable circulation function forms a distributive lattice, where surface transpositions
provide the covering relation.
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Figure 1. Top left and right: multiverses on a disc. Bottom: two depictions of the
same multiverse on a punctured torus.

More precise and detailed versions of these theorems are given as Theorem 4.6 and Theorem 6.43.
All notions will be precisely defined in due course; we present a rough idea in this introduction.

As the name suggests, a planar multiverse lies on a planar surface. The surface may have an
arbitrary finite number of boundary components. The graph may have arbitrarily (finitely) many, or
few, endpoints on each boundary component of the surface.

A multiverse more generally may lie on an arbitrary compact oriented surface, with arbitrarily
high (finite) genus and arbitrarily (finitely) many boundary components. Again, the graph may have
arbitrarily (finitely) many, or few, endpoints on each boundary component.

When the multiverse in Theorem 1.1 or Theorem 1.2 is on a disc, and has two endpoints on the
boundary of the disc, it is essentially a Kauffman universe: a universe in string form or string universe
in Kauffman’s terminology [20].

Although our two main results Theorem 1.1 and Theorem 1.2 clearly involve generalisations of the
ideas of Kauffman’s Clock theorem, and apply in more general contexts, their strict logical relationship
with each other and with Kauffman’s clock theorem is a little subtle. Our notion of “plane transpo-
sition” in Theorem 1.1 does not immediately reduce to Kauffman’s notion of “transposition” on a
Kauffman universe; plane transpositions are more general. However, it turns out that on a Kauffman
universe, the only plane transpositions that can arise are Kauffman transpositions, and in Section 5 of
this paper we show the following.

Theorem 1.3. Let U be a Kauffman universe. Then the distributive lattices of U given by Kauff-
man’s Clock Theorem and the Planar Clock Theorem 1.1 are isomorphic, with Kauffman transpositions
corresponding to plane transpositions.

A precise statement is given in Theorem 5.1. Thus, Theorem 1.1 is a generalisation of Kauffman’s
Clock Theorem, but not obviously so.
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Figure 2. The Hasse diagram of the lattice obtained from Theorem 1.1, for a framed
planar multiverse.

It may appear that Theorem 1.2 is a generalisation of Theorem 1.1, rendering Theorem 1.1 redun-
dant. However, the notions of transpositions involved in these theorems are quite distinct. The notion
of “surface transposition” in Theorem 1.2 is considerably more restricted than the notion of “plane
transposition” in Theorem 1.1, and neither is in general a subset of the other. The notion of plane
transposition relies on a property unique to planar surfaces, namely that every simple closed curve has
an inside and outside. Surface transpositions require possibly multiple curves to be involved, bounding
a common surface. While the states in Theorem 1.1 can all be connected by plane transpositions, the
states in Theorem 1.2 in general cannot be connected by surface transpositions; only those of a fixed
circulation function (which we will define in due course) are connected to each other. Both theorems
apply to a framed planar multiverse, but will in general produce distinct lattices: for example Figure 2
and Figure 3, show the lattices obtained from Theorem 1.1 and Theorem 1.2, for the same framed
planar multiverse.
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Figure 3. The Hasse diagram of the lattice obtained from Theorem 1.2, for a framed
planar multiverse.
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Figure 4. The Hasse diagram of the lattice obtained from Kauffman’s clock theorem
or Theorem 1.1, for a Kauffman string universe.

Moreover, Theorem 1.2 is not, strictly speaking, a generalisation of Kauffman’s Clock theorem.
When U is a Kauffman string universe, Theorem 1.2 produces a distributive lattice, but it is in general
different from the one provided by Kauffman’s Clock theorem. See for instance Figure 4 and Figure 5.

In the remainder of this introduction, we briefly give a precise recollection of Kauffman’s Clock
Theorem, and a rough idea of our generalisations, as well as general background, existing literature
and context.

1.2. Kauffman’s clock theorem. We recount some definitions and results from Kauffman [20].

Definition 1.4. A Kauffman universe, or just universe, is a pair (U,F ) where

(i) U is a connected 4-valent plane graph, and
(ii) F = {F0, F1} is a set of two distinct faces of U , called starred faces, where F0 is the unbounded

face, and F1 shares an edge with F0.

Here, as usual, by a plane graph we mean a graph embedded in the plane R2, with edges embedded as
curves which intersect only at vertex endpoints according to the incidence relations of the graph. The
faces of the plane graph U are the connected components of R2 \U . Precisely one face is unbounded.
When the faces are understood we often denote the universe simply by U . We mark each starred face
with a star. An example of a universe is shown in Figure 6 (left).

At each vertex v of U , there are four adjacent corners, namely the four connected components of
the complement of U in a small neighbourhood of v. Each corner of v lies in a face of U , but there
may be distinct corners of v which lie in the same face.

A straightforward Euler characteristic argument shows that the number of faces of U is 2 more than
the number of vertices. (We prove a general result in Lemma 3.28.) Thus the number of unstarred
faces is equal to the number of vertices. Hence the following definition makes sense.

Definition 1.5. A state of (U,F ) is a choice of corner at each vertex of U , so that each unstarred
face is chosen precisely once.
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Figure 5. The Hasse diagram of the lattice obtained from Theorem 1.2, for a Kauff-
man string universe.

Figure 6. Left: a universe obtained by flattening the crossings of a trefoil knot.
Right: the corresponding string universe.

To draw a state, we place a marker in the corner chosen at each vertex. Definition 1.5 precisely
requires that each unstarred face of U contains precisely one marker, as in the examples of Figure 7.

Given a state S on a universe U , we may consider altering the assignment of corners at vertices, by
rotating the markers as follows.

Definition 1.6. A clockwise (resp. counterclockwise) Kauffman transposition, or just transposition,
on a state S is a simultaneous 90◦ clockwise (resp. counterclockwise) rotation of two distinct markers,
which results in another state.
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Figure 7. Two states of a universe.

Suppose u and v are the vertices involved in a transposition on a state S. Then the marker which
rotates at u rotates out of a face F and into another face F ′; the marker at v must then rotate out
of F ′ and into F . Hence any transposition appears locally as in Figure 8. Note the box in Figure 8
can contain an arbitrarily complicated (or trivial) 4-valent graph, but the graph inside the box only
intersects the boundary of the box at two points, on edges incident to u and v respectively.

S S' S'S

u v u u uv v v

Figure 8. Transpositions, clockwise (left) and counterclockwise (right).

We use transpositions to define a relation on states as follows.

Definition 1.7. Let S, S′ be states of U . We write S ⩽ S′ if there exists a sequence of states
S = S0, S1, . . . , Sn = S′ of U , for some integer n ⩾ 0, such that each Sj+1 is obtained from Sj by a
counterclockwise transposition.

Note that we allow n = 0, so S ⩽ S for each state S. It is clear from the definition that ⩽ is
transitive. It is perhaps less clear, but true, that ⩽ is a partial order, so that the symbol ⩽ is justified.
In fact, it is a distributive lattice: this is the content of Kauffman’s Clock Theorem.

Theorem 1.8 (Kauffman’s Clock Theorem). Let (U,F ) be a universe and S its set of states. Then
S , equipped with the relation ⩽, is a distributive lattice. Moreover, a state S is covered by another
state S′ if and only if S′ is obtained from S by a counterclockwise transposition.

The lattice here is called the clock lattice of U . We will recall the definition of distributive lattice,
covering, and the various generalisations we need, in Section 2.1.

Kauffman equivalently expresses the clock theorem using universes in string form, or string uni-
verses. Given a universe (U,F ), select the edge separating the two starred faces and break it. Extend-
ing the resulting half-edges infinitely to the left and right yields a universe in string form. Truncating
to a sufficiently large closed disc D, whose boundary ∂D contains endpoints of the half-edges, we
obtain the following.

Definition 1.9 (Universe on a disc). A universe on a disc is a triple (U,D,F ) where

(i) D is a closed disc.
(ii) U is a connected graph embedded in D, with 2 boundary vertices of degree 1, and all other

vertices of degree 4. The boundary vertices lie on ∂D, and the other vertices in the interior
of D.

(iii) F is a set of two distinct starred faces of U , namely the 2 faces of U adjacent to ∂D.
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Thus, a universe on a disc can be regarded as a Kauffman string universe, truncated to a disc. The
two unbounded faces of a string universe correspond to the two faces of a universe on a disc adjacent
to its boundary. These are the starred faces F . An example is shown in Figure 6 (right).

Regarding the disc D as a subset of R2, Definition 1.5 of state generalises to a universe on a disc
(we place markers at the corners of degree-4 vertices only), as does Definition 1.6 of transposition. The
states and transpositions on a Kauffman universe are naturally bijective with those on the correspond-
ing universe on a disc. We can then define a relation ≤ on states by Definition 1.7, and Kauffman’s
Clock Theorem then has the following equivalent formulation.

Theorem 1.10 (Kauffman’s Clock Theorem for universes on a disc). Let (U,D,F ) be a universe on
a disc, and S its set of states. Then, S equipped with ⩽, is distributive lattice. Moreover, a state S
is covered by another state S′ if and only if S′ is obtained from S by a counterclockwise transposition.

From a universe on a disc, or a string universe, one can recover a Kauffman universe in two ways,
by connecting the boundary vertices above or below the diagram. The starred faces then lie on either
side of this joined edge.

Universes, whether as in the original Definition 1.4 or in string form on a disc as in Definition 1.9,
can be unified by compactifying R2 or D into the sphere S2. Then a universe can be regarded as
a connected 4-valent graph embedded in S2, together with a choice of two distinct faces sharing an
edge, and notions of states, transpositions, and clock theorem can be formulated accordingly and
equivalently.

1.3. Generalised universes, states, and transpositions. This paper essentially consists of defin-
ing generalisations of the notions in Kauffman’s Clock Theorem, and showing that analogous Clock
Theorems hold. We now briefly give some idea of these generalisations and our approach, but as they
involve numerous details, precise definitions and technical justifications are deferred to later sections.

Our multiverses are designed as generalisations of universes on a disc. Thinking of the embedded
graph U in a Kauffman universe as a collection of intersecting strings, a multiverse generalises a
universe on a disc to more strings, embedded on more general surfaces.

To preserve notions of clockwise and counterclockwise, we require a multiverse to lie on an oriented
surface Σ. To preserve a notion of “exterior” face, we require Σ to have a designated outer boundary
component. On this Σ we embed a 4-valent graph U , similarly to a universe. To preserve the notion of
state as a choice of corner at each vertex, providing a bijection between vertices and unstarred faces,
we require an appropriate number of stars for this to be possible. A precise definition of multiverse is
given in Definition 3.7. A planar multiverse is simply a multiverse where Σ is planar. A state on a
multiverse is defined exactly as on a universe. In our figures, ∂Σ is usually drawn in thick black, and
the graph U is drawn in thin black. See for example Figure 1 through Figure 3.

While Kauffman transpositions adjust precisely two markers of a state, our notions of transpositions
may in general adjust arbitrarily many state markers. We consider certain curves we call transposition
contours, which are closed curves γ alternately passing through vertices and faces of the multiverse; a
precise definition is given in Definition 3.10. When γ passes through a vertex at v, it passes through
two corners at v, and our generalised transpositions move state markers from one of these corners to
the other. See Figure 12 (left). A Kauffman transposition can then be regarded as a particular type
of transposition along a contour: see Figure 9.

When the faces of U are simply connected, a transposition contour is essentially determined by
the vertices and corners through which it passes. However in general it turns out to be necessary to
“frame” transposition contours, “guiding” them to run along a choice of graph G on Σ dual to U ,
which we call a spine and which forms what we call a framing for the multiverse. A spine is a certain
subgraph of a generalised overlaid Tait graph; we define it precisely in Definition 3.14. In our figures,
spines are shown in green. See for example Figure 2 and Figure 3. Without framings, Theorem 1.1
fails, as we explain in Section 4.2, and Theorem 1.2 cannot be formulated.

On a planar multiverse, a transposition contour has an interior and exterior. The plane transpo-
sitions of Theorem 1.1 are transpositions along framed contours γ, where the state markers rotate
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Figure 9. A Kauffman transposition as a contour 2-transposition.

through the interior of γ, and satisfy a further condition relating to corners in the interior of γ; a
precise definition is given in Definition 4.2.

On a general multiverse, our transpositions are performed along subsurfaces Ψ of Σ bounded by
framed transposition contours, and certain boundary components of Σ. In a surface transposition, as
in Theorem 1.2, state markers again rotate along transposition contours, through the interior of Ψ;
again further conditions are required, relating to the interior of Ψ. A precise definition is given in
Definition 6.33.

Our proofs use several results of Propp [41], providing lattice structures on orientations of graphs,
and on matchings of plane bipartite graphs. A spine of a multiverse is naturally a bipartite graph, and
states of the multiverse correspond to matchings on the spine. Propp introduces a notion of twisting a
matching of a bipartite graph on an elementary cycle, which provides a covering relation in his lattice.
This notion of twisting leads eventually to the notion of plane transposition in Theorem 1.1, although
there are numerous subtleties in translating to multiverses.

From a spine of a multiverse G, we also construct a dual G⊥, similar to but more general than the
notion of duality for plane graphs. Matchings on G (and hence states of U) correspond precisely to
certain orientations on G⊥. Propp introduces a notion of pushing an accessibility class of an oriented
graph. This notion eventually leads to the notion of surface transposition in Theorem 1.2, although
again, numerous subtleties arise. In particular, surface transpositions preserve the circulation of a
state, which is a function keeping track of orientations around cycles of G⊥; a precise definition is
given in Definition 6.6. Theorem 1.2 yields a separate distributive lattice for each subset of the states
with a fixed viable circulation function. Thus, the set of states can be regarded as a “disconnected
lattice”, with one connected component for each viable circulation function.

1.4. Related work and context. Since its publication in 1983, Kauffman’s Clock Theorem has seen
numerous applications and generalisations. Kauffman states have become a standard notion in knot
theory. The literature on the topic is too vast for us to attempt a comprehensive summary here. We
merely mention some of the existing work on the topic, including those results which to our knowledge
are most closely related to this paper.

First, Kauffman states have been related to various related graph-theoretic concepts, often by using
various types of graphs associated to a knot diagram such as Tait graphs, and their spanning trees.
In 1986, Gilmer–Litherland [15] gave a simplified proof of Kauffman’s clock theorem, showing that
spanning trees of a certain Tait graph correspond bijectively to states, and devising an operation on
spanning trees corresponding to a transposition. In 2014, Cohen–Teicher [11] gave a formula for the
height of the clock lattice for a knot, by considering perfect matchings of an overlaid Tait graph. Our
arguments in this paper rely crucially on a generalised correspondence between states and matchings
on the overlaid Tait graph.

Second, Kauffman states have been used directly to prove knot-theoretic results. For instance,
Stoimenow [43] used the fact that the number of states of an alternating link is equal to its determinant,
to relate the determinant of an alternating link in S3 to its hyperbolic volume. Kaplan–Krcatovich–
O’Brien [19] used Kauffman states to give a bound on the resolution depth of the closure of strictly
positive braids. Madaus–Newman–Russell [28] used Kauffman states, and corresponding matchings on
an overlaid Tait graph, to study Dehn and Fox colourings of a knot and the related colouring modules.
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Third, certain knot polynomials may be expressed as a sum over Kauffman states. A state sum
formulation of the Alexander–Conway polynomial of a knot was given by Kauffman already in Formal
Knot Theory in 1983 [20], at the same time as the Clock Theorem. Various generalistaions of state
sums have been given. In 2019, Kidwell–Luse [24] related some terms of the Alexander polynomial of a
rational link to twist regions in a particular diagram for the knot, using transpositions within the clock
lattice. Most recently, in 2024 Gügümcü–Kauffman [16] constructed “mock Alexander polynomials”
for starred links and linkoids in surfaces, defined as sums over a generaliesd notion of states.

The Jones polynomial also has state sum formulations. Kauffman in 1987 [21] gave a state model
for the Jones polynomial, although using a more general notion of state; see also [22]. Thistlethwaite in
1987 [44] showed that the Jones polynomial of a link may be expressed as a sum over spanning trees of
a Tait graph. This spanning tree model for the Jones polynomial was extended to Khovanov homology
independently by Wehrli [47] and Champanerkar–Kofman [8]. Champanerkar–Kofman–Stoltzfus [9]
showed that these spanning trees correspond to certain spanning ribbon subgraphs of a ribbon graph.

Fourth, Kauffman states have become a standard tool in Heegaard Floer theory. Ozsváth–Szabó in
2003 [37] gave a description of the knot Floer homology chain complex where the generators are Kauff-
man states; they gave the states a multi-filtration in [38]. This can be regarded as a categorification of
the state sum model of the Alexander–Conway polynomial. Manion in [31] related the Heegaard dia-
grams used in knot Floer homology which yield Kauffman states, to other standard Heegaard diagrams
used in knot Floer homology. Kauffman–Silvero in 2016 [23] gave a detailed account of the relation-
ship between knot Floer homology and the Kauffman state sum model of the Alexander–Conway
polynomial. See also Ozsváth–Szabó’s 2018 overview [40].

Kauffman state generators for knot Floer homology have been widely used. For instance, Ozsváth–
Szabó used the Kauffman state generators to give a skein exact sequence for knot Floer homology [39].
Kauffman state generators were also used by Lidman–Moore [26] to classify pretzel knots with L-space
surgeries; by Varvarezos [46] to prove that 3-braid knots do not admit purely cosmetic surgeries; and
by Troung [45] to bound the dealternating number of a knot.

The relationship between Kauffman states and spanning trees of Tait graphs have also been used in
the Heegaard Floer context. For instance, Lowrance [27] used Kauffman state generators and spanning
trees of the Tait graph to give bounds on knot Floer width. Baldwin–Levine [1] gave a combinatorial
description of certain knot Floer homology groups in terms of spanning trees of Tait graphs.

More recently, in 2018 Ozsváth–Szabó introduced the “Kauffman states functor”, associating to a
knot the homology of a chain complex generated by Kauffman states, and considering type A and D
structures, in the sense of bordered Floer homology, associated to the upper and lower parts of a knot
diagram split along a horizontal half plane. This involves a generalised notion of “upper” Kauffman
states. Manion related the algebras involved to Khovanov–Seidel quiver algebras [29] and quantum
supergroup representations [30], and Manion–Marengon–Willis gave descriptions via path algebras on
quivers [33].

Fifth, and related to the Heegaard Floer applications, Kauffman states and related notions arise
in 3-dimensional contact topology. In [34], the second author discusses partial orders on objects
of a contact category as reminiscent of Kauffman’s clock theorem. In [18], the second author and
Kálmán showed that the number of states of a universe is equal to the number of isotopy classes of
tight contact structures on a sutured 3-manifold which is topologically a handlebody, and that the
trails corresponding to states have a natural interpretation as dividing sets on certain surfaces in the
handlebody.

Sixth, several generalisations of Kauffman’s theory have been made to singular links. Ozsváth–
Szabó [36] extended link Floer homology to oriented singular knots in S3, generalising the notion of
Kauffman states to singular knots. Fielder [14] extended Kauffman states to singular links and used
them to define a Kauffman state model of Jones and Alexander polynomials of singular links. Manion
[32] generalised the Kauffman states functor to singular crossings.
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Seventh, recently connections have been found to cluster algebras. In 2022 Bazier-Matte–Schiffler [5]
constructed, from a knot diagram (universe), a quiver representation, which provides a representation-
theoretic analogue of Kauffman states, and an associated cluster algebra. They show that the lattice
of Kauffman states is isomorphic to the lattice of submodules of the corresponding representation.

Eighth, and finally, several explicit generalisations of Kauffman states and the clock theorem have
been given.

In 2003, Murasugi–Stoimenow [35] generalised Kauffman states to planar even valence graphs,
defining an Alexander polynomial in this more general case.

In 2009, Roberts [42] considered knot Floer homology for string links in D2 × I. Considering these
as planar graphs in the unit square with boundary points, and related spanning forests, Roberts shows
that these are in bijective correspondence with generators of the Floer complex for the string link, and
proves a generalised version of Kauffman’s clock theorem in this context, extending spanning forests
into a spanning tree to which Kauffman’s clock theorem applies.

In 2014, Cohen and Teichner [10, 11] showed how to associate a discrete Morse function to a
Kauffman state on a given knot diagram in the plane. These can be regarded as perfect matchings on
the balanced Tait graph. Celoria–Yerolemou subsequently [7] proved several results about such states
and moves on them, including a generalised clock theorem involving matchings of the overlaid Tait
graph, and “click” and “clock” moves.

In 2014, Bao [2] generalised the construction of Heegaard Floer homology for a singular knot to
certain bipartite graphs embedded in S3, and defined states on certain graph diagrams in S2, using
used them to define a state sum formula for a generalised Alexander polynomial.

In 2019, Zibrowius [48] studied tangles in S3, defining generalised Kauffman states on them. These
generalised states are a special case of states defined in this paper; both are straightforward generali-
sations of Kauffman’s definition. On such tangles, Zibrowius defined an Alexander polynomials, with
a state sum formulation, as well as a Heegaard Floer invariant. He also proved a generalised clock
theorem in this context; however the operations used on states there do not correspond precisely to
any type of transpositions defined in this article.

In 2020, Bao–Wu [3] introduced an Alexander polynomial for MOY graphs, generalised Kauffman
states to such graphs, and defined an Alexander polynomial as a state sum. Subsequently [4] they
related this polynomial to a sum over spanning trees.

In 2023, Celoria [6] constructed a filtration on the simplicial homology of a finite simplicial complex
using bi-colourings of its vertices, closely related to Kauffman states. Applied to a knot diagram in
the plane, one obtains matchings on the overlaid Tait graph.

Perhaps most closely related to our approach is the 2018 work of Hine–Kálmán [17]. They con-
sider 3-coloured triangulations of the sphere and torus, also known as trinities, together with certain
matchings on such objects, generalising Kauffman states, and certain moves between them, generalis-
ing transpositions. The resulting set of states is somewhat different from ours. They show that the set
of states and moves on a planar trinity is a connected distributive lattice. For a toric trinity, the set of
states may have multiple components, some of them cyclic, but acyclic components form distributive
lattices.

1.5. Structure of this paper. In Section 2, we recall necessary background results from lattice
theory and the work of Propp which forms the basis for our two generalisations of the clock theorem.
For Propp’s theorem on orientations of graphs, we require notions of accessibility classes, circulations,
pushing. For Propp’s theorem on matchings of plane bipartite graphs, we require notions of elementary
cycles, alternating paths, and positive and negative cycles. We also slightly generalise Propp’s results,
as we need them in the slightly more general context of disconnected graphs.

In Section 3, we introduce our notion of multiverses, and some general notions about multiverses
required for our proofs. These include notions which have already been mentioned, such as Tait graph,
spine, reduced spine, ane dual of spine, as well as several others.

In Section 4 we specialise to planar multiverses and prove Theorem 1.1, applying Propp’s theorem
on matchings of plane bipartite graphs.
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In Section 5 we specialise further to universes (on a disc), showing that Theorem 1.1 reduces to
Kauffman’s Clock Theorem in this case, so that we have a bona fide generalisation.

Finally, in Section 6 we prove Theorem 1.2, applying Propp’s theorem on orientations of graphs.

1.6. Acknowledgments. This article derives from part of the first author’s doctoral thesis, super-
vised by the second author. The second author is supported by Australian Research Council grant
DP210103136. The second author thanks Tamás Kálmán for introducing him to the Kauffman Clock
Theorem, and Dionne Ibarra for pointing out some relevant literature.

2. Background

2.1. Lattices. We now introduce notions from the theory of orders and lattices required for our results.
These notions are all standard. We follow [13] in the following definitions. All ordered sets and lattices
we consider are finite.

Let L be a partially ordered set. We denote the partial order relation by ⩽. We write x < y if x ⩽ y
and x ̸= y.

Definition 2.1 (Cover). We say x is covered by y, or equivalently y covers x, if x ⩽ y, and x ⩽ z < y
implies z = x. We write x⋖ y.

