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Overview

This talk aims to do the following:
• Give some background on circle packing
• Discuss relations to spinors and spacetime
• Describe circle packing equations, whose solutions

parametrise circle packings
• Discuss relations to statistical mechanics, on-shell

diagrams, Grassmannians, amplituhedra, origami.
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Background on Circle Packing

Elementary geometry: Arrange circles in the plane, externally
tangent in prescribed ways. Can be done in interesting ways!

Figure: Stephenson

Tangency constraints →
interesting rigidity/flexibility.

Discrete conformal geom /
Riemann s’fces / cx analysis.

Cauchy-Riemann eqns
“preserve infinitesimal circles".
Here, just preserve circles!

“Quantum geometry"?
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Circle packing terminology

Figure: Stephenson



Bending the owl

Fact: Even circles with the same combinatorial arrangement
can pack in interesting ways, varying the radii.

Figure: Stephenson

For rigidity, require 3
circles tangent around
each interstice.

Combinatorially
represent this with
triangles forming a
triangulation.
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Circle Packing Formalism: combinatorics to geometry

Let K be a triangulation of an oriented surface (simplicial, possibly w ∂).

A realisation of K is a collection of circles such that
• Vertices = circles
• Edges = tangencies
• Oriented Faces/triangles = oriented tangent triples

K

realise

Qns:
• Given K , can K be realised?
• On what metric surfaces are there such circle packings?
• How unique are realisations of K ? “Moduli space"?
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Circle packing & Discrete complex analysis

Koebe/Andreev/Thurston/Beardon/Stephenson/... 1930s–90s:
There are discrete circle packing versions of many theorems of
complex analysis (e.g. uniformisation, Riemann mapping).

Useful theorem here: discrete boundary value theorem
• K = simplicial complex triangulating a disc
• ∂K = boundary vertices.

Theorem (Discrete boundary value theorem)

Let K be a closed disc, g : ∂K → R+ any function. Then there
exists a circle packing for K in the Euclidean plane, unique up
to isometry, with boundary circle radii given by g.
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From Spinors & Spacetime to Circle Packings

Penrose–Rindler: spinors κ = (ξ, η) ∈ C2 correspond to pointed
null flags Φ(κ) on positive light cone L+ in R1,3.

L+ p = (T ,X ,Y ,Z )H3

Dirac/Pauli/Wigner/...:

Spinors C2 −→ 2 × 2 Hermitian
matrices H −→ Minkowski space R1,3

κ =

(
ξ
η

)
7→

(
ξ
η

)(
ξ η

)
=

(
|ξ|2 ξη

ηξ |η|2
)

=

(
T + Z X + iY
X − iY T − Z

)
7→ ϕ(κ) = (T ,X ,Y ,Z )

Flag direction (Penrose, Rindler, M?) Dκϕ(iη,−iξ). (Tangent to L+.)

• Flag is spin: Multiplying κ by eiθ rotates flag Φ(κ) by 2θ.
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From Spinors to Hyperbolic Geometry & Horospheres

Hyperbolic space H3 ⊂ R1,3 as T 2 −X 2 −Y 2 −Z 2 = 1 (hyperboloid model)

• Penner ’80s: p ∈ L+ ⇝ 3-plane Π: ⟨p, ·⟩ = 1
• Π ∩H3 is a horosphere h , (Euclidean plane in H3 tangent to ∞)

• Flag intersects h in a parallel spin direction field.

L+ p
h

H3

Π

Conformal/“Poincaré" disc model

H3

∂H3

iη−2

ξ/η

|η|−2
∂H3

= C ∪ {∞}

Upper half space model

Theorem (M ’25 Adv. Math.)

∃ SL(2,C)-equivariant bijection

C2 \ {0} ↔
{

Horospheres in H3

with spin directions

}



From Spinors to Hyperbolic Geometry & Horospheres

Hyperbolic space H3 ⊂ R1,3 as T 2 −X 2 −Y 2 −Z 2 = 1 (hyperboloid model)

• Penner ’80s: p ∈ L+ ⇝ 3-plane Π: ⟨p, ·⟩ = 1
• Π ∩H3 is a horosphere h , (Euclidean plane in H3 tangent to ∞)

• Flag intersects h in a parallel spin direction field.

L+ p
h

H3

Π

Conformal/“Poincaré" disc model

H3

∂H3

iη−2

ξ/η

|η|−2
∂H3

= C ∪ {∞}

Upper half space model

Theorem (M ’25 Adv. Math.)

∃ SL(2,C)-equivariant bijection

C2 \ {0} ↔
{

Horospheres in H3

with spin directions

}



From Spinors to Hyperbolic Geometry & Horospheres

Hyperbolic space H3 ⊂ R1,3 as T 2 −X 2 −Y 2 −Z 2 = 1 (hyperboloid model)

• Penner ’80s: p ∈ L+ ⇝ 3-plane Π: ⟨p, ·⟩ = 1
• Π ∩H3 is a horosphere h , (Euclidean plane in H3 tangent to ∞)

• Flag intersects h in a parallel spin direction field.

L+ p
h

H3

Π

Conformal/“Poincaré" disc model

H3

∂H3

iη−2

ξ/η

|η|−2
∂H3

= C ∪ {∞}

Upper half space model

Theorem (M ’25 Adv. Math.)

