Spinors and Descartes’ Theorem

Descartes’ circle theorem relates the curvatures of four mutually externally tangent circles, three “petal” circles around the exterior of a central circle, forming a “3-flower” configuration. We generalise this theorem to the case of an “n-flower”, consisting of n tangent circles around the exterior of a central circle, and give an explicit equation satisfied by their curvatures. The proof uses a spinorial description of horospheres in hyperbolic geometry.

Spinors and horospheres

We give an explicit bijective correspondence between between nonzero pairs of complex numbers, which we regard as spinors or spin vectors, and horospheres in 3-dimensional hyperbolic space decorated with certain spinorial directions. This correspondence builds upon work of Penrose–Rindler and Penner. We show that the natural bilinear form on spin vectors describes a certain complex-valued distance between spin-decorated horospheres, generalising Penner’s lambda lengths to 3 dimensions.

From this, we derive several applications. We show that the complex lambda lengths in a hyperbolic ideal tetrahedron satisfy a Ptolemy equation.
We also obtain correspondences between certain spaces of hyperbolic ideal polygons and certain Grassmannian spaces, under which lambda lengths correspond to Plücker coordinates, illuminating the connection between Grassmannians, hyperbolic polygons, and type A cluster algebras.

A symplectic basis for 3-manifold triangulations

In the 1980s, Neumann and Zagier introduced a symplectic vector space associated to an ideal triangulation of a cusped 3-manifold, such as a knot complement. We give a geometric interpretation for this symplectic structure in terms of the topology of the 3-manifold, via intersections of certain curves on a Heegaard surface. We also give an algorithm to construct curves forming a symplectic basis.

A-polynomials, Ptolemy varieties and Dehn filling

The A-polynomial encodes hyperbolic geometric information on knots and related manifolds. Historically, it has been difficult to compute, and particularly difficult to determine A-polynomials of infinite families of knots. Here, we show how to compute A-polynomials by starting with a triangulation of a manifold, similar to Champanerkar, then using symplectic properties of the Neumann-Zagier matrix encoding the gluings to change the basis of the computation. The result is a simplicifation of the defining equations. Our methods are a refined version of Dimofte’s symplectic reduction, and we conjecture that the result is equivalent to equations arising from the enhanced Ptolemy variety of Zickert, which would connect these different approaches to the A-polynomial.

We apply this method to families of manifolds obtained by Dehn filling, and show that the defining equations of their A-polynomials are Ptolemy equations which, up to signs, are equations between cluster variables in the cluster algebra of the cusp torus. Thus the change in A-polynomial under Dehn filling is given by an explicit twisted cluster algebra. We compute the equations for Dehn fillings of the Whitehead link.

A-infinity algebras, strand algebras, and contact categories

In previous work we showed that the contact category algebra of a quadrangulated surface is isomorphic to the homology of a strand algebra from bordered Floer theory. Being isomorphic to the homology of a differential graded algebra, this contact category algebra has an A-infinity structure. In this paper we investigate such A-infinity structures in detail. We give explicit constructions of such A-infinity structures, and establish some of their properties, including conditions for the nonvanishing of A-infinity operations. Along the way we develop several related notions, including a detailed consideration of tensor products of strand diagrams.

Tight contact structures on Seifert surface complements

We consider complements of standard Seifert surfaces of special alternating links. On these handlebodies, we use Honda’s method to enumerate those tight contact structures whose dividing sets are isotopic to the link, and find their number to be the leading coefficient of the Alexander polynomial. The Euler classes of the contact structures are identified with hypertrees in a certain hypergraph. Using earlier work, this establishes a connection between contact topology and the Homfly polynomial. We also show that the contact invariants of our tight contact structures form a basis for sutured Floer homology. Finally, we relate our methods and results to Kauffman’s formal knot theory.

Polytopes, dualities, and Floer homology

This article is an exposition of a body of existing results, together with an announcement of recent results. We discuss a theory of polytopes associated to bipartite graphs and trinities, developed by Kálmán, Postnikov and others. This theory exhibits a variety of interesting duality and triality relations, and extends into knot theory, 3-manifold topology and Floer homology. In recent joint work with Kálmán, we extend this story into contact topology and contact invariants in sutured Floer homology.