If L is finite (as in all cases we consider), x ⩽ y if and only if there exists a finite sequence x0, . . . , xn

in L such that x = x0 ⋖ x1 ⋖ · · ·⋖ xn = y, for some n ⩾ 0.
We depict lattices by Hasse diagrams. Each element of a lattice L is drawn as a point, and points

are joined by an arrow when one element covers another; if x⋖ y then an arrow points from x to y.

Definition 2.2 (Lattice). A lattice is a partially ordered set such that every finite non-empty subset
has a least upper bound, or join, and a greatest lower bound, or meet.

We denote the join of two elements x, y as x ∨ y and the meet as x ∧ y.

Definition 2.3 (Distributive lattice). A lattice is distributive if any elements x, y, z satisfy the dis-
tributive law

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

This distributive law is equivalent to its dual (see e.g. [13, lem. 4.3]):

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Definition 2.4. A map of partially ordered sets ϕ : L −→ L′ is an isomorphism if it is bijective and,
for all x, y ∈ L, x ⩽ y if and only if ϕ(x) ⩽ ϕ(y).

If ϕ is an isomorphism L −→ L′, then x ⋖ y iff ϕ(x) ⋖ ϕ(y). Moreover, if one of L or L′ has the
further structure of a lattice or distributive lattice, then so does the other. If L and L′ are lattices,
then for all x, y ∈ L we have ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y) and ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y). Thus, we can also
refer to such a ϕ as a lattice isomorphism or distributive lattice isomorphism as appropriate.

Definition 2.5 (Product of partial orders and lattices). Let L1, . . . , Ln be partially ordered sets.

(i) The product partial order on the Cartesian product of sets L1 × · · · × Ln is given by

(x1, . . . , xn) ⩽ (y1, . . . , yn) iff each xi ⩽ yi in Li.

(ii) If L1, . . . , Ln are also distributive lattices, then L1 × · · ·Ln is also a distributive lattice, with

(x1, . . . , xn) ∨ (y1, . . . , yn) = (x1 ∨ y1, . . . , xn ∨ yn)

(x1, . . . , xn) ∧ (y1, . . . , yn) = (x1 ∧ y1, . . . , xn ∧ yn).

See e.g. [13, sec. 1.25, 2.15, 4.7]. In L1 × · · · × Ln, note that (x1, . . . , xn)⋖ (y1, . . . , yn) if and only
if xj ⋖ yj for a unique j, and xi = yi for all i ̸= j.
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2.2. Cycles and directed cycles in graphs. We introduce various precise notions needed for our
arguments. We follow Propp [41] but introduce some further elaborations. Propp works with graphs
without loops, but we consider graphs with loops. The results carry through without much difficulty.

Let X be a finite graph, possibly disconnected, possibly with multiple edges and loops. Let V
denote its set of vertices. Each edge of X can be oriented two ways (even if it is a loop). An oriented
edge has an inital vertex a ∈ V and a terminal vertex b ∈ V ; we say e is oriented or directed from a
to b. Following Propp [41], we can denote an edge e directed from a to b by (e, a, b). (However, this
notation can be misleading for loops: when e is a loop at v ∈ V , e has two orientations, but they are
both denoted (e, v, v).) The set of directed edges of X is denoted

#»

E. If #»e ∈ #»

E then we denote by − #»e
the same edge with the opposite orientation.

Definition 2.6 (Directed paths and cycles). [41]

(i) A directed path in X is a sequence of n directed edges of X, of the form

(2.7) (e1, v0, v1), (e2, v1, v2), . . . , (en, vn−1, vn)

for n ≥ 1. The vertices v0 and vn are respectively called the initial and terminal vertices. We
also allow null directed paths where n = 0, consisting of a single vertex v0.

(ii) A directed cycle is a directed path whose initial and terminal vertices coincide. The set of
directed cycles in X is denoted CX or just C .

(iii) A directed cycle is simple if all its directed edges are distinct.
(iv) A directed cycle is vertex-simple if all its vertices v1, . . . , vn−1, vn = v0 are distinct.

We consider a null directed path as a directed cycle, with initial and terminal vertex v0, and no
edges; we refer to null directed cycles accordingly. A null directed cycle is vacuously simple. A directed
cycle of length 1 consists of an oriented loop. If X has no loops, a non-null directed cycle has length
at least 2. As directed cycles in general need not be simple, for any graph X containing at least one
edge, CX is infinite.

Note that a simple directed cycle may visit the same edge twice, but not more than twice. If a
simple directed cycle visits the same edge twice, the edge must be traversed in one direction, then the
other direction. A loop traversed twice, once in each orientation, is a simple directed cycle. A simple
directed cycle may visit the same vertex many times.

Note also that a vertex-simple directed cycle is simple. A directed cycle consisting of a single
oriented loop is vertex-simple. If a vertex-simple directed cycle visits an edge more than once then it
has length 2 and traverses a single non-loop edge back and forth.

We will also be interested in cycles without orientations. Consider a non-null directed cycle C in
X, as in (2.7), with vn = v0. We consider the following operations on C:

(i) reversal, which replaces

#»e1,
#»e2, . . . ,

# »en with − # »en, . . . ,− #»e2,− #»e1;

(ii) cyclic permutation, which replaces

#»e1,
#»e2, . . . ,

# »en with #»ej ,
#      »ej+1, . . . ,

# »en,
#»e1,

#»e2, . . . ,
#      »ej−1

for some 2 ≤ j ≤ n.

Clearly directed cycles obtained from C by reversal or cyclic permutation cover the same edges, in the
same or reversed cyclic order. Reversal and cyclic permutation generate an equivalence relation on
directed simple cycles, which we denote ∼.

Definition 2.8 (Undirected cycle). An undirected cycle, or just cycle, is an equivalence class of directed
cycles under the equivalence relation ∼.

We consider null directed cycles to form singleton equivalence classes and we accordingly obtain
null cycles. Any cycle has a well-defined length, which is 0 precisely when the cycle is null. The cycles
of length 1 are in bijection with loops. In a non-null cycle, each edge has two adjacent edges in the
cycle.
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2.3. Orientations of graphs, accessibility, circulation and pushing. Again let X be a finite
graph, possibly disconnected, which may have multiple edges or loops. Again, we slightly generalise
Propp’s definitions in [41] to include graphs with loops.

Definition 2.9. [41] An orientation on X is a choice R of orientation on each edge of X. The pair
(X,R) forms an oriented graph.

When we have a directed path on an oriented graph, the orientations on edges arising in the directed
path may agree with or differ from those arising from R, as in the following definition (also from [41]).

Definition 2.10 (Forward, backward paths and cycles). Let (X,R) be an oriented graph.

(i) Let #»e be an orientation on an edge e of X. If the orientation of #»e agrees with the orientation
of e in R, then #»e is forward relative to R; otherwise, #»e is backward relative to R.

(ii) A directed path on X consisting purely of forward (resp. backward) edges relative to R is
called a forward path (resp. backward path).

(iii) A directed cycle on X consisting purely of forward (resp. backward) edges relative to R is
called a forward cycle (resp. backward cycle).

We allow forward and backward paths and cycles to be null. We regard a null directed path or cycle
as vacuously both forward and backward.

Definition 2.11 (Accessibility). [41] Let x and y be vertices of an oriented graph (X,R).

(i) y is accessible from x (relative to R) if there is a (possibly null) forward path from x to y.
(ii) x and y are mutually accessible (relative to R) if y is accessible from x and x is accessible

from y.

Thus, x and y are mutually accessible iff there is a (possibly null) forward path from x to y and
vice versa. It can be seen that mutual accessibility is an equivalence relation. Indeed, x and y are
mutually accessible (with respect to R) if and only if there is a (possibly null) forward cycle passing
through x and y. The resulting equivalence classes are called accessibility classes.

Definition 2.12 (Circulation). [41] Let C be a directed cycle in (X,R).

(i) The set of forward (resp. backward) edges of C is denoted C+
R (resp. C−

R ).

(ii) The circulation of R around C is
∣∣∣C+

R

∣∣∣−∣∣∣C−
R

∣∣∣.
Thus a directed cycle is forward precisely when its circulation is equal to its length, and backward

precisely when its circulation is equal to its negative length.

Definition 2.13 (Circulation function). [41]

(i) The circulation function, or just circulation, of an orientationR onX is the function cR : CX −→
Z which assigns to each directed cycle C the circulation of R around C.

(ii) A function c : CX −→ Z is a feasible circulation function if it is the circulation function of
some orientation on X.

When the orientation is clear, we simply write c rather than cR. Note that any feasible circulation
function sends all null directed cycles to 0.

Any directed cycle has a well-defined homology class in H1(X), where we regard the graph X as a
1-dimensional cell complex in the standard way. Two directed cycles in the same homology class have
the same circulation, and cR in fact extends to an abelian group homomorphism H1(X) −→ Z.

As we will see, in general there can be many orientations on X with the same circulation function.

Lemma 2.14. Let R,R′ be orientations on X which have the same circulation function. Then

(i) the accessibility classes of R are identical to the accessibility classes of R′; and
(ii) the forward cycles of R are identical to the forward cycles of R′.

Proof. A directed cycle is forward if and only if its circulation is equal to its length. Hence R and R′

have the same forward cycles. Two vertices lie in the same accessibility class if and only if they lie in
a forward cycle. □
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Thus, if C is a forward cycle for an orientation with circulation c, then C is a forward cycle for
every orientation with circulation c. In particular, every directed edge of C lies in every orientation R
with circulation c. Such directed edges are “forced” by the circulation c in the following sense.

Definition 2.15 (c-forced and c-forbidden directed edges). Let #»e ∈ #»

E and let c be a feasible circulation
function.

(i) #»e is c-forced if #»e belongs to every orientation of X with circulation c.
(ii) #»e is c-forbidden if #»e does not belong to any orientation of X with circulation c.

Clearly, #»e is c-forced if and only if − #»e is c-forbidden. The above lemma also motivates the following
definition.

Definition 2.16. Let c be a feasible circulation function on X.

(i) The set of orientations on X with circulation c is denoted Rc
X .

(ii) An accessibility class of c is an accessibility class of some (hence any) R ∈ Rc
X .

Note in this definition that as c is feasible, Rc
X is nonempty. When the graph X is understood we

simply write Rc.
The following is Proposition 4 of [41]. Propp only needed it for graphs without loops; we slightly

extend it to graphs with loops.

Proposition 2.17. Let c be a feasible circulation function on X, and #»e a directed edge of X. The
following statements are equivalent.

(i) #»e is c-forced or c-forbidden.
(ii) The endpoints of #»e belong to the same accessibility class of c.

Proof. If #»e is not a loop, then Propp’s proof from [41] applies. If #»e is a directed loop, then it forms
a directed cycle, which c sends to 1 or −1, and #»e is c-forced or c-forbidden accordingly. So (i) holds,
and of course the endpoints of #»e , being equal, lie in the same accessibility class. □

For an accessibility class K, we denote its complement of K in the vertex set of X by K̊.

Definition 2.18 (Maximal and minimal accessibility classes). [41] An accessibility class K of an
oriented graph (X,R) is

(i) maximal if, for each edge e connecting an x ∈ K to a y ∈ K̊, R orients e from y to x;

(ii) minimal if, for each edge e connecting an x ∈ K to a y ∈ K̊, R orients e from x to y.

We also say K is maximal or minimal relative to R.

Thus, K is maximal when R orients edges from K̊ to K, and minimal when R orients edges from
K to K̊.

Definition 2.19 (Pushing). [41] Let K be an accessibility class of an oriented graph (X,R).

(i) If K is maximal, the operation of reversing the directed edges between K and K̊ is called
pushing down.

(ii) If K is minimal, the operation of reversing the directed edges between K and K̊ is called
pushing up.

Thus, pushing down on K results in a new orientation R′ on X with respect to which K is a minimal
accessibility class. Similarly, pushing up on K results in a new orientation with respect to which K is
maximal. It is not difficult to see that such R and R′ have the same circulation function, so if R ∈ Rc

then R′ ∈ Rc. By Lemma 2.14 then R and R′ then have the same accessibility classes.

2.4. Lattice structure on orientations of graphs. Again let X be a graph, possibly with multiple
edges and loops, but now assume that X is connected. Let c be a feasible circulation function on X, so
Rc is nonempty. We fix an accessibility class K0 of c, which we call unpushable; all other accessibility
classes are pushable.
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Definition 2.20. Let R,R′ ∈ Rc. We write R ⩽ R′ if there exists a sequence of orientations
R = R0, R1, . . . , Rn = R′, all in Rc, such that each Rj+1 is obtained from Rj by pushing up on a
pushable minimal accessibility class of c.

Here the accessibility classes of all Rj , including R and R′, are all identical to the accessibility
classes of c.

We now state Propp’s theorem on orientations of graphs from [41]. Propp only considered graphs
without loops, and we provide a very slight generalisation.

Theorem 2.21 (Propp [41]). Let X be a finite connected graph, possibly with multiple edges and loops.
Let c a feasible circulation function, and K0 a fixed unpushable accessibility class of Rc. Then (Rc,⩽)
is a distributive lattice.

Moreover, for R,R′ ∈ Rc, R′ covers R (i.e. R⋖R′) if and only if R′ is obtained from R by pushing
up on a pushable minimal accessibility class of c.

We call this lattice the Propp lattice of X with respect to c and K0.
We briefly outline Propp’s proof of this theorem, under the assumption that X has no loops. Propp

showed that for any feasible circulation function c, there exists a function F :
#»

E → [0, 1] with the
following properties:

(i) For any #»e ∈ #»

E, F ( #»e ) + F (− #»e ) = 1.
(ii) For any C ∈ C ,

∑
#»e ∈C F ( #»e ) = 1

2 (|C|+ c(C)).

(iii) If #»e is c-forced then F ( #»e ) = 1, and if #»e is c-forbidden then F ( #»e ) = 0.
(iv) If #»e is neither c-forced nor c-forbidden, then 0 < F ( #»e ) < 1.

Fixing a vertex v∗ ∈ K0, and an orientation R with circulation c, Propp showed that one can then
define a height function HR : V → R such that

(i) HR(v
∗) = 0

(ii) For #»e = (e, v, w) ∈ #»

E,

(2.22) HR(w)−HR(v) =

{
1− F ( #»e ) if #»e ∈ R,

−F ( #»e ) if #»e /∈ R.

Moreover, every function H : V → R satisfying these conditions is the height function HR of some
R ∈ Rc.

Height functions HR have the property that, for all adjacent vertices v and w, HR(v) = HR(w) if
and only if v and w belong to the same accessibility class. Moreover, for any R,R′ ∈ Rc and any
v ∈ V , HR(v)−HR′(v) ∈ Z.

One can define a partial order on height functions, and hence on orientations, in a standard way:
for R,R′ ∈ Rc, let R ⩽ R′ iff HR(v) ⩽ HR′(v) for all v ∈ V .

Propp proved that if HR and HR′ are two height functions, then so are their meet HR ∧HR′ and
their join HR ∨HR′ , where

(H1 ∧H2)(v) = min(H1(v), H2(v))

(H1 ∨H2)(v) = max(H1(v), H2(v))

These meet and join operations in fact provide the claimed distributive lattice structure on (Rc,⩽).

Proof of Theorem 2.21. The same proof as outlined above applies with a few further details. Let X
be X with loops removed, C the set of directed cycles in X, and c the restriction of c to C . So X is a
graph with a circulation c to which Propp’s proof directly applies.

A directed loop #»e forms a directed cycle. For any orientation R, #»e is either forward or backward
with respect to R, and cR(

#»e ) = ±1 accordingly. Thus c( #»e ) = ±1 and #»e is c-forced or c-forbidden

accordingly. Hence we can define a function F :
#»

E → [0, 1], defined as in Propp’s proof for X and
c, and additionally setting F ( #»e ) = 1 or 0 for directed loops accordingly as they are c-forced or c-
forbidden. Combining Propp’s proof with the definition on directed loops, the map F immediately
satisfies conditions (i), (iii) and (iv) above. To see (ii), take a C ∈ C , and note that it consists of a
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(possibly null) directed cycle C ∈ C , together with some number of loop edges. By Propp’s proof, (ii)
holds for C, and by our construction (ii) holds for loops. Both sides of the equation in (ii) are additive
under concatenating cycles, so (ii) holds for C.

Given an orientation R with circulation c, let R be its restriction to X. We can then again define
a height function HR : V −→ R by applying Propp’s proof to X and R. Condition (i) for HR then
immediately holds, as does (ii) for all non-loop directed edges #»e . When #»e is a directed loop at a
vertex v, both sides of (2.22) are 0 since F ( #»e ) = 1 or 0 accordingly as #»e is c-forced or c-forbidden,
i.e. #»e ∈ R or #»e /∈ R. Since the height function HR coincides with the height function HR for X, the
height functions again yield the desired distributive lattice structure. Indeed, the distributive lattice
structures on Rc

X and R
c
X are isomorphic. □

2.5. Embedded graphs. We will need to consider numerous embedded graphs, so although the
notion is standard, we define them precisely as we need. We only consider finite graphs. So let X be
a finite graph, possibly disconnected, possibly with multiple edges and loops. We can realise X as a

1-dimensional cell complex, which we denote X̃. As X is finite, X̃ is compact.

Definition 2.23 (Graph embedding). Let Σ be a surface. A graph embedding of X in Σ is a proper

embedding ϕ : X̃ ↪→ Σ.

Note for the purposes of this definition, Σ need not be compact, orientable, or connected, though
we will impose such conditions later on. By proper here we mean that only vertices of X may map to
boundary points of Σ; equivalently, that the interior of every arc of X must lie in the interior of Σ.
(Vertices of X may map to boundary points or interior points of Σ.) Under such an embedding, each
vertex of X maps to a distinct point of Σ, and each edge of X maps to a simple arc connecting its
two endpoints. Any two such arcs intersect only at common endpoints as prescribed by the incidence
relations of X.

The graph U arising in a universe on a disc (Definition 1.9) is an embedded graph in the disc D.
Similarly, the graph U arising in a Kauffman universe (Definition 1.4) is an embedded graph in R2,
also known as a plane graph.

We use a standard notion of isotopy for embedded graphs, as in e.g. [12, 25].

Definition 2.24. Let ϕ0, ϕ1 : X̃ ↪→ Σ be two graph embeddings. Then ϕ0, ϕ1 are isotopic if there

exists a continuous family of graph embeddings ϕt : X̃ ↪→ Σ for t ∈ [0, 1] from ϕ0 to ϕ1.

Definition 2.25 (Faces, 2-cell embedding). Let ϕ : X̃ ↪→ Σ be a graph embedding.

(i) The faces of ϕ are the connected components of Σ \ ϕ(X̃).
(ii) ϕ is a 2-cell embedding if each face of ϕ is homemorphic to a disc.

The image of ϕ is a homeomorphic copy of X̃ in Σ. In practice we abuse notation by referring to

X̃ and its embedded image as X, referring to the images of vertices in Σ as vertices of X, referring to
the images of edges as edges of X, and referring to the faces of ϕ as faces of X.

Definition 2.25 generalises the standard notion of face arising for plane graphs and universes, as in
the introduction.

2.6. Boundaries of faces and boundary cycles. We now consider boundaries of faces in embedded
graphs; again this notion is quite standard, but since there are some subtleties, we define them precisely
as we need.

Let G be a graph embedded on an orientable surface Σ. We assume G is finite, but may be discon-
nected and may have multiple edges and loops. We assume Σ is compact, and may have boundary.
For now we also assume that G is embedded in the interior of Σ.

Let f be a face of G. Then f is an open subsurface of Σ, and its closure in Σ is obtained by
adding finitely many boundary components. A boundary component of f may consist of edges of G,
an isolated vertex of G, or a circle of ∂Σ.

Consider a boundary component of f consisting of edges of G. By walking around this boundary
component, from a chosen vertex, in a chosen direction, we obtain a directed cycle C. Note this may
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Figure 10. A face with boundary visiting an edge twice.

involve walking along an edge twice. However, as Σ is orientable, if C visits an edge e of G twice, then
e is visited in opposite directions: see Figure 10. Thus C is a simple directed cycle (Definition 2.6).
However C need not be vertex-simple. A boundary component consisting of an isolated vertex of G
can also be regarded as a null cycle, leading to the following definition.

Definition 2.26 (Boundary cycle). Let f be a face of G.

(i) A boundary directed cycle of f is a simple directed cycle C in G, obtained by walking around
a boundary component of f , from a chosen vertex, in a chosen direction.

(ii) A boundary cycle of f is the simple (undirected) cycle C represented by a boundary directed
cycle of f .

A null boundary cycle (directed or undirected) arises precisely when G has an isolated vertex.
In general, a face f may have many boundary components. Only those boundary components which

lie along G form boundary cycles. A boundary component of f along G will in general yield many
boundary directed cycles, as C may start at an arbitrary vertex of f and proceed in either direction
around the boundary of f . These boundary directed cycles form an equivalence class under ∼ as in
Definition 2.8. Hence there is a unique boundary cycle C at each boundary component of f which lies
along G.

2.7. Boundary and elementary cycles of plane graphs. We now consider Propp’s notion of
elementary cycle in [41]. However, Propp only considers graphs G which are connected and without
loops, so we need a slight generalisation.

Let G be a finite graph, possibly disconnected, possibly with multiple edges and loops. We now
suppose G is embedded in R2, i.e. G is a plane graph.

The faces of G now all have genus zero. Each face has finitely many boundary components. Some
faces may be nested inside each other. There is precisely one unbounded face.

A bounded face f of G has a distinguished outermost boundary component. Possibly after a
small truncation of f to avoid issues with double edges as in Figure 10, the closure f of f in R2

has boundary consisting of disjoint simple closed curves, one of which is outermost. By the Jordan
curve theorem, each of these simple closed curves has an interior and exterior in R2. The outermost
boundary component is distinguished by the fact that it contains f in its interior.

Definition 2.27 (Outer boundary, elementary cycle). Let f be a bounded face of G.

(i) The outer boundary of f is the unique boundary component of f which contains f in its
interior.

(ii) The outer boundary cycle of f is the simple (undirected) cycle C of G represented by any
boundary directed cycle around the outer boundary of f . We say C encircles f .

(iii) An elementary cycle of G is an outer boundary cycle of some non-outer face of G.

Note that outer boundary cycles and elementary cycles are non-null.
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A directed cycle around the outer boundary of f encircles f in a clockwise or counterclockwise
direction. A boundary (undirected) cycle does not have an orientation. Elementary cycles can thus
be oriented clockwise or counterclockwise.

Each non-outer face has a unique elementary cycle encircling it, and each elementary cycle encircles
a unique non-outer face. Hence non-outer faces and elementary cycles are naturally in bijection.

When G is connected (as in Propp [41]), then each bounded face of G is homeomorphic to a disc,
and the unbounded face is homeomorphic to a punctured disc. Each bounded face then has a single
boundary component consisting of edges of G, yielding an elementary cycle.

Lemma 2.28. Let G be a finite plane graph (possibly with multiple edges and loops), with connected
components G1, . . . , Gn. The set of elementary cycles of G is the disjoint union of the sets of elementary
cycles of the Gj.

In other words, each elementary cycle of a Gj is an elementary cycle of G, and each elementary
cycle of G is an elementary cycle of precisely one Gj .

Proof. Let C be an elementary cycle of G. Then C is the outer boundary cycle of some non-outer face
f of G. The cycle C lies in some component Gj of G, and f forms part of some non-outer face f of

Gj . Indeed, C is also the outer boundary cycle of f . So C is an elementary cycle of Gj . (Clearly C is
not an elementary cycle of any other component of G.)

Conversely, suppose C is an elementary cycle of Gj . Then C is the outer boundary cycle of a
non-outer face f of Gj . This f is a union of faces of G, and one of these faces of G is adjacent to C,
with C as its outer boundary component. Thus C is an elementary cycle of G. □

2.8. Matchings, alternating paths and cycles. We again follow Propp [41] in the following def-
initions, which he considered for connected graphs without loops. Generalising them to our context
involves some subtleties.

