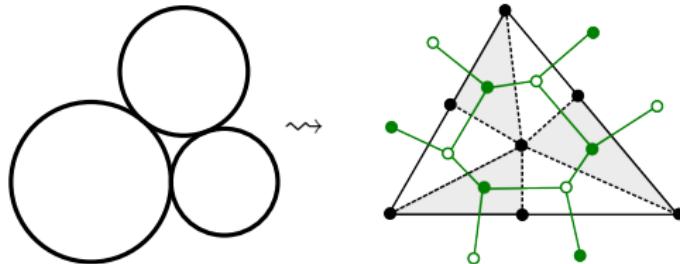


Physical aspects of circle packings

Daniel V. Mathews

Monash University
Daniel.Mathews@monash.edu

ANZAMP
Gerringong
11 February 2026



This talk aims to do the following:

- Give some background on circle packing
- Discuss relations to spinors and spacetime
- Describe circle packing equations, whose solutions parametrise circle packings
- Discuss relations to statistical mechanics, on-shell diagrams, Grassmannians, amplituhedra, origami.

This talk aims to do the following:

- Give some background on circle packing
- Discuss relations to spinors and spacetime
- Describe circle packing equations, whose solutions parametrise circle packings
- Discuss relations to statistical mechanics, on-shell diagrams, Grassmannians, amplituhedra, origami.

Acknowledgments:

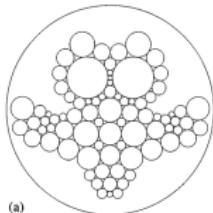
- Includes joint work with Masters student Varsha (MSc) and PhD student Orion Zymaris
- Some work in progress

Background on Circle Packing

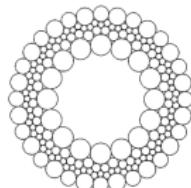
Elementary geometry: Arrange circles in the plane, externally tangent in prescribed ways. Can be done in interesting ways!

Background on Circle Packing

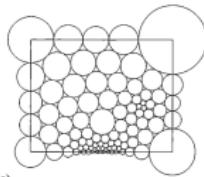
Elementary geometry: Arrange circles in the plane, externally tangent in prescribed ways. Can be done in interesting ways!



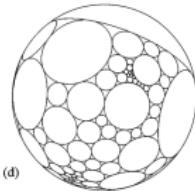
(a)



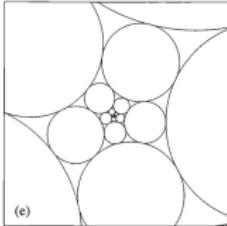
(b)



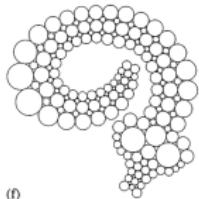
(c)



(d)



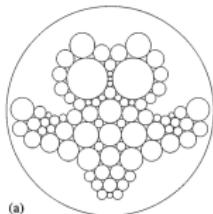
(e)



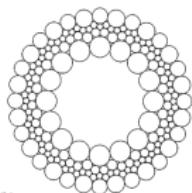
(f)

Background on Circle Packing

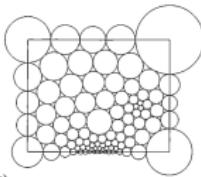
Elementary geometry: Arrange circles in the plane, externally tangent in prescribed ways. Can be done in interesting ways!



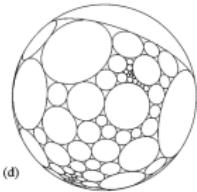
(a)



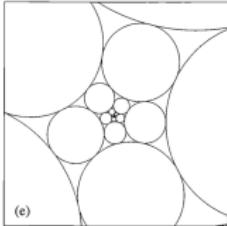
(b)



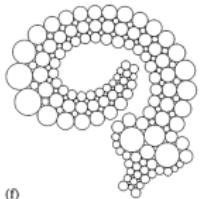
(c)



(d)



(e)

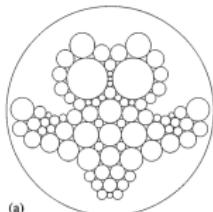


(f)

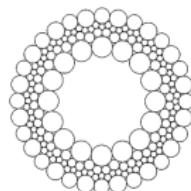
Tangency constraints → interesting rigidity/flexibility.

Background on Circle Packing

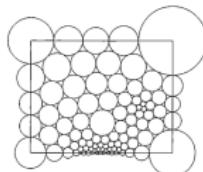
Elementary geometry: Arrange circles in the plane, externally tangent in prescribed ways. Can be done in interesting ways!



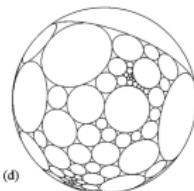
(a)



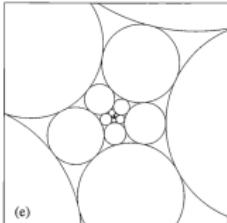
(b)



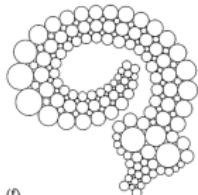
(c)



(d)



(e)



(f)

Tangency constraints → interesting rigidity/flexibility.

Discrete conformal geom / Riemann s'fces / cx analysis.

Cauchy-Riemann eqns
“preserve infinitesimal circles”.
Here, just preserve circles!

“Quantum geometry”?

