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Overview

This talk aims to do the following:
¢ Give some background on circle packing
e Discuss relations to spinors and spacetime

e Describe circle packing equations, whose solutions
parametrise circle packings

e Discuss relations to statistical mechanics, on-shell
diagrams, Grassmannians, amplituhedra, origami.
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e Some work in progress
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Tangency constraints —
interesting rigidity/flexibility.

Discrete conformal geom /
Riemann s’fces / cx analysis.

Cauchy-Riemann egns
“preserve infinitesimal circles".
Here, just preserve circles!

“Quantum geometry"?
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Circle Packing Formalism: combinatorics to geometry

Let K be a triangulation of an oriented surface (smpicial, possivly w ).

A realisation of K is a collection of circles such that
¢ Vertices = circles
e Edges = tangencies
e QOriented Faces/triangles = oriented tangent triples
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Qns: K
e Given K, can K be realised?
e On what metric surfaces are there such circle packings?
e How unique are realisations of K? “Moduli space"?
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Koebe/Andreev/Thurston/Beardon/Stephenson/... 1930s-90s:
There are discrete circle packing versions of many theorems of
complex analysis (e.g. uniformisation, Riemann mapping).

Useful theorem here: discrete boundary value theorem
* K = simplicial complex triangulating a disc
* OK = boundary vertices.

Theorem (Discrete boundary value theorem)

Let K be a closed disc, g: 0K — R any function. Then there
exists a circle packing for K in the Euclidean plane, unique up
to isometry, with boundary circle radii given by g.
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Penrose—Rindler: spinors x = (¢,7) € C? correspond to pointed
null flags ®(x) on positive light cone L in R'-3,

Dirac/Pauli/Wignery/...:

2 x 2 Hermitian
matrices H

(e 0= 5 = e 72
= o(k) = (T, X,Y,2)

Spinors C?> — Minkowski space R'3

(9

Flag direction (Penrose, Rindler, M?) D, ¢(i7, —i€). (rangentto 1)
e Flag is spin: Multiplying « by e rotates flag () by 26.
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Conformal/“Poincaré" disc model

i~ Theorem (M '25 Adv. Math.)

4
/\Z @aﬂﬁ— 3 SL(2, C)-equivariant bijection
¢  =CU fﬂd

Horospheres in H®
2
C\{0} « { with spin directions }

Upper half space model
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From Spinors to Flags to Horospheres to Circles
Thm extends (e.g. det(k1, k2) = A-length
between horospheres) and generalises:
o H* & quaternions (-varsha 2412.06572)

e H" & Clifford algebras (Ahlfors, Lounesto, M, Zymaris)
Thm specialises: (¢,7) € R? correspond to horocycles in H2.

OH? T
1
/M.
‘ l " OH? = RU {co}
Conformal disc Upper half plane

Horocycles in H? are tangent circles ~ circle packings!

&
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Horocycles of (£o,10), (£1,m1) tangent < ony — E1mp = £1.
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Descartes wrote to Elisabeth of the Palatinate about circles.

3-flower: @%

Descartes 1643: x2 + /i? + KJS + mg = % (Koo + K1 + K2 + K,3)2

Theorem (M—Zymaris '25 J.Geom.Phys, arxiv:2504.14593 )

. Kj—1KjtKj_1Koo+RKjK
Given curvatures koo, Kj i < z/m), let my = URIAVELESIIEY

Then

Koo

n n

[T (mi+i) =TT (m—1).

j=1 j=1

An integer polynomial equation: Im [ (m; + i) = 0.
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Circle packing equations

Continuing in this vein ~ equations for circle packings.

Theorem (M.—Zymaris arxiv:2504.14593)

For K triangulating a disc/sphere/torus, 4 polynomial eqns s.t.
Variables ~ corners of K
Equations ~ int. vertices/edges/faces
(Pos real) Solution variety ~ circle packings realising K

Triangle equations:

Example: abc=a+b+c, def=d+e+f
ghi=g+h+i
Edge equations:
d ae=cd, ai=bg, dh=1fg
e f Vertex equation:

1=ad+dg+ga
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Maths SYM
as usual Amplitudology
Origami
Grassmannians =
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Figure: Kenyon—-Lam—-Ramassamy—Russkikh
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More physics: origami, Grassmannians, amplituhedra

e Arkani-Hamed, Goncharov, T.Lam, Postnikov, Trnka, many
(2013-): Scattering amplitudes in N = 4 super Yang-Mills
theory can be calculated via bipartite plane on-shell
diagrams, using positive Grassmannians from their
boundary measurements, and amplituhedra polytopes.

e Galashin (arxiv Oct '24) related amplituhedra to
t-immersions and origami crease patterns.

Figures: Hull, Arkani-Hamed-Bourjaily—Cachazo—Goncharov—Postnikov—Trnka
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Circle packings from t-immersions, Grassmannians

We can construct circle packings using these techniques!
e Subdivide triangulation K ~ bipartite plane I' & dual I'*

Galashin: t-immersions of I are bijective with certain pairs
M A€ Gr(2,n)suchthat A L Aand A € C C AL,
e extend \, \ to discrete black/white-holomorphic functions
Work in progress:
¢ Circle packings arise precisely when “black=white
holomorphic" and A ~ Xinan appropriate sense.
e Boundary measurement matrix (given by I path weights /
dimers) gives trig expressions in realisation of K
® Physics gives new geometric identities in circle packings!







Thanks for listening!

Daniel .Mathews@monash.edu
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