∃ SL(2,C)-equivariant bijection

C2 \ {0} ↔
{

Horospheres in H3

with spin directions

}



From Spinors to Hyperbolic Geometry & Horospheres

Hyperbolic space H3 ⊂ R1,3 as T 2 −X 2 −Y 2 −Z 2 = 1 (hyperboloid model)

• Penner ’80s: p ∈ L+ ⇝ 3-plane Π: ⟨p, ·⟩ = 1
• Π ∩H3 is a horosphere h , (Euclidean plane in H3 tangent to ∞)

• Flag intersects h in a parallel spin direction field.

L+ p
h

H3

Π

Conformal/“Poincaré" disc model

H3

∂H3

iη−2

ξ/η

|η|−2
∂H3

= C ∪ {∞}

Upper half space model

Theorem (M ’25 Adv. Math.)

∃ SL(2,C)-equivariant bijection

C2 \ {0} ↔
{

Horospheres in H3

with spin directions

}



From Spinors to Flags to Horospheres to Circles
Thm extends (e.g. det(κ1, κ2) = λ-length
between horospheres) and generalises:

• H4 & quaternions (M–Varsha 2412.06572)

• Hn & Clifford algebras (Ahlfors, Lounesto, M, Zymaris)

Thm specialises: (ξ, η) ∈ R2 correspond to horocycles in H2.

∂H2

H2

Conformal disc

ξ
η

1/η2

∂H2 = R ∪ {∞}
Upper half plane

Horocycles in H2 are tangent circles⇝ circle packings!

⇝ ⇝
ξ0
η0

ξ1
η1

ξ2
η2

Horocycles of (ξ0, η0), (ξ1, η1) tangent ⇔ ξ0η1 − ξ1η0 = ±1.
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Spinors and Descartes’ Circle Theorem

Descartes wrote to Elisabeth of the Palatinate about circles.

3-flower: C∞ C1C2

C3

Descartes 1643: κ2
∞ + κ2

1 + κ2
2 + κ2

3 = 1
2 (κ∞ + κ1 + κ2 + κ3)

2

Theorem (M–Zymaris ’25 J.Geom.Phys, arxiv:2504.14593 )

Given curvatures κ∞, κj (j ∈ Z/nZ), let mj =

√
κj−1κj+κj−1κ∞+κjκ∞

κ∞
.

Then
n∏

j=1

(
mj + i

)
=

n∏
j=1

(
mj − i

)
.

An integer polynomial equation: Im
∏n

j=1
(
mj + i

)
= 0.
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Circle packing equations

Continuing in this vein⇝ equations for circle packings.

Theorem (M.–Zymaris arxiv:2504.14593)

For K triangulating a disc/sphere/torus, ∃ polynomial eqns s.t.
Variables ∼ corners of K

Equations ∼ int. vertices/edges/faces
(Pos real) Solution variety ∼ circle packings realising K

Example:

a

b

c
d

e f

g

h

i

Triangle equations:
abc = a + b + c, def = d + e + f

ghi = g + h + i

Edge equations:
ae = cd , ai = bg, dh = fg

Vertex equation:
1 = ad + dg + ga
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Further physics: discrete holomorphicity, origami

Background:
• The variables in our circle packing equations are

cotangents of half angles in the realisation...
• Spinors and tangents of half angles at corners of graphs

also naturally arise in 2D Ising model with discrete
holomorphic functions (Chelkak–Smirnov 2012, ...)

• Kenyon, W.Y.Lam, Ramassamy, Russkikh (2020)
generalised to t-embeddings of bipartite plane graphs
(dimer model), producing circle patterns and origami.

Figure: Kenyon–Lam–Ramassamy–Russkikh
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More physics: origami, Grassmannians, amplituhedra

• Arkani-Hamed, Goncharov, T.Lam, Postnikov, Trnka, many
(2013–): Scattering amplitudes in N = 4 super Yang-Mills
theory can be calculated via bipartite plane on-shell
diagrams, using positive Grassmannians from their
boundary measurements, and amplituhedra polytopes.

• Galashin (arxiv Oct ’24) related amplituhedra to
t-immersions and origami crease patterns.

Figures: Hull, Arkani-Hamed–Bourjaily–Cachazo–Goncharov–Postnikov–Trnka
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Circle packings from t-immersions, Grassmannians

We can construct circle packings using these techniques!
• Subdivide triangulation K ⇝ bipartite plane Γ & dual Γ∗

⇝

Galashin: t-immersions of Γ are bijective with certain pairs
λ, λ̃ ∈ Gr(2, n) such that λ ⊥ λ̃ and λ ⊂ C ⊂ λ̃⊥.

• extend λ, λ̃ to discrete black/white-holomorphic functions
Work in progress:

• Circle packings arise precisely when “black=white
holomorphic" and λ ∼ λ̃ in an appropriate sense.

• Boundary measurement matrix (given by Γ path weights /
dimers) gives trig expressions in realisation of K

• Physics gives new geometric identities in circle packings!
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holomorphic" and λ ∼ λ̃ in an appropriate sense.

• Boundary measurement matrix (given by Γ path weights /
dimers) gives trig expressions in realisation of K

• Physics gives new geometric identities in circle packings!
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