So, let X be a finite graph, possibly disconnected, possibly with multiple edges and loops.

Definition 2.29 (Matching). A perfect matching, or just matching, M on X is a set of edges
{e1, . . . , en} of X such that the 2n endpoints of the ej include every vertex of X precisely once.
The set of all matchings on X is denoted MX .

Thus, if X has a matching with n edges, then X has precisely 2n vertices. A loop can never occur
in a matching. When X has no loops, a matching may be defined as a set M of of edges of X such
that each vertex belongs to precisely one edge of M .

The following notion will be useful in the sequel.

Definition 2.30 (Forced and forbidden edges). An edge of X is

(i) forced if it appears in all M ∈ MX ;
(ii) forbidden if it appears in no M ∈ MX .

Definition 2.31 (Alternating paths and cycles). Let M ∈ MX . A directed path, directed cycle, or
undirected cycle in X is alternating relative to M if it is non-null, and its edges alternately do and do
not belong to M .

Note that while undirected cycles do not have a direction, each edge does have two well-defined
adjacent edges, hence speaking of edges alternately belonging and not belonging to M makes sense.
An alternating cycle must have positive even length.

A loop can never occur in an alternating cycle. For if a loop e based at a vertex v were in an
alternating cycle C for a matching M , then e cannot be in M , so both edges in C adjacent to e must
be in M , but both these edges are adjacent to v, so we have two distinct endpoints of edges of M equal
to v, contradicting M being a matching.

An alternating cycle may be represented by a directed cycle

(2.32) (e1, v0, v1), . . . , (e2n, v2n−1, v2n = v0) where ej ∈ M for j odd, ej /∈ M for j even.
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Figure 11. A non-vertex-simple alternating cycle. Thick edges denote edges of the matching.

Given an alternating cycle A relative to a matching M , consider the operation of removing from M
all edges which lie in the cycle A, and adding to M the edges of A which do not belong to M . In the
notation of (2.32), we remove the ej with j odd, and add the ej with j even. This replaces M with a
different set M ′ of edges of M . In other words, regarding A as a set of edges, we remove A ∩M from
M and add A \M , so that

(2.33) M ′ = (M \A) ∪ (A \M) = M +A, or M ′ = M \ {ej | j odd} ∪ {ej | j even}.

Here M +A denotes the the boolean addition of M and A.
Note that in general an alternating cycle need not be vertex-simple: see e.g. Figure 11. Moreover,

for a general alternating cycle A, such as in Figure 11, the set of edges M ′ described above need not
be a matching. The following lemma describes when M ′ is a matching.

Lemma 2.34. Let M ∈ MX and let A be a simple directed cycle of X, alternating relative to M , as in
(2.32). Let M ′ = M +A as in (2.33). Then M ′ is a matching on X if and only if A is vertex-simple.

Proof. Suppose that A is not vertex-simple, so two vertices of A coincide. By a cyclic permutation if
necessary, we may assume that the two coincident vertices are v0 and vk for some k ̸= 0 mod 2n (we
take all indices mod 2n). Note also k ̸= ±1 mod 2n, since v0 = v±1 would imply e0 or e1 being a loop,
and as noted above loops cannot occur in A.

Each vertex v2j and v2j+1 of A belongs to the edge e2j+1 of M . In particular, each vertex vj in A
belongs to an edge of the matching in A, which is either ej or ej+1.

The vertex v0 lies in the edge e1 of M , which is directed (e1, v0, v1) in A. Similarly, vk lies in the
edge el of M , where l is the odd element in {k, k + 1}. In A, accordingly as l = k or k + 1, el appears
in A directed as (ek, vk−1, vk) and (ek+1, vk, vk+1). As k ̸= 0, 1 mod 2n, we have k, k + 1 ̸= 1, hence
l ̸= 1 mod 2n. So the directed edges (el, vl−1, vl) and (e1, v0, v1) are at different positions in A. But
as M is a matching, e1, el ∈ M , and v0 coincides with vl−1 or vl, the edges e1 and el are the same
edge. As A is simple, we conclude that (e1, v0, v1) and (el, vl−1, vl) form the same edge with opposite
directions. In particular k = l, k is odd, and v1 = vk−1.

We now consider proceeding from e1 along A in the direction of e2, e3, . . . up to ek; and proceeding
from ek along A in the direction of ek−1, ek−2, . . . up to e1. Note that these directed paths commence
from e1 = ek in the same direction. We claim these directed paths cannot coincide. Indeed, if they
coincide for m+ 1 edges, where k = 2m+ 1, then we have equalities of directed edges

(e1, v0, v1) = (ek, vk, vk−1), (e2, v1, v2) = (ek−1, vk−1, vk−2), . . . , (em+1, vm, vm+1) = (em+1, vm+1, vm),

so that vm = vm+1 and em+1 is a loop, contradicting the fact that loops cannot occur in alternating
cycles.

Thus, there exists a least positive integer c such that e1+c ̸= ek−c. Indeed, this c satisfies 1 ≤ c < m,
so 1 + c < k − c. Then (ec, vc−1, vc) = (ek−c+1, vk−c+1, vk−c), but e1+c ̸= ek−c. Thus vc = vk−c. As
k is odd, 1 + c = k − c mod 2. Thus either both e1+c, ek−c ∈ M or both e1+c, ek−c ∈ M ′. But these
two edges have in common the vertex vc = vk−c. So M and M ′ cannot both be matchings; as M is a
matching, then M ′ is not.
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For the converse, suppose A is vertex-simple. If any undirected edges of A coincide, then A has
length 2 and consists of the same edge traversed in both directions, in which case e1 = e2, so both
e1, e2 ∈ M or e1, e2 /∈ M , contradicting A being alternating. Thus all 2n edges of A are distinct, and
since M matches the 2n distinct vertices of A in pairs, so too does M ′. □

Definition 2.35 (Twisting). The operation of replacing a matching M with a matching M ′ = M +A
as above, where A is a vertex-simple alternating cycle relative to M , is called twisting M at A.

2.9. Matchings on plane bipartite graphs, positive and negative cycles. We again follow
Propp [41] in the following definitions, which generalise to our context without difficulty.

Let G be a finite plane graph, possibly disconnected, possibly with multiple edges and loops. As
in Section 2.7, G has a well-defined elementary cycles. Let M be a matching on G. We consider
elementary cycles which are alternating with respect to M .

We now additionally assume that G is bipartite, with vertices coloured black and white. Then every
cycle in G has even length, and G has no loops. The matching M provides a bijection between the
black and white vertices of G. Consider an alternating elementary cycle A relative to M encircling a
face f .

Lemma 2.36. Let M ∈ MG, and let A be an alternating elementary cycle of G relative to M . Then
A is vertex-simple and all its edges are distinct.

Proof. Represent A with a directed cycle as in (2.32). If A contains a repeated edge e then, as A is
simple, e is visited twice, once in each direction. As G is bipartite, one visit proceeds from a white to
black and one visit from a black to white vertex. Thus the two edges ej , ek of A visiting e have j, k
of opposite parity. But ej ∈ M precisely when j is odd, so e is simultaneously in and not in M , a
contradiction.

Thus A has all distinct edges. The proof of Lemma 2.34 shows that if two vertices of A coincide,
then two edges coincide also. Thus A has distinct vertices. □

Thus, by Lemma 2.34 we can twist a matching M ∈ MG at an alternating elementary cycle A and
obtain another matching M ′ = M +A.

Combining the structures of bipartite colouring and alternating matching, we endow elementary
cycles with orientations as follows.

Definition 2.37 (Positive, negative cycle). [41] Let M ∈ MG, and let A be an alternating elementary
cycle relative to M encircling a face f . Direct the edges of A that belong to M (which we denote
A ∩ M) from their black vertices to their white vertices. These edges then either all encircle f in a
clockwise direction, or all encircle f in a counterclockwise direction.

(i) A is a positive cycle relative to M if A ∩M encircles f in the counterclockwise direction.
(ii) A is a negative cycle relative to M if A ∩M encircles f in the clockwise direction.

If we twist a matching M at a positive cycle A and obtain a matching M ′, then A becomes negative
relative to M ′. Similarly, if A is negative relative to M , then A is positive relative to M ′.

Definition 2.38 (Twisting up and down). [41] The operation of twisting a matching M at an alter-
nating elementary cycle A to obtain a matching M ′ is called

(i) twisting down, if A is positive relative to M (hence negative relative to M ′);
(ii) twisting up, if A is negative relative to M (hence positive relative to M ′).

We say M ′ is obtained from M by twisting up/down at A, or at f , where f is the face encircled by A.

Thus twisting down makes a positive cycle negative, and twisting up makes a negative cycle positive.
Note that twisting up and down can only happen at a face f which is non-degenerate, in the sense

that the elementary cycle along its outer boundary is vertex-simple. Otherwise, by Lemma 2.36,
twisting will not yield a matching.

As G has only finitely many faces, it has only finitely many elementary cycles, and hence from a
matching M there are only finitely many twisting up or down operations. Moreover, given the two
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matchings M,M ′ related by a twisting up or down, one can recover the elementary cycle involved from
the change between the matchings, and also the direction (up or down).

2.10. Lattice structure on matchings. Again let G be a finite bipartite plane graph (hence without
loops), possibly disconnected, possibly with multiple edges. Recall the set of matchings on G is denoted
MG. Let f0 be the unbounded face of G, so that the bounded faces are precisely those other than f0.

Definition 2.39. [41] Define a relation ⩽ on MG by M ⩽ M ′ if there exists a sequence M =
M0, . . . ,Mn = M ′ in MG for some n ≥ 0, such that each Mj+1 is obtained from Mj by twisting up at
a bounded face.

In other words, M ⩽ M ′ if M ′ is obtained from M by a sequence of twisting up operations. The
trivial sequence, when n = 0, means that M ⩽ M .

Propp in [41] showed that this ⩽ provides a distributive lattice structure, under two further as-
sumptions: that G is connected, and that each edge of G belongs to some matchings but not others,
i.e. is neither forced nor forbidden in the sense of Definition 2.30. We state his theorem and then
discuss these assumptions.

Theorem 2.40 (Propp [41]). Let G be a finite connected plane bipartite graph (possibly with multiple
edges). Suppose that G has no forced or forbidden edges. Then (MG,⩽) is a distributive lattice.

Moreover, for any two matchings M,M ′ ∈ MG, M is covered by M ′ (i.e. M ⋖M ′) if and only if
M ′ is obtained from M by twisting up at a bounded face.

We call this lattice the Propp lattice of G.
We need this result for disconnected G, and moreover, without the assumption of no forced or

forbidden edges. In [41, example 28], Propp discusses these issues, noting that Theorem 2.40 fails
without the assumption, but that a generalisation to disconnected graphs is possible, and that the
assumption can be effectively removed since there exists a (possibly trivial) subgraph of G whose
connected components satisfy the assumption. We consider such matters in detail in Section 2.11
where we define a notion of reduction, removing edges not in any matching. Then in Section 2.12 we
prove a generalisation of this theorem, for possibly disconnected graphs, without the assumption, as
Proposition 2.45.

As discussed in Section 1.2, a plane graph can be regarded as an embedded graph on S2 by one-point
compactification. The above theorem can then be restated for G embedded in S2, with the bounded
face replaced by an arbitrarily chosen face on which twisting down is prohibited.

We briefly mention an outline of Propp’s proof of Theorem 2.40, since we apply similar ideas later
in Section 6 to prove Theorem 1.2. Propp proved Theorem 2.40 by applying Theorem 2.21 to a dual
G⊥ of G. This dual G⊥ has a vertex for each face of G, and an edge e⊥ for each edge e of G, such that
e and e⊥ intersect in a single point. Although G⊥ is a connected plane graph, its embedding into R2

is not unique. Choosing an embedding arbitrarily, we then have an elementary cycle of G⊥ encircling
each face of G⊥, i.e. encircling each vertex of G.

The dual G⊥ has a natural standard orientation R0, orienting each edge of G⊥ such that every
elementary cycle of G⊥ encircling a black (resp. white) vertex of G is oriented clockwise (resp. coun-
terclockwise). Let v⊥0 be the vertex of G⊥ dual to the unbounded face f0 of G.

For each M ∈ MG, we also have a natural orientation RM of G⊥, called its prescribed orientation,
obtained from R0 by reversing orientations on the edges of G⊥ dual to the edges of M . It can be
shown that all prescribed orientations of G have the same circulation c, independent of the matching
M . Recall (Definition 2.16) Rc

G⊥ denotes the set of orientations of G⊥ with circulation c.

Propp proved that the map MG −→ Rc
G⊥ sending the matching M 7→ RM is a bijection. Moreover,

the positive (resp. negative) cycles of G relative to M correspond precisely to the maximal (resp.
minimal) accessibility classes of (G⊥, RM ). Twisting up operations on M at faces other than f0
correspond bijectively to pushing up operations on RM at accessibility classes other than the singleton
accessibility class {v⊥0 }. Applying Theorem 2.21 to G⊥ yields Theorem 2.40.
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2.11. Reductions. In order to generalise Theorem 2.40, we introduce a notion of reduction. Let X
be a finite graph, possibly disconnected, possibly with multiple edges and loops.

Definition 2.41. The reduction X0 of X is the graph with the same vertex set as X, obtained from
X by removing each forbidden edge.

Since a loop cannot appear in a matching, X0 has no loops. If X has no matchings, i.e. MX = ∅,
then X0 has no edges.

Lemma 2.42. Let X0 be the reduction of X. Then we have the following.

(i) The matchings of X are precisely the matchings of X0, i.e. MX = MX0
.

(ii) If MX ̸= ∅, then each connected component Y of X0 satisfies precisely one of the following
two possibilities.
(a) Y consists of a single edge e between two distinct vertices, and e is forced in X.
(b) Each edge in Y is neither forced nor forbidden in X.

Thus, every forced edge of X becomes an isolated component of X0. Every forbidden edge of X is
removed to obtain X0. And every edge which is neither forced nor forbidden matchings remains so in
some connected component of X0. (This is a hypothesis of Propp’s Theorem 2.40.)

The hypothesis that MX ̸= ∅ in (ii) is necessary. If X has no matchings, then X0 has no edges, and
each connected component Y of X0 is a single point, to which neither (a) nor (b) applies.

Proof. As X and X0 have the same vertex sets, and every edge that appears in a matching of X is
retained in X0, then every matching on X is also a matching on X0; and as the edges of X0 are a
subset of the edges of X, every matching of X0 is a matching of X. This gives (i).

Let e be a forced edge of X, with endpoints v, w. Then in any matching, the vertices v and w are
paired by e. So if e′ is an edge other than e incident with v or w then e′ is forbidden. Thus e and v, w
form a component of type (a) in X0.

Now consider a connected component Y of X0, which is not of type (a), and let e be an edge of Y .
Then e lies in some matchings of X (as it has not been removed), but does not lie in all matchings
(otherwise it would arise in a component of type (a)). Thus Y is of type (b). □

2.12. Lattice of matchings on disconnected bipartite graphs. We now generalise Propp’s The-
orem 2.40 to show that MG has a distributive lattice structure, even when G is disconnected and may
contain forced and forbidden edges.

We will need the following lemma, which applies to components of type (a) in Lemma 2.42.

Lemma 2.43. Suppose G is a plane bipartite graph consisting of a single edge between two distinct
vertices. Then MG, with the relation ⩽ of Definition 2.39 is a distributive lattice.

Proof. Indeed, MG is a singleton set, consisting of a single matching M . Since G has no bounded
faces, it has no elementary cycles, hence no twisting operations. The only sequence of twisting down
operations is the vacuous one. Thus MG forms a trivial distributive lattice. □

Now, let G be a finite bipartite plane graph, possibly disconnected, possibly with multiple edges,
and let G0 be its reduction. Let the connected components of G0 be G1, . . . , Gn. All of G, G0, and
each Gj for 1 ≤ j ≤ n, are finite bipartite plane graphs, so have well-defined sets of matchings and
relations ⩽, as in Section 2.8 to Section 2.10.

By Lemma 2.42(i) we have equalities of sets MG = MG0
. Moreover, a matching on G0 is equivalent

to a matching Mj on each Gj for 1 ≤ j ≤ n. We thus have a bijection of sets

(2.44) MG0
∼= MG1 × · · · × MGn .

This bijection of (2.44) holds even if G has no matchings. In this case, some Gj has no matchings, so
the left hand side is the empty set, as is one of the factors on the right, and hence the product on the
right hand side is also empty.

If G has no matchings, then G0 has no edges, and MG0 = ∅, which we can regard as a trivial
distributive lattice. If G has at least one matching, then each Gj for 1 ≤ j ≤ n is of type (a) or (b)
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as in Lemma 2.42(ii). By Lemma 2.43 in case (a), and Theorem 2.40 in case (b), each (MGj
,⩽) for

1 ≤ j ≤ n is a distributive lattice. Hence their product also obtains a distributive lattice structure,
using Definition 2.5. Thus both sides of (2.44) have relations ⩽, and the right hand side has a
distributive lattice structure.

We now show that the bijection of (2.44) extends to an isomorphism of distributive lattices, gener-
alising Theorem 2.40 as follows.

Proposition 2.45. Let G be a finite bipartite plane graph, possibly disconnected, possibly with multiple
edges, and let G0 be its reduction. Let the connected components of G0 be G1, . . . , Gn. Then the
bijection of sets (2.44) extends to an isomorphism of distributive lattices

MG0
∼= MG1 × · · · × MGn ,

where the relation ⩽ on MG0
and each MGj

arises from Definition 2.39, and the relation ⩽ on
MG1 × · · · × MGn arises from Definition 2.5.

Moreover, for any two matchings M,M ′ ∈ MG0 , M is covered by M ′ (i.e. M ⋖M ′) if and only if
M ′ is obtained from M by twisting up at a bounded face of G0.

Since MG = MG0
as sets, we can regard Proposition 2.45 as providing a distributive lattice structure

on MG, generalising the restricted case of Theorem 2.40, which we refer to as the Propp lattice of G.

Proof. We first treat the trivial case where MG = ∅. Then G0 is a finite set of isolated vertices,
each Gj is a single vertex, and all matching sets are empty. The desired isomorphism is then an
isomorphism of vacuous lattices. We may henceforth assume that MG = MG0 ̸= ∅, and hence all
MGj ̸= ∅. Throughout this proof, j denotes an index between 1 and n.

By Lemma 2.28, G0 and the Gj have the same set of elementary cycles on which to perform
twisting down operations. Thus a twisting up operation on a matching of G0 is equivalent to a
twisting up operation on a matching Mj of some Gj . More precisely, suppose M ∈ MG0

corresponds to
(M1, . . . ,Mn) ∈ MG1×· · ·×MGn . Then a twisting up operation onM yieldsM ′ ∈ MG0 corresponding
to (M ′

1, . . . ,M
′
n) ∈ MG1 × · · · × MGn , where M ′

j is obtained from Mj by a twisting up on Gj , for a
unique j, and M ′

i = Mi for all i ̸= j. Conversely, a twisting down operation on Mj , resulting in M ′
j ,

yields a twisting down from M to M ′, corresponding to (M ′
1, . . . ,M

′
n) where all M ′

i = Mi for i ̸= j.
Suppose M,M ′ ∈ MG0

, corresponding to (M1, . . . ,Mn), (M
′
1, . . . ,M

′
n) ∈ MG1

× · · · ×MGn
, satisfy

M ⩽ M ′. Then by Definition 2.39, there is a sequence M = M0,M1, . . . ,Mm = M ′ in MG0 , such
that each M i+1 is obtained from M i by twisting up on some negative cycle in G. Each such twisting
up amounts to a twisting up on a negative cycle in some Gj . Thus after performing all the twisting
down operations, and arriving at M ′, we have M1 ⩽ M ′

1, M2 ⩽ M ′
2, . . ., Mn ⩽ M ′

n, and hence
(M1, . . . ,Mn) ⩽ (M ′

1, . . . ,M
′
n) in the distributive lattice MG1

× · · · × MGn
.

Conversely, suppose (M1, . . . ,Mn) ⩽ (M ′
1, . . . ,M

′
n) in the distributive lattice MG1

× · · · × MGn
,

with corresponding matchings M,M ′ ∈ MG0 . Then each M ′
j is obtained from Mj by a sequence of

twisting up operations on negative cycles of Gj . Thus (M ′
1, . . . ,M

′
n) is obtained from (M1, . . . ,Mn)

by a sequence of twisting up operations on negative cycles on various Gj . This sequence of twisting
up operations can also be performed on corresponding matchings in G0, by changing the matching on
the appropriate Gj at each step, and leaving all the matchings on the Gi for i ̸= j unchanged at that
step. Hence M ⩽ M ′.

Thus the bijection (2.44) preserves relations ⩽. As MG1 × · · · × MGn has a distributive lattice
structure, then we have an isomorphism of distributive lattices as desired.

As noted after Definition 2.5, in the distributive lattice structure on the product MG1
×· · ·×MGn

,
we have (M1, . . . ,Mn) ⋖ (M ′

1, . . . ,M
′
n) if and only if Mj ⋖ M ′

j for a unique j, and Mi = M ′
i for all

i ̸= j. The component Gj involved cannot be of type (a) of Lemma 2.42, hence must be of type (b), so
by Theorem 2.40, M ′

j is obtained from Mj by twisting up. A twisting up on a single Gj is equivalent
to a twisting up on G0. Thus for M,M ′ ∈ MG0

, M ⋖ M ′ if and only if M ′ is obtained from M by
twisting up. □
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3. Multiverses in general

3.1. Multiverse surface, interior and exterior. As discussed in Section 1.2, Kauffman universes
are equivalent to universes on discs. Defined in Definition 1.9, these are graphs embedded on discs
with various properties and decorations. Kauffman’s formal knot theory repeatedly uses a notion
of “exterior” as in the Jordan curve theorem, for instance in choosing starred faces adjacent to the
exterior. More generally, when a compact orientable genus zero surface is embedded in R2, it obtains
an orientation, and one of the the boundary components is distinguished as outermost. A simple closed
curve on the surface then obtains an interior and exterior. This motivates the following definitions.

Definition 3.1 (Multiverse surface). A multiverse surface (Σ, ∂Σ0) is a compact connected oriented
surface Σ, together with a distinguished boundary component ∂Σ0, called the outer boundary.

When the distinguished boundary component is understood or irrelevant, we simply write Σ for a
multiverse surface. By definition, a multiverse surface Σ has nonempty boundary. If Σ has a single
boundary component, it must be the outer boundary.

Definition 3.2 (Interior, exterior of curve). Let (Σ, ∂Σ0) be a multiverse surface, and let γ a separating
simple closed curve in the interior of Σ. The exterior (resp. interior) of γ is the component of Σ \ γ
containing ∂Σ0 (resp. not containing ∂Σ0).

When a graph is embedded (Definition 2.23) entirely in the interior of a multiverse surface Σ, similar
considerations apply. As the graph is disjoint from ∂Σ, there is a unique face (Definition 2.25) adjacent
to each boundary component.

Definition 3.3 (Outer face). Let G be a graph embedded in the interior of a multiverse surface
(Σ, ∂Σ0). The outer face of G is the face containing ∂Σ0.

In general, a face of a graph embedded on a multiverse surface may have multiple boundary com-
ponents.

3.2. Multiverse graphs. In Definition 1.9 we defined a universe on a disc. A multiverse graph
involves a similar graph embedding on a multiverse surface.

Definition 3.4 (Multiverse graph). A multiverse graph is a finite graph U , possibly disconnected,
possibly with loops and multiple edges, embedded in a multiverse surface (Σ, ∂Σ0). Each vertex of U
has degree 1 or 4, with the degree 1 vertices on ∂Σ, and the vertices of degree 4 in the interior of Σ.

Note that by Definition 2.23 of a graph embedding, which includes a properness requirement, the
interior of every arc lies in the interior of Σ.