Circle packing terminology

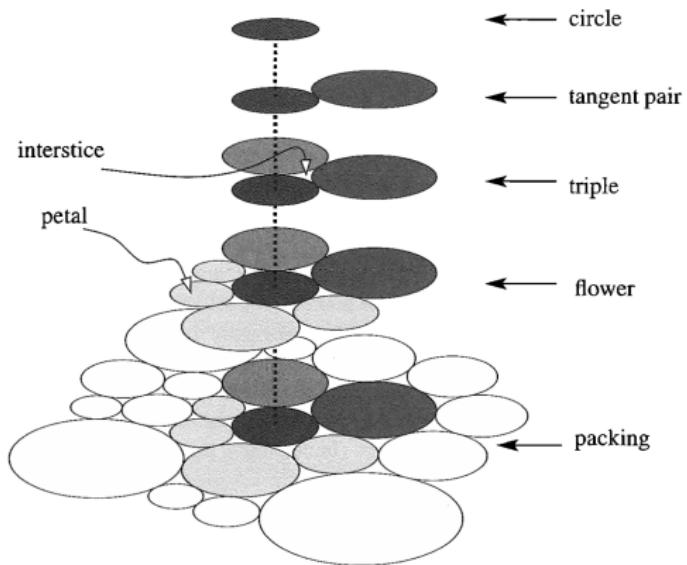


Figure: Stephenson

Bending the owl

Fact: Even circles with the same combinatorial arrangement can pack in interesting ways, varying the radii.

Bending the owl

Fact: Even circles with the same combinatorial arrangement can pack in interesting ways, varying the radii.

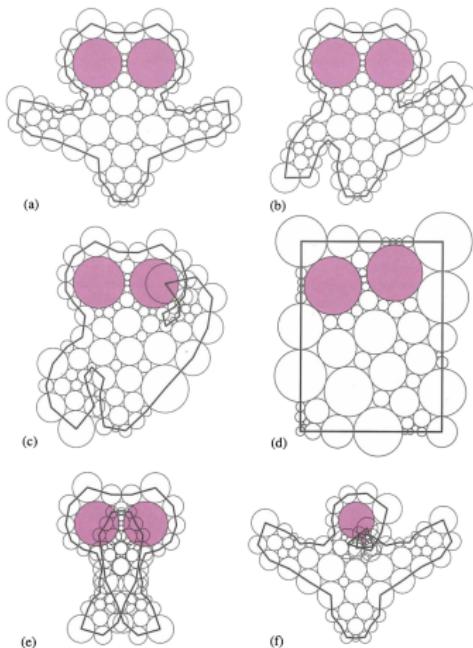
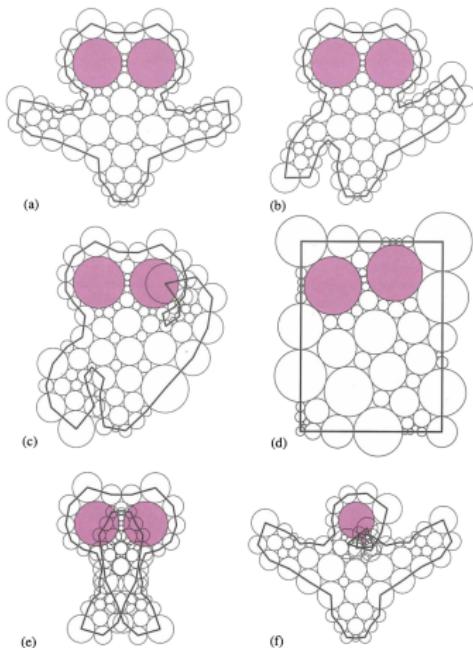


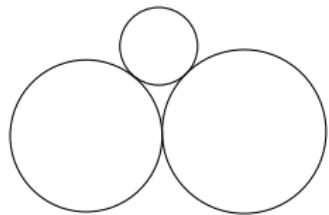
Figure: Stephenson

Bending the owl

Fact: Even circles with the same combinatorial arrangement can pack in interesting ways, varying the radii.

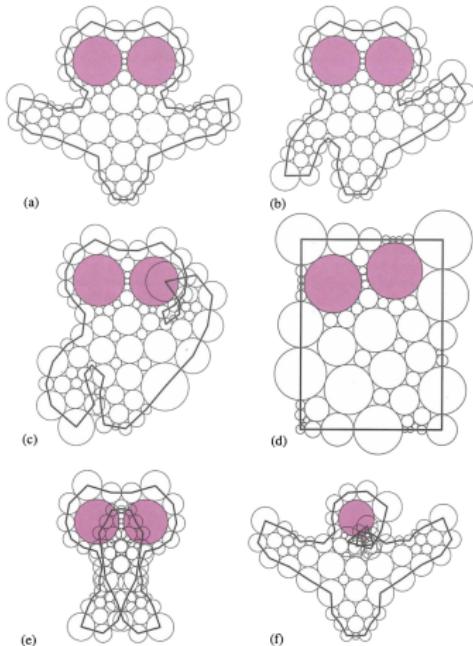


For rigidity, require 3 circles tangent around each interstice.

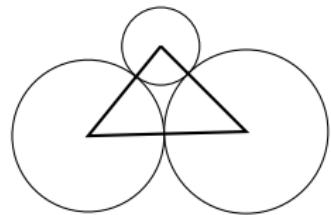


Bending the owl

Fact: Even circles with the same combinatorial arrangement can pack in interesting ways, varying the radii.



For rigidity, require 3 circles tangent around each interstice.