A multiverse graph may be embedded entirely in the interior of Σ, in which case all vertices have
degree 4. It may also have all its vertices on ∂Σ, in which case all vertices have degree 1.

Definition 3.5 (Vertices, edges and faces). Let U be a multiverse graph on a multiverse surface
(Σ, ∂Σ0). Consider its vertices, edges and faces.

(i) A boundary vertex is a vertex of degree 1. The number of boundary vertices is denoted V∂ .
(ii) An interior vertex is a vertex of degree 4. The number of interior vertices is denoted Vint.
(iii) A free edge is an edge of which has an endpoint on ∂Σ.
(iv) An interior edge of U is an edge which has both endpoints in the interior of Σ.
(v) The number of faces of U is denoted F .

As the terminology suggests, boundary vertices lie on ∂Σ and interior vertices lie in the interior of
Σ. Boundary vertices can lie on the distinguished outer boundary component ∂Σ0 or other boundary
components. A free edge can have one or both endpoints on ∂Σ, which may may not include the outer
boundary.

Since the sums of degrees of vertices must be even we have the following.

Lemma 3.6. In a multiverse graph, V∂ is even. We write V∂ = 2N . □
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A multiverse graph on Σ can be regarded as a collection of “strings” on Σ, as a knot diagram with
flattened crossings. Proceeding directly across each degree-4 vertex from edge to opposite edge, U can
be regarded as a union of closed curves (“closed strings”), and arcs between vertices on ∂Σ (“open
strings). Double counting open strings by their endpoints, N is the number of open strings.

3.3. Definition of multiverse. Having defined a multiverse graph, to obtain a structure analogous
to Definition 1.9, it remains to specify starred faces. Following Definition 1.9, we require them to be
adjacent to the outer boundary.

Definition 3.7 (Multiverse). A multiverse is a triple (U,Σ,F ) where

(i) Σ is a multiverse surface with outer boundary ∂Σ0;
(ii) U is a multiverse graph on Σ;
(iii) F is a set of F − Vint distinct faces of U adjacent to ∂Σ0, called starred faces.

As with Kauffman universes, in diagrams we mark starred faces with stars, and refer to the other
faces as unstarred. When Σ has genus 0, we call (U,Σ,F ) a planar multiverse. When U is 2-cell
embedded in Σ, we call (U,Σ,F ) a 2-cell embedded multiverse. When F or Σ are understood or not
relevant, we refer to a multiverse as U .

Part (iii) of the definition requires that F ≥ Vint, and moreover, that there be at least F − Vint

distinct faces adjacent to the outer boundary. These conditions are by no means automatically satisfied,
so condition (iii) restricts the possible graphs which may arise. We discuss these constraints further in
Section 3.9.

Figure 1 shows two examples of planar multiverses on a disc (the boundary of the disc is not shown).
The left example has U connected with V∂ = 2N = 8, hence N = 4 open strings. There are no closed
strings, and we have Vint = 11, F = 16, hence 5 stars. The right example has U disconnected, with
loops and multiple edges. It has V∂ = 2N = 10, hence N = 5 open strings, and 1 closed string. It also
has Vint = 9, F = 15, hence 6 stars.

When Σ is a disc, U is connected, and N = 1, one can show (see Lemma 3.28) that F − Vint = 2,
giving 2 starred faces, and Definition 3.7 reduces to Definition 1.9 of a universe on a disc.

3.4. States and transposition contours. By design, the number of unstarred faces in a multiverse
is equal to the number of interior vertices. Hence Definition 1.5 of a state generalises immediately as
follows, as suggested for universes on a disc in Section 1.2.

Definition 3.8 (State). A state of a multiverse (U,Σ,F ) is a choice of corner at each interior vertex
of U , so that each unstarred face is chosen precisely once. The set of states of U is denoted SU .

Again, we denote states by placing a marker in each chosen corner. There may be corners at which
markers always or never arise.

Definition 3.9. Let (U,Σ,F ) be a multiverse. Let α be a corner at an interior vertex of U .

(i) α is forced if every state of U places a marker at α.
(ii) α is forbidden if no state of U places a marker at α.

Clearly any corner in a starred face is forbidden. The same terminology as Definition 2.30, consid-
ering matchings on a graph, is intentional, and in Lemma 3.21 we justify it.

We will define two distinct generalisations of Kauffman transpositions (Definition 1.6), namely the
plane transpositions of Theorem 1.1 and the surface transpositions of Theorem 1.2. Both generalisa-
tions involve certain simple closed curves which we call transposition contours, or just countours.

To describe a contour, consider a state S of a multiverse (U,Σ,F ), and consider n ≥ 1 distinct
interior (i.e. degree-4) vertices of U . Label these vertices vj over j ∈ Z/nZ. Let αj be the corner at
vj chosen by S, and let Fj be the (necessarily unstarred) face of U containing αj . Thus we have n
distinct faces Fj over j ∈ Z/nZ. See Figure 12 (left) for an illustration.

Definition 3.10. Let (U,Σ,F ) be a multiverse, and S a state. An n-transposition contour, or just
transposition contour for S is a simple closed curve γ on Σ, for which there exist vj , αj , Fj as above,
and n ≥ 1 arcs γj over j ∈ Z/nZ, where each γj :
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Figure 12. Left: A transposition contour. Right: The corresponding alternating
cycle. Edges of U are shown in black. The reduced spine is shown in green. Edges in
the matching are drawn thick.

(i) has endpoints vj and vj+1;
(ii) has interior lying in Fj ;
(iii) is incident to vj through αj ;

such that γ is made by joining the arcs γj . The vj are the vertices and the Fj are the faces of γ.

Note that we allow n = 1 in the above, in which case γ = γ1 is a loop at a single vertex v1, adjacent
to the face F1 through two distinct corners.

From a state and a transposition contour, we can obtain another state as follows. Let α′
j+1 be the

corner through which γj is incident to vj+1. Then each Fj is incident to vj through the corner αj , and
to vj+1 through the corner α′

j+1. Thus, at each vertex vj the faces Fj−1 and Fj are incident through
the corners α′

j , αj respectively. Replacing each αj with α′
j turns the state S into another state S′.

Definition 3.11 (Contour n-transposition). Let γ be a contour for a state S on a multiverse (U,Σ,F )
as above. Then the operation of replacing each marker αj in S with α′

j to obtain a state S′ is called
contour n-transposition, or just contour transposition of S along γ.

A Kauffman transposition (Definition 1.6) is a specific type of contour 2-transposition. We may
draw a contour as in Figure 9, through the 2 vertices and faces involved. However, in a Kauffman
transposition, the corners αj , α

′
j are adjacent at each vj . This may not be the case in general.

Transposition contours are in general far from unique. Even if we specify all the data of vertices vj ,
faces Fj and corners αj , α

′
j involved, each γj may not even be determined uniquely up to homotopy

relative to endpoints. We define two equivalence relations on contours, one using incidence relations
in U , the other similar to Definition 2.24 of isotopy for graph embeddings.

Definition 3.12 (Corner-equivalent, isotopic contours). Let γ, γ′ be transposition contours for a state
S. Then γ, γ′ are:

(i) corner-equivalent if they involve the same vertices vj , faces Fj , and corners αj , α
′
j ;

(ii) isotopic if there is a continuous family of transposition contours γt for t ∈ [0, 1] from γ0 = γ
to γ1 = γ′.

Both corner-equivalence and isotopy provide equivalence relations on transposition contours. Two
isotopic contours γ0, γ1 must pass through the same vertices and corners through the isotopy, hence
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are corner-equivalent. Two corner-equivalent contours are in general not isotopic, but we will see in
Section 3.6 that in some circumstances they are isotopic.

The state S′ obtained by contour transposition along γ only depends on the incidence relations
between faces and corners in γ, and hence only on the corner-equivalence class of γ.

3.5. Tait graph and spine. Given a multiverse (U,Σ,F ), consider building a bipartite graph em-
bedded in Σ, with vertices coloured black and white, as follows.

Place a white vertex at each interior vertex of U , and a black vertex in each face of U . We consider
adjacency triples (w,α, b) where w is a white vertex (hence a 4-valent vertex of U), α is one of the 4
corners of U at w, and b is the black vertex in the same face of U as α. In other words, an adjacency
triple (w,α, b) registers the incidence of a vertex w of U with a face b of U through a corner α of w. We
place an edge for each adjacency triple, resulting in the following construction, similar to the notion
of overlaid Tait graph used e.g. in [6, 11].

Definition 3.13 (Tait graph). A Tait graph of a multiverse graph U on a multiverse surface Σ is a
bipartite graph T embedded on Σ as follows:

(i) The white vertices of T are the interior vertices of U .
(ii) One black vertex of T is placed in each face of U .
(iii) T has an edge for each adjacency triple (w,α, b), with endpoints w and b, embedded as an

arc with interior in the face containing b, and departing w through the corner α.

It is common to construct a Tait graph of a knot diagram using a chequerboard colouring of the
faces, so that the graph described below is an “overlay” of the two Tait graphs from each colour.
However, in a multiverse there is in general no such colouring.

Note the above definition does not make use of starred faces; it is associated to a multiverse graph,
rather than a universe. Using only the unstarred faces of the multiverse, we define the following graph,
which is crucial in the sequel.

Definition 3.14 (Spine). A spine of a multiverse (U,Σ,F ) is the induced subgraph G of a Tait graph
T on its white vertices, and black vertices in unstarred faces.

Thus, a spine has a white vertex for each interior vertex of U , a black vertex in each unstarred face
of U , and an edge at each corner of an interior vertex of U in an unstarred face.

For each corner α of a vertex of U , there is at most one adjacency triple including α, and hence at
most one edge of G or T . Thus an edge of a Tait graph or spine may be identified by its corner α.

Similar to our discussion of contours in Section 3.4, neither a Tait graph nor a spine of (U,Σ,F )
is generally unique. Hence we refer to a (rather than the) Tait graph or spine. While a Tait graph
or spine is not generally unique, the underlying (non-embedded) graph only depends on incidence
relations in the multiverse, and thus is uniquely determined by the multiverse.

There is a natural notion of isotopy of Tait graphs or spines, following Definition 2.24 for embedded
graphs and Definition 3.12 for contours.

Definition 3.15 (Isotopy of Tait graphs and spines). Two spines (resp. Tait graphs) are isotopic if
there is a continuous family of spines (resp. Tait graphs) from one to the other.

In such an isotopy, each white vertex is fixed at an interior vertex of U . Black vertices must stay
in the interior of a face f but may move freely inside f . Each edge may move freely, subject to
the constraints of proceeding from a prescribed white vertex, through a prescribed corner, within a
prescribed face, to a prescribed black vertex, without intersecting other edges.

When a face f of U is not a disc, the embedding of edges of T or G in f is not unique, even up to
homotopy fixing endpoints. However, when f is homeomorphic to a disc, then T and G are unique in
f up to isotopy.

A spine G of a multiverse need not be connected, and may have multiple edges. For instance the
top right example of Figure 1 has disconnected spine (since the starred faces separate the unstarred
faces) and has multiple edges around the loop in U . However, as G is bipartite, it does not have loops.
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As both the Tait graph and the spine are embedded in the interior of the multiverse surface Σ, by
Definition 3.3 they each have a distinguished outer face.

In a Tait graph, every white vertex has degree 4; in a spine, every white vertex has degree at most
4.

Since G is obtained from T by removing vertices and edges in starred faces of U , and starred faces
are adjacent to ∂Σ, we immediately have the following, which will be useful in the sequel.

Lemma 3.16. Let (U,Σ,F ) be a multiverse, T a Tait graph, and G a spine subgraph of T . Let Π be
the subset of Σ formed by the closure of all faces of U not adjacent to ∂Σ0. Then G and T coincide
on Π. □

3.6. Spines and framings. A spine provides a way to “frame” or “guide” transposition contours,
and so we make the following crucial definition.

Definition 3.17. A framed multiverse is a quadruple (U,Σ,F , G) consisting of a multiverse (U,Σ,F )
together with a spine G. We also refer to G as a framing of (U,Σ,F ).

We now discuss how to use the spine G to “frame” a transposition contour. So let (U,Σ,F , G) be
a framed multiverse, S a state, and γ an n-transposition contour for S. Thus as in Section 3.4 and
Definition 3.10, γ consists of arcs γj , over j ∈ Z/nZ, passing through interior vertices vj , corners αj

and α′
j , and faces Fj . Each arc γj travels from vj via the corner αj , through face Fj , to vj+1 via the

corner α′
j+1.

Consider the restriction of G to the closure of the face Fj . There is a white vertex w at each interior
vertex of U on the boundary of Fj , and a single black vertex which we denote bj . There is an edge
connecting bj to each white vertex w through each corner α of Fj at w. In other words, its edges are
given by adjacency triples (w,α, bj), and are uniquely identified by corners.

Definition 3.18. Let (U,Σ,F , G) be a framed multiverse and S a state. A framed transposition
contour is an transposition contour γ for S such that each arc γj is homotopic in Fj , relative to
endpoints, to the directed path in G from vj to vj+1 along the edges corresponding to corners αj , α

′
j+1.

Thus, a framed transposition contour must be guided, or “framed”, by the edges of the spine G.
Figure 13 shows examples of transposition contours, framed and not.

Because they are constrained to be homotopic in each face Fj to arcs of a spine, we immediately
have the following statement about framed contours.

Lemma 3.19. Two framed transposition contours are corner-equivalent if and only if they are isotopic.
□

When each unstarred face of U is a disc, G is unique up to isotopy, so there is a unique framing up
to isotopy. Hence all transposition contours are framed. So contours are corner-equivalent if and only
if they are isotopic.

In particular, when U is 2-cell embedded, it has a unique framing up to isotopy, all contours are
framed, and contours are corner-equivalent if and only if they are isotopic.

3.7. States and matchings on a spine. We now consider the set of matchings (Definition 2.29)
MG of a spine G of a multiverse (U,Σ,F ).

Given a state S of U , we may find a matching M of G as follows. Each white vertex w of G lies
at a 4-valent vertex of U , at which S assigns a corner α. This corner α lies in an unstarred face of U
corresponding to a black vertex b of G. We thus obtain an adjacency triple (w,α, b), hence an edge of
G, at each white vertex w of G. Let M be the set of these edges. By construction, each white vertex of
G belongs to precisely one edge of M . As S is a state, each unstarred face of U contains one marker,
and hence every black vertex of G belongs to precisely one edge of M . Hence M is a matching.

Lemma 3.20. Let U be a multiverse and G a spine. The association of matchings to states defined
above is a bijection SU −→ MG.
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Figure 13. Top left: a framed planar multiverse, with spine/framing shown in green.
Top and bottom right: Framed transposition contours. Bottom left: A transposition
contour which is not framed.

Proof. Indeed, every edge (w,α, b) of the matching M provides a corner α in which to place a marker.
As M is a matching and G is bipartite, the edges of M provide a bijection between black vertices and
white vertices of G, i.e. between interior vertices of U and unstarred faces of U . The corners α given
by M thus form a state of U , providing an inverse MG −→ SU . □

We can now justify the common terminology of Definition 2.30 and Definition 3.9.

Lemma 3.21. Let U be a multiverse and G a spine. A corner α of U in an unstarred face is forced
(resp. forbidden) if and only if the corresponding edge e of G is forced (resp. forbidden).

Proof. A state of U choosing the corner α corresponds to a matching of G containing e. Every (resp.
no) state of U chooses α, if and only if every (resp. no) matching of G contains e. □

Since matchings only use the underlying graph of G, the set MG does not depend on the choice of
spine.

We can apply the reduction construction of Definition 2.41 to a spine.

Definition 3.22 (Reduced spine). A reduced spine G0 of U is the reduction of a spine G of U .

Combining Lemma 3.20 with Lemma 2.42(i) then yields bijections

(3.23) SU
∼= MG

∼= MG0
.

In the case that MG = ∅, then G0 simply consists of isolated vertices, and (3.23) is a bijection of
empty sets.

3.8. Alternating cycles and transposition contours. The notions of alternating cycle for a match-
ing M , and framed transposition contour for a state S, are closely related. We now discuss how. Let
(U,Σ,F , G) be a framed multiverse, S a state of U , and M the corresponding matching of G.
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Lemma 3.24. A vertex-simple alternating cycle of G relative to M , regarded as a simple closed curve
on Σ, is a framed transposition contour for S.

Proof. Let C be a vertex-simple alternating cycle of G. The vertices of C alternate between white
vertices (corresponding to interior vertices vj of U) and black vertices (corresponding to unstarred faces
Fj of U), through edges corresponding to corners αj , α

′
j+1 of U . Letting C have length 2n, we may take

j ∈ Z/nZ. We may direct C so that it passes in order through v1, α1, F1, α
′
2, v2, α2F2, . . . , vn, αn, Fn, α

′
1,

and so that the edges corresponding to αj are precisely the edges of M in C.
The directed cycle C is cut by the vertices vj into n paths γj of length 2, with each path proceeding

from vj to vj+1 via edges corresponding to αj and α′
j+1, with αj ∈ M and α′

j+1 /∈ M . As the matching
M corresponds to the state S, the first edge of γj corresponds to the corner αj selected by S at vj , and
indeed is incident to vj through the corner αj . As C is vertex-simple, all the vj and Fj are distinct over
all j ∈ Z/nZ. Thus the γj form the arcs of a transposition contour γ as in Definition 3.10. Each γj is
homotopic to (indeed coincides with) the edges of G corresponding to αj , α

′
j+1, so γ is framed. □

For a converse statement, and indeed equivalence, let γ be a framed transposition contour for S,
with arcs γj , vertices vj , corners αj , α

′
j , and faces Fj as in Definition 3.10 and Section 3.4, with γj

lying in the face Fj , having endpoints at corners αj , α
′
j+1 of vertices vj , vj+1, and homotopic to the

edges of G corresponding to αj , α
′
j+1. We can “straighten” γ into a cycle on G as follows.

Definition 3.25 (Straightening).

(i) The straightening of γj is the path Cj of length 2 in G from vj to vj+1 along edges corre-
sponding to corners αj , α

′
j+1.

(ii) The straightening of γ is the cycle of G formed by the Cj .

Lemma 3.26. The straightening C of γ is a vertex-simple alternating cycle relative to M , isotopic to
γ. Straightening provides a bijection between isotopy classes of framed transposition contours for S,
and vertex-simple alternating cycles of G relative to M .

Proof. The edges of G corresponding to corners αj selected by S are precisely the edges of M in C,
so C is alternating. As the vj are distinct, C is vertex-simple. By Lemma 3.24 then C is a contour for
S, and as γ is framed, C is isotopic to γ. A framed contour γ′ isotopic to γ is also corner-equivalent
to γ, hence has the same straightening. We conclude that regarding the cycle C as a curve provides a
“forgetful” map from alternating cycles to transposition contours, to which straightening provides an
inverse. □

When each unstarred face of U is a disc, then as discussed in Section 3.6, U has a unique framing G,
all contours are framed, and contours are corner-equivalent if and only if they are isotopic. Straighten-
ing then provides a bijection between isotopy classes of transposition contours for S, and vertex-simple
alternating cycles of G relative to M . In particular, this bijection arises if U is 2-cell embedded.

3.9. Topology of multiverses. We now discuss some of the topological constraints on a multiverse.

Lemma 3.27. Suppose (U,Σ,F ) is a 2-cell embedded multiverse. If some boundary component of Σ
is disjoint from U , then U is empty and Σ is a disc.

Proof. The boundary component C disjoint from U lies in a single face f , which must be a disc with
boundary C. So f is a connected component of Σ, and as Σ is connected then f = Σ. Hence U is
empty. □

For the following statement and proof, we recall the notation F, Vint, N, V∂ , Vint of Definition 3.5
and Lemma 3.6.

Lemma 3.28. Let U be a multiverse graph embedded in a multiverse surface (Σ, ∂Σ0), such that every
face f of U is either:

(i) a disc, or
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(ii) an annulus, one of whose boundary components is a component of ∂Σ, with the other boundary
component being a cycle of U .

Let b be the number of boundary components of Σ forming boundary components of annular faces.
Then

F − Vint = N + χ(Σ) + b.

Here χ(Σ) denotes the Euler characteristic of Σ.

Proof. We first prove the result in the case b = 0, so that (ii) never arises, and U is 2-cell embedded.
If Σ has a boundary component C disjoint from U , then Lemma 3.27 implies U is empty and Σ is

a disc. Then F = 1, Vint = 0, N = 0 and χ(Σ) = 1, so the result holds. We may thus assume that
every boundary component of Σ contains vertices of U .

Since U is 2-cell embedded, the vertices, edges and faces of U , together with 2N arcs along ∂Σ,
form a cell decomposition of Σ. There are Vint + 2N vertices and F faces in this cell decomposition.
Counting each edge twice via the degrees of vertices, the number E of edges in the decomposition
satisfies 2E = 4Vint + 3V∂ = 4Vint + 6N , so E = 2Vint + 3N . Euler’s formula gives

(Vint + 2N)− (2Vint + 3N) + F = χ(Σ),

which simplifies to F − Vint = N + χ(Σ), proving the result when b = 0.
Now consider the general case. Fill in the b boundary components bounding annular faces with discs.

This extends Σ to a compact oriented surface Σ of the same genus, with fewer boundary components,
satisfying χ(Σ) = χ(Σ)+ b. On Σ, U is 2-cell embedded, and we obtain a cell decomposition of Σ as in
the b = 0 case. The Euler characteristic argument above again applies (even if we fill every component
of ∂Σ with a disc), and we obtain F − Vint = N + χ(Σ) = N + χ(Σ) + b. □

Consider the special case where Σ is a disc and U is connected. If N ≥ 1, then U is automatically
2-cell embedded, and we have F − Vint = N + 1. If N = 1 then we precisely have a universe on a
disc (Definition 1.9), and F − Vint = 2, as mentioned in Section 1.2. If N = 0, then U lies entirely
in the interior of the disc and b = 1, so F − Vint = 2. This is the situation in a Kauffman universe
(Definition 1.4), truncating R2 to a disc.

A useful consequence is the following statement, showing that certain isolated components in mul-
tiverses prohibit them from having any states.

Proposition 3.29. Let (U,Σ,F ) be a multiverse, and suppose U has a connected component embedded
in a disc D in the interior of Σ. Then SU = ∅.

In particular, if U is multiverse on a disc D and SU ̸= ∅, then U has no components in the interior
of D

Proof. Taking an innermost component if necessary, we have a connected multiverse graph U0 embed-
ded in the interior of a disc D, which satisfies the hypotheses of Lemma 3.28. Thus numbers of interior
vertices Vint and faces F of U0 in D satisfy F = Vint +2. One of these faces is the exterior face of U0,
leaving F − 1 = V + 1 non-outer faces of U0. In any state of U , these V + 1 faces must have markers
from the V vertices of U0, a contradiction. □

3.10. Decomposing along a 2-cell embedded multiverse and spine. Let (U,Σ,F ) be a 2-cell
embedded multiverse. Cutting Σ along U decomposes Σ into discs. We may now consider further
cutting along the edges of a spine G, to obtain a finer description of the resulting pieces. We suppose
U is nonempty, so by Lemma 3.27, each boundary component of Σ contains vertices of U .

Let f be a face of U . Then f is a disc, and may be regarded as a polygon. The vertices of the
polygon are vertices of U , which may be degree-4 interior vertices (hence white vertices of G), or
degree-1 boundary vertices. The sides of the polygon are edges of U or arcs of ∂Σ. Each side of f is
of one of three types.

(i) Interior edges (Definition 3.5); these have endpoints which are degree-4 vertices of U , or
equivalently, white vertices of G.



GENERALISED KAUFFMAN CLOCK THEOREMS 33

(ii) Free edges (Definition 3.5); these have at least one endpoint on ∂Σ.
(iii) Boundary edges, arcs of ∂Σ.

Proceeding around the boundary of f , each boundary edge is adjacent to a free edge on either side.
Interior vertices of U (white vertices of G) are precisely those not adjacent to a boundary edge.