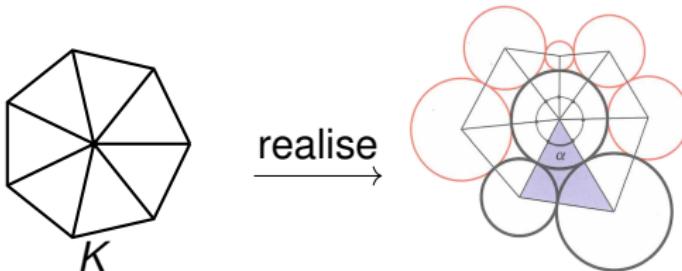
Combinatorially represent this with triangles forming a triangulation.

Circle Packing Formalism: combinatorics to geometry

Let K be a triangulation of an oriented surface (simplicial, possibly w ∂).

A realisation of K is a collection of circles such that

- Vertices = circles
- Edges = tangencies
- Oriented Faces/triangles = oriented tangent triples



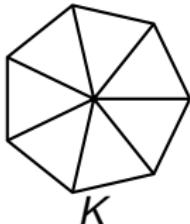
Circle Packing Formalism: combinatorics to geometry

Let K be a triangulation of an oriented surface (simplicial, possibly w ∂).

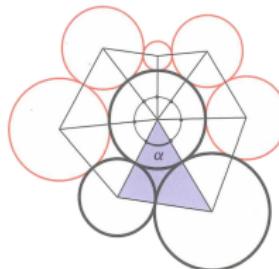
A realisation of K is a collection of circles such that

- Vertices = circles
- Edges = tangencies
- Oriented Faces/triangles = oriented tangent triples

Qns:



realise



- Given K , can K be realised?
- On what metric surfaces are there such circle packings?
- How unique are realisations of K ? "Moduli space"?

Circle packing & Discrete complex analysis

Koebe/Andreev/Thurston/Beardon/Stephenson/... 1930s–90s:
There are discrete circle packing versions of many theorems of
complex analysis (e.g. uniformisation, Riemann mapping).

Circle packing & Discrete complex analysis

Koebe/Andreev/Thurston/Beardon/Stephenson/... 1930s–90s:
There are discrete circle packing versions of many theorems of complex analysis (e.g. uniformisation, Riemann mapping).

Useful theorem here: discrete boundary value theorem

- K = simplicial complex triangulating a disc
- ∂K = boundary vertices.

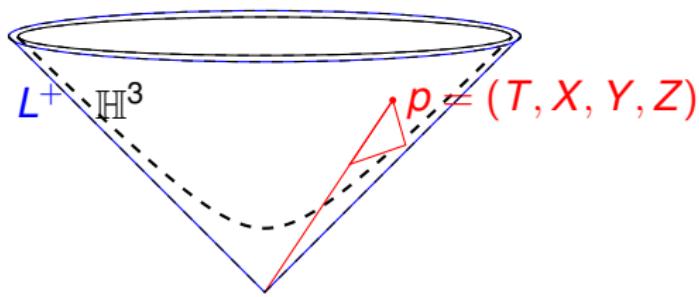
Theorem (Discrete boundary value theorem)

Let K be a closed disc, $g: \partial K \rightarrow \mathbb{R}_+$ any function. Then there exists a circle packing for K in the Euclidean plane, unique up to isometry, with boundary circle radii given by g .

From Spinors & Spacetime to Circle Packings

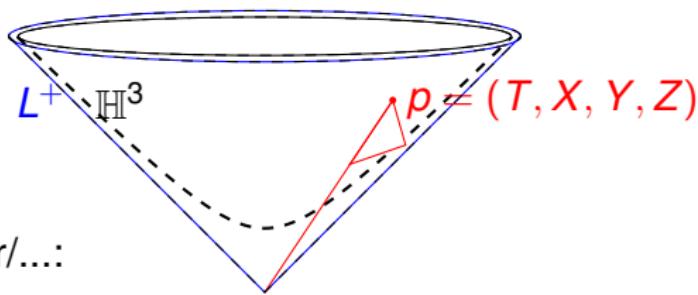
From Spinors & Spacetime to Circle Packings

Penrose–Rindler: spinors $\kappa = (\xi, \eta) \in \mathbb{C}^2$ correspond to pointed null flags $\Phi(\kappa)$ on positive light cone L^+ in $\mathbb{R}^{1,3}$.



From Spinors & Spacetime to Circle Packings

Penrose–Rindler: spinors $\kappa = (\xi, \eta) \in \mathbb{C}^2$ correspond to pointed null flags $\Phi(\kappa)$ on positive light cone L^+ in $\mathbb{R}^{1,3}$.



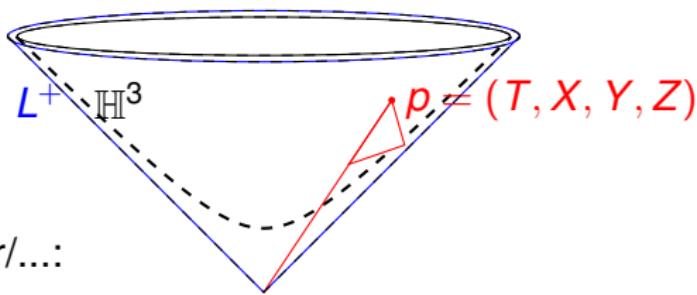
Dirac/Pauli/Wigner/...:

Spinors $\mathbb{C}^2 \longrightarrow 2 \times 2$ Hermitian matrices $\mathcal{H} \longrightarrow$ Minkowski space $\mathbb{R}^{1,3}$

$$\kappa = \begin{pmatrix} \xi \\ \eta \end{pmatrix} \mapsto \begin{pmatrix} \xi \\ \eta \end{pmatrix} (\bar{\xi} \ \bar{\eta}) = \begin{pmatrix} |\xi|^2 & \xi \bar{\eta} \\ \eta \bar{\xi} & |\eta|^2 \end{pmatrix} = \begin{pmatrix} T + Z & X + iY \\ X - iY & T - Z \end{pmatrix} \mapsto \phi(\kappa) = (T, X, Y, Z)$$

From Spinors & Spacetime to Circle Packings

Penrose–Rindler: spinors $\kappa = (\xi, \eta) \in \mathbb{C}^2$ correspond to pointed null flags $\Phi(\kappa)$ on positive light cone L^+ in $\mathbb{R}^{1,3}$.



Dirac/Pauli/Wigner/...:

Spinors $\mathbb{C}^2 \longrightarrow 2 \times 2$ Hermitian matrices $\mathcal{H} \longrightarrow$ Minkowski space $\mathbb{R}^{1,3}$

$$\kappa = \begin{pmatrix} \xi \\ \eta \end{pmatrix} \mapsto \begin{pmatrix} \xi \\ \eta \end{pmatrix} (\bar{\xi} \ \bar{\eta}) = \begin{pmatrix} |\xi|^2 & \xi\bar{\eta} \\ \eta\bar{\xi} & |\eta|^2 \end{pmatrix} = \begin{pmatrix} T+Z & X+iY \\ X-iY & T-Z \end{pmatrix} \mapsto \phi(\kappa) = (T, X, Y, Z)$$

Flag direction (Penrose, Rindler, M?) $D_\kappa \phi(i\bar{\eta}, -i\bar{\xi})$. (Tangent to L^+ .)

- Flag is spin: Multiplying κ by $e^{i\theta}$ rotates flag $\Phi(\kappa)$ by 2θ .

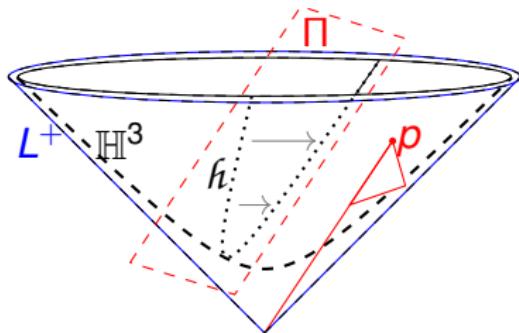
From Spinors to Hyperbolic Geometry & Horospheres

Hyperbolic space $\mathbb{H}^3 \subset \mathbb{R}^{1,3}$ as $T^2 - X^2 - Y^2 - Z^2 = 1$ (hyperboloid model)

From Spinors to Hyperbolic Geometry & Horospheres

Hyperbolic space $\mathbb{H}^3 \subset \mathbb{R}^{1,3}$ as $T^2 - X^2 - Y^2 - Z^2 = 1$ (hyperboloid model)

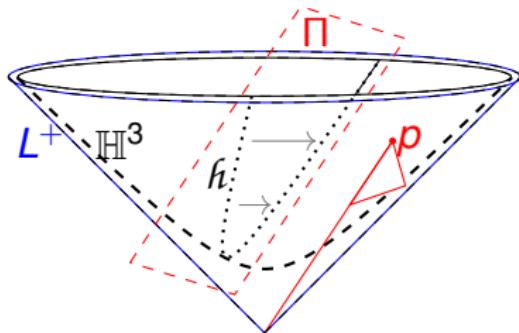
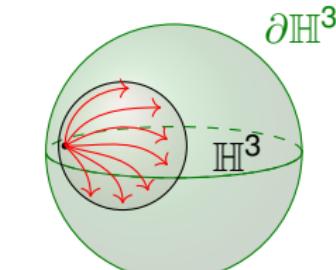
- Penner '80s: $p \in L^+$ \rightsquigarrow 3-plane Π : $\langle p, \cdot \rangle = 1$
- $\Pi \cap \mathbb{H}^3$ is a horosphere h , (Euclidean plane in \mathbb{H}^3 tangent to ∞)
- Flag intersects h in a parallel spin direction field.



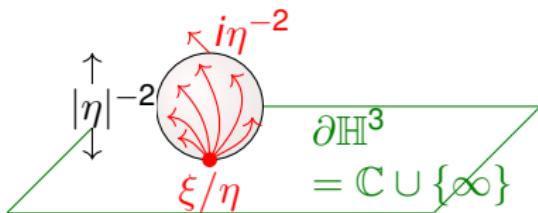
From Spinors to Hyperbolic Geometry & Horospheres

Hyperbolic space $\mathbb{H}^3 \subset \mathbb{R}^{1,3}$ as $T^2 - X^2 - Y^2 - Z^2 = 1$ (hyperboloid model)

- Penner '80s: $p \in L^+$ \rightsquigarrow 3-plane Π : $\langle p, \cdot \rangle = 1$
- $\Pi \cap \mathbb{H}^3$ is a horosphere h , (Euclidean plane in \mathbb{H}^3 tangent to ∞)
- Flag intersects h in a parallel spin direction field.