If f is starred, then f contains no vertices or edges of G, so f is not decomposed further. Each side
of f is an interior, free, or boundary edge, with at least one boundary edge, since starred faces are
adjacent to the outer boundary.

Now assume f is unstarred. The interior of f then contains a single black vertex v of G, as well as
edges of G connecting v to each corner of f which is an interior vertex of U .

It is possible that there are no edges of G in f . In this case all vertices of f lie on ∂Σ, and the
boundary of f consists of alternating boundary and free edges. In this case G has an isolated vertex
in G, so MG = ∅, hence by Lemma 3.20 SU = ∅. Cutting G out of f results in a punctured disc.

Otherwise, there is some number m ≥ 1 of edges of f in G, and cutting f along these m edges of
G cuts f into m smaller faces. Each such face f ′ can again be regarded as a polygon, which contains
two consecutive edges around its boundary which are edges of G, and the remaining edges around its
boundary form a sequence of edges e1, . . . , er around the boundary of f from one white vertex of G to
the next. If e1 is an interior edge then both its endpoints are white vertices of G, so r = 1. Otherwise
the edges ej alternate between free and boundary edges, beginning and ending with free edges, so r is
odd, r = 2s− 1, and f ′ is a (2s+ 1)-gon.

We summarise this discussion in the following lemma.

Lemma 3.30. Let (U,Σ,F , G) be a nonempty 2-cell embedded framed multiverse. Cutting Σ along U
and G, the resulting faces are all of precisely one of the following types.

(i) A triangle, whose sides are two edges of G and an interior edge of U .
(ii) A (2s+ 1)-gon for some s ≥ 2, whose sides consist of two consecutive edges of G, and 2s− 1

edges alternating between s free edges of U and s− 1 arcs of ∂Σ.
(iii) A starred face of U , whose sides consist of at least one arc of ∂Σ0, at least one free edge, and

possibly interior edges of U .
(iv) A punctured 2s-gon for some s ≥ 1, whose sides alternate between s free edges of U and s

boundary arcs of ∂Σ.

If there is a punctured disc then SU = ∅. □

Note this statement fails when U is empty: then Σ is a disc, there is a single starred face, and G is
empty; this fits none of the cases above.

Triangles of type (i) can degenerate. The two sides which are edges of G may coincide; this happens
if and only if the side which is an edge of U is in fact a loop of U . In this case, the triangle is the face
inside the loop.

3.11. 2-cell embedded spines. We will show that a spine of a 2-cell embedded multiverse is “almost”
2-cell embedded, in the following sense.

Definition 3.31 (Almost 2-cell embedding). An almost 2-cell embedding of a graph X in a surface Σ
is an embedding of X in Σ such that

(i) each face of X that is not adjacent to a boundary component of Σ is a disc, and
(ii) each boundary component of Σ is adjacent to a unique face, which is not a disc.

Note that if (i) were to apply to all faces of X, this would be the usual definition of 2-cell embed-
ded. Condition (ii) instead requires quite different behaviour near a boundary component. It will be
satisfied, for instance, if X is disjoint from ∂Σ, and includes edges and vertices which, around each
boundary component, proceed around a boundary-parallel curve, cutting off an annular collar. Then,
each boundary component of Σ will be adjacent to a single annular face. But it is also satisfied in
more general circumstances. For instance, two boundary components of Σ may be adjacent to the
same (non-disc) face. More trivially, if Σ is not a disc and X is the empty graph, then the empty
embedding is trivially almost 2-cell embedded.
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Lemma 3.32. Let (U,Σ,F , G) be a nonempty 2-cell embedded framed multiverse. Then we have the
following.

(i) Each face of G not adjacent to ∂Σ is a 4-gon, and in particular a disc.
(ii) Each boundary component of Σ is adjacent to a unique face of G, which is not a disc.

In particular, G is almost 2-cell embedded.

Proof. Cutting U along Σ and G results in the faces of types (i)–(iv) of Lemma 3.30. We obtain the
faces of G by gluing together these faces along the edges of U . Note that types (ii)–(iv) are all adjacent
to the boundary of Σ.

Let f be a face of G not adjacent to ∂Σ. Then f is obtained by gluing triangles of type (i). But
each triangle of type (i) contains precisely one edge of U . Hence f is obtained from two triangles of
type (i), glued along an edge of U . Thus f is a 4-gon and, in particular, a disc.

Let C be a boundary component of Σ. By construction, G is disjoint from C, and hence C is
adjacent to a unique face f of G. The face f has C as a boundary component, but as U is nonempty,
f has at least one other boundary component, and hence is not a disc. □

To summarise: a spine G is an embedded graph in the interior of Σ, whose faces away from the
boundary are quadrilaterals. Note that in such quadrilaterals, some of the 4 edges or 4 vertices may
coincide.

3.12. Dual of spine. Consider a framed multiverse (U,Σ,F , G). The spine G is embedded in Σ, and
we can construct a dual in a standard way, as follows.

Definition 3.33 (Dual of spine). A dual of a spine G is a graph G⊥ embedded in Σ, constructed as
follows.

(i) One vertex of G⊥ is placed in the interior of each face of G.
(ii) G⊥ has an edge e⊥ for each edge e of G. The edge e⊥ joins the vertices of G⊥ in the faces of

G on either side of e, avoids ∂Σ and vertices of G, and is drawn to intersect e exactly once.

We say the edge e⊥ of G⊥ is dual to the edge e of G. If the same face of G appears on both sides
of e, then e⊥ is a loop. In our diagrams, G is drawn in green and G⊥ in red.

As G is embedded in the interior of the multiverse surface Σ, it has a distinguished outer face
(Definition 3.3), and we have the following.

Definition 3.34. The outer vertex of a dual of spine G⊥ is the vertex placed in the outer face of G.

Note that the embedded graph G⊥ described above is not unique, even up to homotopy. For
instance, consider a face f1 of G adjacent to ∂Σ. If U is nonempty, then f1 is not a disc, and contains
some edge e of G in its boundary with a face f2 on the other side. (Possibly f1 = f2.) Let f⊥

1 , f⊥
2

be the vertices of G⊥ dual to f1, f2 respectively. Since f1 is not a disk, the edge e⊥ dual to e can be
drawn in at least two ways which are not homotopic to each other in f1 or f2 relative to endpoints.
See for example Figure 14. Thus, G⊥ is not unique as an embedded graph on Π.

However, G⊥ is uniquely determined as a graph by G, since it is determined by incidence relations
between edges and faces of G.

Note that G may contain isolated vertices, but these have no effect on G⊥: if we remove isolated
vertices from G, and then construct G⊥ as above, it is also a dual for the original G.

By definition, the vertices of G⊥ are in bijection with faces of G, and edges of G⊥ are in bijection
with edges of G. However, faces of G⊥ are generally not in bijection with vertices of G. For instance,
in Figure 14 there are faces of G⊥ containing more than one vertex of G.

One might hope that, at least if U is 2-cell embedded, so that by Lemma 3.32 G is almost 2-cell
embedded, then G⊥ is also close to 2-cell embedded in some sense. However, Figure 15 shows an
example of a 2-cell embedded multiverse U on a surface Σ, together with a spine G and dual G⊥, such
that G⊥ has a face, away from ∂Σ, with nonzero genus.

Lemma 3.35. A dual of a spine G⊥ is a connected graph.
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Figure 14. A multiverse on a disc. A spine G is drawn in green. Two distinct duals
G⊥ are drawn in red.

Figure 15. A 2-cell embedded multiverse U (black) with a spine G (green) and dual
G⊥ (red).

Proof. Let v1, v2 be vertices of G⊥, corresponding to faces f1, f2 of G. A multiverse surface Σ is
connected, so there is a path in Σ connecting f1 and f2. This path may be chosen to avoid vertices of
G. It passes through various edges and faces of G, which correspond to various edges and vertices of
G⊥, yielding a path in G⊥ from v1 to v2. □

Around any vertex v of G, some vertices of G depart: let them be, in cyclic order (say, counter-
clockwise), e1, . . . , en. As G is bipartite, it contains no loops, so all the ej are disjoint. The dual edges
e⊥1 , . . . , e

⊥
n then form a simple directed cycle in G⊥, and its equivalence class forms a simple cycle in

G.

Definition 3.36. The simple cycle in G⊥ represented by e⊥1 , . . . , e
⊥
n is called the basic cycle of G⊥

around v.
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Basic cycles are in some ways like elementary cycles of plane graphs (Definition 2.27). However,
unlike elementary cycles, they may not bound faces. For instance, in the left multiverse of Figure 14,
the bottom vertex of G has a basic cycle around it, but this basic cycle does not bound a face.

Note that every edge e⊥ of G⊥ appears twice in basic cycles: if the dual edge e of G has vertices
v, w, then e⊥ lies in the basic cycles around v and w.

The edges of G adjacent to a vertex v may be cyclically ordered in clockwise or counterclockwise
fashion. As a multiverse surface is oriented, there is a well defined notion of clockwise and counter-
clockwise at each point. These cyclic orderings of vertices about v yield orientations of edges of a basic
cycle, and we can make the following definition.

Definition 3.37. If e1, . . . , en are the edges about v in counterclockwise (resp. clockwise) order, then
the directed basic cycle e⊥1 , . . . , e

⊥
n about v is oriented counterclockwise (resp. clockwise).

Note that the clockwise orientation of a basic cycle may not appear “globally clockwise” in a
multiverse. For example, in the left diagram of Figure 14, the basic cycle about the bottom vertex of
G, oriented counterclockwise, appears clockwise as a curve on the disc.

4. Clock theorem in genus zero

In this section we consider planar multiverses (U,Π,F ), i.e. where Π has genus zero, and prove
Theorem 1.1. Since Π can be embedded in R2, we may regard U and a spine G as plane graphs.
Our results in the plane case essentially rely on the Jordan curve theorem, so that every cycle has an
interior and exterior.

The rough idea is to apply Propp’s Theorem 2.40 to the spine G, which provides the set of matchings
with a distributive lattice structure, and Lemma 3.20, which identifies matchings of G with states of
U . However, a spine may be disconnected, and may contain forced or forbidden edges, violating
the hypotheses of Theorem 2.40. Thus, we consider the reduced spine (Definition 3.22), and our
generalisation Proposition 2.45 of Propp’s theorem.

Figure 2 and Figure 4 provide examples of planar multiverses and their lattices of states given
by Theorem 1.1, which may be useful guides to our constructions. Figure 2 shows the spine of the
multiverse (and the reduced spine, which is obtained by removing the dotted green edges), with states
and matchings.

4.1. Faces of graphs embedded in plane surfaces, boundaries, and elementary cycles. Let
Π be a planar multiverse surface. Then Π can be regarded as a subsurface of R2, realising its outer
boundary (Definition 3.1) as its outermost boundary component. Indeed, Π can be so regarded in a
unique way up to isotopy, using the fact that Π is oriented. As Π has genus 0, every simple closed curve
in Π is separating, hence has an interior and exterior (Definition 3.2), agreeing with the usual notions
from the Jordan curve theorem. Using the orientation on Π and the Jordan curve theorem in R2, every
oriented simple closed curve in Π can be regarded as counterclockwise/positive or clockwise/negative.

Now let G be a finite graph (possibly disconnected, possibly with multiple edges and loops) embed-
ded in the interior of Π. As a graph embedded in the interior of a multiverse surface, G has an outer
face (Definition 3.3). Since we regard Π ⊂ R2 uniquely up to isotopy, G can be regarded as a plane
graph, unique up to isotopy (Definition 2.24). The faces of G, regarded as an embedded graph in Σ, are
naturally in bijection with the faces of G, regarded as a plane graph. Under this bijection, the outer
face of G (Definition 3.3) corresponds to the unbounded face of G as a plane graph. As a finite graph
embedded in an orientable surface, as discussed in Section 2.6, each face of G has well-defined boundary
cycles (Definition 2.26). As a plane graph, as discussed in Section 2.7, bounded (i.e. non-outer) faces of
G have well-defined outer boundary cycles, which form elementary cycles (Definition 2.27). Moreover,
elementary cycles have well-defined clockwise and counterclockwise orientations. As in Section 2.8, we
may consider matchings and alternating cycles on G.

Suppose now additionally that G is bipartite. Then G can be regarded as a plane bipartite graph,
again unique up to isotopy, so Section 2.9 applies, and we may consider positive and negative cycles
relative to a matching (Definition 2.37), and twisting a matching up and down (Definition 2.38) on
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alternating elementary cycles of G. Moreover, Section 2.10 applies, so that set MG of matchings of
G has a well-defined relation ⩽ from Definition 2.39, to which the generalisation Proposition 2.45 of
Propp’s Theorem 2.40 applies, endowing MG0

(here G0 is the reduction of G), and hence MG (equal
to MG0 as a set), with the structure of a distributive lattice, the Propp lattice of G.

A spine/framing, or reduced spine, of a planar multiverse Π is precisely a graph of this type: it is a
finite bipartite graph embedded in the interior of Π. Hence all the above applies, and we have a Propp
lattice. We summarise this discussion in the following statement.

Proposition 4.1. Let (U,Π,F , G) be a framed planar multiverse, and G0 the reduced spine. Then
MG0 , with the relation ⩽ of Definition 2.39, is a distributive lattice. Moreover, for any two matchings
M,M ′ ∈ MG0 = MG, M ⋖ M ′ if and only if M ′ is obtained from M by twisting up at a non-outer
face of G0. □

4.2. Plane transpositions. We now define a generalisation of Kauffman transpositions (Defini-
tion 1.6) to planar multiverses. Just like Kauffman’s original notion of transposition, these send
states to states, by rotating markers at vertices, and they can be clockwise or counterclockwise. How-
ever, this generalised notion can involve an arbitrary number n ≥ 1 of vertices. They are a special
case of the countour n-transpositions of Definition 3.11. We call them plane n-transpositions or just
plane transpositions.

Let (U,Π,F , G) be a framed planar multiverse, and S a state. Let n ≥ 1 and let γ be a framed
n-transposition contour (Definition 3.18) for S, involving interior vertices vj of U over j ∈ Z/nZ. As
in Figure 12 (left), let αj be the corner at vj chosen by S, and Fj be the unstarred face of U containing
αj , so that γ consists of arcs γj passing from vj via αj through Fj to vj+1. Let α′

j+1 be the corner
through which γj is incident to vj+1. Then contour n-transposition on S along γ sends S to the state
S′ obtained by replacing each αj with α′

j .
As a simple closed curve γ on a plane surface, γ is separating, and has an interior in Π as per

Definition 3.2. Since γ passes through vj via the two corners αj and α′
j , these corners lie partly in the

interior and partly in the exterior of γ. The other two corners of vj lie either in the interior of γ, or in
the exterior of γ. There is a direction, clockwise or counterclockwise, such that the rotation from αj

to α′
j about vj in this direction passes through the interior of γ. This direction is the same at each vj .

We consider rotating the marker at each vj in this direction, from αj (the marker in S) around to α′
j

(the marker in S′), through the interior of γ. The rotation angle at each vertex is 90◦, 180◦ or 270◦,
and may be different at different vertices.

Definition 4.2 (Plane transposition). Suppose that (U,Π,F , G), S, S′, γ, αj , α
′
j , are as above and

further satisfy the following condition: any corner at any vj which lies entirely in the interior of γ is
forbidden (Definition 3.9).

Plane n-transposition, or just plane transposition, of S along γ is the contour n-transposition of S
along γ, yielding S′. The plane n-transposition is clockwise (resp. counterclockwise) accordingly as
the markers rotate clockwise (resp. counterclockwise) through the interior of γ from αj to α′

j .

Thus, plane transposition is contour transposition, along a framed contour, in the planar case, where
interior corners of the contour are forbidden.

Since planar transposition is determined by the framed contour γ, we can refer to plane transposition
on the curve γ. Alternatively, plane transposition is determined by corners αj and α′

j , or by the states S
and S′. In particular, if there is a plane transposition taking a state S to the state S′, then the vertices
vj , corners αj , α

′
j and their number n are determined, as is γ up to corner-equivalence (Definition 3.12),

hence (as γ is framed, by Lemma 3.19) up to isotopy.
We regard two plane transpositions as equivalent if they involve the same corners αj , α

′
j or equiva-

lently, the same states S, S′ (or equivalently, framed contours γ which are corner-equivalent or isotopic).
From a state S there are only finitely many plane transpositions possible. Between any two states S, S′

there is at most one n for which there exists a plane n-transposition between them, and if such a plane
n-transposition exists, then it is unique up to equivalence, and is of a specified direction (clockwise
or counterclockwise). Note that this relies on γ being framed: in general there may be two distinct
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Figure 16. Counterexample to Theorem 1.1 without framings.

contours such that contour transposition on each takes S 7→ S′, with one being clockwise and the other
counterclockwise. See the bottom two diagrams of Figure 13 for an example.

We define a relation ⩽ on the set of states SU of U , similar to Definition 1.7.

Definition 4.3. Let U be a framed planar multiverse and let S, S′ ∈ SU . We write S ⩽ S′ if there
exists a sequence of states S = S0, S1, . . . , Sm = S′ of U , for some integer m ≥ 0, such that each Sj+1

is obtained from Sj by a counterclockwise plane transposition.

The requirement for U to be framed, and for plane transpositions to be along framed contours is
necessary. Without it, Theorem 1.1 fails. For example, Figure 16 shows a cycle of counterclockwise
“plane transpositions” that satisfy all conditions except that they cannot all be framed.

4.3. Equivalence of twisting and transpositions on planar multiverses. Again let (U,Π,F , G)
be a framed planar multiverse, and G0 a reduced spine, so as in Section 4.1, G0 has well-defined notions
of outer face, elementary cycle, positive and negative alternating cycles, twisting up and down, and a
relation ⩽ on MG0 , which has a distributive lattice structure as in Proposition 4.1.

By Lemma 3.20 and Lemma 2.42(i), states of U are in bijection with matchings of G0 as in (3.23).
Let S be a state of U , and M its corresponding matching on G0.

Denote by TrS be the set of all counterclockwise plane transpositions that can be done on S. As
discussed at the end of Section 4.2, TrS is a finite set. Moreover, between any two states there is at most
one plane n-transposition, for one value of n, in a specific direction (clockwise or counterclockwise).
Similarly, denote by TwM be the set of all twisting up operations that can be done on M ; again, this
is a finite set. Between two matchings there is at most one twisting up or down, in a specific direction
(up or down), on a specific elementary cycle. These two sets are naturally bijective as follows.

Lemma 4.4. Let S, S′ be states of U corresponding to matchings M,M ′ of G0. There is a counter-
clockwise (resp. clockwise) plane transposition taking S to S′, if and only if there is a twisting up
(resp. down) taking M to M ′.
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Hence there is a bijection

p : TrS −→ TwM

which takes the counterclockwise plane transposition S 7→ S′ to the twisting up M 7→ M ′. Considering
Definition 4.3 and Definition 2.39 of the relations ⩽ on SU and MG0

, it then follows that the bijection
of sets SU

∼= MG0 of (3.23) respects these relations.

Proof. Let T ∈ TrS be a counterclockwise plane transposition taking S 7→ S′; we construct a twisting
up O ∈ TwM taking M 7→ M ′. Let vj , αj , α

′
j , Fj , γj , γ for j ∈ Z/nZ be the vertices, corners, faces,

arcs, and framed contour involved in T , as in Section 4.2. Recall that each vertex vj is adjacent to
faces Fj , Fj−1 via corners αj , α

′
j respectively. Note each vj is also a white vertex of G and G0. Label

the vertex of G and G0 in each Fj also by Fj , and the edge of G in the corner αj or α′
j also by αj or

α′
j . By the correspondence SU

∼= MG0
of (3.23), the corners αj of U are marked in S and the edges

αj lie in M ; the corners α′
j of U are marked in S′ and the edges α′

j lie in M ′. Since all the edges αj , α
′
j

lie in at least one matching M or M ′, they also lie in G0.
Let A be the straightening of γ (Definition 3.25). By Lemma 3.26, A is a vertex-simple alternating

cycle of G relative to M . Its vertices are the vj and Fj , and its edges are the αj and α′
j . As all its

vertices and edges also lie in G0, A is also a vertex-simple alternating cycle of G0 relative to M . See
Figure 12. We will show that twisting up on A provides the desired O.

We claim A is elementary, i.e. (Definition 2.27) that A encircles a face f . For this, it is sufficient to
prove that at each vertex vj or Fj of A, there are no edges of G0 departing the vertex into the interior
of A. Since A separates its interior from the exterior, and the matching M (or M ′) matches all the
vertices along the cycle A, it must also match the vertices of G in the interior of A to each other. In
particular, the number of black and white vertices of G inside A must be equal. Thus, in any matching
N of G, the number of edges connecting black vertices in the interior of A to white vertices of A (i.e.
the vj), and the number of edges connecting white vertices in the interior of A to black vertices of A
(i.e. the Fj), must be equal; let this number be k(N). But by Definition 4.2 of a plane transposition,
at any vj , any corner in the interior of γ is forbidden (Definition 3.9), hence the corresponding edge
of G is forbidden (Lemma 3.21), so does not appear in any matching. Thus for any matching N we
have k(N) = 0. Hence all edges of G from vj or Fj into the interior of A are forbidden, and do not
appear in G0. So A is elementary as claimed.

Observe that A is alternating relative to both M and M ′, and that twisting M at A yields M ′.
Since T is counterclockwise, the marker at each vj rotates counterclockwise through the interior of A
from its position in S to its position in S′. Thus, in M , the edges αj , directed from black to white
vertices, encircle f in the clockwise direction, making A negative relative to M . Similarly, A is positive
relative to M ′, and we have constructed an O ∈ TwM taking M 7→ M ′.

Reversing the above, we now construct, from an O ∈ TwM taking M 7→ M ′ by twisting up on a
negative cycle A, a T ∈ TrS taking S 7→ S′. The elementary cycle A of G0 encircles a face f and is
alternating relative to M and M ′. Let its white vertices be vj and its black vertices Fj in cyclic order,
for j ∈ Z/nZ, so that the edge αj joining Fj and vj belongs to M , and the edge α′

j joining Fj−1 and
vj belongs to M ′; we denote the corresponding faces of U by Fj and the corners of U at vj by αj , α

′
j

also. So S has a marker at each vj in corner αj of face Fj , while S
′ has a marker at each α′

j in face F ′
j .

By Lemma 3.24, when A is regarded as a simple closed curve γ, it is a framed transposition contour
for S. Contour transposition along A takes S 7→ S′. As A is elementary in G0, encircling a face f , no
edge of G0 passes from a vj or Fj into the interior of A. Hence any edges of G passing from a vj or Fj

into the interior of A are forbidden. Thus, by Lemma 3.21, at any vj , any corner in the interior of γ
is forbidden. So there is a plane transposition T along γ taking S 7→ S′.

The fact that O is a twisting up implies that, in M , the edges αj of G0, when directed from black
to white vertices, encircle f in the clockwise direction. Similarly, in M ′, the edges α′

j , directed from
black to white vertices, encircle f in the counterclockwise direction.

It follows that T is a counterclockwise plane transposition as desired. The constructions of twisting
up from counterclockwise plane transposition and vice versa yield mutually inverse bijections. □
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We note that the original notion of transposition, from Kauffman’s Definition 1.6, also makes sense
in any multiverse. On a planar multiverse, we can also translate it as follows.

Lemma 4.5. Let (U,Π,F , G) be a framed planar multiverse, and S, S′ states of U corresponding to
matchings M,M ′ of G. There is a Kauffman transposition taking S to S′ if and only if the following
conditions hold:

(i) M is obtained from M ′ by twisting at an alternating cycle A of G of length 4; and
(ii) at each white vertex v of A, no edges of G depart from v into the interior of A.

Note that in this lemma, the alternating cycle A need not be elementary, and hence the twisting
need not be twisting up or down in the sense of Definition 2.38. We need Π to be planar in order to
identify an interior of A.