Conformal/"Poincaré" disc model

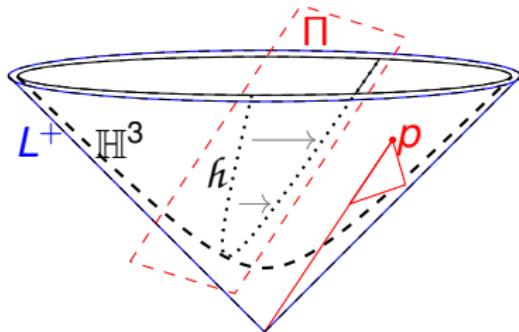
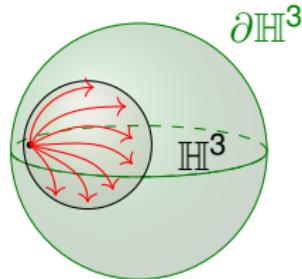


Upper half space model

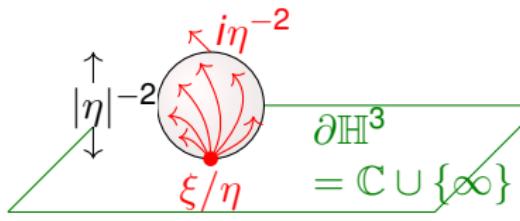
From Spinors to Hyperbolic Geometry & Horospheres

Hyperbolic space $\mathbb{H}^3 \subset \mathbb{R}^{1,3}$ as $T^2 - X^2 - Y^2 - Z^2 = 1$ (hyperboloid model)

- Penner '80s: $p \in L^+$ \rightsquigarrow 3-plane Π : $\langle p, \cdot \rangle = 1$
- $\Pi \cap \mathbb{H}^3$ is a horosphere h , (Euclidean plane in \mathbb{H}^3 tangent to ∞)
- Flag intersects h in a parallel spin direction field.



Conformal/"Poincaré" disc model



Upper half space model

Theorem (M '25 Adv. Math.)

\exists $SL(2, \mathbb{C})$ -equivariant bijection

$\mathbb{C}^2 \setminus \{0\} \leftrightarrow \left\{ \begin{array}{l} \text{Horospheres in } \mathbb{H}^3 \\ \text{with spin directions} \end{array} \right\}$

From Spinors to Flags to Horospheres to Circles

Thm extends (e.g. $\det(\kappa_1, \kappa_2) = \lambda$ -length between horospheres) and generalises:

From Spinors to Flags to Horospheres to Circles

Thm extends (e.g. $\det(\kappa_1, \kappa_2) = \lambda$ -length between horospheres) and generalises:

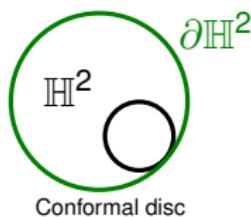
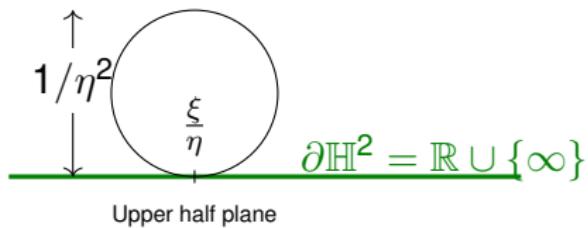
- \mathbb{H}^4 & quaternions (M-Varsha 2412.06572)
- \mathbb{H}^n & Clifford algebras (Ahlfors, Lounesto, M, Zymaris)

From Spinors to Flags to Horospheres to Circles

Thm extends (e.g. $\det(\kappa_1, \kappa_2) = \lambda$ -length between horospheres) and generalises:

- \mathbb{H}^4 & quaternions (M-Varsha 2412.06572)
- \mathbb{H}^n & Clifford algebras (Ahlfors, Lounesto, M, Zymaris)

Thm specialises: $(\xi, \eta) \in \mathbb{R}^2$ correspond to horocycles in \mathbb{H}^2 .

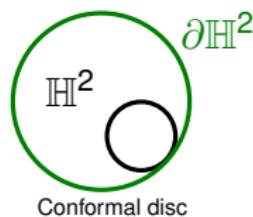
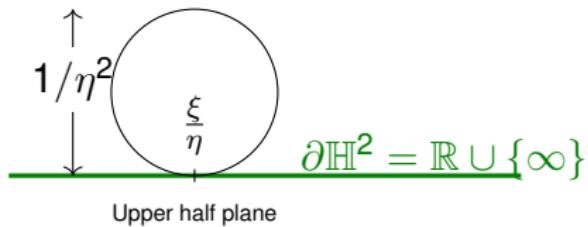


From Spinors to Flags to Horospheres to Circles

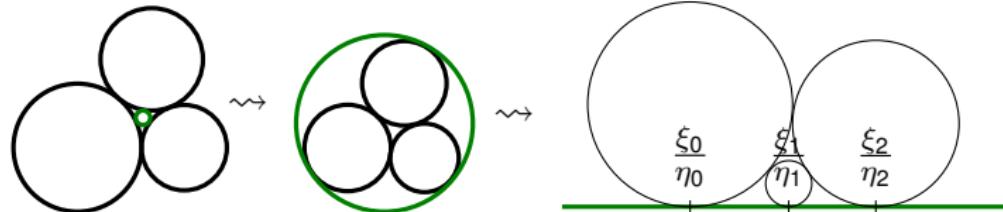
Thm extends (e.g. $\det(\kappa_1, \kappa_2) = \lambda$ -length between horospheres) and generalises:

- \mathbb{H}^4 & quaternions (M-Varsha 2412.06572)
- \mathbb{H}^n & Clifford algebras (Ahlfors, Lounesto, M, Zymariski)

Thm specialises: $(\xi, \eta) \in \mathbb{R}^2$ correspond to horocycles in \mathbb{H}^2 .



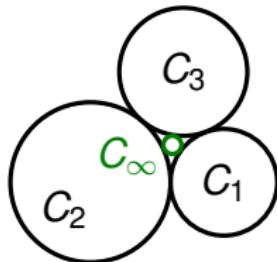
Horocycles in \mathbb{H}^2 are tangent circles \rightsquigarrow circle packings!



Spinors and Descartes' Circle Theorem

Descartes wrote to Elisabeth of the Palatinate about circles.

3-flower:

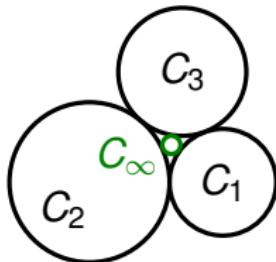


$$\text{Descartes 1643: } \kappa_{\infty}^2 + \kappa_1^2 + \kappa_2^2 + \kappa_3^2 = \frac{1}{2} (\kappa_{\infty} + \kappa_1 + \kappa_2 + \kappa_3)^2$$

Spinors and Descartes' Circle Theorem

Descartes wrote to Elisabeth of the Palatinate about circles.

3-flower:



$$\text{Descartes 1643: } \kappa_\infty^2 + \kappa_1^2 + \kappa_2^2 + \kappa_3^2 = \frac{1}{2} (\kappa_\infty + \kappa_1 + \kappa_2 + \kappa_3)^2$$

Theorem (M-Zymaris '25 J.Geom.Phys, arxiv:2504.14593)

Given curvatures κ_∞, κ_j ($j \in \mathbb{Z}/n\mathbb{Z}$), let $m_j = \frac{\sqrt{\kappa_{j-1}\kappa_j + \kappa_{j-1}\kappa_\infty + \kappa_j\kappa_\infty}}{\kappa_\infty}$.
Then

$$\prod_{j=1}^n (m_j + i) = \prod_{j=1}^n (m_j - i).$$

An integer polynomial equation: $\text{Im } \prod_{j=1}^n (m_j + i) = 0$.

Circle packing equations

Continuing in this vein \rightsquigarrow equations for circle packings.

Circle packing equations

Continuing in this vein \rightsquigarrow equations for circle packings.

Theorem (M.-Zymaris arxiv:2504.14593)

For K triangulating a disc/sphere/torus, \exists polynomial eqns s.t.

Variables \sim corners of K

Equations \sim int. vertices/edges/faces

(Pos real) Solution variety \sim circle packings realising K

Circle packing equations

Continuing in this vein \rightsquigarrow equations for circle packings.

Theorem (M.-Zymaris arxiv:2504.14593)

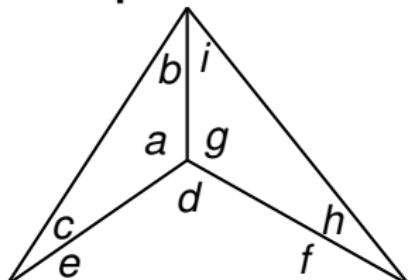
For K triangulating a disc/sphere/torus, \exists polynomial eqns s.t.

Variables \sim corners of K

Equations \sim int. vertices/edges/faces

(Pos real) Solution variety \sim circle packings realising K

Example:



Circle packing equations

Continuing in this vein \rightsquigarrow equations for circle packings.

Theorem (M.-Zymaris arxiv:2504.14593)

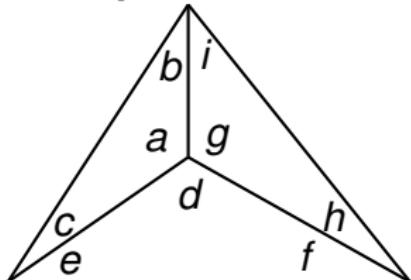
For K triangulating a disc/sphere/torus, \exists polynomial eqns s.t.

Variables \sim corners of K

Equations \sim int. vertices/edges/faces

(Pos real) Solution variety \sim circle packings realising K

Example:



Triangle equations:

$$abc = a + b + c, \quad def = d + e + f$$

$$ghi = g + h + i$$

Edge equations:

$$ae = cd, \quad ai = bg, \quad dh = fg$$

Vertex equation:

$$1 = ad + dg + ga$$

Further physics: discrete holomorphicity, origami

Recent work in progress...

Further physics: discrete holomorphicity, origami

Recent work in progress...

Further physics: discrete holomorphicity, origami

Further physics: discrete holomorphicity, origami

Background:

- The variables in our circle packing equations are cotangents of half angles in the realisation...

Further physics: discrete holomorphicity, origami

Background:

- The variables in our circle packing equations are cotangents of half angles in the realisation...
- Spinors and tangents of half angles at corners of graphs also naturally arise in 2D Ising model with discrete holomorphic functions (Chelkak–Smirnov 2012, ...)

Further physics: discrete holomorphicity, origami

Background:

- The variables in our circle packing equations are cotangents of half angles in the realisation...
- Spinors and tangents of half angles at corners of graphs also naturally arise in 2D Ising model with discrete holomorphic functions (Chelkak–Smirnov 2012, ...)
- Kenyon, W.Y.Lam, Ramassamy, Russkikh (2020) generalised to t-embeddings of bipartite plane graphs (dimer model), producing circle patterns and origami.