Proof. Let u, v be the two vertices of U involved in the transposition (as in Figure 8). Let Q,R be the
the faces in which markers at u, v respectively lie in S. Then u, v may be regarded as white and Q,R
as black vertices of G. These four vertices, together with the four edges between them corresponding
to the corners involved in the transposition from S to S′, naturally form a cycle A in G of length 4,
which proceeds u–Q–v–R–u. The matching M contains the edges u–Q and v–R, while M ′ contains
u–R and v–Q. In particular, M ′ is obtained from M by twisting at the alternating cycle A. In a
transposition, markers rotate precisely 90◦, so that there are no faces between Q and R at u or v, and
hence there are no edges in G departing from u or v into the interior of A.

For the converse, suppose we have M,M ′ and A as in (i) and (ii). Let the cycle A be u–Q–v–R–u
where u, v are white and Q,R are black, and let M contain u–Q and v–R, so M ′ contains u–R and
v–Q. In the state S we then have a marker at u in a corner incident with Q, and a marker at v in
a corner incident with R, corresponding to two edges of A; in the state S′, we have a marker at u in
a corner incident with R, and a marker at v in a corner incident with Q. By condition (ii), the two
corners occupied at u by S and S′ are adjacent, and the two corners occupied at v by S and S′ are
adjacent. Thus S and S′ are related by a 90◦ rotation at u and v. Accordingly as A (oriented with
the order of vertices written above) encloses its interior with counterclockwise or clockwise orientation,
the markers both rotate counterclockwise or both rotate clockwise, and the states are related by a
Kauffman transposition. □

4.4. Planar clock theorem. We can now state a generalised clock theorem for planar multiverses,
a precise version of Theorem 1.1. Recall that the set of states SU of a framed planar multiverse
(U,Π,F , G) has a relation ⩽ from Definition 4.3. The matchings MG0 of the reduced spine G0 have
the relation ⩽ of Definition 2.39, and by Proposition 4.1, MG0 then forms a distributive lattice.

Recall also that we have the bijection SU
∼= MG0

of (3.23). As discussed after the statement of
Lemma 4.4, this bijection preserves the relations ⩽ on the sets. Hence the same is true for SU and we
have a bijection of distributive lattices.

Theorem 4.6 (Planar clock theorem). Let (U,Π,F , G) be a framed planar multiverse. Then SU ,
equipped with the relation ⩽ of Definition 4.3, is a distributive lattice. Moreover, S ⋖ S′ if and only if
S′ is obtained from S by a counterclockwise plane transposition.

Proof. It only remains to prove the statement about covering. Let M,M ′ ∈ MG0
be matchings

corresponding to S, S′ ∈ SU . By Proposition 4.1, M ⋖M ′ if and only if M ′ is obtained from M by
twisting up at a non-outer face of G0, i.e. by twisting up on a negative elementary cycle of G0. By
Lemma 4.4 this occurs if and only if there is a clockwise plane transposition taking S to S′. □

5. Application to universes

Consider a Kauffman universe (U,F ) (Definition 1.4), which as discussed in Section 1.2 is equivalent
to a universe in string form, or a universe on a disc (U,D,F ) (Definition 1.9). Whichever of these
ways we view U , we obtain an isomorphic set of states S , and relation ⩽ (Definition 1.7) based on
Kauffman transpositions (Definition 1.6). By Kauffman’s clock theorem (Theorem 1.8), this relation
endows S with a distributive lattice structure.
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However, such a (U,D,F ) is also a planar multiverse. As U is connected, it is 2-cell embedded in D.
Hence as discussed in Section 3.6, it has a unique framing G up to isotopy. Throughout this section,
we regard a string universe U as a framed planar multiverse in this way. The set of states S then has
a relation ⩽ as in Definition 4.3, based on plane transpositions (Definition 4.2). By the planar clock
theorem (Theorem 4.6), this relation also provides S with a distributive lattice structure.

Thus we have two relations on the set of states of U . In this section we prove the following precise
version of Theorem 1.3.

Theorem 5.1. Two states S, S′ of U satisfy S ⩽ S′ with respect to the relation ⩽ of Definition 1.7,
if and only if S ⩽ S′ with respect to the relation ⩽ of Definition 4.3.

Thus, the distributive lattices of the two clock theorems, Theorem 1.8 and Theorem 4.6, are iso-
morphic. One direction is straightforward.

Lemma 5.2. Let U be a string universe. Then any counterclockwise (resp. clockwise) Kauffman
transposition is a plane 2-transposition.

Proof. As discussed in Section 3.4 after Definition 3.11, a Kauffman transposition is a contour 2-
transposition, with contour γ as illustrated in Figure 9. As discussed in Section 3.6, since U is 2-cell
embedded, all contours are framed. As the corners involved in a Kauffman transposition are adjacent,
there are no interior corners of γ, so their requirement to be forbidden is vacuously satisfied. Hence
Definition 4.2 of a plane 2-transposition is satisfied, with the same direction of rotation of markers as
the Kauffman transposition. □

The rest of this section is devoted to the following, which completes the proof of Theorem 5.1 and
Theorem 1.3.

Proposition 5.3. Let U be a string universe. Any plane transposition between two states of U is a
Kauffman transposition.

In particular, there are no plane n-transpositions on U for n ̸= 2.
Throughout the rest of this section, (U,D,F , G) is a string universe, regarded as a 2-cell embedded

planar multiverse on the discD, withG a framing unique up to isotopy. In the notation of Definition 3.5
and Lemma 3.6, V∂ = 2, N = 1. There are two outer faces, which are precisely the starred faces of F .

5.1. Alternating cycles in spines of universes. Let T be a Tait graph containing G. We now
prove two technical lemmas.

Lemma 5.4. Let M ∈ MG, and let C be a vertex-simple alternating cycle of G relative to M , of
length 2L > 0. Let E∂W be the number of edges of T departing from a white vertex of C into the
exterior of C. Then E∂W = L+ 2.

Proof. Since C is alternating relative to M , M pairs each vertex of C to another vertex of C via an
edge of C. Thus, each vertex of G in the interior of C must be paired by M to another vertex in the
interior of C.

Let D′ ⊂ D be the closed disc consisting of C and its interior. By Lemma 3.16, G and T coincide
on D′. Let G′ be the subgraph of G (or T ) lying in D′ (i.e. in the interior or on the boundary of D′).
Then M restricts to a matching of G′. Since the matching pairs black and white vertices then the
numbers of black and white vertices in G′ must be equal; let this number be V .

Let the number of edges of G′ be E. Each edge of G′ is incident to precisely one white vertex. Each
white vertex in T has degree 4. Each white vertex of G′ in the interior of C thus has degree 4, but
the white vertices of C may have degree less than 4 in G′, because the edges of T counted by E∂W are
not in G′. Counting edges of G′ via degrees of white vertices we thus have 4V = E + E∂W .

On the other hand, by Lemma 3.32, each non-outer face of G is a (possibly degenerate) quadrilateral,
so each face of G′ in D′ is also a quadrilateral. Each edge of G′ has a face on both sides in D′ (possibly
the same face twice, in a degenerate quadrilateral), except for the 2L edges along C, which only have
a face in D′ on one side. Letting F be the number of faces of G′ in D′, we have 4F = 2E − 2L.
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As G′ provides a 2-cell decomposition of the disc D′ with 2V vertices, E edges and F faces, Euler’s
formula gives 2V − E + F = 1.

The three equations of the previous three paragraphs can be written as equating E to 4V −E∂W =
2F + L = 2V + F − 1 respectively. The first equality gives 4V − 2F = E∂W + L, and the second
equality gives 4V − 2F = 2L+2. Thus we obtain E∂W +L = 2L+2 and hence the desired result. □

The idea of the following lemma is that, under certain circumstances, if G contains an alternating
cycle which is not elementary, then there is a smaller alternating cycle inside it (but possibly for a
different matching).

Lemma 5.5. Let M ∈ MG. Suppose there is a vertex-simple alternating cycle C of G relative to M ,
containing a white vertex v0 with an incident edge in the interior of C. Then there exist M ′ ∈ MG

and a directed path P in G, say (e1, v0, v1), . . . , (en, vn−1, vn), of length n ≥ 1, starting at v0, such that
the following conditions hold.

(i) The edges ej are all distinct and all lie in the interior of C.
(ii) The vertices v0, v1, . . . , vn are all distinct.
(iii) The vertices v1, . . . , vn−1 all lie in the interior of C.
(iv) The terminal vertex vn of P lies on C.
(v) M ′ agrees with M on the edges of C and in the exterior of C.
(vi) P is alternating with respect to M ′.

Proof. We algorithmically construct P , possibly adjusting M along the way.
Let P be the set of all directed paths P given by (e1, v0, v1), . . . , (en, vn−1, vn) for some n ≥ 1, such

that (i)–(iii) of the statement hold, and such that vn lies on or in the interior of C. Clearly P is a
finite set. Roughly, it consists of directed paths, without self-intersections, which start at v0, proceed
inside C, and which stop if they hit C.

We introduce a total order ⪯ on P, in a lexicographic fashion, as follows: two paths P1, P2 in P
satisfy P1 ⪯ P2 iff at the first edge where they differ, P2 proceeds counterclockwise of P1. Roughly,
the idea is that a path is lesser in this order if it turns “more clockwise” or “more to the right” at
each step. For instance, the edge e1 of a path in P is among the set of edges of G departing v0 into
the interior of C. As there are no loops in G, this set may be totally ordered, say in counterclockwise
order. (Note that as v0 is a white vertex of the spine, incident to two edges of C, there are at most two
possibilities for e1.) The path will be lesser in ⪯ if e1 takes the “more clockwise” or “more rightwards”
option, and greater if it takes the “more counterclockwise” or “more leftwards” option. Similarly, after
choosing an initial sequence of m directed edges (e1, v0, v1), . . . , (em, vm−1, vm), the next edge em+1 is
among the set of edges departing vm other than em. This set of edges may again be totally ordered
counterclockwise.

Our approach is to try to build up elements of P, adding one edge at a time, making our path
alternating with respect to some matching M ′, which initially agrees with M but may be adjusted at
each step, but so that M ′ only ever differs from M in the interior of C. Eventually our path will hit C
and satisfy conditions (i)–(vi) as required. We build the path by using the matching where we must,
and a greedy algorithm otherwise, turning as clockwise as possible (hence ⪯-minimally) at each step.
Roughly, the idea is that if this algorithm produces a path which intersects itself, then we can adjust
the matching M ′, and obtain a path which is lesser with respect to ⪯, which can be continued without
self-intersection. Since ⪯ is a total order on a finite set, this process must terminate by hitting C,
yielding the desired path.

So, start with M ′ = M ; we construct e1 to be the ⪯-minimal (i.e. most clockwise) edge departing
v0 into the interior of C. In the matching M = M ′, v0 is matched via an edge of C. Thus e1 /∈ M ′.
Let v1 be the vertex of e1 other than v0. As G is bipartite, v1 is black (hence v1 ̸= v0). If v1 is a vertex
of C then we may take P to consist simply of (e1, v0, v1), which is trivially alternating with respect to
M ′, and we are done.
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Otherwise, v1 lies in the interior of C. We choose e2 to be the unique edge of M ′ incident to v1.
Since v1 is in the interior of C, so is e2. Let the white endpoint of e2 be v2. Then v2 also lies in the
interior of C, since vertices of C are matched via edges of C. Thus v2 is distinct from v0.

Note that v2 must have degree 4 in G, since it is a white vertex in the interior of C (where G coincides
with T by Lemma 3.16). Hence there exist 3 edges of G incident to v2 other than e2. We choose e3
to be ⪯-minimal (i.e. most clockwise) among them. As e2 ∈ M ′ and e3 share the vertex v2 we have
e3 /∈ M ′. By construction, there is no edge of G departing v2 clockwise of e3 and counterclockwise of
e2. Let v3 be the black vertex of e3. If v3 is a vertex of C then we may take P to consist of e1, e2, e3
and M ′ = M , and we are done. Otherwise, v3 lies in the interior of C and we continue the process.

Indeed, suppose we have constructed a directed path (e1, v0, v1), . . . , (e2k−1, v2k−2, v2k−1) for some
integer k ≥ 1, and a matching M ′ differing from M only in the interior of C, such that the following
conditions hold.

(a) The edges e1, . . . , e2k−1 are all distinct and in the interior of C.
(b) The vertices v0, . . . , v2k−1 are all distinct.
(c) The initial vertex v0 is the chosen white vertex of C.
(d) The vertices v1, . . . , v2k−1 all lie in the interior of C.
(e) ej ∈ M ′ for j even, and ej /∈ M ′ for j odd.
(f) For each integer j such that 1 ≤ j ≤ k − 1, there is no edge of G departing v2j clockwise of

e2j+1 and counterclockwise of e2j .

Condition (f) says that e2j+1 is chosen to be ⪯-minimal at each v2j . We attempt to extend the path,
adding new distinct vertices v2k, v2k+1 and edges e2k, e2k+1 similarly.

To add e2k, we note that since e2k−1 /∈ M ′, the edge of M ′ containing the black vertex v2k−1 is
not among the edges already chosen, so we let e2k be the edge of M containing v2k−1, and let v2k be
its white endpoint. As v2k−1 lies in the interior of C, so does e2k. The vertex v2k cannot be equal to
any of the previous vertices v0, . . . , v2k−1. For if v2k = vj for some j < 2k, then e2k is the edge of M
incident with vj ; but all the edges of M incident to previous vj for 1 ≤ j ≤ 2k − 2 have already been
chosen as previous edges, and the edge of M incident with v0 lies on C, while e2k is in the interior
of C. Further, v2k lies in the interior of C, since it is matched via M to v2k−1 via e2k, and interior
vertices are matched with interior vertices. Hence, appending the directed edge (e2k, v2k−1, v2k), we
have an alternating directed path with respect to M ′.

Now consider adding e2k+1. As v2k is a white vertex in the interior of C, the edge e2k+1 must
be chosen among those edges of G incident to v2k other than e2k. By Lemma 3.16, v2k has degree
4 in G. Thus, there are 3 choices for e2k+1, and we choose e2k+1 to be ⪯-minimal (most clockwise)
among them. Let v2k+1 be the black vertex of e2k+1. The edge e2k+1 by construction is distinct from
all previous edges e1, . . . , e2k. Since e2k ∈ M ′ and e2k+1 share the vertex v2k we have e2k+1 /∈ M ′.
Moreover, by construction, there is no edge of G departing v2k clockwise of e2k+1 and counterclockwise
of e2k.

If v2k+1 is distinct from all v0, . . . , v2k and in the interior of C, then we have an alternating directed
path

(5.6) (e1, v0, v1), . . . , (e2k+1, v2k, v2k+1)

satisfying (a)–(f) above, with k replaced with k + 1, and we proceed inductively.
If v2k+1 lies on C, then the black vertex v2k+1 is disjoint from all v0, . . . , v2k, since v0 is white and

all v1, . . . , v2k all lie in the interior of C. Then the directed path (5.6) satisfies the desired conditions
(i)–(vi), and we are done.

The remaining case is that v2k+1 coincides with some previous vertex vj in the interior of C. As
the vertices alternate in colour, we have v2k+1 = v2j+1 for some 0 ≤ j < k. Thus the directed path
(e2j+2, v2j+1, v2j+2), . . . , (e2k+1, v2k, v2k+1 = v2j+1) forms a non-null vertex-simple directed cycle C ′,
alternating relative to M ′. Note that C ′ lies entirely in the interior of the cycle C. Let D′ be the
closed disc consisting of C ′ and its interior, so D′ lies entirely in the interior of C.

Now C ′ may be oriented clockwise or counterclockwise around the boundary of D′. We claim in
fact that the orientation is clockwise. Suppose to the contrary that the orientation is counterclockwise;
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Figure 17. Counterclockwise C ′. Edges of M ′ are thickened. Semicircular arcs
around white vertices indicate that no edges depart the vertex in that direction.
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Figure 18. Clockwise C ′. We twist M ′ on C ′, and adjust the path.

see Figure 17. Then, by construction, at each white vertex v of C ′, every incident edge of G (and T )
either forms part of C ′ or departs into the interior of C ′. Thus the vertex-simple non-null alternating
cycle C ′ and the matching M ′ thus satisfy the hypotheses of Lemma 5.4, and E∂W = 0. Thus the
length of C ′ is negative, a contradiction.

Hence C ′ is oriented counterclockwise. We then adjust M ′ by twisting at C ′ (Definition 2.35), as
shown in Figure 18. Note that M ′ only changes in the interior of C.

We now restart our algorithm on the adjusted matching M ′. Because the change is only in
C ′, the algorithm applied to the adjusted M ′ will produce the same first 2j + 1 directed edges
(e1, v0, v1), . . . , (e2j+1, v2j , v2j+1). However, in choosing the next edge e2j+2 the algorithm will choose
the edge of the adjusted matching (which is the edge previously known as e2k+1). This is clockwise of,
i.e. ⪯-less than, the previous choice for e2j+2, and hence any path so obtained form the adjusted match-
ing will be lesser with respect to ⪯ than a path obtained from the matching prior to its adjustment.
We then proceed with the algorithm.

Thus, applying the algorithm, the algorithm either terminates, or we adjust the matching and
restart, obtaining paths which are lesser with respect to ⪯. Since ⪯ is a total order on a finite set,
this process will in fact terminate and we obtain a path with the desired properties. □

5.2. Plane transpositions on universes are Kauffman transpositions.
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Proof of Proposition 5.3 and Theorem 5.1. By Lemma 4.4, a plane n-transposition on a state of U is
equivalent to a twisting up or down on a positive or negative cycle of G0 of length 2n. By Lemma 4.5,
a Kauffman transposition on a state of U is equivalent to twisting on an alternating cycle A of G of
length 4, such that at each white vertex v of A, no edges of G depart from v into the interior of C.

So, let C be a positive cycle of G0. We will show that C has length 4, and there is no edge of G
departing from a white vertex of C into the interior of C.

This C is an elementary cycle of G0, forming the outer boundary of some bounded face of G0. It is
also an alternating cycle of G0 with respect to a matching M ∈ MG = MG0

, hence vertex-simple by
Lemma 2.36.

As C is elementary in G0, it is clear that there is no edge of G0 departing from a white vertex into
the interior of C. It is less clear that there is no edge of G doing so, and this is what we will prove.

Suppose for contradiction that there exists a white vertex v0 of C at which an edge of G departs
into the interior of C. Then we may apply Lemma 5.5, so there exists a matching M ′ on G, differing
from M only in the interior of C, and a directed path P , alternating relative to M ′, departing from v0,
through the interior of C, passing through distinct vertices and edges e1, . . . , en, to arrive at a distinct
vertex vn of C.

All vertices in C are matched in M , hence also in M ′, via edges of C. Since the extremal edges
e1, en of P are interior to C but incident to vertices of C, they do not lie in M ′. In particular, n is
odd and vn is black.

The vertices v0, vn split the cycle C into two paths, both alternating relative to M ′. As v0, vn have
opposite colour, these two paths have odd length. Hence one of these two paths begins and ends with
edges of M ′; denote it by P1. Joining P and P1 we thus obtain an alternating cycle C ! relative to M ′,
enclosing a strictly smaller number of faces of G. As P and P1 contain distinct vertices except at their
common endpoints, C ! is vertex-simple. Hence by Lemma 2.34 we may adjust M ′ by twisting at C !

to obtain a matching M !.
Note that the edges e1, en are not in M ′ but lie in the cycle C !. Hence both e1, en lie in M !. In

particular, e1 lies in some matching of G. Thus e1 is not removed in constructing the reduction of G.
So e1 is also an edge of G0. But e1 is not in the cycle C, and in fact departs from the vertex v0 of C
into the interior of C. Hence C is not an elementary cycle of G0. This is a contradiction.

Hence, at each white vertex v of C, no edge of G departs into the interior of C. In the Tait graph
T , each white vertex has degree 4, and T coincides with G inside C (Lemma 3.16). At v there are 2
incident edges from the cycle C. Therefore there are precisely 2 edges of T departing from v into the
exterior of C. Letting 2L be the length of C, we have L white vertices on C, and hence E∂W = 2L
edges of T departing from white vertices of C into the exterior of C. Applying Lemma 5.4 to C we
then obtain 2L = L+ 2, so L = 2, and C has length 4.

We have now shown that C has length 4, and that at each white vertex, no edges of G depart into
the interior of C. The argument for negative cycles is similar, completing the proof. □

6. Multiverses in positive genus

6.1. Orientations on a dual of a spine. In Section 2.10 we gave an outline of Propp’s proof of
Theorem 2.40, which provides a distributive lattice structure on the set of matchings of certain plane
bipartite graphs G (generalised to all finite plane bipartite graphs in Proposition 2.45). The proof
proceeds by considering orientations on the dual G⊥ of the bipartite plane graph G: it has a standard
orientation, which orients each edge of G⊥ clockwise around black vertices of G and counterclockwise
around white vertices of G; and given a matching M of G there is a prescribed orientation on G⊥,
obtained from the standard orientation by switching orientations on edges of G⊥ dual to those of
M . In a similar way, we now define standard and prescribed orientations on a dual of a spine of a
multiverse, using the basic cycles of G⊥ of Definition 3.36.

Throughout this section, (U,Σ,F , G) is a framed multiverse, and G⊥ is a dual of the spine G.
As noted in Section 3.12, every edge e⊥ of G⊥ appears in two basic cycles, namely in the basic

cycles around v and w, the endpoints of the dual edge e of G. As G is bipartite, one of v, w is black
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and the other is white. In Definition 3.37 we defined clockwise and counterclockwise orientations on a
basic cycle. If e⊥ is oriented as in the clockwise basic cycle about v, then it will be counterclockwise
in the basic cycle around w, and vice versa.

Definition 6.1 (Standard, prescribed orientations on dual of spine).

(i) The standard orientation R0 of G⊥ is the orientation where each basic cycle around a black
vertex of G is clockwise, and each basic cycle around a white vertex of G is counterclockwise.

(ii) For each matching M of G, the prescribed orientation RM of G⊥ corresponding to M is
obtained from R0 by switching the orientations of edges of G⊥ dual to edges of M .

In light of (i) above, we can refer to the two orientations on an edge of G⊥ as its standard and
nonstandard orientations.

Recall in Definition 2.16 we defined Rc
X to be the set of orientations on a graph X with circulation

c. We add a P to denote “prescribed” as follows.

Definition 6.2 (Set of prescribed orientations). Let c be a feasible circulation function on G⊥.

(i) The set of all prescribed orientations of G⊥ with circulation c is denoted PRc
G.

(ii) The set of all prescribed orientations of G⊥ is denoted PRG.

Thus PRc
G ⊆ Rc

G⊥ . (We drop the ⊥ from PRG⊥ to avoid cumbersome notation.) In other words,

(6.3) PRG =
{
RM | M ∈ MG

}
and PRG =

⊔
c

PRc
G,

the disjoint union over feasible circulation functions c on G⊥.

Lemma 6.4. The map M 7→ RM yields a bijection MG −→ PRG.

Proof. By definition we have a surjection, and from a prescribed orientation RM , the matching M can
be recovered by observing where RM differs from the standard orientation R0. □

Combining Lemma 3.20 and Lemma 6.4, we have bijections

(6.5) SU
∼= MG

∼= PRG.

6.2. Viable circulation functions. Any orientation R on a graph yields a circulation function (Def-
inition 2.13) cR. Recall a function CX → Z is a feasible circulation function if it is the circulation
function cR (Definition 2.12) of some orientation R on X.

As usual, let (U,Σ,F , G) be a framed multiverse, and G⊥ a dual of G. In light of the bijections
(6.5), we can associate circulation functions to states and matchings as well as orientations.

Definition 6.6 (Circulation of a state or matching). Suppose S ∈ SU , M ∈ MG and R ∈ PRG

correspond under (6.5). Let c : CG⊥ −→ Z be the circulation function of R.

(i) The circulation of S is c. The set of all states of U with circulation c is denoted S c
U .

(ii) The circulation of M is c. The set of all matchings of G with circulation c is denoted M c
G.

Thus

(6.7) SU =
⊔
c

S c
U and MG =

⊔
c

M c
G,

the disjoint union over feasible circulation functions c on G⊥.
We now define a useful subset of the feasible circulation functions on G⊥.

Definition 6.8 (Viable circulation). A function c : CG⊥ −→ Z is a viable circulation function if it is
the circulation of a prescribed orientation of G⊥.

Thus a function CG⊥ −→ Z is a viable circulation function if and only if it is the circulation of a
state, or a matching. By definition, a viable circulation function is feasible. In (6.3) and (6.7), the
nonzero sets are those with viable c, so the disjoint unions can in fact be taken over viable c.

All viable circulation functions are the same on basic cycles, as we now see. A more general version
of the following lemma is stated by Propp in [41], in the planar context; we give the version we need.
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Lemma 6.9. Let C be a basic cycle of G⊥ around a vertex v of G with degree dv, oriented counter-
clockwise. Let c be a viable circulation function on G⊥. Then

c (C) =

{
2− dv if v is black,
dv − 2 if v is white.

Although viable circulations are fixed on basic cycles, they may differ on other cycles. See for
example Figure 19, which shows all matchings on G and prescribed orientations on G⊥ on a specific
multiverse; all orientations not connected by arrows have distinct circulations.

Proof. Let M ∈ M c
G correspond to R = RM ∈ PRc

G. In M there is precisely one edge incident to v,
say e; let its dual edge in G⊥ be e⊥. The length |C| of C is dv. So if v is black, then in R, all edges of C
are oriented clockwise except e⊥, hence (in the notation of Definition 2.12) |C+

R | = 1 and |C−
R | = dv−1,

thus c(C) = 2− dv. Similarly, if v is white, then in R, all edges are oriented counterclockwise except
e⊥, so c(C) = dv − 2. □

Lemma 6.10. If c is a viable circulation function then PRc
G = Rc

G.

Since by definition PRc
G ⊆ Rc

G, the content of this lemma is that any orientation of G⊥ with viable
circulation is a prescribed orientation. In other words, if R ∈ Rc

G, then R = RM for some M ∈ MG.

Proof. Let R ∈ Rc
G, where c is viable; we explicitly construct a matching M ∈ MG such that R = RM .

Consider a black vertex b of G, with degree db, and the counterclockwise basic cycle C of G⊥ about
b. By Lemma 6.9 c(C) = 2− db. So |C+

R | − |C−
R | = 2− db and |C+

R |+ |C−
R | = dv, hence |C+

R | = 1 and

|C−
R | = db − 1. Hence, there is precisely one directed edge in C that is forward relative to R. Since C

is assigned a counterclockwise direction around b, there is precisely one edge e⊥ in C that is directed
counterclockwise around b in R. We add the edge e of G dual to e⊥ to the matching M .

Similarly, consider a white vertex w of degree dw and let D be the basic counterclockwise cycle of
G⊥ around w. Again c(D) = dw − 2 and |D+

R | + |D−
R | = dw so |D+

R | = dw − 1 and |D−
R | = 1. Thus,

there is exactly one edge in D that is backward relative to R. Since D is counterclockwise direction,
there is exactly one edge e⊥ in D that is directed clockwise around w in R. We add the edge e of G
dual to e⊥ to the matching M .

As G is bipartite, every edge has a black and white vertex. A directed edge of G⊥ lies in two basic
cycles, about a black and a white vertex. It is oriented clockwise with about one and counterclockwise
about the other. Thus the collection of edges chosen for M via their white vertices coincides with the
collection of edges chosen for M at black vertices. Moreover, each vertex of G is adjacent to exactly
one edge of M , so M is a matching. By construction, R = RM as desired. □

6.3. Forced and forbidden corners and edges. Again let (U,Σ,F , G) be a framed multiverse,
and G⊥ a dual of G.

In Definition 2.15 we defined directed edges of a graph as c-forced and c-forbidden, for a feasible
circulation function c. A feasible circulation function c : CG⊥ −→ Z on G⊥ thus determines c-forced
and c-forbidden directed edges of G⊥.

In Definition 2.30 we defined the notion of forced and forbidden edges, based on matchings, so G
may have forced and forbidden edges. In Definition 3.9 we defined the notion of forced and forbidden
corners in U , based on states. We showed in Lemma 3.21 that these notions of forced and forbidden
on edges of G and states of U are equivalent.

We now also define corners of U and edges of G as forced and forbidden by a circulation function,
following Definition 2.15, using Definition 6.6 and the bijections of (6.5).

Definition 6.11 (c-forced and c-forbidden edges, corners). Let c : CG⊥ −→ Z be a viable circulation
function.

(i) An edge e of G is
(a) c-forced if e lies in every matching M ∈ M c

G;
(b) c-forbidden if e does not lie in any matching M ∈ M c

G.
(ii) A corner α at an interior vertex of U is
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2-transposition

2-transposition

2-transposition

Figure 19. Hasse diagram of a multiverse on a punctured torus.
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(a) c-forced if every state S ∈ S c
U has a marker at α;

(b) c-forbidden if no state S ∈ S c
U has a marker at α.

(Although it may seem that Definition 2.15 and Definition 6.11(i) provide conflicting definitions of
c-forced and c-forbidden edges, the former is for directed edges, the latter for undirected edges. We
apply the former to G⊥ and the latter to G.) The same proof as Lemma 3.21 immediately yields the
following.

Lemma 6.12. A corner α of U in an unstarred face is c-forced (resp. c-forbidden) if and only if the
corresponding edge e of G is c-forced (resp. c-forbidden). □

A corner of U is forced (resp. forbidden) in the sense of Definition 3.9, if and only if it is c-forced
(resp. c-forbidden) for all viable circulation functions c. (The circulation of a state is always viable,
by Definition 6.8 and subsequent comments.) Similarly, an edge of G is forced (resp. forbidden) in the
sense of Definition 2.30, if and only if it is c-forced (resp. c-forbidden) for all viable c.

Following Propp’s Proposition 2.17, which characterised forced or forbidden edges in terms of ac-
cessibility classes, we have the following.

Proposition 6.13. Let c : CG⊥ −→ Z be a viable circulation function. Let e be an edge of G, corre-
sponding to a corner α of U , and let e⊥ be the dual of e in G⊥. The following are equivalent.

(i) α is c-forced or c-forbidden.
(ii) e is c-forced or c-forbidden.
(iii) e⊥, directed arbitrarily, is c-forced or c-forbidden.
(iv) The endpoints of e⊥ belong to the same accessibility class of c.

Proof. The equivalence of (i) and (ii) is immediate from Lemma 6.12.
Note that e lies in a matching M ∈ M c

G precisely when e⊥ has nonstandard orientation in the
corresponding prescribed orientation RM ∈ PRc

G. Suppose e is c-forced; the argument when e is c-
forbidden is similar. Then e⊥ has nonstandard orientation in every prescribed orientation of G⊥ with
circulation c, i.e in every R ∈ PRc

G. But by Lemma 6.10, PRc
G = Rc

G. That is, every orientation
of G⊥ with circulation c is a prescribed orientation. Thus e⊥ has nonstandard orientation in every
orientation of G⊥ with circulation c, i.e. in every R ∈ Rc

G. Hence e⊥ with its standard orientation
is c-forbidden, and e⊥ with its nonstandard orientation is c-forced. Either way, e⊥ is c-forced or
c-forbidden. Thus (ii) implies (iii).

For the converse, suppose e⊥ has the same direction in all orientations R of G⊥ with circulation
c, i.e. standard or non-standard. All such orientations are prescribed orientations, and accordingly e
either lies in none or all of the corresponding matchings M , so is c-forced or c-forbidden.

Proposition 2.17 gives the equivalence of (iii) and (iv). □

6.4. Twisting along subsurfaces. In Definition 2.37 we defined positive and negative cycles on
a plane bipartite graph G relative to a matching G. We now generalise this to multiverses. On a
multiverse, a face need not have a unique outermost boundary component, and so we instead define
subsurfaces to be positive or negative.

We consider subsurfaces of a multiverse surface which are, roughly, unions of faces of the spine.
However, we want compact surfaces, and taking a closure of a union of faces of G might not be a
subsurface. For instance, if two faces share a common vertex v but no a common edge, then their
closure contains v but not a neighbourhood of v. Thus we make the following definition.

Definition 6.14 (Face subsurface). Let G be a finite graph embedded in the interior of a connected
compact orientable surface Σ, possibly with boundary. A face subsurface of G is a connected subsurface
∆ of Σ (possibly with boundary) which is the closure in Σ of a union of faces ∆1, . . . ,∆n of G, i.e.

∆ =
⋃n

j=1 ∆j .

As G is embedded in the interior of Σ, each boundary component of a face subsurface ∆ is either a
boundary component of Σ, or a cycle of G. Additionally, every edge e of G lying in a face subsurface
∆ of G either lies entirely on ∂∆, or has its interior entirely in the interior of ∆.
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Definition 6.15. A boundary component of a face subsurface ∆ is:

(i) A Σ-boundary component if it is a component of ∂Σ. These components are denoted ∂Σ∆.
(ii) A G-boundary component if it is a cycle of G. These components are denoted ∂G∆.

An edge e of G in ∆ is:

(i) A G-boundary edge, if it lies in ∂∆ (indeed ∂G∆).
(ii) An interior edge, if it lies in the interior of ∆.

An edge e of G in ∆ is a G-boundary or interior edge accordingly as it has faces ∆j of ∆ on just
one side, or on both sides.

Lemma 6.16. Let ∆ be a face subsurface of G, with G-boundary components given by cycles of G-
boundary edges C1, . . . , Cn. Then each Cj is vertex-simple, and the sets of vertices arising in the Cj

are pairwise disjoint.

In particular, any G-boundary component is a vertex-simple cycle of G. Note that a G-boundary
component can be a cycle of length 1, i.e. a loop in G.

Proof. Let v be a vertex on some Cj . As a boundary point of the surface ∆, a neighbourhood of v
in ∆ is a half disc, bounded by v and two ends of edges of G. These two ends of edges must be the
ends of the adjacent edges to v in Cj (they may be the ends of a single edge which is a loop). Thus v
cannot lie in Cj more than once, nor can it lie in any Ck with k ̸= j. □

Now let (U,Σ,F , G) be a framed multiverse, G⊥ a dual of G, and M ∈ MG. Obviously the above
definitions apply to G and Σ.

Definition 6.17 (Alternating subsurface). An alternating subsurface of G relative to M is a face
subsurface ∆ of G all of whose G-boundary components are alternating cycles relative to M .

We now introduce a generalised notion of twisting, in the spirit of Definition 2.35. Suppose ∆ is an
alternating surface of G relative to M . We now consider removing from M all edges which lie in ∂∆,
and adding to M the edges of ∂∆ which do not belong to M , to obtain a set of edges M ′. In similar
notation to Section 2.8 and (2.33), regarding G-boundary components ∂G∆ as sets of edges,

M ′ =
(
M \ ∂G∆

)
∪
(
∂G∆ \M

)
= M + ∂G∆.

Definition 6.18 (Twisting). Let ∆ be an alternating subsurface relative to M . The operation of
replacing the matching M with the matching M ′ = M + ∂G∆ as above is called twisting M at ∂∆.

As a multiverse surface Σ is orientable, it determines an orientation of a face subsurface ∆. This ori-
entation in turn determines an orientation of its boundary ∂∆, which we call the boundary orientation
of ∂∆. We denote by ∂G∆ ∩M the edges of G-boundary components of ∆ that belong to M . Recall
also that G is bipartite, so every edge has a black and white vertex. We can now introduce a notion
of positive and negative, in the spirit of Definition 2.37; we first deal with one boundary component
at a time.

Definition 6.19 (Positive, negative boundary component). Let ∆ be an alternating subsurface of G
relative to M , and let C be a G-boundary component of ∆.

(i) C is positive relative to M if every edge of C ∩M , oriented from black to white, agrees with
the boundary orientation of ∂∆.

(ii) C is negative relative to M if every edge of C ∩ M , oriented from black to white, disagrees
with the boundary orientation of ∂∆.

Equivalently, C is positive (resp. negative) relative to M if, when oriented as ∂∆, the edges in M
are oriented from black to white (resp. white to black).

Definition 6.20 (Positive, negative subsurface). Let ∆ be alternating subsurface of G relative to M .
∆ is positive (resp. negative) relative to M if each of its G-boundary components is positive (resp.
negative) relative to M .
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Thus, ∆ is positive (resp. negative) relative to M if every edge of ∂G∆∩M , oriented from black to
white, agrees (resp. disagrees) with the boundary orientation of ∂∆. Equivalently, ∆ is positive (resp.
negative) relative to M if, when oriented as ∂∆, the edges of M ∩∂∆ are oriented from black to white
(resp. white to black).

When U is a planar multiverse, a positive (resp. negative) cycle in the sense of Definition 2.37 and
Section 4.1 bounds a positive (resp. negative) surface.

Note that if M ′ is obtained from M by twisting along ∆, then M is positive (resp. negative) if
and only if M ′ is negative (resp. positive). Applying this idea, we now define the notion of surface
twisting up and down, generalising the notion of twisting up and down from Definition 2.38, but also
requiring a condition on interior edges. Just as twisting up and down in Definition 2.38 was performed
on elementary cycles (Definition 2.27), which form the outer boundary of non-outer faces, we also
require the surfaces involved to avoid the outer boundary of our multiverse.

Definition 6.21 (Twisting surface). Let c be the circulation of M . A twisting surface relative to M
is a positive or negative subsurface ∆ relative to M such that

(i) ∆ is disjoint from the outer boundary ∂Σ0 of Σ, and
(ii) each interior edge of ∆ is either c-forced or c-forbidden.

Although the definition of twisting surface involves a significant amount of detail, they can be
straightforwardly identified as follows.

Lemma 6.22. Two twisting surfaces are equal if and only if they have the same G-boundary compo-
nents.

Proof. Let C = {C1, . . . , Cn} be the set of G-boundary cycles of a twisting surface ∆. Observe that C
forms a separating collection of curves on Σ, and ∆ is one of the complementary components. Indeed,
∆ is the unique complementary component of C containing all the Cj as boundary components and
not containing the outer boundary ∂Σ0: if there were two such components, then they would form
the whole of Σ yet not contain the outer boundary, a contradiction. Thus two twisting surfaces with
G-boundary C are equal. The converse is clear. □

Definition 6.23 (Surface twisting). Let ∆ be a twisting surface relative to M . The operation of
twisting M at ∂∆ to obtain a matching M ′ = M + ∂G∆ is called surface twisting along ∆. It is called

(i) surface twisting down, if ∆ is positive relative to M (hence negative relative to M ′);
(ii) surface twisting up, if ∆ is negative relative to M (hence positive relative to M ′).

Note that a twisting surface ∆ may simply be a single (non-outer) face homeomorphic to a disc,
in which case surface twisting generalises twisting at a positive/negative cycle encircling a face of
a connected bipartite plane graph. However, when a twisting surface contains several faces, or has
several boundary components, surface twisting imposes numerous further requirements, quite distinct
from twisting up/down on a negative/positive cycle in a bipartite plane graph.

6.5. Surface twisting and orientations on the dual. Again let (U,Σ,F , G) be a framed multi-
verse, G⊥ a dual of G, and M ∈ MG. Let ∆ be a face subsurface of G.

Each edge e⊥ of G⊥ dual to a G-boundary edge e of ∆ goes across e, from one side to the other.
Thus e⊥ crosses the boundary of ∆, and is dual to an edge in ∂G∆. We refer to such edges repeatedly,
so give them a name.

Definition 6.24. The ∂G∆
⊥ edges are the edges of G⊥ dual to G-boundary edges of ∆.

Since ∂G∆
⊥ edges cross the boundary of ∆, they can be oriented into or out of ∆.

When ∆ is positive or negative relative to M , the prescribed orientation of M orients ∂G∆
⊥ edges

in a definite manner.

Lemma 6.25 (Orientations dual to positive/negative surfaces). Let RM ∈ PRG be the prescribed
orientation of G⊥ corresponding to M .

(i) ∆ is positive relative to M if and only if RM orients each ∂G∆
⊥ edge into ∆.
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Figure 20. A G-boundary component C of a face subsurface ∆, with boundary
orientation indicated, and standard orientation R0 on dual edges of G⊥. G and G⊥

are shown in green and red respectively.
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Figure 21. Left: C positive, RM points into ∆. Right: C negative, RM points out
of ∆. Edges of M are thickened.

(ii) ∆ is negative relative to M if and only if RM orients each ∂G∆
⊥ edge out of ∆.

Proof. Let C be a G-boundary component of ∆, oriented as ∂∆. By Lemma 6.16, C is a vertex-simple
directed cycle. As G is bipartite, we can denote the black and white vertices of C by wj and bj for
j ∈ Z/nZ respectively, so that in order around C they are w1, b1, . . . , wn, bn. Denote each edge of C
by (white vertex, black vertex).

In the standard orientation R0 of G⊥ (Definition 6.1), the edges of the basic cycle around each
wj and bj (Definition 3.36) are oriented counterclockwise and clockwise (Definition 3.37) respectively.
Thus in R0 the edges of G⊥ dual to edges of C are directed alternately into and out of ∆. Each edge
(wj , bj)

⊥ of G⊥ is directed into ∆, and each edge (wj , bj−1)
⊥ is directed out of ∆. See Figure 20.

The prescribed orientation RM differs from R0 precisely on the edges of G⊥ dual to edges of M .
Thus RM points entirely into or out of ∆ along C precisely when C is alternating relative to M .

If ∆ is positive (resp. negative) then, as noted after Definition 6.20, the edges of ∂G∆∩M , oriented
as ∂∆, are oriented from black to white (resp. white to black). Thus C is positive when the (wj , bj−1)
belong to M , and RM orients each edge of G⊥ dual to C into ∆. Similarly, C is negative when the
(wj , bj) belong to M , and RM orients each edge of G⊥ dual to C out of ∆. See Figure 21.

Thus, ∆ is positive (resp. negative) if and only if each G-boundary cycle of ∆ is positive (resp.
negative), if and only if RM orients all ∂G∆

⊥ edges into (resp. out of) ∆. □

Lemma 6.26 (Surface twisting preserves circulation). Let ∆ be a positive or negative surface relative
to M . Suppose M ′ ∈ MG is obtained from M by twisting M at ∂∆, i.e. M ′ = M + ∂G∆. Let R,R′

be the prescribed orientations of G⊥ corresponding to M,M ′ respectively. Then we have the following.

(i) R and R′ differ precisely on the ∂G∆
⊥ edges.
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(ii) R and R′ have the same circulation, i.e. cR = cR′ .

(In the notation of Definition 6.1 here R = RM and R′ = RM ′ . Our notation here avoids repeated
sub- and superscripts.)

Proof. The edges of M and M ′ differ precisely on the G-boundary edges of ∆. Thus the orientations
R,R′ differ precisely on the ∂G∆

⊥ edges. This gives (i).
For (ii), suppose ∆ is positive relative to M , hence negative relative to M ′; the argument is similar

in the opposite case. Then, by Lemma 6.25, for a ∂G∆
⊥ edge e⊥ of G⊥, R orients e⊥ into ∆, and R′

orients e⊥ out of ∆.
Now consider a directed cycle D in G⊥, and its circulation cR(D), cR′(D) with respect to R,R′

respectively. The orientations R,R′ differ precisely on the ∂G∆
⊥ edges. So each non-∂G∆

⊥ edge of D
contributes equally to cR(D) and cR′(D).

The ∂G∆
⊥ edges are precisely those which enter or exit ∆. As D is a cycle, the number of times

D enters ∆ must be equal to the number of times D exits ∆. In R, the edges into ∆ are forward and
the edges out of ∆ are backward; in R′, the edges into ∆ are backward and the edges out of ∆ are
forward. The ∂G∆

⊥ edges of D thus contribute zero to cR(D), and zero to cR′(D).
Therefore cR(D) = cR′(D), and R and R′ have the same circulation. □

Lemma 6.26 immediately implies the following.

Lemma 6.27. Suppose M ′ ∈ MG is obtained from M by surface twisting along ∆. Then the corre-
sponding orientations R,R′ ∈ PRG have the same circulation, and differ precisely on ∂G∆

⊥ edges.

Proof. Surface twisting is performed along a twisting surface, which is positive or negative. □

6.6. Accessibility class pushing in the dual of the spine. As usual, let (U,Σ,F , G) be a framed
multiverse, G⊥ a dual of G, and M ∈ MG.

Recall from Definition 3.34 that G⊥ has a distinguished outer vertex, dual to the outer face of G,
adjacent to the outer boundary ∂Σ0 of Σ.

Definition 6.28 (Outer accessibility class). Let R be an orientation of G⊥. The outer accessibility
class of R is the accessibility class of R containing the outer vertex of G⊥.

Lemma 6.29. Let M,M ′ ∈ MG correspond to R,R′ ∈ PRG. The following are equivalent.

(i) There is a surface twisting up (resp. down) T on a negative (resp. positive) twisting surface
∆ relative to M , taking M to M ′.

(ii) There is a pushing up (resp. down) P on a minimal (resp. maximal) non-outer accessibility
class K of R, taking R to R′.

Moreover, K consists of the vertices of G⊥ dual to the faces of ∆.

Similar to Section 4.3, we denote by STwM the finite set of all surface twisting up operations that
can be done on M , and by PuR the finite set of all pushing up operations on non-outer accessibility
classes of R. Then Lemma 6.29 provides a bijection

STwM

∼=−→ PuR

which takes T to P .

Proof. We prove that surface twisting up operations T correspond to pushing up operations P ; the
arguments for twisting down and pushing down are similar.

Suppose a surface twisting up operation T on the negative twisting surface ∆ takes M 7→ M ′, and
let R,R′ be the corresponding prescribed orientations of G⊥. By Lemma 6.27, R and R′ differ precisely
on ∂G∆

⊥ edges of G⊥, and have the same circulation, which we denote by c. By Lemma 2.14 then R
and R′ have the same accessibility classes.

We construct the desired pushing up operation P taking R 7→ R′ in several steps as follows.
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(i) Construction of the set K. Let ∆1, . . . ,∆m be the faces of ∆. Let Vi be the vertex of G⊥

dual to ∆i, and let K = {V1, . . . , Vm}. Let Kc be the complement of K in the vertex set of
G⊥.

(ii) K forms an accessibility class of c. Let Va, Vb be two vertices in K joined by an edge e⊥

whose dual in G is denoted e. Since e is adjacent to ∆a on one side and ∆b on the other,
it is an interior edge of ∆ (Definition 6.15). Being an interior edge of a twisting surface
(Definition 6.21), e is c-forced or c-forbidden. By Proposition 6.13 then e⊥ joins two vertices
in the same accessibility class of c. Hence, Va and Vb belong to the same accessibility class of c.
As a face subsurface, ∆ is connected (Definition 6.14), hence the vertices of K are connected
by edges in G⊥. Thus all vertices of K lie in the same accessibility class.

Now consider a ∂G∆ edge e of G, and its dual ∂G∆
⊥ edge e⊥ of G⊥. By Lemma 6.27, R

and R′ differ on e⊥, so e⊥ is not c-forced or c-forbidden. Hence by Proposition 6.13 again,
the endpoints of e⊥ belong to distinct accessibility classes of c.

Thus, the vertices of G⊥ in ∆ (namely K) lie in the same accessibility class, but if we
proceed from K out of ∆, across a ∂G∆

⊥ edge, then we arrive at a vertex in a different
accessibility class. Thus the vertices of K form an accessibility class.