Further physics: discrete holomorphicity, origami

Background:

- The variables in our circle packing equations are cotangents of half angles in the realisation...
- Spinors and tangents of half angles at corners of graphs also naturally arise in 2D Ising model with discrete holomorphic functions (Chelkak–Smirnov 2012, ...)
- Kenyon, W.Y.Lam, Ramassamy, Russkikh (2020) generalised to t-embeddings of bipartite plane graphs (dimer model), producing circle patterns and origami.

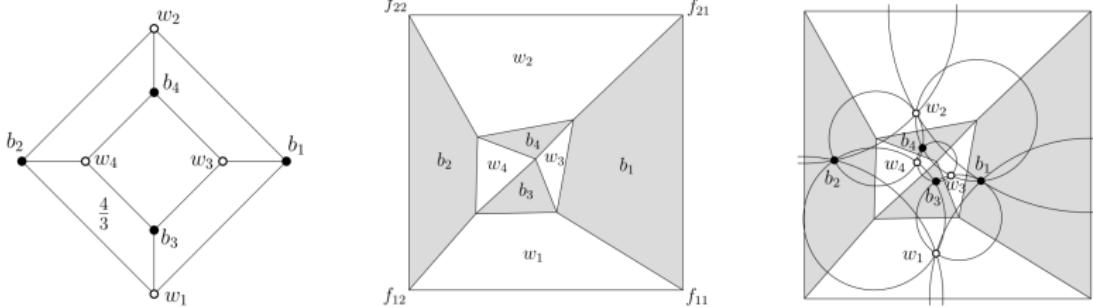
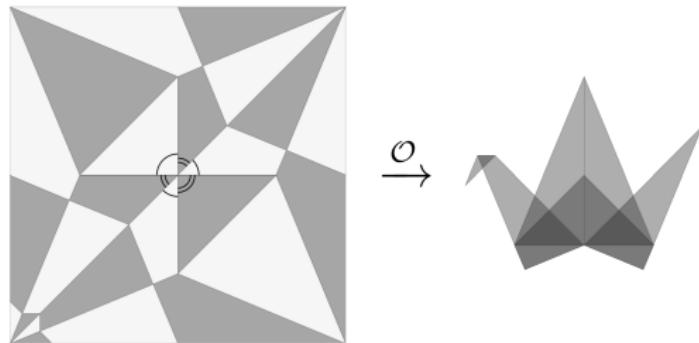
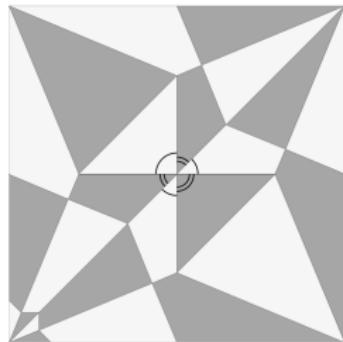


Figure: Kenyon–Lam–Ramassamy–Russkikh

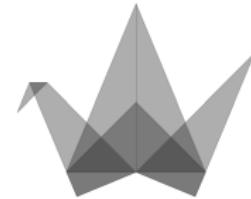
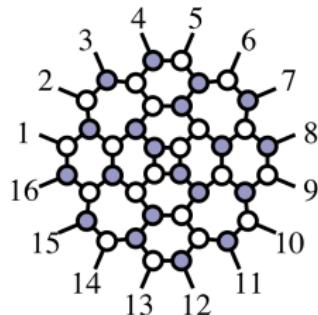
More physics: origami, Grassmannians, amplituhedra



More physics: origami, Grassmannians, amplituhedra

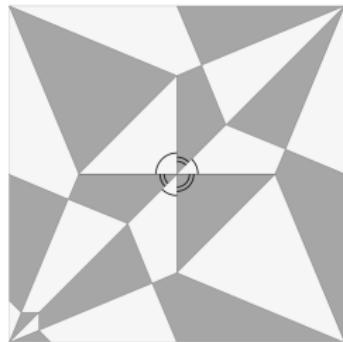


$\stackrel{\mathcal{O}}{\rightarrow}$

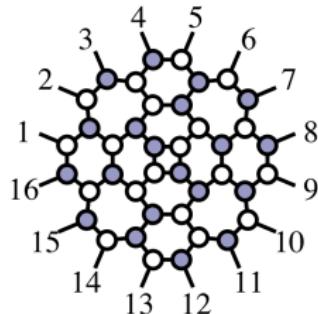


- Arkani-Hamed, Goncharov, T.Lam, Postnikov, Trnka, many (2013–): Scattering amplitudes in $\mathcal{N} = 4$ super Yang-Mills theory can be calculated via bipartite plane on-shell diagrams, using positive Grassmannians from their boundary measurements, and amplituhedra polytopes.