(iii) All edges between K and Kc are oriented from K to Kc in R. Indeed, K consists precisely
of the vertices of G⊥ in ∆, and Kc consists of the vertices of G⊥ outside ∆. So the edges
between K and Kc are precisely the edges of G⊥ crossing the boundary of ∆, i.e. the ∂G∆

⊥

edges. By Lemma 6.25, R orients all ∂G∆
⊥ edges out of ∆, i.e. from K to Kc, as claimed.

By a similar argument, all edges between K and Kc are oriented from Kc to K in R′.

Thus, K is a minimal accessibility class in R and a maximal accessibility class in R′, and the two
orientations differ precisely on the edges between K and Kc. Hence, R′ is obtained from R by pushing
up on K. As a twisting surface (Definition 6.21), ∆ is disjoint from the outer boundary of Σ, and so
K does not contain the outer vertex of G⊥, hence is a non-outer accessibility class. So the pushing up
P ∈ PuR on the non-outer accessibility class K takes R to R′ and is as claimed.

Thus we have a map r : STwM → PuR taking T 7→ P , and it remains to construct an inverse.
So suppose a pushing up P on a minimal non-outer accessibility class K takes R 7→ R′. Then

K is a maximal accessibility class for R′. Moreover R,R′ have the same viable circulation c, so by
Lemma 6.10, both R,R′ are prescribed orientations of matchings M,M ′. The orientations R,R′ differ
precisely on the edges of G⊥ between K and Kc, hence M,M ′ differ precisely on the corresponding
dual edges of G.

Let K = {V1, . . . , Vm}, and let ∆i be the face of G dual to Vi. The edges of G⊥ between K and Kc

are thus the edges between a vertex Vj and a vertex not among the Vj . The corresponding edges of G
are those which have a face ∆j on one side but not the other; these are precisely the edges on which
M,M ′ differ.

Let ∆ =
⋃m

j=1 ∆j . Then M,M ′ differ precisely on those edges of G which have ∆ on one side but
not the other. We temporarily call these the boundary edges of ∆.

We claim ∆ is a negative twisting surface for M . We prove this in several steps.

(i) ∆ is a subsurface of Σ. As the closure of a union of faces, ∆ fails to be a surface precisely if
there is a vertex v of G whose neighbourhood in ∆ is not a disc or half disc. See Figure 22.
The number of ends of boundary edges at v is even, and a neighbourhood of v in ∆ fails to
be a disc or half disc when this number is 4 or more. So suppose for contradiction that we
have 4 ends of boundary edges e1, e2, e3, e4 incident to a v of ∆. (These four ends of edges ej
at v are distinct, but a priori two of these ends could be the ends of a single edge, forming
a loop.) As each ej is a boundary edge, it is in precisely one of M or M ′. Hence one of M
or M ′ must contain at least 2 of the ej . But then we have a matching where more than one
endpoint of an edge is chosen at v, contradicting Definition 2.29. So ∆ is indeed a subsurface.

(ii) ∆ is connected and hence a face subsurface of G (Definition 6.14). As K is an accessibility
class, the vertices Vj of G⊥ are all joined by edges of G⊥, hence the faces ∆j of ∆ are all
joined by common edges along their boundaries, and ∆ is connected.
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Figure 22. Vertex of ∆ violating surface condition. Faces ∆• are shaded.

As ∆ is a face subsurface of G, the boundary edges discussed above are in fact its G-
boundary edges. The matchings M,M ′ differ precisely on ∂G∆.

(iii) ∆ is an alternating subsurface of G relative to M (Definition 6.17) and in fact a negative
subsurface (Definition 6.20). As K is a minimal accessibility class relative to R, each edge
e⊥ of G⊥ between K and Kc points out of K in R. The edges of G⊥ between K and Kc are
precisely the ∂G∆

⊥ edges. As R orients ∂G∆
⊥ edges out of ∆, by Lemma 6.25 ∆ is negative

relative to M as claimed.
(iv) Each interior edge e of ∆ is c-forced or c-forbidden. Such an e is an edge of G with a face ∆j

on either side, and hence its dual edge e⊥ in G⊥ joins two vertices among the Vj . Thus e⊥

joins two vertices of K, which is an accessibility class. By Proposition 6.13 then e is c-forced
or c-forbidden.

(v) ∆ is disjoint from the outer boundary ∂Σ0 of Σ. As K is a non-outer accessibility class, it
does not include the outer vertex of G⊥. Hence the outer face of G does not appear as a face
∆i of ∆, so ∆ is disjoint from ∂Σ0.

This concludes the proof of the claim, and ∆ is a negative twisting surface.

Therefore, starting from P we have found a surface twisting up operation T on M at ∆. Since
M and M ′ differ precisely on ∂G∆, the operation results in M ′ as desired. Moreover, K consists of
the vertices of G⊥ dual to the faces of ∆ as claimed. This map P 7→ T recovers the twisting down
operation T mapped to P under r, and we have constructed the required inverse to r. □

6.7. Surface transpositions. We now define a version of transpositions for general multiverses, which
we call surface transpositions. Unlike the plane transpositions of Definition 4.2, these need not be
along a single curve. Rather, a surface transpositions consists of a collection of contour transpositions
(Definition 3.11) performed along a collection of transposition contours (Definition 3.10) which bound
a surface with certain properties, which we define below.

Throughout this section, let (U,Σ,F ) be a multiverse, S ∈ SU a state, and c its circulation.
Recall a transposition contour γ passes through various vertices and faces of U , denoted vj , Fj in

Definition 3.10. With multiple transposition contours, we require them to be disjoint as follows.

Definition 6.30. A set of transposition contours γ1, . . . , γn for S is independent if their vertices and
faces are all disjoint.

By the finiteness of a multiverse graph, an independent set of transposition contours is finite.
Let {γ1, . . . , γn} be an independent set of contours for S, and denote by Zj the operation of contour

transposition along γj . Each Zj changes distinct markers of the state S, so the operations Zj can be
performed on S in any order to obtain the same resulting state, which we denote S′.
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U Ψ

γj

Figure 23. A clockwise contour transposition for a state S, at a contour γj on the
boundary of a subsurface Ψ ⊂ Σ. Dots are markers for S. Interior corners at vertices
are noted with crosses.

We will perform a surface transposition along a surface Ψ ⊂ Σ, which has an independent set
of transposition contours γj for S as its boundary. Like previous notions of transposition, surface
transposition must also avoid the outer boundary. Since each transposition contour γj is a boundary
component of surface Ψ, the interior of Ψ lies to one side of γj . At a vertex v of a γj , the corners
which lie entirely in the interior of Ψ are called the interior corners of v. At a vertex v of U in the
interior of Ψ, all corners are interior corners. The interior corners of Ψ are the interior corners at all
vertices of U in Ψ.

At a vertex v of a contour γj , let α, α
′ be the corners with markers in the states S, S′ respectively. The

contour transposition Zj replaces each α with α′. There is a direction, clockwise or counterclockwise,
such that the rotation from α to α′ about v in this direction passes through the interior of Ψ. By
construction, this direction is the same at all vertices of a single contour γj . See Figure 23. We refer
to the contour γj in ∂Ψ as clockwise or counterclockwise accordingly.

We require all Zj to be clockwise or counterclockwise; this requirement is analogous to a positive
or negative surface (Definition 6.20) having each G-boundary component positive or negative.

Definition 6.31 (Transposition surface). A transposition surface for S is an compact subsurface Ψ
of Σ such that the following hold:

(i) The boundary of Ψ consists of a (possibly empty) set of non-outer boundary components of
Σ, and a nonempty independent set Γ = {γ1, . . . , γn} of transposition contours of S.

(ii) Each interior corner of Ψ is c-forced or c-forbidden.
(iii) All contours in Γ are clockwise, or all contours in Γ are counterclockwise.

We say Ψ is clockwise or counterclockwise accordingly with the contours of Γ.

We call a boundary component of Ψ a Σ-boundary component if it is a boundary component of Σ,
and a boundary contour if it is a contour. There may be no Σ-boundary components. As Σ is compact,
Ψ contains finitely many boundary components.

Condition (ii) here may be compared to the condition requiring forbidden corners on plane trans-
positions. However, the conditions are quite different. Definition 4.2 only requires that that interior
corners at vertices on the contour are forbidden; condition (ii) here applies throughout the interior of
Ψ, refers only to the circulation c, and allows for c-forced as well as c-forbidden corners.

Just as transposition contours can be framed (Definition 3.18), so too can transposition surfaces.

Definition 6.32 (Framed transposition surface). Let (U,Σ,F , G) be a framed multiverse. A trans-
position surface is framed if all its boundary contours are framed transposition contours.
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Figure 24. A boundary component Ci of a positive twisting surface (green), regarded
as a transposition contour. Edges of M are thickened. The multiverse U and state
markers are shown in black.

Definition 6.33 (Surface transposition). Let Ψ be a framed transposition surface for a state S, with
boundary contours Γ = {γ1, . . . , γn}.

Surface transposition of S along Ψ is contour transposition of S along all contours of Γ, yielding
the state S′. Accordingly as Ψ is clockwise or counterclockwise, we say the surface transposition is
clockwise or counterclockwise.

Note that, just as a plane transposition must be done along a framed transposition contour, a
surface transposition must also be done along framed transposition contours.

Plane transpositions are quite different from surface transpositions. As mentioned in the introduc-
tion, Figure 2 and Figure 3 show the distinct operations on the same multiverse. Moreover, a Kauffman
transposition (Definition 1.6) on a Kauffman universe may fail to be a surface transposition. For in-
stance, Figure 4 shows a multiverse and its Kauffman transpositions, which differ from the surface
transpositions shown in Figure 5.

6.8. Twisting surfaces and transposition surfaces. We saw in Section 3.8, specifically Lemma 3.26,
an equivalence between transposition contours and (vertex-simple) alternating cycles. We now show a
similar equivalence between transposition surfaces and twisting surfaces.

As usual, let (U,Σ,F , G) be a framed multiverse, S ∈ SU a state, M ∈ MG the corresponding
matching, and c their circulation function.

The following lemma is the surface analogue of Lemma 3.24.

Lemma 6.34. A positive (resp. negative) twisting surface ∆ of M , regarded as an subsurface of Σ,
is a clockwise (resp. counterclockwise) framed transposition surface for S.

Proof. We prove the result for positive ∆; the negative case is similar. We show the positive twisting
surface ∆ verifies conditions (i)–(iii) of Definition 6.31.

The boundary of ∆ consists of non-outer Σ-boundary components, together with G-boundary com-
ponents, which are vertex-simple alternating cycles of M , say C1, . . . , Cn, containing pairwise disjoint
vertices (Lemma 6.16). By Lemma 3.24 each Ci, regarded as a simple closed curve γi, is a framed
transposition contour. As the Ci have disjoint vertices, the γi are independent, satisfying (i).

Interior corners α of Ψ correspond to interior edges e of ∆. As ∆ is a twisting surface for M , all
interior edges of ∆ are c-forced or c-forbidden, hence by Lemma 6.12, all interior corners α of Ψ are
c-forced or c-forbidden, satisfying (ii).

As ∆ is positive, each Ci is positive, so when oriented as ∂∆, the edges in M are oriented from
black to white (see Definition 6.19 and subsequent comment). Label the vertices of Ci, directed as
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∂∆, in cyclic order as v1, F1, . . . , vn, Fn where the vj , Fj are over j ∈ Z/nZ, the vj are white (hence
vertices of U) and the Fj are black (hence correspond to unstarred faces of U , which we also denote
Fj), as in Figure 24; see also Figure 21 (left). Then the edges in M are precisely the edges oriented
from black to white, i.e. Fj to vj+1. The edge in M from Fj to vj+1 corresponds to a corner βj+1

in the face Fj at the vertex vj+1 of U , where a marker appears in the state S. Contour transposition
along γj replaces the marker αj+1 at vj+1 with the marker α′

j+1 corresponding to the edge from vj+1

to Fj+1. This is a clockwise transposition around vj+1 through the interior of Ψ, as shown in figure
Figure 24. Thus each contour γi is clockwise, satisfying (iii).

Hence ∆ is a clockwise transposition surface for S. As each Ci is a framed contour, ∆ is framed. □

For a converse and equivalence, we recall that the straightening (Definition 3.25) of a framed trans-
position contour γ is a vertex-simple alternating cycle (Lemma 3.26) isotopic to γ. Hence we have a
surface analogue is as follows.

Definition 6.35. Let Ψ a framed transposition surface with boundary contours Γ. The straightening
of Ψ is the face subsurface of G with the same Σ-boundary components as Ψ and whose G-boundary
components are straightenings of the contours Γ.

Lemma 6.36. Let Ψ a clockwise (resp. counterclockwise) framed transposition surface for S with
boundary contours Γ. Then the straightening ∆ of G is a positive (resp. negative) twisting surface
relative to M .

Proof. We prove the result for clockwise Ψ; the counterclockwise case is similar.
First, note that as Ψ is a transposition surface, the contours Γ = {γ1, . . . , γn} are independent,

so their straightenings C = {C1, . . . , Cn} are disjoint vertex-simple alternating cycles. Hence the
isotopies taking each γj to Cj are disjoint, so ∆ is actually a subsurface of Σ. As its boundary consists
of components of ∂Σ and edges and vertices of G, it is a face subsurface of G (Definition 6.14). As each
Ci is an alternating cycle relative to M , ∆ is an alternating subsurface relative to M (Definition 6.17).

Now we show ∆ is a positive twisting surface relative to M verifying (i) and (ii) of Definition 6.21.
As a transposition surface, Ψ is disjoint from the outer boundary of Σ, hence so is ∆, verifying (i).

Consider an interior edge e of ∆. This corresponds to an interior corner α of U in Ψ in an unstarred
face. As Ψ is a transposition surface, α is c-forced or c-forbidden. Thus by Lemma 6.12, e is c-forced
or c-forbidden, verifying (ii).

Consider a cycle Cj , the straightening of γj . As Ψ is a clockwise transposition surface, contour
transposition along γj rotates each marker at each vertex of γj clockwise through the interior of Ψ, as
in Figure 23. Thus, when oriented as ∂∆, the edges of M in Cj are oriented from black to white, as
in Figure 24. Thus Cj is positive, and Ψ is a positive twisting surface relative to M . □

For an equivalence statement, we introduce the following straightforward notion of isotopy of trans-
position surfaces, following definitions of isotopy for embedded graphs (Definition 2.24), transposition
contours (Definition 3.12), and spines (Definition 3.15).

Definition 6.37. Two transposition surfaces Ψ0,Ψ1 for a state S are isotopic if there is a continuous
family of transposition surfaces Ψt for t ∈ [0, 1] from Ψ0 to Ψ1.

Two surface transpositions are isotopic is their transposition surfaces are isotopic.

In the continuous family Ψt of transposition surfaces, the Σ-boundary components must remain
constant, and the restriction to a boundary contour γ0 of Ψ0 yields an isotopy of transposition contours
γt from γ0 to a corresponding boundary contour γ1 of Ψ1. Indeed, an isotopy of transposition surfaces
Ψt is determined by its restriction to its boundary contours, and we have the following, corresponding
to Lemma 6.22 for twisting surfaces.

Lemma 6.38. Two transposition surfaces are isotopic if and only if their boundary contours are
isotopic. □

Lemma 6.39. Straightening provides a bijection between isotopy classes of clockwise (resp. counter-
clockwise) framed transposition surfaces for S, and positive (resp. negative) twisting surfaces of G
relative to M .
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Figure 25. Rotating markers and matchings. The edges of M are thickened.

Proof. We prove the result for clockwise/positive surfaces; the other case is similar. Let Ψ,Ψ′ be
isotopic clockwise framed transposition surfaces for S, with framed boundary contours Γ = {γ1, . . . , γn}
and Γ′ = {γ′

1, . . . , γ
′
n}, where each γi is isotopic to γ′

i, and each γi and γ′
i is clockwise.

By Lemma 3.26, both γi, γ
′
i straighten to the same vertex-alternating cycle Ci of G relative to M .

Thus the straightenings ∆,∆′ of Ψ,Ψ′ on G respectively are twisting surfaces of G relative to M with
the same G-boundary cycles, and hence by Lemma 6.22 ∆ = ∆′. By Lemma 6.36, ∆ = ∆′ is positive.

This gives the desired map from isotopy classes of framed transposition surfaces to twisting surfaces.
Regarding twisting surfaces as transposition surfaces then provides the desired inverse. □

As in Section 3.6 and Section 3.8, when the faces involved are homeomorphic to discs, these consid-
erations simplify. A multiverse (U,Σ,F ) has a unique framing G up to isotopy. Then all transposition
contours are framed, and all transposition surfaces are framed.

6.9. Equivalence of surface twisting and surface transpositions. We now use the equivalence of
transposition surfaces and twisting surfaces of the previous section, to obtain an equivalence between
surface transpositions and surface twisting.

Lemma 6.40. Let (U,Σ,F , G) be a framed multiverse, an let S, S′ ∈ SU correspond to M,M ′ ∈ MG.
The following are equivalent.

(i) There is a counterclockwise (resp. clockwise) surface transposition Z on a counterclockwise
(resp. clockwise) framed transposition surface Ψ for S, taking S to S′.

(ii) There is a surface twisting up (resp. down) T on a negative (resp. positive) twisting surface
∆ relative to M , taking M to M ′.

Moreover, Ψ is isotopic to ∆, and ∆ is the straightening of Ψ.

As in Section 6.6 and Lemma 6.29 we denote by STwM the finite set of surface twisting up operations
that can be done on M . Similarly, we denote by TrS the finite set of isotopy classes of counterclockwise
(resp. clockwise) surface transpositions that can be done on S. Then Lemma 6.40 provides a bijection

TrS
∼=−→ STwM

which takes (the isotopy class of) Z to T .

Proof. We consider the counterlockwise/negative case; the other case is similar. Let Ψ be the coun-
terclockwise transposition surface of Z, and let ∆ be its straightening. By Lemma 6.36, ∆ is a
negative twisting surface of G relative to M . Letting the boundary contours of Ψ be γ1, . . . , γn, in ∆
they are straightened into disjoint vertex-simple negative (resp. positive) alternating boundary cycles
C1, . . . , Cn of G relative to M . Surface transposition on Ψ rotates each state marker αi of S at each
corner vi of γj counterclockwise through the interior of Ψ to a corner α′

i of vi, to obtain S′. Surface
twisting up on ∆ twists the matching M on ∂G∆ to obtain M ′ = M + ∂G∆, which then corresponds
to S′. See Figure 25.



60 NGUYEN THANH TUNG LE AND DANIEL V. MATHEWS

Moreover, ∆ is unique: any twisting surface ∆′ for M on which twisting takes M 7→ M ′ must have
the same vertices and edges in its G-boundary as ∆, and as the G-boundary cycles of ∆′ are disjoint
vertex-simple cycles (Lemma 6.16), they must coincide with those of ∆, so by Lemma 6.22, ∆ = ∆′.

Conversely, if ∆ is the negative twisting surface of T , then by Lemma 6.34 it may be regarded as a
counterclockwise framed transposition surface Ψ with the properties claimed, and ∆ is the straightening
of Ψ as required. Moreover, Ψ is unique up to isotopy: any transposition surface Ψ′ for S on which
pushing up takes S 7→ S′ must involve state markers in corners corresponding to the G-boundary edges
of ∆ in M . As the G-boundary edges form disjoint vertex-simple cycles, the framed boundary contours
of Ψ′ must involve the same vertices, faces and corners of Ψ. Thus the framed boundary contours of
Ψ′ are corner-equivalent to those of Ψ, so by Lemma 3.19 they are isotopic. Hence by Lemma 6.38 Ψ′

is isotopic to Ψ, and to ∆.
□

6.10. Clock theorem in arbitrary genus. Combining (6.5), Lemma 6.29 and Lemma 6.40 then
immediately gives the following.

Proposition 6.41. Let (U,Σ,F , G) be a framed multiverse, and G⊥ a dual of G. Then we have
bijections

SU
∼= MG

∼= PRG.

For any S ∈ S corresponding to M ∈ MG and R ∈ PRG, we have bijections

TrS ∼= STwM
∼= PuR.

□

We can now define relations on these sets as follows.

Definition 6.42. Let (U,Σ,F , G) be a framed multiverse and G⊥ a dual of G.

(i) Define a relation ⩽ on SU by S ⩽ S′ if there exists a sequence of states S = S0, . . . , Sm = S′

of SU , for some m ≥ 0, such that each Sj+1 is obtained from Sj by a counterclockwise surface
transposition.

(ii) Define a relation ⩽ on MG by M ⩽ M ′ if there exists a sequence M = M0, . . . ,Mm = M ′ in
MG, for some m ≥ 0, such that each Mj+1 is obtained from Mj by surface twisting up.

(iii) Define a relation ⩽ on PRG by R ≤ R′ if there exists a sequence R = R0, . . . , Rm = R′

in PRG, for some m ≥ 0, such that each Rj+1 is obtained from Rj by pushing up on a
non-outer accessibility class.

In other words, S ⩽ S′ if S′ is obtained from S by a sequence of counterclockwise surface transposi-
tions; M ⩽ M ′ if M ′ is obtained from M by a sequence of surface twisting up operations; and R ⩽ R′

if R′ is obtained from R by a sequnce of pushing up operations on non-outer accessibility classes.
As discussed in Section 6.7, surface transpositions do not generalise Kauffman transpositions, and

are quite different from surface transpositions. Hence, although it is in a similar vein, the relation on
SU here is not strictly a generalisation of Definition 1.7 or Definition 4.3.

Similarly, as discussed in Section 6.4, while surface twisting does generalise twisting on single faces
of connected finite plane bipartite graphs, it is quite different in general. Thus the relation on MG

here is only a generalisation of Definition 2.39 in a limited sense.
However, the relation on PRG is essentially the same as that of Definition 2.20, where the non-

pushable accessibility class it the outer accessibility class. Definition 2.20 takes orientations one circu-
lation at a time, but pushing up preserves circulation, and by Lemma 6.10, the prescribed orientations
are precisely the orientations with viable circulation.

Proposition 6.41 provides an isomorphism between the relations ⩽ on SU , MG and PRG. For a
viable circulation function c on G⊥, by Lemma 6.27 and Definition 6.6, these isomorphisms restrict to
isomorphisms between the relations on S c

U , M c
G and PRc

G = Rc
G.

Propp’s theorem on orientations of graphs Theorem 2.21 can now be applied to prove our general
clock theorem.
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Theorem 6.43 (Clock theorem in arbitary genus). Let (U,Σ,F , G) be a framed multiverse, G⊥ a dual
of G, and c : CG⊥ −→ Z a viable circulation function. Then S c

U , M c
G and PRc

G, with the relations
of Definition 6.42, are isomorphic distributive lattices.

Moreover, for S, S′ ∈ S c
U , M,M ′ ∈ M c

G, and R,R′ ∈ Rc
G,

(i) S ⋖ S′ if and only if S′ is obtained from S by a counterclockwise surface transposition;
(ii) M ⋖M ′ if and only if M ′ is obtained from M by a surface twisting up;
(iii) R⋖R′ if and only if R′ is obtained from R by pushing up on a non-outer accessibility class.

If we take unions over viable circulations, then we obtain isomorphisms of partially ordered sets

SU
∼= MG

∼= PRG

which we can regard as “disconnected” distributive lattices, whose “connected components” are the
S c

U , M c
G and Rc

G above.
When U is 2-cell embedded, then as discussed in Section 3.6 after Lemma 3.19, a spine G for U

is unique up to isotopy, so we obtain a distributive lattice for the multiverse (U,Σ,F ), by taking the
spine G arbitrarily.

Proof. The dual G⊥ is a finite graph, and by Lemma 3.35, it is connected. Applying Theorem 2.21
to G⊥ and a viable circulation function c, with the unpushable accessibility class being the outer
accessibilty class of G⊥ (Definition 6.28), provides a distributive lattice structure on Rc

G = PRc
G as

claimed. The isomorphisms with S c
U and M c

G then provide the other distributive lattices as desired.
□
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[17] C. Hine and T. Kálmán, Clock theorems for triangulated surfaces, arXiv:1808.06091. [11]
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