More physics: origami, Grassmannians, amplituhedra



$\xrightarrow{\mathcal{O}}$

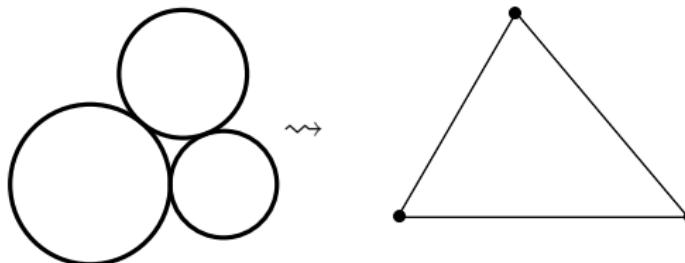


- Arkani-Hamed, Goncharov, T.Lam, Postnikov, Trnka, many (2013–): Scattering amplitudes in $\mathcal{N} = 4$ super Yang-Mills theory can be calculated via bipartite plane on-shell diagrams, using positive Grassmannians from their boundary measurements, and amplituhedra polytopes.
- Galashin (arxiv Oct '24) related amplituhedra to t-immersions and origami crease patterns.

Circle packings from t-immersions, Grassmannians

We can construct circle packings using these techniques!

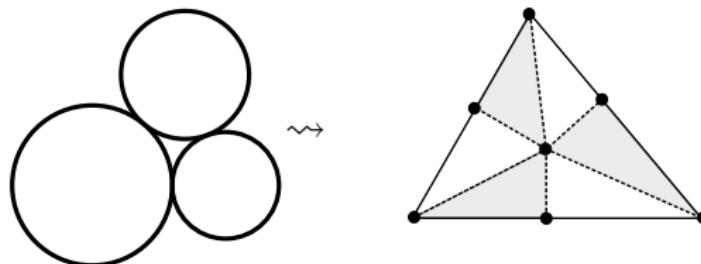
- Subdivide triangulation $K \rightsquigarrow$ bipartite plane Γ & dual Γ^*



Circle packings from t-immersions, Grassmannians

We can construct circle packings using these techniques!

- Subdivide triangulation $K \rightsquigarrow$ bipartite plane Γ & dual Γ^*



Circle packings from t-immersions, Grassmannians

We can construct circle packings using these techniques!

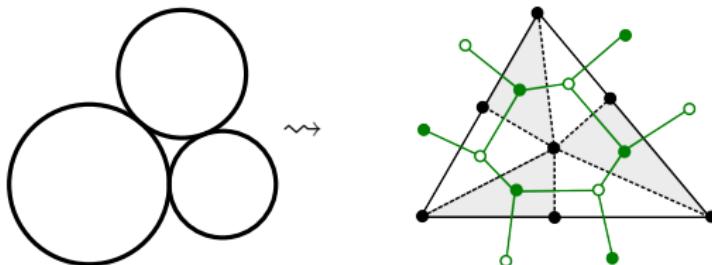
- Subdivide triangulation $K \rightsquigarrow$ bipartite plane Γ & dual Γ^*



Circle packings from t-immersions, Grassmannians

We can construct circle packings using these techniques!

- Subdivide triangulation $K \rightsquigarrow$ bipartite plane Γ & dual Γ^*



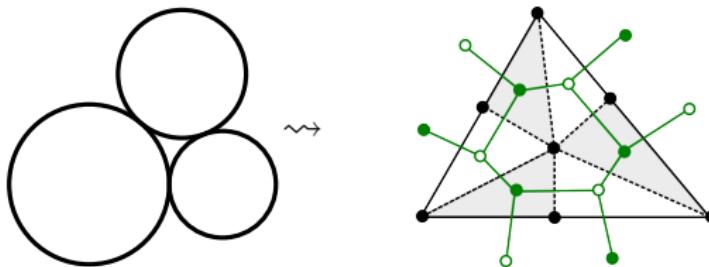
Galashin: t -immersions of Γ are bijective with certain pairs $\lambda, \tilde{\lambda} \in \text{Gr}(2, n)$ such that $\lambda \perp \tilde{\lambda}$ and $\lambda \subset C \subset \tilde{\lambda}^\perp$.

- extend $\lambda, \tilde{\lambda}$ to discrete black/white-holomorphic functions

Circle packings from t-immersions, Grassmannians

We can construct circle packings using these techniques!

- Subdivide triangulation $K \rightsquigarrow$ bipartite plane Γ & dual Γ^*



Galashin: t -immersions of Γ are bijective with certain pairs $\lambda, \tilde{\lambda} \in \text{Gr}(2, n)$ such that $\lambda \perp \tilde{\lambda}$ and $\lambda \subset C \subset \tilde{\lambda}^\perp$.

- extend $\lambda, \tilde{\lambda}$ to discrete black/white-holomorphic functions

Work in progress:

- Circle packings arise precisely when “black=white holomorphic” and $\lambda \sim \tilde{\lambda}$ in an appropriate sense.
- Boundary measurement matrix (given by Γ path weights / dimers) gives trig expressions in realisation of K
- Physics gives new geometric identities in circle packings!

Thanks for listening!

Daniel.Mathews@monash.edu

References:

- M. Spinors and horospheres, Adv. Math. 2025
- M., Zymar, Spinors and the Descartes circle theorem, J. Geom. Phys. 2025
- M., Zymar, An algebraic approach to circle packing arxiv 2504.14593
- M., Varsha, Quaternionic spinors and horospheres in 4-dimensional hyperbolic geometry, arxiv 2412.06572
- M., Varsha, From spinors to horospheres: a geometric tour, arxiv 2412.10862

Figures:

- Stephenson, Introduction to Circle Packing (2005)
- Kenyon, Lam, Ramassamy, Russkikh, "Dimers and circle patterns", arxiv:1810.05616
- Hull, "The combinatorics of flat folds: a survey" in Origami3 (2001), 29-38.
- Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka, "Scattering Amplitudes and the Positive Grassmannian", arxiv 1212.5605